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Abstract
In this paper, we develop high-order bound-preserving discontinuous Galerkin (DG) methods

for multispecies and multireaction chemical reactive flows. In this problem, density and pressure
are nonnegative, and the mass fraction for the ith species, denoted as zi, 1 ≤ i ≤ M , should be
between 0 and 1, where M is the total number of species. In [18], the authors have introduced the
positivity-preserving technique that guarantee the positivity of the numerical density, pressure and
the mass fraction of the first M − 1 species. However, the extension to preserve the upper bound 1
of the mass fraction is not straightforward. There are three main difficulties. First of all, the time
discretization in [18] was based on Euler forward. Therefore, for problems with stiff source, the time
step will be significantly limited. Secondly, the mass fraction does not satisfy a maximum-principle,
and most of the previous techniques cannot be applied. Thirdly, in most of the previous works for
gaseous denotation, the algorithm relies on the second-order Strang splitting methods where the flux
and stiff source terms can be solved separately, and the extension to high-order time discretization
seems to be complicated. In this paper, we will solve all the three problems given above. The high-
order time integration does not depend on the Strang splitting, i.e. we do not split the flux and the
stiff source terms. Moreover, the time discretization is explicit and can handle the stiff source with
large time step. Most importantly, in addition to the positivity-preserving property introduced in
[18], the algorithm can preserve the upper bound 1 for each species. Numerical experiments will
be given to demonstrate the good performance of the bound-preserving technique and the stability
of the scheme for problems with stiff source terms.

Key Words: Discontinuous Galerkin method, bound-preserving, mass fraction, stiff source, deto-
nation.

1 Introduction

In this paper, we develop high-order bound-preserving discontinuous Galerkin (DG) methods for
multispecies and multireaction chemical reactive flows and investigate the following convection-
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reaction equation in two space dimensions

ρt +mx + ny = 0 (1.1a)

mt + (mu+ p)x + (nu)y = 0 (1.1b)

nt + (mv)x + (nv + p)y = 0 (1.1c)

Et + ((E + p)u)x + ((E + p)v)y = 0 (1.1d)

(r1)t + (mz1)x + (nz1)y = s1 (1.1e)

· · ·
(rM−1)t + (mzM−1)x + (nzM−1)y = sM−1 (1.1f)

where ρ, u, v, m = ρu, n = ρv, E and p are the total density, velocity in x direction, velocity in
y direction, momentum in x direction, momentum in y direction, the total energy, and pressure,
respectively. M is the total number of chemical species. For 1 ≤ i ≤M , ri = ρzi with zi being the
mass fraction for the ith species, and

∑M
i=1 zi = 1. Therefore, we have

∑M
i=1 ri = ρ and 0 ≤ zi ≤ 1.

The equation of state is given as

p = (γ − 1)

(
E − 1

2
ρ(u2 + v2)− ρz1q1 − · · · − ρzMqM

)
,

where qi is the enthalpy of formation for the ith species and the temperature is defined as T = p/ρ.
The si given in the source term describes the chemical reactions. We consider R reactions of the
form

ν ′1,rX1 + ν ′2,rX2 + · · ·+ ν ′M,rXM → ν ′′1,rX1 + ν ′′2,rX2 + · · ·+ ν ′′M,rXM , r = 1, 2, · · · , R,

where ν ′i,r and ν ′′i,r are the stoichiometric coefficients of the reactants and products, respective, of
the ith species in the rth reaction. For non-equilibrium chemistry, the rate of production of the
ith species can be written as

si = Mi

R∑
r=1

(ν ′′i,r − ν ′i,r)

kr(T )
M∏
j=1

(
rj
Mj

)ν′j,r , i = 1, 2, · · · ,M,

where Mi is the molar mass of the ith species. kr(T ), a function of the temperature T , indicates
the reaction rate. In this paper, we take

kr(T ) =

{
BrT

αr , T > Tr,
0, T ≤ Tr,

where Tr is the ignition temperature for the rth reaction, and Br and αr are pre-exponential factor
and index of temperature, respectively. Moreover, it is easy to check that

∑M
i=1 si = 0. Therefore,

using the fact
∑M

i=1 zi = 1, we can subtract (1.1e)-(1.1f) from (1.1a) to obtain a new equation

(rM )t + (mzM )x + (nzM )y = sM , (1.2)

which is similar to (1.1e)-(1.1f), and this can help us construct the bound-preserving technique.
Numerical simulations of wave propagation in gaseous detonation are essential for minimizing

