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ABSTRACT

We investigate the effects of dust on Lyα photons emergent from an optically thick medium by solving the integro-
differential equation of radiative transfer of resonant photons. To solve the differential equations numerically, we use
the weighted essentially non-oscillatory method. Although the effects of dust on radiative transfer are well known,
the resonant scattering of Lyα photons makes the problem non-trivial. For instance, if the medium has an op-
tical depth of dust absorption and scattering of τa � 1, τ � 1, and τ � τa , the effective absorption optical
depth in a random walk scenario would be equal to

√
τa(τa + τ ). We show, however, that for a

resonant scattering at frequency ν0, the effective absorption optical depth would be even larger than τ (ν0). If
the cross section of dust scattering and absorption is frequency-independent, the double-peaked structure of the fre-
quency profile given by the resonant scattering is basically dust-independent. That is, dust causes neither narrowing
nor widening of the width of the double-peaked profile. One more result is that the timescales of the Lyα photon
transfer in an optically thick halo are also basically independent of the dust scattering, even when the scattering is
anisotropic. This is because those timescales are mainly determined by the transfer in the frequency space, while
dust scattering, either isotropic or anisotropic, does not affect the behavior of the transfer in the frequency space
when the cross section of scattering is wavelength-independent. This result does not support the speculation that
dust will lead to the smoothing of the brightness distribution of a Lyα photon source with an optically thick halo.
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1. INTRODUCTION

Lyα photons have been widely applied to study at various
epochs of the universe the physics of luminous objects, such
as Lyα emitters, Lyα blobs, damped Lyα systems, Lyα forests,
fluorescent Lyα emission, star-forming galaxies, quasars at high
redshifts, and optical afterglow of gamma-ray bursts (Haiman
et al. 2000; Fardal et al. 2001; Dijkstra & Loeb 2009; Latif et al.
2011). The resonant scattering of Lyα photons with neutral
hydrogen atoms has a profound effect on the time, space, and
frequency dependencies of Lyα photon transfer in an optically
thick medium. Lyα photons emergent from an optically thick
medium would carry rich information of photon sources and
halo surrounding the source of the Lyα photon. The profiles of
the emission and absorption of the Lyα radiation are powerful
tools for constraining the mass density, velocity, temperature,
and the fraction of neutral hydrogen of the optically thick
medium. Radiation transfer of Lyα photons in an optically thick
medium is fundamentally important.

The radiative transfer of Lyα photons in a medium consisting
of neutral hydrogen atoms has been extensively studied both
analytically and numerically. However, there have been rel-
atively few results that are directly based on the solutions
of the integro-differential equation of the resonant radiative
transfer. Besides the Field solution (Field 1959; Rybicki &
Dell’Antonio 1994), analytical solutions with and without dust
are based mostly on the Fokker–Planck (F–P) approximation
(Harrington 1973; Neufeld 1990; Dijkstra et al. 2006). The
F–P equation might miss the detailed balance relationship of
resonant scattering (Rybicki 2006), and, therefore, the ana-
lytical solutions cannot describe the formation and evolution
of the Wouthuysen–Field (W–F) local thermalization of the
Lyα photon frequency distribution (Wouthuysen 1952; Field
1958), which is important for the emission and absorption of the

hydrogen 21 cm line (e.g., Fang 2009). The features of the Lyα
photon transfer related to the W–F local thermalization are also
missed. An early effort (Adams et al. 1971) tried to directly
solve the integro-differential equation of the resonant radiative
transfer with a numerical method. It is still, however, a time-
independent approximation.

Recently, a state-of-the-art numerical method has been intro-
duced to solve the integro-differential equation of the radiative
transfer with resonant scattering (Qiu et al. 2006, 2007, 2008;
Roy et al. 2009a). The solver is based on the weighted essentially
non-oscillatory (WENO) scheme (Jiang & Shu 1996). With the
WENO solver, many physical features of the transfer of Lyα
photons in an optically thick medium (Roy et al. 2009b, 2009c,
2010), which are missed in the F–P equation approximations,
have been revealed. For instance, the WENO solution shows that
the timescale of the formation of the W–F local thermal equi-
librium actually is only about a few hundred times the resonant
scattering. It also shows that the double-peaked frequency pro-
file of the Lyα photon emergent from an optically thick medium
does not follow the time-independent solutions of the F–P equa-
tion. These results directly indicate the need to revisit problems
that have been studied only via the F–P time-independent ap-
proximation.

We will investigate in this paper the effects of dust on the
Lyα photon transfer in an optically thick medium. Dust can be
produced at epochs of low and moderate redshifts, and even
at redshift as high as 6 (Stratta et al. 2007). Absorption and
scattering of dust have been used to explain the observations of
Lyα emission and absorption (Hummer & Kunasz 1980), such
as the escaping fraction of Lyα photons (Hayes et al. 2010,
2011; Blanc et al. 2011), the redshift dependence of the ratio
between Lyα emitters and Lyman break galaxies (Verhamme
et al. 2008), and the “evolution” of the double-peaked profile
(Laursen et al. 2009).
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Nevertheless, it is still unclear whether the timescale of
photons escaping from an optically thick halo will be increasing
(or decreasing) when the halo is dusty. It is also unclear whether
the effects of dust absorption can be estimated by the random
walk picture (Hansen & Oh 2006). As for the dust effect on
the double-peaked profile, the current results given by different
studies seem to be contradictory: some claim that the dust
absorption leads to the narrowing of the double-peaked profile
(Laursen et al. 2009), while others report that the width between
the two peaks apparently should be increasing due to dust
absorption (Verhamme et al. 2006). We will focus on these basic
problems and examine them with the solution of the integro-
differential equation of radiative transfer.

This paper is organized in the following way: Section 2
presents the theory of the Lyα photon transfer in an optically
thick medium with dust. The equations of the intensity and
flux of resonant photons in a dusty medium are given. We
will study three models of the interaction between dust and
photons: (1) dust causes only scattering with photons, (2) dust
causes both scattering and absorption, and (3) dust causes
only absorption of photons. Section 3 gives the solutions of
Lyα photons escaping from an optically thick spherical halo
with dust. The dusty effect on the double-peaked profile will
be studied in Section 4. The discussion and conclusion are
given in Section 5. Some mathematical derivations of the
equations and numerical implementation details are given in
Appendices A and B, respectively.

2. BASIC THEORY

2.1. Radiative Transfer Equation of a Dusty Halo

We study the transfer of Lyα photons in a spherical halo with
radius R around an optical source. The halo is assumed to consist
of uniformly distributed H i gas and dust. The optical depth of
H i scattering over a light path dl is dτ = σ (ν)nH idl, where nH i
is the number density of H i and σ (ν) is the cross section of the
resonant scattering of Lyα photons by neutral hydrogen, which
is given by

σ (x) = σ0φ(x, a) = σ0
a

π3/2

∫ ∞

−∞
dy

e−y2

(x − y)2 + a2
, (1)

where φ(x, a) is the normalized Voigt profile (Hummer 1965).
As usual, the photon frequency ν in Equation (1) is described
by the dimensionless frequency x ≡ (ν − ν0)/ΔνD , with
ν0 = 2.46 × 1015 s−1 being the resonant frequency, ΔνD =
ν0(vT /c) = 1.06 × 1011(T/104)1/2 Hz the Doppler broadening,
vT = √

2kBT /m the thermal velocity, and T the gas temperature
of the halo. σ0/π

1/2 is the cross section of scattering at the
resonant frequency ν0. The parameter a in Equation (1) is
the ratio of natural to Doppler broadening. For the Lyα line,
a = 4.7 × 10−4(T/104)−1/2. The optical depth of Lyα photons
with respect to H i resonant scattering is τs(x) = nH iRσ (x) =
τ0φ(x, a), where τ0 = nH iσ0R.

If the absorption and scattering of dust are described by the
effective cross section per hydrogen atom σd (x), the total optical
depth is given by

τ (x) = τ0φ(x, a) + τd (x), (2)

where the dust optical depth τd (x) = nH iσd (x)R. This is equal
to assuming that dust is uniformly distributed in the intergalactic
medium. The effects of inhomogeneous density distributions of

dust (Neufeld 1991; Haiman & Spaans 1999) will not be studied
in this paper.

The radiative transfer equation of Lyα photons in a spherical
halo with dust is given by

∂I

∂η
+ μ

∂I

∂r
+

(1 − μ2)

r

∂I

∂μ
− γ

∂I

∂x
= −φ(x; a)I

+
∫

R(x, x ′; a)I (η, r, x ′, μ′)dx ′dμ′/2 − κ(x)I

+ Aκ(x)
∫

Rd (x, x ′;μ,μ′; a)I (η, r, x ′, μ′)dx ′dμ′ + S,

(3)

where I (t, rp, x, μ) is the specific intensity, which is a function
of time t, radial coordinate rp, frequency x, and the direction
angle, μ = cos θ , with respect to the radial vector r.

In Equation (3), we use the dimensionless time η defined as
η = cnH iσ0t and the dimensionless radial coordinate r defined
as r = nH iσ0rp. That is, η and r are, respectively, in the units
of mean-free flight time and mean-free path of photon ν0 with
respect to the resonant scattering without dust scattering and
absorption. Without resonant scattering, a signal propagates in
the radial direction with the speed of light; the orbit of the signal
is then r = η + const. With the dimensionless variable, the size
of the halo R is equal to τ0.

The redistribution function R(x, x ′; a) gives the probability
of a photon absorbed at the frequency x ′ and re-emitted at the
frequency x. It depends on the details of the scattering (Henyey &
Greestein 1941; Hummer 1962, 1969). If we consider coherent
scattering without recoil, the redistribution function with the
Voigt profile can be written as

R(x, x ′; a) = 1

π3/2

∫ ∞

|x−x ′ |/2
e−u2

×
[

tan−1
(xmin + u

a

)
− tan−1

(
xmax − u

a

)]
du, (4)

where xmin = min(x, x ′) and xmax = max(x, x ′). In the case
of a = 0, i.e., considering only the Doppler broadening, the
redistribution function is

R(x, x ′) = 1

2
erfc[max(|x|, |x ′|)]. (5)

The redistribution function of Equation (5) is normalized as∫ ∞
−∞ R(x, x ′)dx ′ = φ(x, 0) = π−1/2e−x2

. With this normaliza-
tion, the total number of photons is conserved in the evolution
described by Equation (3). That is, the destruction processes
of Lyα photons, such as the two-photon process (Spitzer &
Greenstein 1951; Osterbrock 1962), are ignored in Equation (3).
The recoil of atoms is also not considered in Equations (4) or
(5). The effect of recoil actually is under control (Roy et al.
2009c, 2010). We will address this in the next section.

The absorption and scattering of dust are described by the
term κ(x)I of Equation (3), where κ(x) = σd/σ0, which is
of the order of 10−8(T/104)1/2 (Draine & Lee 1984; Draine
2003). The term with A of Equation (3) describes albedo, i.e.,
A ≡ σs/σd , where σs is the cross section of dust scattering.
Generally, A lies approximately between 0.3 and 0.4 (Pei 1992;
Weingartner & Draine 2001).

Since dust generally is much heavier than single atoms, the
recoil of dust particles can be neglected when colliding with
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a photon. Under this “heavy dust” approximation, photons do
not change their frequency during the collision with dust. The
redistribution function of dust Rd is independent of x and x ′,
and is simply given by a phase function as

Rd (μ,μ′) = 1

4π

∫ 2π

0
dφ′ 1 − g2

(1 + g2 − 2gμ̄)3/2

=
∞∑
l=0

(2l + 1)

2
glPl(μ)Pl(μ

′), (6)

where μ̄ = μμ′ +
√

(1 − μ2)(1 − μ′2)cos φ′ and Pl is the
Legendre function. The factor g in Equation (6) is the asymmetry
parameter. For isotropic scattering, g = 0. The cases of
g = +1 and −1 correspond to complete forward and backward
scattering, respectively. Generally, the factor g is a function of
the wavelength. For the Lyα photon, we will take g = 0.73
for realistic dust scattering (Li & Draine 2001). The integral of
Equation (6) is performed in Appendix A.

In Equation (3), the term with the parameter γ is due to the
expansion of the universe. If nH is equal to the mean of the
number density of cosmic hydrogen, we have γ = τ−1

GP , and τGP
is the Gunn–Peterson optical depth. Since the Gunn–Peterson
optical depth is of the order of 106 at high redshift (e.g., Roy
et al. 2009c), the parameter γ is of the order of 10−5 to 10−6.
Therefore, if the optical depth of halos is equal to or less than
106, the term with γ of Equation (3) can be ignored.

In Equation (3), we neglect the effect of collision transition
from the H(2p) state to the H(2s) state, which can significantly
affect the escape of Lyα photons when the H i column density
is higher than 1021 cm−2 and the dust absorption is very small
(Neufeld 1990). This is generally out of the parameter range
used below. We are also not considering the effects of bulk
motion of the medium of halos (e.g., Spaans & Silk 2006; Xu
& Wu 2010).

2.2. Eddington Approximation

Equation (6) indicates that the transfer equation (3) can
be solved with the Legendre expansion I (η, r, x, μ) =∑

l Il(η, r, x)Pl(μ). If we take only the first two terms, l = 0
and 1, it is the Eddington approximation as

I (η, r, x, μ) � J (η, r, x) + 3μF (η, r, x), (7)

where

J (η, r, x) = 1

2

∫ +1

−1
I (η, r, x, μ)dμ,

(8)

F (η, r, x) = 1

2

∫ +1

−1
μI (η, r, x, μ)dμ.

They are, respectively, the angularly averaged specific intensity
and flux. Defining j = r2J and f = r2F , Equation (3) yields
the equations of j and f as

∂j

∂η
+

∂f

∂r
= −(1 − A)κj − φ(x; a)j +

∫
R(x, x ′; a)jdx ′

+ γ
∂j

∂x
+ r2S, (9)

∂f

∂η
+

1

3

∂j

∂r
− 2

3

j

r
= − (1 − Ag)κf + γ

∂f

∂x
− φ(x; a)f. (10)

The mean intensity j (η, r, x) describes the x photons trapped in
the position r at time η by the resonant scattering, while the flux
f (η, r, x) describes the photons in transit.

The source term S in Equations (3) and (9) can be described
by a boundary condition of j and f at r = r0. We can take r0 = 0.
Thus, the boundary condition is

j (η, 0, x) = 0, f (η, 0, x) = S0φs(x), (11)

where S0 and φs(x) are, respectively, the intensity and normal-
ized frequency profile of the sources. Since Equation (3) is
linear, the solutions of j (x) and f (x) for a given S0 = S are
equal to Sj1(x) and Sf1(x), where j1(x) and f1(x) are the solu-
tions of S0 = 1. On the other hand, Equation (3) is not linear
with respect to the function φs(x). The solution f (x) for a given
φs(x) is not equal to φs(x)f1(x), where f1(x) is the solution of
φs(x) = 1.