devastating hazards. However, the single-step model could not predict the correct ignition process
of the mixture. It was argued that using detailed chemical model would reproduce results that agree
with the experimental data. However, there are some challenges in the simulations of detonation
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wave using detailed chemical model due to complexity of chemical kinetics. Thus, designing an
efficient and accurate numerical method is of practical importance. However, the construction of
the numerical methods is not an easy task. There are three main difficulties. Firstly, the reaction
speed of the chemical species is extremely fast, leading to stiff source terms in the model system,
see e.g. [2, 9]. Hence, the time step would be rather small if some explicit time integration, such as
Euler forward, is applied. Secondly, the exact solution of the model may contain shocks, and the
direct numerical simulation may yield non-physical numerical approximations, i.e. the density and
pressure can be negative, and the mass fraction may not be between 0 and 1, especially for high-
order numerical schemes, leading to ill-posedness of the problems and the numerical simulations
will blow-up. Therefore, some special techniques should be constructed to make the numerical
approximation to be physically relevant. Finally, due to the stiff source, direct numerical simulations
on coarse meshes may yield nonphysical shock waves, see e.g. [9] for the discussion. In this paper,
we will focus on the first two problems and construct suitable high-order numerical schemes with
large time steps that can preserve the physical bounds. We will extend the idea to deal with the
last problem in the future. We would like to apply the DG method, as it is high-order accurate and
uses piecewise polynomials as the numerical approximation and hence is easy to apply limiters.

The DG method, first introduced by Reed and Hill [14] in the framework of neutron linear
transport, gained even greater popularity for good stability, high order accuracy, and flexibility on
h-p adaptivity and on complex geometry. There were some previous works discussing DG methods
in solving gaseous denotation, see [10, 11] as an incomplete list. However, none of them focused
on the bound-preserving technique. Physically bound-preserving high-order numerical methods for
conservation laws have been actively studied in the last few years. In [21], genuinely maximum-
principle-preserving high-order DG schemes for scalar conservation laws and two-dimensional in-
compressible flows in vorticity-streamfunction formulation have been constructed. Subsequently,
positivity-preserving (PP) high-order DG schemes for compressible Euler equations on rectangular
meshes were given in [22], and the extension to triangular meshes was given in [24]. Later, the tech-
nique was applied to other hyperbolic systems, such as pressureless Euler equations [20], extended
MHD equations [25], relativistic hydrodynamics [13], etc, and the L1 stability was demonstrated.
In [23], the authors studied the compressible Euler equations with source terms, and the idea was
later extended to gaseous detonation in [18] to preserve the positivity of density, pressure and all
the mass fractions except the last one. The basic idea of the PP technique in [18] is to apply Euler
forward time discretization and take the test function to be 1 in each cell to obtain an equation
of the numerical cell average of the target variable, say r, and prove that the cell average, r̄, is
positive. Then we can apply a slope limiter to the numerical approximation and construct a new
one

r̃ = r̄ + θ(r − r̄), θ ∈ [0, 1].

The extension to high-order time discretization is based on the strong-stability-preserving (SSP)
Runge-Kutta (RK)/multistep methods [4, 15, 16], which can be written as convex combinations
of Euler forwards. It is not easy to extend the idea in [18] to preserve the upper bound 1 for the
mass fraction. First of all, most of the previous works that preserve two bounds, see for example
[21, 24], are based on the maximum-principle-preserving technique. However, the mass fraction zi
does not satisfy a maximum-principle. Recently, one of the authors studied miscible displacements
in porous media and constructed a second-order DG scheme that preserves the two bounds 0 and 1
for the volumetric percentage in [5] on rectangular meshes, and the extension to triangular meshes
has been given in [1]. In this paper, we follow the ideas given in [5, 1] to gaseous detonation to
construct high-order DG schemes on general rectangular and triangular meshes. The basic idea is
to apply the PP technique to each ri (or zi) and enforce

∑M
i=1 ri = ρ (or

∑M
i=1 zi = 1) by choosing

consistent fluxes (see the definition 3.1). Then each zi would be between 0 and 1. The second
difficulty is the construction of high-order time integration for the stiff source term. The time
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discretization in the analysis in [18, 5, 1] was chosen as Euler forward method. However, in gaseous
detonation, kr(T ) would be a large constant, leading to an extremely stiff source si. Therefore,
by applying the idea in [18, 5, 1], the time step will be significantly limited. One alternative is to
consider backward Euler discretization and derive the PP technique. To the best knowledge of the
author, the only work in this direction is given in [12], where the maximum-principle-preserving
technique was investigated for hyperbolic equations. However, by using backward Euler method,
the scheme is only first-order accurate in time and the idea cannot be extended to high-order
methods following [18, 5, 1] since no high-order SSP RK methods can be written as a convex
combination of backward Euler methods [4]. Moreover, due to the time step restriction by the
PP technique, any time integration that is the combination of Euler forward and backward Euler,
such as Crank-Nicolson method, cannot be applied. Notice that, the time constraint of the PP
technique with Euler forward time discretization is due to the stiffness of the source. Hence, one
may consult the splitting method and separate the flux and the source terms. By doing so, we can
apply Euler forward time discretization for the convection term and use other suitable ODE solvers
for the source term. However, the most commonly used splitting method is the second-order Strang
splitting method [17], and the extension to high-order time integration is complicated. Another
possible idea to construct the time integration is to apply the modified Patankar-Runge-Kutta
scheme [7, 8]. However, the high-order schemes contain some defects as the fraction used in the
trick may has zero denominator with nonzero numerator. Therefore, one has to assume the exact
solution to be strictly positive. However, this may not true as one species may not appear initially
and will be created during the chemical reaction. Recently, there is a new idea introduced in
[6] to solve scalar hyperbolic equations with stiff source terms by using the modified exponential
RK/multistep DG methods. The algorithm in [6] is not based on the splitting methods nor the
Patankar-Runge-Kutta method. However, the idea cannot to applied to construct bound-preserving
technique in the stiff multispecies detonation, since it does not preserve the total mass. Therefore,
one of the necessary conditions in the bound-preserving technique,

∑M
i=1 zi = 1, is not satisfied.