In the range outside the halo, r > R, no photons propagate
in the direction μ < 0. The boundary condition at r = R given
by

∫ −1
0 μJ (η,R, x, μ)dμ = 0 is then (Unno 1955)

j (η,R, x) = 2f (η,R, x). (12)

There is no photon in the field before t = 0. Therefore, the
initial condition is

j (0, r, x) = f (0, r, x) = 0. (13)

We will solve Equations (9) and (10) with boundary and initial
conditions given by Equations (11)–(13) by using the WENO
solver (Roy et al. 2009a, 2009b, 2009c, 2010). Some details of
this method are given in Appendix B.

2.3. Dust Models

We consider three models of the dust as follows:

I. Pure scattering. A = 1, g = 0.73: dust causes only
anisotropic scattering, but no absorption.

II. Scattering and absorption. A = 0.32, g = 0.73: dust
causes both absorption and anisotropic scattering.

III. Pure absorption. A = 0: dust causes only absorption, but
no scattering.

Models I and III do not occur in reality. They are, however,
helpful to reveal the effects of pure scattering and absorption on
the radiative transfer.

Since κ(x) is on the order of 10−8, its effect will be significant
only for halos with optical depth τ0 � 106, and ignorable
for τ0 � 105. To illustrate the dust effect, we use halos of
R = τ0 � 104 and take larger κ to be � 10−4 to 10−2. We also
assume that κ is frequency-independent. We consider below
only the case of gray dust, i.e., κ is independent of the frequency
x. This is certainly not realistic dust. However, the frequency
given in the solutions below mostly is in the range |x| < 4.
Therefore, the approximation of gray dust would be proper if
the cross section of dust is not significantly frequency-dependent
in the range |x| < 4.

2.4. Numerical Example: Wouthuysen–Field Thermalization

As the first example of numerical solutions, we show the
W–F effect, which requires that the distribution of Lyα pho-
tons in the frequency space should be thermalized near the
resonant frequency ν0. The W–F effect illustrates the differ-
ence between the analytical solutions of the F–P approximation
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Figure 1. Mean intensity j (η, r, x) at η = 500 and r = 100 for dust models I (left panel), II (middle panel), and III (right panel). The source is S0 = 1 and

φs (x) = (1/
√

π )e−x2
. The parameter a = 10−3. In each panel, κ is taken to be 0, 10−4, 10−3, and 10−2.
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Figure 2. Flux f (η, r, x) of Lyα photons emergent from halos at the boundary R = 102, and for the dust model I, A = 1, g = 0.73. The parameter κ is taken to be

10−4 (left), 10−3 (middle), and 10−2 (right). The source is S0 = 1 and φs (x) = (1/
√

π )e−x2
. The parameter a = 10−3.

and those of Equations (9) and (10). The former cannot show
the local thermalization (Neufeld 1990), while the latter can
(Roy et al. 2009b). All problems related to the W–F local ther-
mal equilibrium should be studied with the integro-differential
equation (Equation (3)).

Figure 1 presents a solution of mean intensity j (η, r, x) at
time η = 500 and radial coordinate r = 102 for a halo with size
R � r = 102. The three panels correspond to dust models I
(left panel), II (middle panel), and III (right panel). The source
is taken to have a Gaussian profile φs(x) = (1/

√
π)e−x2

and
unit intensity S0 = 1. The solutions of Figure 1 are actually
independent of R, if R � 102. The intensity of j is decreasing
from left to right in Figure 1, because the absorption is increasing
with the models from I to III.

A remarkable feature shown in Figure 1 is that all j (η, r, x)
have a flat plateau in the range |x| � 2. This gives the frequency
range of the W–F local thermalization (Roy et al. 2009b, 2009c).
The range of the flat plateau |x| � 2 is almost dust-independent,
either for model I or for models II and III. This is expected, as
neither the absorption nor scattering given by the κ term of
Equation (3) changes the frequency distribution of photons. The
redistribution function (Equation (6)) also does not change the
frequency distribution of photons. This point can also be seen
from Equations (9) and (10), in which the κ terms are frequency-
independent. The evolution of the frequency distribution of
photons is due only to the resonant scattering.

Since thermalization will erase all frequency features within
the range |x| � 2, the double-peaked structure does not retain
information of the photon frequency distribution within |x| < 2
at the source. That is, the results in Figure 1 will hold for
any source S0φs(x) with arbitrary φs(x) that is non-zero within
|x| < 2 (Roy et al. 2009b, 2009c). This property can also be used
as a test of the simulation code. It requires that the simulation
results of the flat plateau should hold, regardless of whether the
source is monochromatic or has finite width around ν0.

3. DUST EFFECTS ON PHOTON ESCAPE

3.1. Model I: Scattering of Dust

To study the effects of dust scattering on the Lyα photon
escape, we show in Figure 2 the flux f (η, r, x) of Lyα photons
emergent from halos at the boundary r = R = 102 for Model I.
The three panels of Figure 2 correspond to κ = 10−4, 10−3, and
10−2 from left to right, respectively. The source starts to emit
photons at η = 0 with a stable luminosity S0 = 1 and with a
Gaussian profile φs(x) = (1/

√
π )e−x2

.
Figure 2 clearly shows that the time evolution of f (η, r, x)

is κ-independent. Although the cross section of dust scattering
increases by about 100 times from κ = 10−4 to κ = 10−2, the
curves of the left and right panels in Figure 2 are actually almost
identical.

According to the scenario of “single longest excursion,”
the photon escape is not a process of Brownian random
walk in the spatial space, but rather a transfer in the fre-
quency space (Osterbrock 1962; Avery & House 1968; Adams
1972, 1975; Harrington 1973; Bonilha et al. 1979). A pho-
ton will escape once its frequency is transferred from |x| < 2
to |x| > 2, on which the medium is transparent. On the
other hand, dust scattering given by the redistribution func-
tion equation (Equation (6)) does not change photon frequency.
Dust scattering has no effect on the transfer in the frequency
space.

Moreover, photons with frequency |x| < 2 are quickly
thermalized after a few hundred resonant scattering. In the local
thermal equilibrium state, the angular distribution of photons
is isotropic. Thus, even if the dust scattering is anisotropic
g 	= 0 with respect to the direction of the incident particle,
the angular distribution will keep isotropic undergoing a g 	= 0
scattering. Hence, dust scattering also has no effect on the
angular distribution.
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Figure 3. Flux f (η, r, x) of Lyα photons emergent from halos at the boundary r = R = 102. The parameters of the dust are A = 0 and κ = 10−4 (left), 10−3 (middle),
and 10−2 (right). Other parameters are the same as those in Figure 2.
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Figure 4. Time evolution of the total flux F (η) at the boundary of halos with R = τ0 = 102 (upper panels) and R = τ0 = 104 (lower panels). The source of S0 = 1

and φs (x) = (1/
√

π )e−x2
starts to emit photons at time η = 0. The parameters of dust are (A = 1, g = 0.73) (left), (A = 0.32, g = 0.73) (middle), and A = 0

(right). In each panel of R = 102, κ is taken to be 10−4, 10−3, and 10−2. In the cases of R = 104, κ is taken to be 10−4 and 10−3.

3.2. Model III: Absorption of Dust

Similar to Figure 2, we present in Figure 3 the flux of Model
III, i.e., dust causes only absorption without scattering. All other
parameters of Figure 3 are the same as in Figure 2. In the left
panel of Figure 3, the curves at the time η = 2000 and 3000
are the same. This means the flux f (η,R, x) at the boundary R
is already stable, or saturated at the time η � 2000. The small
difference between the curves of η = 1000 and η � 2000 of
the left panel indicates that the flux is still not yet completely
saturated at the time η = 1000. However, comparing the middle
and right panels of Figure 3, we see that for κ = 10−3, the
flux has already saturated at η = 1600, while it has saturated at
η = 800 for κ = 10−2. That is, the stronger the dust absorption,
the shorter the saturation timescale. The timescales of escape or
saturation do not increase by dust absorption, and even decrease
with respect to the medium without dust. Stronger absorption
leads to a shorter timescale of saturation.

Obviously, dust absorption does not help in producing pho-
tons for the “single longest excursion.” Therefore, dust absorp-
tion cannot make the timescale of producing photons for the
“single longest excursion” smaller. However, dust absorptions
are effective in reducing the number of photons trapped in
the state of local thermalized equilibrium |x| < 2 (see also

Section 4.2). This leads to the fact that the higher the value of
κ , the shorter the timescale of saturation.

3.3. Effective Absorption Optical Depth

Since Lyα photons underwent a large number of resonant
scattering before escaping from the halo with optical depth
τ0 � 1, it is generally believed that a small absorption of dust
will lead to a significant decrease of the flux. However, it is still
unclear what the exact relationship between the dust absorption
and the resonant scattering is. This problem should be measured
by the effective optical depth of dust absorption of Lyα photons
in R = τ0 � 1 halos.

To calculate the effective optical depth, we first give the total
flux of Lyα photons emergent from the halo of radius R, which
is defined as F (η) = ∫

f (η,R, x)dx. Figure 4 plots F (η) as a
function of time η for a halo with sizes R = τ0 = 102 and 104.
The curves typically are the time evolution of growing and then
saturating. The three panels correspond to the dust models I, II,
and III from left to right. The upper panels are of R = 102, and
the lower panels are of R = 104. In each panel of R = 102, we
have three curves corresponding to κ = 10−4, 10−3, and 10−2,
respectively. In cases of R = 104, we take κ = 10−4 and 10−3.
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Table 1
Effective Absorption Optical Depth τeffect

Dust Effect on Lyα Photon Transfer Model II Model III

R = τ0 κ τa fS τeffect τa fS τeffect

102 10−4 0.0068 0.978 2.2 × 102 0.01 0.963 3.8 × 102

102 10−3 0.068 0.760 2.7 × 102 0.10 0.670 4.0 × 102

102 10−2 0.68 0.116 2.2 × 102 1.00 0.057 2.9 × 102

104 10−4 0.68 6.28 × 10−2 2.8 × 104 1.00 3.02 × 10−2 3.5 × 104

104 10−3 6.8 4.07 × 10−7 1.5 × 104 10.0 2.87 × 10−9 1.97 × 104

The left panel of Figure 4 shows that the three curves of
κ = 10−4, 10−3, and 10−2 are almost the same. This is consistent
with Figure 2 for model I in that the time evolution of f is κ-
independent for the pure scattering dust. For the pure absorption
dust (the right panel of Figure 4), the saturated flux is smaller
for larger κ . We can also see from Figure 4 that the timescale
of approaching saturation is smaller for larger κ . The result of
model II is in between that for models I and III.

With the saturated flux of Figure 4, one can define the effective
absorption optical depth by τeffect ≡ −(1/κ) ln fS . The results
are shown in Table 1, in which τa is the dust absorption depth.
It is interesting to see that the effective absorption optical depth
is always equal to about a few times of the optical depth of
resonant scattering τ0, regardless of whether τa is less than 1.
Namely, the effective absorption depth τeffect of dust is roughly
proportional to τ0.

According to the random walk scenario, if a medium has op-
tical depths of absorption τa and scattering τs , the effective ab-
sorption optical depth should be equal to τeffect = √

τa(τa + τs)
(Rybicki & Lightman 1979, p. 393). However, the results of the
last line of Table 1 show that the random walk scenario does
not work for the dust effect on resonant photon transfer. This
result is consistent with Figures 2 and 3. When the optical depth
of dust is lower than the optical depth of resonant scattering τ0,
the timescale of photon escaping basically is not affected by the
dust, but is proportional to τ0; therefore, the absorption is also
proportional to τ0.

3.4. Escape Coefficient

With the total flux, we can define the escaping coefficient of
the Lyα photon as fesc(η, τ0) ≡ F (η)/F0, where F0 is the flux
of the center source. Figure 5 shows fesc(η, τ0) at three times
η = 5 × 103, 104, and 3.2 × 104 for Model II and κ = 10−3.
At η = 5 × 103, the flux of halos with τ0 � 103 is saturated. At
η = 104, halos with τ0 � 3 × 103 are saturated, and all halos of
τ0 � 104 are saturated at η = 3.2 × 104.

4. DUST EFFECTS ON THE DOUBLE-PEAKED PROFILE

4.1. Dust and the Frequency of Double Peaks

A remarkable feature of Lyα photon emergent from optically
thick medium is the double-peaked profile. Figures 1–3 have
shown that the double peak frequencies x+ = |x−| are almost
independent of either the scattering or the absorption of dust. In
this section, we consider halos with size R or τ0 larger than 102.
Figure 6 presents the double peak frequency |x±| as a function
of aτ0, where the parameter a is taken to be 10−2 (left) and
5 × 10−3 (right). Comparing the curves with and without dust
in Figure 6, we can say that the dust effect on |x±| is very small
until aτ0 = aR = 102.

In the range aτ0 < 20, the |x±|–τ0 relation is almost flat
with |x±| � 2. This is because the double-peaked profile is

τ0

f es
c(

η ,
τ 0)

102 103 10410-6

10-5

10-4

10-3

10-2

10-1

100

Figure 5. Escaping coefficient fesc(η) as a function of the optical depth τ0 of
halo at time η = 5×103, 104, and 3.2×104 from bottom to up. Dust is modeled
by II, A = 0.32, g = 0.73, and κ = 10−3.

given by the frequency range of the locally thermal equilibrium.
The positions of the two peaks, x+ and x−, are basically at the
maximum and minimum frequencies of the local thermalization.
The frequency range of the local thermal equilibrium state is
mainly determined by the Doppler broadening and is weakly
dependent on τ0. Thus, we always have x± � ±2. When the
optical depth is larger, aτ0 ∼ 102, more and more photons of the
flux are attributed to the resonant scattering by the Lorentzian
wing of the Voigt profile. In this phase, |x±| will increase
with τ0.

Figure 6 also shows a line x± = ±(aτ0)1/3, which is given
by the analytical solution of the F–P approximation, in which
the Doppler broadening core in the Voigt profile is ignored
(Harrington 1973; Neufeld 1990; Dijkstra et al. 2006). The
numerical solutions of Equations (3) or (9) and (10) deviate from
the (aτ0)1/3-law at all parameter range of Figure 6. The deviation
at aτ0 < 20 is due to the fact that the Doppler broadening core in
the Voigt profile is ignored in the F–P approximation; no locally
thermal equilibrium can be reached. Therefore, in the range
aτ0 < 20, |x±| of the WENO solution is larger than the (aτ0)1/3-
law. In the range of aτ0 > 20, the F–P approximation yields a
faster diffusion of photons in the frequency space. This point
can be seen in the comparison between an F–P solution with
Field’s analytical solution (Figure 1 in Rybicki & Dell’Antonio
1994). In this range, the numerical results of |x±| are less than
the (aτ0)1/3-law.

4.2. No Narrowing and No Widening

The dust effect has been used to explain the narrowing of the
width between the two peaks (Laursen et al. 2009). Oppositely, it
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Figure 6. Two-peak frequencies x+ = |x−| as a function of aτ0. The parameter a is taken to be 10−2 (left) and 5 × 10−3 (right). Dust model III (pure absorption) is
used, and κ is taken to be 10−3. The dashed straight line gives log x±–log aτ with slope 1/3, which is to show the (aτ )1/3-law of x±.

is also used to explain the widening of the width between the two
peaks (Verhamme et al. 2006). However, Figures 1, 2, 3, and 6
already show that the width between the two peaks of the profile
is very weakly dependent on dust scattering and absorption.
This result supports, at least in the parameter range considered
in Figures 1–3, neither the narrowing nor the widening of the
two peaks.