In this paper, we will modify the scheme introduced in [6] to preserve the total mass. Then we
can apply the ideas in [5, 1] to construct the bound-preserving technique. Since the time step is not
too small, it is possible to sufficiently refine the mesh to capture the correct position of the shocks.
In this paper, we only discuss the bound-preserving technique on fine meshes and the numerical
simulations on coarse meshes will be given in the future. Before we finish the introduction, we
would like to summarize the advantages of the proposed scheme. The algorithm

1. is high-order accurate in both space and time (at least third-order accurate for multistep
method);

2. is explicit and can handle stiff source term with relatively large time step;

3. is not based on the splitting technique nor the Patankar-Runge-Kutta methods;

4. has local mass conservation;

5. preserves the total mass;

6. preserves the bounds, such as the positivity of the density and pressure, and the two bounds
0 and 1 of the mass fraction;

The organization of this paper is as follows. In Section 2, we construct the DG scheme. In
Section 3, we consider the flux terms only. We apply Euler forward time integration and demon-
strate the new bound-preserving technique to preserve the upper bound 1 of the mass fraction.
The high-order multistep time integrations and the full algorithm will be given in Section 4. The
second-order Runge-Kutta method will be constructed in Section 5. Numerical experiments will
be given in Section 6. We will finish in Section 7 with some conclusion remarks.
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2 Discontinuous Galerkin methods

In this section, we will construct the DG scheme for (1.1).
We rewrite (1.1) into the form of

wt + f(w)x + g(w)y = s(w), (2.1)

where

w = (ρ,m, n,E, ρz1, · · · , ρzM−1)T ,

f(w) = (m,mu+ p,mv, (E + p)u,mz1, · · · ,mzM−1)T ,

g(w) = (n, nu, nv + p, (E + p)v, nz1, · · · , nzM−1)T ,

s(w) = (0, 0, 0, 0, s1, · · · , sM−1)T .

Let Ωh = {K} be a quasi-uniform partition of the computational domain Ω with rectangular or
triangular elements. Denote hK to be the diameter of element K, with h = maxK hK and |K| to
be the area of K. We define the finite element space V k

h as

V k
h =

{
z : z

∣∣
K
∈ P k(K), ∀K ∈ Ωh

}
,

where P k(K) denotes the set of polynomials of degree up to k in cell K.
In this paper, we also use w as the numerical approximations. The DG scheme is to find

w ∈ Vh = [V k
h ]M+3 such that for any test functions ξ ∈ Vh and K ∈ Ωh we have∫

K
wt · ξ dx =

∫
K

F(w) · ∇ξ dx−
∫
∂K

H(wint,wext,ν) · ξds+

∫
K

s(w) · ξ dx (2.2)

where F = 〈f ,g〉 and ν is the unit outer normal of ∂K in cell K. Here, wint and wext are the
values of w on the edge ∂K obtained from the interior and the exterior of K, respectively, and
H(wint,wext,ν) is the numerical flux. In this paper, we consider Lax-Friedrichs flux and

H(w1,w2,ν) =
1

2
[F(w1) · ν + F(w2) · ν − α(w2 −w1)] , α = ‖|〈u, v〉|+ c‖∞, (2.3)

where c =
√

γp
ρ is the sound speed.

3 Bound-preserving technique for the convection term

In this section, we take the source to be zero, i.e. s(w) = 0 in (2.1) or s1 = · · · = sM−1 = 0 in
(1.1), and construct the bound-preserving technique.

3.1 Preliminaries

In this subsection, we introduce some preliminaries that to be used for the bound-preserving tech-
nique.

We first demonstrate the PP technique introduced in [18]. We use Euler forward time dis-
cretization and take ξ = 1, then the equation satisfied by the numerical cell averages can be
written as

w̄n+1
K = w̄n

K −
∆t

|K|

∫
∂K

H(wint,wext,ν)ds, (3.4)
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where w̄n
K = 1

|K|
∫
K wdx is the cell average of the numerical solution w in cell K at time level n

and ∆t is the time step size. In [18], the authors defined the convex admissible set as

G =


w =



ρ
m
n
E
r1

· · ·
rM−1


, ρ > 0, p > 0, z1 > 0, · · · , zM−1 > 0


,

and constructed the numerical approximations that lie in G. In this paper, we would like to define
another admissible set

G̃ =

{
w ∈ G,

M−1∑
i=1

zi < 1

}
.