If dust absorption can cause narrowing, the absorption should
be weaker at |x| ∼ 0 and stronger at |x| � 2. Similarly, if dust
absorption can cause widening, the absorption should be weaker
at |x| ∼ 2 and stronger at |x| ∼ 0. To test these assumptions,
Figure 7 plots ln[f (η, r, x, κ = 0)/f (η, r, x, κ)] as a function of
x. It measures the x(frequency) dependence of the flux ratio with
and without dust absorption. We take large η, and then the fluxes
in Figure 7 are saturated. Figure 7 shows that the absorption in
the range |x| < 2 is much stronger than that in |x| > 2; therefore,
the assumption of the narrowing is ruled out. Figure 7 also shows
that the curves of ln[f (η, r, x, κ = 0)/f (η, r, x, κ = 10−3)] are
almost flat in the range |x| < 2. Therefore, the assumption of
widening of the two peaks can also be ruled out.

The cross sections of dust absorption and scattering are
assumed to be frequency-independent. Equations (9) and (10)
do not contain any frequency scales other than that from
resonant scattering. However, either narrowing or widening
would require frequency scales different from those of resonant
scattering. This occurrence is not possible if the dust is gray.

4.3. Profile of Absorption Spectrum

If the radiation from the sources has a continuum spectrum,
the effect of neutral hydrogen halos is to produce an absorption
line at ν = ν0. The profile of the absorption line can also be
found by solving Equations (9) and (10), replacing the boundary
equation (Equation (11)) by

j (η, 0, x) = 0, f (η, 0, x) = S0. (14)

That is, we assume that the original spectrum is flat in the
frequency space. The spectrum of the flux emergent from the
halo of R = 102 and 104 with the central source of Equation (14)
for dust models I, II, and III is shown in Figure 8. All curves are
for large η, i.e., they are saturated.

The optical depths at the frequency |x| > 4 are small;
therefore, the Eddington approximation might no longer be
proper. However, those photons do not strongly involve the

resonant scattering; hence, they do not significantly affect the
solution around x = 0. The solutions of Figure 8 are still useful
for studying the profiles of f around x = 0.

The flux profiles of Figure 8 are typically absorption lines with
width given by the double peaks similar to the double-peaked
structure of the emission line. The flux at the double peaks is
even higher than that at the flat wing. This is because more
photons are stored in the frequency range |x| < 2. According
to the redistribution function equation (Equation (4)), the
probability of transferring an x ′ photon to an |x| < |x ′| photon is
greater than that from |x ′| to |x| > |x ′|. Therefore, if the original
spectrum is flat, the net effect of resonant scattering is to bring
photons with frequency |x| > 2 to |x| < 2. Photons stored
at |x| < 2 are thermalized; therefore, in the range |x| < 2, the
profile will be the same as the emission line and the double peaks
can be higher than the wing. This puts the shoulder at |x| ∼ 2.

As expected, for model I (left panels of Figure 8), the dou-
ble profile is completely κ-independent. Dusty scattering does
not change the flux and its profile. For models II and III, the
higher the κ , the lower the flux of the wing because the dust
absorption is assumed to be frequency-independent. The po-
sitions of the double peaks, x, in the absorption spectrum are
also κ-independent. This once again shows that dust absorp-
tion and scattering cause neither narrowing nor widening of the
double-peaked profile. However, for higher κ the flux of the
peaks is lower. When the absorption is very strong, the double-
peaked structure might disappear, but will never be narrowed or
widened.

5. DISCUSSIONS AND CONCLUSIONS

The study of dust effects on radiative transfer has had a long
history related to extinction. However, dust effects on radiative
transfer of resonant photons actually have not been carefully
investigated. Existing works are based mostly on the solutions
of the F–P approximation or Monte Carlo simulation. These re-
sults are important. We revisited these problems with the WENO
solver of the integro-differential equation of the resonant radia-
tive transfer and have found some features that have not been
addressed in previous work. These features are summarized as
follows.

First, the random walk picture in the physical space will
no longer be available for estimating the effective optical
depth of dust absorption. For a medium with optical depth of
absorption and resonant scattering of τa � 1 τ (ν0) � 1 and
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Figure 7. ln[f (η, r, x, κ = 0)/f (η, r, x, κ)] as a function of x for models II (top) and III (bottom), and κ = 10−3 (left) and 10−2 (right). Other parameters are the
same as those in Figure 2.
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Figure 8. Spectrum of the flux emergent from the halo of R = 102 (upper panels) and 104 (lower panels) with central source of Equation (14) for the dust models I
(left), II (middle), and III (right). Other parameters are the same as those in Figure 2.

τs(ν0) � τa , the effective absorption optical depth is found to
be almost independent of τa , and equal to about a few times
of τs(ν0).

Second, dust absorption will, of course, yield the decrease
of the flux of Lyα photons emergent from the optically thick

medium. However, if the absorption cross section of dust
is frequency-independent, the double-peaked structure of the
frequency profile is basically dust-independent. The double-
peaked structure does not get narrowed or widened by the
absorption and scattering of dust.
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Third, the timescales of Lyα photon transfer are basically
independent of dust scattering and absorption. This is because
those timescales are mainly determined by the kinetics in the
frequency space, while dust does not affect the behavior of the
transfer in the frequency space if the cross section of the dust is
wavelength-independent. The local thermal equilibrium makes
the anisotropic scattering ineffective on the angular distribution
of photons. Dust absorption and scattering do not lead to the
increase or decrease of the time of storing Lyα photons in the
halos.

The difference between the time-independent solutions of the
F–P approximation or Monte Carlo simulation and the WENO
solution of Equation (3) is mainly related to the W–F effect.
Therefore, all above-mentioned features can already be clearly
seen with halos of τ0 ∼ 102, in which the W–F local thermal
equilibrium has been well established.

In this context, most of the calculations in this paper are
on holes with τ0 < 105. This range of τ0 certainly is unable
to describe halos with column number density of H i larger
than 1017 cm−2 (e.g., Roy et al. 2010). Nevertheless, the result
of τ0 < 105 would already be useful for studying the 21 cm
region around high-redshift sources, of which the optical depth
typically is (Liu et al. 2007; Roy et al. 2009c)

τ0 = 3.9 × 105fH i

(
T

104 K

)−1/2 (
1 + z

10

)3

×
(

Ωbh
2

0.022

) (
Rph

10 kpc

)
, (15)

where fH i is the fraction of H i. All other parameters in
Equation (15) are taken from the concordance ΛCDM mode. For
these objects the relation between dimensionless η and physical
time t is given by

t = 5.4 × 10−2f −1
H i

(
T

104 K

)1/2 (
1 + z

10

)−3 (
Ωbh

2

0.022

)−1

η, yr.

(16)
The 21 cm emission relies on the W–F effect. On the other
hand, the timescale of the evolution of the 21 region is short.
The effect of dust on the timescales of Lyα evolution should be
considered.

We have not considered the Lyα photons produced by the
recombination in an ionized halo. If a halo is optically thick,
photons from the recombination will also be thermalized. The
information of where the photon comes from will be lost during
the thermalization. Therefore, photons from recombination
should not show any difference from those emitted from central
sources. Only the photons formed at the place very close to the
boundary of the halo will not be thermalized and may yield
different behavior.

This research is partially supported by ARO grants W911NF-
08-1-0520 and W911NF-11-1-0091.

APPENDIX A

INTEGRAL OF THE PHASE FUNCTION (Equation (6))

Equation (6) can be rewritten as

Rd (μ,μ′) = 1

4π

∫ 2π

0
dφ′ 1 − g2

|I − gI′| 3
2

, (A1)

where I and I′ are unit vector on the direction of polar angle θ
and θ ′, and azimuth angle φ and φ′, respectively. That is I · I =
I′·I′ = 1 and I·I′ = cos γ = cos θ cos θ ′+sin θ sin θ ′ cos(φ−φ′),
and μ = cos θ , μ′ = cos θ . We have

d

dg

1

|I − gI′|1/2
= 1 − g2

2g|I − gI′|3/2
− 1

2g|I − gI′|1/2
, (A2)

and therefore,

1 − g2

|I − gI′|3/2
= 2g

d

dg

1

|I − gI′|1/2
+

1

|I − gI′|1/2
. (A3)

The expansion with Legendre functions Pl(cos γ ) gives

1

|I − gI′|1/2
=

∞∑
l=0

glPl(cos γ ), (A4)

and then

1 − g2

|I − gI′|3/2
=

∞∑
l=1

2lglPl(cos γ ) +
∞∑
l=0

glPl(cos γ ). (A5)

Since cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ −φ′), we have the
following identity for the Legendre function Pl(cos γ ):

Pl(cos γ ) = Pl(cos θ )Pl(cos θ ′) + 2
m=l∑
m=1

(l − m)!

(l + m)!

× P m
l (cos θ )P m

l (cos θ ′) cos[m(φ − φ′)]. (A6)

The integral of φ′ in Equation (A1) kills the second term of
Equation (A6); we then have

Rd (μ,μ′) = 1

4π
2π

[ ∞∑
l=1

2lglPl(cos θ )Pl(cos θ ′)

+
∞∑
l=0

glPl(cos θ )Pl(cos θ ′)

]

= 1

2

[ ∞∑
l=1

2lglPl(μ)Pl(μ
′) +

∞∑
l=0

glPl(μ)Pl(μ
′)

]
.

(A7)

Using the orthogonal relation
∫ 1
−1 Pl(μ)Pl′ (μ)dμ = (2/2l + 1)δl,l′ ,

we have

R0(g) = 1

2

∫ 1

−1
dμ

∫ 1

−1
dμ′Rd (μ,μ′) = 1, (A8)

for which only the term l = 0 in Equation (A7) contributes.
Similarly,

R1(g) = 1

2

∫ 1

−1
dμ

∫ 1

−1
dμ′μRd (μ,μ′)

= 1

2

∫ 1

−1
dμ

∫ 1

−1
dμ′μ′Rd (μ,μ′) = 0, (A9)

R2(g) = 1

2

∫ 1

−1
dμ

∫ 1

−1
dμ′μμ′Rd (μ,μ′) = g

3
. (A10)

These results are used in deriving Equations (9) and (10).

9



The Astrophysical Journal, 739:91 (11pp), 2011 October 1 Yang et al.

APPENDIX B

NUMERICAL ALGORITHM

To solve Equations (9) and (10) as a system, our com-
putational domain is (r, x) ∈ [0, rmax] × [xleft, xright], where
rmax, xleft, and xright are chosen such that the solution vanishes
to zero outside the boundaries. We choose mesh sizes with grid
refinement tests to ensure proper numerical resolution. In the
following, we describe numerical techniques involved in our
algorithm, including approximations to spatial derivatives, nu-
merical boundary condition, and time evolution.

B.1. The WENO Algorithm: Approximations to the Spacial
Derivatives

The spacial derivative terms in Equations (9) and (10) are
approximated by a fifth-order finite difference WENO scheme.

We first give the WENO reconstruction procedure in approx-
imating ∂j/∂x,

∂j (ηn, ri, xj )

∂x
≈ 1

Δx
(ĥj+1/2 − ĥj−1/2)

with fixed η = ηn and r = ri . The numerical flux ĥj+1/2 is
obtained by the fifth-order WENO approximation in an upwind
fashion, because the wind direction is fixed. Denote

hj = j (ηn, ri, xj ), j = −2,−1, . . . , N + 3

with fixed n and i. The numerical flux from the WENO procedure
is obtained by

ĥj+1/2 = ω1ĥ
(1)
j+1/2 + ω2ĥ

(2)
j+1/2 + ω3ĥ

(3)
j+1/2,

where ĥ
(m)
j+1/2 are the three third-order fluxes on three different

stencils given by

ĥ
(1)
j+1/2 = − 1

6
hj−1 +

5

6
hj +

1

3
hj+1,

ĥ
(2)
j+1/2 = 1

3
hj +

5

6
hj+1 − 1

6
hj+2, and

ĥ
(3)
j+1/2 = 11

6
hj+1 − 7

6
hj+2 +

1

3
hj+3.

The nonlinear weights ωm are given by

ωm = ω̆m∑3
l=1 ω̆l

, ω̆l = γl

(ε + βl)2
,

where ε is a parameter to avoid the denominator becoming zero
and is taken as ε = 10−8. The linear weights γl are given by

γ1 = 3

10
, γ2 = 3

5
, γ3 = 1

10
,

and the smoothness indicators βl are given by

β1 = 13

12
(hj−1 − 2hj + hj+1)2 +

1

4
(hj−1 − 4hj + 3hj+1)2,

β2 = 13

12
(hj − 2hj+1 + hj+2)2 +

1

4
(hj − hj+2)2,

β3 = 13

12
(hj+1 − 2hj+2 + hj+3)2 +

1

4
(3hj+1 − 4hj+2 + hj+3)2.

To approximate the r-derivatives in the system of
Equations (9) and (10), we need to perform the WENO pro-
cedure based on a characteristic decomposition. We write the
left-hand side of Equations (9) and (10) as

ut + Aur ,

where u = (j, f )T and

A =
(

0 1
1
3 0

)
is a constant matrix. To perform the characteristic decomposi-
tion, we first compute the eigenvalues, the right eigenvectors,
and the left eigenvectors of A and denote them by Λ, R, and R−1.
We then project u to the local characteristic fields v with v =
R−1u. Now ut + Aur of the original system is decoupled as two
independent equations as vt + Λvr . We approximate the deriva-
tive vr component by component, each with the correct upwind
direction, with a WENO reconstruction procedure similar to the
procedure described above for ∂j/∂x. In the end, we transform
vr back to the physical space by ur = Rvr . We refer readers to
Cockburn et al. (1998) for more implementation details.

B.2. Numerical Boundary Condition

To implement the boundary condition (Equation (12)), we
also need to perform a characteristic decomposition as discussed
above. Using the same notation as before, we project u to
the local characteristic fields v with v = R−1u. Denote
v = (v1, v2)T ; now ut + Aur of the original system is decoupled
to two independent scalar operators given by

∂v1

∂t
+ λ1

∂v1

∂r
; ∂v2

∂t
+ λ2

∂v2

∂r
,

where λ1 = √
3/3 and λ2 = −√

3/3. The characteristic line
starting from the boundary r = rmax for the first equation is
pointing outside the computational domain while the one for the
second equation it is pointing inside. For “well-posedness” of
our system, we need to impose the boundary condition there as

v2 = αv1 + β,

with constants α and β. We can calculate the values of α and β
based on Equation (12) and the left and right eigenvectors of A.
For example, if we take

R =
(√

3
2

√
3

2
1
2 − 1

2

)
,

we can compute that α = 7 − 4
√

3 and β = 0. We use
extrapolation to obtain the value of v1 and then compute the
value v2. In the end, we transfer v back to the physical space by
u = Rv.