The only difference between G and G̃ is one more condition that z1 + · · · + zM−1 < 1 is added in
G̃. If we introduce a new variable zM = 1− z1 − · · · − zM−1, then G̃ can be rewritten as

G̃ =

{
w ∈ G : zM > 0,

M∑
i=1

zi = 1

}
.

In the rest part of this paper, we will use the form of G̃ given above as the admissible set. Following
[18], it is easy to check that G̃ is a convex set as p is a concave function of w. Before we finish this
subsection, we would like to demonstrate the following lemma whose proof is straightforward.

Lemma 3.1. Suppose w ∈ G̃, then for any τ > 0, we have τw ∈ G̃.

3.2 Rectangular meshes

Denote Ω = [a, b] × [c, d] to be the computational domain. Let a = x 1
2
< · · · < xNx+ 1

2
= b

and c = y 1
2
< · · · < yNy+ 1

2
= d be the grid points in x and y directions, respectively. Define

Ii = (xi− 1
2
, xi+ 1

2
) and Jj = (yj− 1

2
, yj+ 1

2
). Let Kij = Ii × Jj , i = 1, · · · , Nx, j = 1, · · · , Ny, be a

partition of Ω and denote Ωh = {Kij}. For simplicity, if not otherwise stated, we always use K
to denote the cell. The mesh sizes in the x and y directions are given as ∆xi = xi+ 1

2
− xi− 1

2
and

∆yj = yj+ 1
2
− yj− 1

2
, respectively. For simplicity, we assume uniform meshes and denote ∆x = ∆xi

and ∆y = ∆yj . However, this assumption is not essential.
For accuracy, we use L-point Gaussian quadratures with L ≥ k + 1 to approximate the line

integrals in (3.4). More details of this requirement can be found in [3]. The Gaussian quadrature

points on
[
xi− 1

2
, xi+ 1

2

]
and

[
yj− 1

2
, yj+ 1

2

]
are denoted by

pxi =
{
xβi : β = 1, · · · , L

}
and pyj =

{
yβj : β = 1, · · · , L

}
,

respectively. Also, we denote wβ as the corresponding weights on the interval
[
−1

2 ,
1
2

]
. Moreover,

we use
p̂xi =

{
x̂αi : α = 0, · · · , L̂

}
and p̂yj =

{
ŷαj : α = 0, · · · , L̂

}
as the Gauss-Lobatto points on

[
xi− 1

2
, xi+ 1

2

]
and

[
yj− 1

2
, yj+ 1

2

]
, respectively, with 2L̂−1 ≥ k. Also,

we denote ŵα as the corresponding weights on the interval
[
−1

2 ,
1
2

]
. Then we can state the following

theorem [18].
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Theorem 3.1. If the DG solution wK(x, y) ∈ G for all (x, y) ∈ S, where

S = (pxi ⊗ p̂
y
j ) ∪ (p̂xi ⊗ p

y
j ) ∪ (pxi ⊗ p

y
j ), (3.5)

then the scheme (3.4) is positivity-preserving, namely, w̄n+1
K ∈ G under the time step restriction

α(λ1 + λ2) ≤ ω̂1, (3.6)

where λ1 = ∆t
∆x and λ2 = ∆t

∆y .

Proof. In Theorem 2.1 in [18], the authors considered system (2.1) with M = 2. The time step
restriction for the positivity-preserving technique is

α(λ1 + λ2) ≤ a1ω̂1, max
pxi ⊗p

y
j

{∆t s1/ρ} ≤ a2,

where a1 and a2 are two arbitrary nonnegative numbers satisfying a1 + a2 = 1. In this section,
we take the source term s1 = 0. Hence, we can take a2 = 0, a1 = 1 to obtain (3.6). For
general M , since the equation satisfied by ri, i = 1, · · · ,M − 1 are exactly the same, the time
step restriction for the positivity-preserving technique for r1 also works for ri, i = 2, · · · ,M − 1.
Finally, to preserve the positivity of pressure p, we would like to define Ẽ = E −

∑M−2
i=1 riqi,

then it is easy to check that the scheme satisfied by Ẽ is exactly the same as that by E and
p = (γ − 1)(Ẽ − 1

2ρ(u2 + v2)− ρzM−1qM−1 − ρzMqM ). Hence we can use Ẽ as the total energy in
the proof of Theorem 2.1 in [18] and follow the same derivations. Now we finish the proof.

3.3 Triangular meshes

For each triangle K we denote by `iK (i = 1, 2, 3) as the length of its three edges eiK (i = 1, 2, 3).
Assume the line integrals in (3.4) are solved by L-point Gaussian quadrature where L ≥ k +
1. Different from the quadrature applied in the previous subsection, we consult the quadrature
introduced in [24], where the quadrature points are given in the polycentric coordinates as

S =

{(
1

2
+ zβ, (

1

2
+ ẑα)(

1

2
− zβ), (

1

2
− ẑα)(

1

2
− zβ)

)
,(

(
1

2
− ẑα)(

1

2
− zβ),

1

2
+ zβ, (

1

2
+ ẑα)(

1

2
− zβ)

)
,(

(
1

2
+ ẑα)(

1

2
− zβ), (

1

2
− ẑα)(

1

2
− zβ),

1

2
+ zβ

)
,

α = 0, · · · , L̂, β = 1, · · · , L
}
, (3.7)

where ẑα (α = 0, · · · , L̂) and zβ (β = 1, · · · , L) are the Gauss-Lobatto and Gaussian quadrature
points on the reference interval [−1

2 ,
1
2 ], respectively. Now we can state the following theorem [18]

and whose proof is basically the same as given in Theorem 3.1, and we skip it here.