B.3. Time Evolution

To evolve in time, we use the third-order total variation
diminishing Runge–Kutta time discretization (Shu & Osher
1988). For the system of ordinary differential equations ut =
L(u), the third-order Runge–Kutta method is

u(1) = un + ΔτL(un, τ n),

u(2) = 3

4
un +

1

4
(u(1) + ΔτL(u(1), τ n + Δτ )),

un+1 = 1

3
un +

2

3
(u(2) + ΔτL(u(2), τ n +

1

2
Δτ )).
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Hayes, M., Schaerer, D., Östlin, G., et al. 2011, ApJ, 730, 8
Henyey, L. G., & Greestein, J. L. 1941, AJ, 93, 70
Hummer, D. G. 1962, MNRAS, 125, 21
Hummer, D. G. 1965, Mem. R. Astron. Soc., 70, 1
Hummer, D. G. 1969, MNRAS, 145, 95
Hummer, D. G., & Kunasz, P. B. 1980, ApJ, 236, 609

Jiang, G., & Shu, C.-W. 1996, J. Comput. Phys., 126, 202
Latif, M., Schleicher, D. R. G., Spaans, M., & Zaroubi, S. 2011, MNRAS, 413,

L33
Laursen, P., Sommer-Larsen, J., & Andersen, A. 2009, ApJ, 704, 1640
Li, A., & Draine, B. T. 2001, ApJ, 550, L213
Liu, J., Qiu, J.-M., Feng, L.-L., Shu, C.-W., & Fang, L.-Z. 2007, ApJ, 663, 1
Neufeld, D. A. 1990, ApJ, 350, 216
Neufeld, D. A. 1991, ApJ, 370, L85
Osterbrock, D. E. 1962, ApJ, 135, 195
Pei, Y. C. 1992, ApJ, 395, 130
Qiu, J.-M., Feng, L.-L., Shu, C.-W., & Fang, L.-Z. 2006, New Astron., 12, 1
Qiu, J.-M., Feng, L.-L., Shu, C.-W., & Fang, L.-Z. 2007, New Astron., 12,

398
Qiu, J.-M., Shu, C.-W., Liu, J.-R., & Fang, L.-Z. 2008, New Astron., 13, 1
Roy, I., Qiu, J.-M., Shu, C.-W., & Fang, L.-Z. 2009a, New Astron., 14, 513
Roy, I., Shu, C.-W., & Fang, L. Z. 2010, ApJ, 716, 604
Roy, I., Xu, W., Qiu, J.-M., Shu, C.-W., & Fang, L.-Z. 2009b, ApJ, 694, 1121
Roy, I., Xu, W., Qiu, J.-M., Shu, C.-W., & Fang, L.-Z. 2009c, ApJ, 703, 1992
Rybicki, G. B. 2006, ApJ, 674, 709
Rybicki, G. B., & Dell’Antonio, I. P. 1994, ApJ, 427, 603
Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics

(New York: Wiley)
Shu, C.-W., & Osher, S. 1988, J. Comp. Phys., 77, 439
Spaans, M., & Silk, J. 2006, ApJ, 652, 902
Spitzer, L., & Greenstein, J. L. 1951, ApJ, 114, 407
Stratta, G., Maiolino, R., Fiore, F., & D’Elia, V. 2007, ApJ, 661, 9
Unno, W. 1955, PASJ, 7, 81
Verhamme, A., Schaerer, D., Atek, H., & Tapken, C. 2008, A&A, 491, 89
Verhamme, A., Schaerer, D., & Maselli, A. 2006, A&A, 460, 397
Weingartner, J. C., & Draine, B. T. 2001, ApJ, 548, 296
Wouthuysen, S. A. 1952, AJ, 57, 31
Xu, W., & Wu, X.-P. 2010, ApJ, 710, 1432