Theorem 3.2. If the numerical solution wK(x, y) ∈ G for any (x, y) ∈ S, then the scheme (3.4)
is positivity-preserving, i.e. w̄n+1

K ∈ G under the time step restriction

α
∆t

|K|

3∑
i=1

`iK ≤
2

3
ω̂1. (3.8)
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3.4 The upper bound of the mass fraction

In [18], the authors did not demonstrate how to preserve the upper bound 1 of the mass fraction,
and we will demonstrate the technique in this subsection.

Instead of analyzing (1.1), we would like to study (1.1b)-(1.1f) and (1.2), which is equivalent to
(1.1). Following the same discussion in this section, we will not consider the contribution from the
source and take s1 = · · · = sM = 0. The theorems 3.1 and 3.2 have the following corollary directly.

Theorem 3.3. Suppose the conditions of Theorems 3.1 and 3.2 are satisfied for rectangular and
triangular meshes, respectively. If wK ∈ G̃ and

∑M
i=1 zi = 1 for all (x, y) ∈ S, then w̄n+1

K ∈ G̃.

Proof. We only need to show that r̄n+1
M = ρ̄n+1 −

∑M−1
i=1 r̄n+1

i > 0. Denote

H = (hρ, hm, hn, hE , h1, · · · , hM−1)T

in (2.3). Then we have

hρ =
1

2
[Fρ(w1) · ν + Fρ(w2) · ν − α(ρ2 − ρ1)] ,

hi =
1

2
[Fi(w1) · ν + Fi(w2) · ν − α(ri2 − ri1)] , i = 1, 2, · · · ,M − 1,

where
Fρ = (m,n) and Fi = (mzi, nzi).

Using the fact that
∑M

i=1 zi = 1, we can subtract the DG scheme for (1.1e)-(1.1f) from that for
(1.1a) to obtain the DG scheme for (1.2), and the equation satisfied by the numerical cell average
r̄M is

r̄n+1
M = r̄nM −

∆t

|K|

∫
∂K

hM (wint,wext,ν)ds,

where the numerical flux is given as

hM (w1,w2,ν) =
1

2
[FM (w1) · ν + FM (w2) · ν − α(rM 2 − rM 1)] ,

with
FM = (mzM , nzM ).

We can observe that hM is similar to hi and the only difference is that we replace i by M . Therefore,
the equation satisfied by r̄i, i = 1, · · · ,M , are exactly the same. In Theorems 3.1 and 3.2, we have
constructed the time step restrictions to obtain positive r̄n+1

i , i = 1, · · · ,M−1. Therefore, the same

time step constraints also work for r̄n+1
M . Moreover, since

∑M
i=1 r̄

n+1
i = ρ̄n+1, then w̄n+1 ∈ G̃.

Remark 3.1. In the above proof, we have used the condition that r1+· · ·+rM = ρ (z1+· · ·+zM = 1)
at all time levels and thus obtain an extra ghost equation satisfied by rM , which is the same as the
equations satisfied by ri, i = 1, · · · ,M − 1. In other words, if we solve rM by using the same ghost
equation, the condition r1 + · · · + rM = ρ should be true at the next time level. This is crucial to
obtain the positivity of rM and the upper bound of zi, i = 1, · · · ,M at the next time level. Hence,
the new high-order time integration which will be constructed in the next section should maintain
the total mass conservation condition r1 + · · ·+ rM = ρ at the next time level.

Before we finish this section, we would like to demonstrate the following definition.

Definition 3.1. We say the elements in the numerical flux H are consistent if hρ = hi if we take
zi = 1 for all 1 ≤ i ≤M − 1.

The elements in the numerical flux H in (2.3) are consistent, and we have used this fact to
construct hM and preserve the upper bound 1 of the mass fraction.

8



4 Bound-preserving technique for the full algorithm

In this section, we proceed to demonstrate the bound-preserving technique for the full algorithm.
We first construct the high-order time integration, and then demonstrate the full algorithm and
the bound-preserving technique.

4.1 High-order time discretization

Consider the ordinary differential equation

wt = F(w) + s(w), (4.1)

where F(w) represents the DG discretization of the convection term in this section.
We rewrite (4.1) as

wt + µw = F(w) + s(w) + µw,

where µ ≥ 0 is a constant in each time step but may depend on n. The above equation further
yields

(eµtw)t = eµt(F(w) + s(w) + µw).

We use the SSP multistep methods to discretize the above ODE to obtain the exponential multistep
methods. In [6], the authors introduced second, third and fourth-order schemes. For simplicity,
we only discuss the second and third-order schemes in this paper. The extension to fourth-order
schemes is straightforward following the same lines. The second and third-order schemes given in
[6] are

wn+1 =
3

4
e−µ∆t [wn + 2∆tF(wn) + 2∆t(s(wn) + µwn)] +

1

4
e−3µ∆twn−2, (4.2)

and

wn+1 =
16

27
e−µ∆t [wn + 3∆tF(wn) + 3∆t (s(wn) + µwn)]

+
11

27
e−4µ∆t

[
wn−3 +

12

11
∆tF(wn−3) +

12

11
∆t
(
s(wn−3) + µwn−3

)]
, (4.3)

respectively. However, it is impossible to construct the bound-preserving technique by using the
time integration given above. Before we demonstrate the reasons, we would like to give the following
definition

Definition 4.1. Consider a multistep method containing wn+i, i = −`, 1 − `, · · · , 0, 1 for (4.1).
We say the scheme is globally conservative if wn+1 = 1 under the following two conditions

1. wn−` = · · · = wn = 1;

2. F(w) = s(w) = 0.

It is easy to check that the globally conservative time integration implies total mass conservation,
i.e. z1 + · · · + zM = 1 (r1 + · · · + rM = ρ) at the next time level. Also, as we will see later in
Theorem 4.1, the globally conservative condition ensures us to rewrite the solution at the next time
level as a convex combination of several terms and thus we only need to preserve the bounds of
each term. However, (4.2) and (4.3) are not globally conservative for µ 6= 0, and the necessary

condition,
∑M

i=1 zi = 1, in the bound-preserving technique may not be satisfied. We will modify the
schemes and make them to be globally conservative. To do that, we consider Taylor’s expansion of
the exponential functions. For (4.2), we approximate

e−µ∆t ≈ 1− µ∆t+
1

2
(µ∆t)2 ≥ 0,
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to obtain

wn+1 =
3

4

(
1− µ∆t+

1

2
(µ∆t)2

)
[wn + 2∆tF(wn) + 2∆t(s(wn) + µwn)]

+
1

4

(
1− 3µ∆t+

9

2
(µ∆t)2

)
wn−2. (4.4)

Since we expanded the exponential function to the second-order term (the error is third-order
in time), then (4.4) is also second-order accurate. Now, we are ready to construct the globally
conservative scheme. We simply take s = F = 0 and let wn−2 = wn = 1 to obtain wn+1 =
(1 + 3

4(µ∆t)3)1. Therefore, the second-order globally conservative scheme is

wn+1 = A1
2 [wn + 2∆tF(wn) + 2∆t(s(wn) + µwn)] +A2

2w
n−2 (4.5)

where

A1
2 =

3

4

1− µ∆t+ 1
2(µ∆t)2

1 + 3
4(µ∆t)3

A2
2 =

1

4

1− 3µ∆t+ 9
2(µ∆t)2

1 + 3
4(µ∆t)3

.

It is easy to check A1
2 and A2

2 are both positive for all ∆t. The scheme is globally conservative since
it is easy to check that

A1
2 + 2µ∆tA1

2 +A2
2 = A1

2(1 + 2µ∆t) +A2
2 = 1. (4.6)

Now, we proceed to construct the third-order globally conservative scheme. We also apply the
Taylor’s expansion of the exponential functions and approximate

e−µ∆t ≈ 1− µ∆t+
1

2
(µ∆t)2 − 1

6
(µ∆t)3 +

1

24
(µ∆t)4 ≥ 0.

Then (4.3) can be written as

wn+1 =
16

27

(
1− µ∆t+

1

2
(µ∆t)2 − 1

6
(µ∆t)3 +

1

24
(µ∆t)4

)
[wn + 3∆tF(wn) + 3∆t (s(wn) + µwn)]

+
11

27

(
1− 4µ∆t+ 8(µ∆t)2 − 32

3
(µ∆t)3 +

32

3
(µ∆t)4

)
·
[
wn−3 +

12

11
∆tF(wn−3) +

12

11
∆t
(
s(wn−3) + µwn−3

)]
. (4.7)

We take s = F = 0 and let wn−3 = wn = 1 to obtain wn+1 = (1 − 2
3(µ∆t)4 + 130

27 (µ∆t)5)1.
Therefore, the third-order globally conservative scheme is

wn+1 = A1
3 [wn + 3∆tF(wn) + 3∆t (s(wn) + µwn)]

+A2
3

[
wn−3 +

12

11
∆tF(wn−3) +

12

11
∆t
(
s(wn−3) + µwn−3

)]
. (4.8)

where

A1
3 =

16

27

1− µ∆t+ 1
2(µ∆t)2 − 1

6(µ∆t)3 + 1
24(µ∆t)4

1− 2
3(µ∆t)4 + 130

27 (µ∆t)5
,

A2
3 =

11

27

1− 4µ∆t+ 8(µ∆t)2 − 32
3 (µ∆t)3 + 32

3 (µ∆t)4

1− 2
3(µ∆t)4 + 130

27 (µ∆t)5
.