11

http://dx.doi.org/10.1086/151503
http://adsabs.harvard.edu/abs/1972ApJ...174..439A
http://adsabs.harvard.edu/abs/1972ApJ...174..439A
http://dx.doi.org/10.1086/153891
http://adsabs.harvard.edu/abs/1975ApJ...201..350A
http://adsabs.harvard.edu/abs/1975ApJ...201..350A
http://dx.doi.org/10.1016/0022-4073(71)90005-7
http://dx.doi.org/10.1016/0022-4073(71)90005-7
http://adsabs.harvard.edu/abs/1971JQSRT..11.1365A
http://adsabs.harvard.edu/abs/1971JQSRT..11.1365A
http://dx.doi.org/10.1086/149566
http://adsabs.harvard.edu/abs/1968ApJ...152..493A
http://adsabs.harvard.edu/abs/1968ApJ...152..493A
http://dx.doi.org/10.1088/0004-637X/736/1/31
http://adsabs.harvard.edu/abs/2011ApJ...736...31B
http://adsabs.harvard.edu/abs/2011ApJ...736...31B
http://dx.doi.org/10.1086/157426
http://adsabs.harvard.edu/abs/1979ApJ...233..649B
http://adsabs.harvard.edu/abs/1979ApJ...233..649B
http://dx.doi.org/10.1086/506243
http://adsabs.harvard.edu/abs/2006ApJ...649...14D
http://adsabs.harvard.edu/abs/2006ApJ...649...14D
http://dx.doi.org/10.1111/j.1365-2966.2009.15533.x
http://adsabs.harvard.edu/abs/2009MNRAS.400.1109D
http://adsabs.harvard.edu/abs/2009MNRAS.400.1109D
http://dx.doi.org/10.1086/379118
http://adsabs.harvard.edu/abs/2003ApJ...598.1017D
http://adsabs.harvard.edu/abs/2003ApJ...598.1017D
http://dx.doi.org/10.1086/162480
http://adsabs.harvard.edu/abs/1984ApJ...285...89D
http://adsabs.harvard.edu/abs/1984ApJ...285...89D
http://dx.doi.org/10.1142/S0218271809015837
http://adsabs.harvard.edu/abs/2009IJMPD..18.1943F
http://adsabs.harvard.edu/abs/2009IJMPD..18.1943F
http://dx.doi.org/10.1086/323519
http://adsabs.harvard.edu/abs/2001ApJ...562..605F
http://adsabs.harvard.edu/abs/2001ApJ...562..605F
http://dx.doi.org/10.1109/JRPROC.1958.286741
http://dx.doi.org/10.1086/146654
http://adsabs.harvard.edu/abs/1959ApJ...129..551F
http://adsabs.harvard.edu/abs/1959ApJ...129..551F
http://dx.doi.org/10.1086/307276
http://adsabs.harvard.edu/abs/1999ApJ...518..138H
http://adsabs.harvard.edu/abs/1999ApJ...518..138H
http://dx.doi.org/10.1086/312754
http://adsabs.harvard.edu/abs/2000ApJ...537L...5H
http://adsabs.harvard.edu/abs/2000ApJ...537L...5H
http://dx.doi.org/10.1111/j.1365-2966.2005.09870.x
http://adsabs.harvard.edu/abs/2006MNRAS.367..979H
http://adsabs.harvard.edu/abs/2006MNRAS.367..979H
http://adsabs.harvard.edu/abs/1973MNRAS.162...43H
http://adsabs.harvard.edu/abs/1973MNRAS.162...43H
http://dx.doi.org/10.1038/nature08881
http://adsabs.harvard.edu/abs/2010Natur.464..562H
http://adsabs.harvard.edu/abs/2010Natur.464..562H
http://dx.doi.org/10.1088/0004-637X/730/1/8
http://adsabs.harvard.edu/abs/2011ApJ...730....8H
http://adsabs.harvard.edu/abs/2011ApJ...730....8H
http://dx.doi.org/10.1086/144246
http://adsabs.harvard.edu/abs/1941ApJ....93...70H
http://adsabs.harvard.edu/abs/1941ApJ....93...70H
http://adsabs.harvard.edu/abs/1962MNRAS.125...21H
http://adsabs.harvard.edu/abs/1962MNRAS.125...21H
http://adsabs.harvard.edu/abs/1965MmRAS..70....1H
http://adsabs.harvard.edu/abs/1965MmRAS..70....1H
http://adsabs.harvard.edu/abs/1969MNRAS.145...95H
http://adsabs.harvard.edu/abs/1969MNRAS.145...95H
http://dx.doi.org/10.1086/157779
http://adsabs.harvard.edu/abs/1980ApJ...236..609H
http://adsabs.harvard.edu/abs/1980ApJ...236..609H
http://dx.doi.org/10.1006/jcph.1996.0130
http://adsabs.harvard.edu/abs/1996JCoPh.126..202J
http://adsabs.harvard.edu/abs/1996JCoPh.126..202J
http://dx.doi.org/10.1111/j.1745-3933.2011.01026.x
http://adsabs.harvard.edu/abs/2011MNRAS.413L..33L
http://adsabs.harvard.edu/abs/2011MNRAS.413L..33L
http://dx.doi.org/10.1088/0004-637X/704/2/1640
http://adsabs.harvard.edu/abs/2009ApJ...704.1640L
http://adsabs.harvard.edu/abs/2009ApJ...704.1640L
http://dx.doi.org/10.1086/319640
http://adsabs.harvard.edu/abs/2001ApJ...550L.213L
http://adsabs.harvard.edu/abs/2001ApJ...550L.213L
http://dx.doi.org/10.1086/518208
http://adsabs.harvard.edu/abs/2007ApJ...663....1L
http://adsabs.harvard.edu/abs/2007ApJ...663....1L
http://dx.doi.org/10.1086/168375
http://adsabs.harvard.edu/abs/1990ApJ...350..216N
http://adsabs.harvard.edu/abs/1990ApJ...350..216N
http://dx.doi.org/10.1086/185983
http://adsabs.harvard.edu/abs/1991ApJ...370L..85N
http://adsabs.harvard.edu/abs/1991ApJ...370L..85N
http://dx.doi.org/10.1086/147258
http://adsabs.harvard.edu/abs/1962ApJ...135..195O
http://adsabs.harvard.edu/abs/1962ApJ...135..195O
http://dx.doi.org/10.1086/171637
http://adsabs.harvard.edu/abs/1992ApJ...395..130P
http://adsabs.harvard.edu/abs/1992ApJ...395..130P
http://dx.doi.org/10.1016/j.newast.2006.04.007
http://adsabs.harvard.edu/abs/2006NewA...12....1Q
http://adsabs.harvard.edu/abs/2006NewA...12....1Q
http://dx.doi.org/10.1016/j.newast.2006.12.004
http://adsabs.harvard.edu/abs/2007NewA...12..398Q
http://adsabs.harvard.edu/abs/2007NewA...12..398Q
http://dx.doi.org/10.1016/j.newast.2007.06.002
http://adsabs.harvard.edu/abs/2008NewA...13....1Q
http://adsabs.harvard.edu/abs/2008NewA...13....1Q
http://dx.doi.org/10.1016/j.newast.2009.01.006
http://adsabs.harvard.edu/abs/2009NewA...14..513R
http://adsabs.harvard.edu/abs/2009NewA...14..513R
http://dx.doi.org/10.1088/0004-637X/716/1/604
http://adsabs.harvard.edu/abs/2010ApJ...716..604R
http://adsabs.harvard.edu/abs/2010ApJ...716..604R
http://dx.doi.org/10.1088/0004-637X/694/2/1121
http://adsabs.harvard.edu/abs/2009ApJ...694.1121R
http://adsabs.harvard.edu/abs/2009ApJ...694.1121R
http://dx.doi.org/10.1088/0004-637X/703/2/1992
http://adsabs.harvard.edu/abs/2009ApJ...703.1992R
http://adsabs.harvard.edu/abs/2009ApJ...703.1992R
http://dx.doi.org/10.1086/505327
http://adsabs.harvard.edu/abs/2006ApJ...647..709R
http://adsabs.harvard.edu/abs/2006ApJ...647..709R
http://dx.doi.org/10.1086/174170
http://adsabs.harvard.edu/abs/1994ApJ...427..603R
http://adsabs.harvard.edu/abs/1994ApJ...427..603R
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://adsabs.harvard.edu/abs/1988JCoPh..77..439S
http://adsabs.harvard.edu/abs/1988JCoPh..77..439S
http://dx.doi.org/10.1086/508444
http://adsabs.harvard.edu/abs/2006ApJ...652..902S
http://adsabs.harvard.edu/abs/2006ApJ...652..902S
http://dx.doi.org/10.1086/145480
http://adsabs.harvard.edu/abs/1951ApJ...114..407S
http://adsabs.harvard.edu/abs/1951ApJ...114..407S
http://dx.doi.org/10.1086/518502
http://adsabs.harvard.edu/abs/2007ApJ...661L...9S
http://adsabs.harvard.edu/abs/2007ApJ...661L...9S
http://adsabs.harvard.edu/abs/1955PASJ....7...81U
http://adsabs.harvard.edu/abs/1955PASJ....7...81U
http://dx.doi.org/10.1051/0004-6361:200809648
http://adsabs.harvard.edu/abs/2008A&A...491...89V
http://adsabs.harvard.edu/abs/2008A&A...491...89V
http://dx.doi.org/10.1051/0004-6361:20065554
http://adsabs.harvard.edu/abs/2006A&A...460..397V
http://adsabs.harvard.edu/abs/2006A&A...460..397V
http://dx.doi.org/10.1086/318651
http://adsabs.harvard.edu/abs/2001ApJ...548..296W
http://adsabs.harvard.edu/abs/2001ApJ...548..296W
http://dx.doi.org/10.1086/106661
http://adsabs.harvard.edu/abs/1952AJ.....57R..31W
http://adsabs.harvard.edu/abs/1952AJ.....57R..31W
http://dx.doi.org/10.1088/0004-637X/710/2/1432
http://adsabs.harvard.edu/abs/2010ApJ...710.1432X
http://adsabs.harvard.edu/abs/2010ApJ...710.1432X

	1. INTRODUCTION
	2. BASIC THEORY
	2.1. Radiative Transfer Equation of a Dusty Halo
	2.2. Eddington Approximation
	2.3. Dust Models
	2.4. Numerical Example: Wouthuysen–Field Thermalization

	3. DUST EFFECTS ON PHOTON ESCAPE
	3.1. Model I: Scattering of Dust
	3.2. Model III: Absorption of Dust
	3.3. Effective Absorption Optical Depth
	3.4. Escape Coefficient

	4. DUST EFFECTS ON THE DOUBLE-PEAKED PROFILE
	4.1. Dust and the Frequency of Double Peaks
	4.2. No Narrowing and No Widening
	4.3. Profile of Absorption Spectrum

	5. DISCUSSIONS AND CONCLUSIONS
	APPENDIX A. INTEGRAL OF THE PHASE FUNCTION (Equation(6))
	APPENDIX B. NUMERICAL ALGORITHM
	B.1. The WENO Algorithm: Approximations to the Spacial Derivatives
	B.2. Numerical Boundary Condition
	B.3. Time Evolution

	REFERENCES