It is easy to check A1
3 and A2

3 are both positive for all ∆t. The scheme is globally conservative and

A1
3 + 3µ∆tA1

3 +A2
3 = 1.
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Remark 4.1. To construct the third-order scheme, we cannot expand the exponential function to
the third-order term, i.e.

e−µ∆t ≈ 1− µ∆t+
1

2
(µ∆t)2 − 1

6
(µ∆t)3,

since the approximation above may not be positive and the positivity-preserving technique will fail to
work. Especially, if µ is large, the time step ∆t would be extremely small to make the approximation
to be positive. More details about this requirement will be discussed in the next subsection.

4.2 Full algorithm

In this subsection, we will demonstrate the bound-preserving technique for the full scheme and the
construction of the physically relevant numerical approximations. We first present the following
lemma.

Lemma 4.1. Let w ∈ G̃, then
s̃ = s(w) + µw ∈ G̃,

provided

µ > max
0≤i≤M

{
−si
ri
,

∑M
j=1 sjqj

p
, 0

}
, (4.9)

where sM = −
∑M−1

i=1 si , rM = ρ−
∑M−1

i=1 ri, and p is the pressure computed by using w.

Proof. Denote s̃ = (s̃ρ, s̃m, s̃n, s̃E , s̃1, · · · , s̃M−1)T . It is easy to check s̃o = µo for o = ρ,m, n,E

and s̃i = µri + si for i = 1, · · · ,M − 1. We further denote s̃M = s̃ρ −
∑M−1

i=1 s̃i and hence

s̃M = µρ−
M−1∑
i=1

(µri + si) = µ(ρ−
M−1∑
i=1

ri)−
M−1∑
i=1

si = µrM + sM .

Therefore, s̃ρ > 0, and

p̃ = (γ − 1)

(
s̃E −

1

2
s̃ρ(u

2 + v2)− s̃1q1 − · · · − s̃MqM
)

= (γ − 1)

(
µE − 1

2
µρ(u2 + v2)− (µr1 + s1)q1 − · · · − (µrM + sM )qM

)
= (γ − 1)

(
µ

(
E − 1

2
ρ(u2 + v2)− r1q1 − · · · − rMqM

)
− s1q1 − · · · − sMqM

)
= (γ − 1) (µp− s1q1 − · · · − sMqM ) > 0,

with (u, v) = ( s̃ms̃ρ ,
s̃n
s̃ρ

) = (mρ ,
n
ρ ). Moreover, we choose µ as (4.9) to obtain s̃i = si + µri > 0 for all

1 ≤ i ≤M . Notice that
M∑
i=1

s̃i = s̃ρ,

then
M∑
i=1

z̃i =
M∑
i=1

s̃i
s̃ρ

= 1,

and we finish the proof.
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Now, we can state the main theorem for second-order scheme. For simplicity, we omit the
subscript K of each wK .

Theorem 4.1. Consider the DG scheme (2.2) with time integration (4.5), where µ satisfies (4.9).
If wn,wn−2 ∈ G̃ for all (x, y) ∈ S, where S is defined in (3.5) and (3.7) for rectangular and
triangular meshes, respectively. Then we have w̄n+1 ∈ G̃ under the condition ∆t ≤ 1

2∆t̃, where ∆t̃
is the time step given in (3.6) and (3.8) for rectangular and triangular meshes, respectively.

Proof. By Theorem 3.3, we have

R1 = wn + 2∆tF(wn) ∈ G̃.

Moreover, by lemmas 3.1 and 4.1, we can show that

R2 =
1

µ
(s(w) + µw) ∈ G̃

Finally, denote R3 = wn−2 ∈ G̃. Notice the fact that G̃ is a convex set, then take cell average in
(4.5) to obtain

wn+1 = A1
2w

n + 2∆tF(wn) +A1
22∆t(s(w) + µw) +A2

2w
n−2

= A1
2R1 + 2µ∆tA1

2R2 +A2
2R3 ∈ G̃,

where in the last step, we applied the globally conservative condition (4.6) and the fact that A1
2 > 0

and A2
2 > 0.

Following the same analysis given above with some minor changes, we can obtain the theorem
for the third-order scheme. Therefore, we only demonstrate the theorem without proof.

Theorem 4.2. Consider the DG scheme (2.2) with time integration (4.8), where µ satisfies (4.9).
If wn,wn−3 ∈ G̃ for all (x, y) ∈ S, where S is defined in (3.5) and (3.7) for rectangular and
triangular meshes, respectively. Then we have w̄n+1 ∈ G̃ under the condition ∆t ≤ 1

3∆t̃, where ∆t̃
is the time step given in (3.6) and (3.8) for rectangular and triangular meshes, respectively.

Based on the above two theorems, we can construct physically relevant numerical cell averages
w̄. However, the numerical approximations w may be out of the bounds. Hence, we need to apply
suitable limiters and construct physically relevant numerical approximations. The full algorithm
on each fixed element K is given as follows

1. Set a small number ε = 10−13.

2. If ρ̄ > ε, then we proceed to the next step. Otherwise, w is identified as the approximation
to vacuum, then we take w = w̄, and skip the following steps.

3. We modify the density ρ first. Compute

ρmin = min
(x,y)∈S

ρ(x, y).

If ρmin < 0, then take

ρ̂ = ρ+ θ (ρ− ρ) , r̂i = ri + θ (ri − ri) , i = 1, · · · ,M − 1,

with

θ =
ρ− ε

ρ− ρmin
,

Here we implicitly modify r̂M = rM + θ (rM − rM ) to keep
∑M

i=1 r̂i = ρ̂.
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4. Modify the mass fraction. For 1 ≤ i ≤M , define Ŝi = {(x, y) ∈ S : r̂i(x, y) ≤ 0}. Take

r̃i = r̂i+θ

(
r̄i
ρ̄
ρ̂− r̂i

)
, 1 ≤ i ≤M−1, θ = max

1≤i≤M
max

(x,y)∈Ŝi

{
−r̂i(x, y)ρ̄

r̄iρ̂(x, y)− r̂i(x, y)ρ̄
, 0

}
. (4.10)

5. Modify the pressure. Denote w̃ = (ρ̂,m, n,E, r̃1, · · · , r̃M−1)T . For each x ∈ S, if w̃(x) ∈ G̃,
then take θx = 1. Otherwise, take

θx =
p(w)

p(w)− p(w̃(x))
.

Then, we use
wnew = w + θ(w̃ −w), θ = min

x∈S
θx,

as the new DG approximation. The proof for p(wnew) ≥ 0 can be found in [18].

Remark 4.2. In step 3, we can simply take r̂i = ri, i = 1, · · · ,M − 1 and implicitly modify
r̂M = ρ̂ −

∑M−1
i=1 ri. Therefore, one may not need to apply the limiter to ri, i = 1, · · · ,M − 1. In

the numerical experiments, we only compute ρ̂ and keep ri unchanged for 1 ≤ i ≤M − 1.

Remark 4.3. In step 4, it is easy to check that r̃i(x, y) ≥ 0 for all (x, y) ∈ S, i = 1 · · · ,M − 1. If
we further define

r̃M = r̂M + θ

(
r̄M
ρ̄
ρ̂− r̂M

)
,

then r̃M (x, y) ≥ 0 for all (x, y) ∈ S. Since
∑M

i=1 r̂i = ρ̂, then

M∑
i=1

r̃i =
M∑
i=1

r̂i + θ

(
M∑
i=1

r̄i
ρ̄
ρ̂−

M∑
i=1

r̂i

)
= ρ̂+ θ

(
ρ̄

ρ̄
ρ̂− ρ̂

)
= ρ̂.

Therefore, we have 0 ≤ r̃i(x, y) ≤ ρ̂(x, y),∀(x, y) ∈ S, i = 1, · · · ,M , which further indicates that
the mass fraction of each species is within the range [0,1].

5 Second-order globally conservative Runge-Kutta method

In this section, we proceed to construct a second-order globally conservative Runge-Kutta method,
and the third-order one will be discussed in the future. For the Runge-Kutta method, time steps
can change in different time levels. Hence, for practical problems in which the wave speed changes
quickly or even widely, Runge-Kutta method can be an alternative to the multistep method.

Following the analysis in Section 4.2, (4.1) yields

(eµtw)t = eµt(F(w) + s(w) + µw).

The second-order Runge-Kutta scheme given in [6] is

w(1) = e−µ∆t (wn + ∆tF(wn) + ∆t(s(wn) + µwn)) , (5.1)

wn+1 =
1

2
e−µ∆twn +

1

2

[
w(1) + ∆tF(w(1)) + ∆t(s(w(1)) + µw(1))

]
. (5.2)

Similar to the multistep method, the above scheme is not globally conservative for µ 6= 0. We
consider Taylor’s expansion of the exponential functions and approximate

e−µ∆t ≈ 1− µ∆t+
1

2
(µ∆t)2 ≥ 0.
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Following the same idea in Section 4.2, we take s = F = 0 and let wn = 1 in (5.1) to obtain w(1) =
(1 − 1

2(µ∆t)2 + 1
3(µ∆t)3)1, then take wn = w(1) = 1 in (5.2) to obtain wn+1 = (1 + 1

4(µ∆t)2)1.
Therefore, the second-order globally conservative scheme is

w(1) = B1
1 [wn + ∆tF(wn) + ∆t(s(wn) + µwn)] , (5.3)

wn+1 = B1
2wn +B2

2

[
w(1) + ∆tF(w(1)) + ∆t(s(w(1)) + µw(1))

]
, (5.4)

where

B1
1 =

1− µ∆t+ 1
2(µ∆t)2

1− 1
2(µ∆t)2 + 1

3(µ∆t)3
, B1

2 =
1

2

1− µ∆t+ 1
2(µ∆t)2

1 + 1
4(µ∆t)2

, B2
2 =

1

2

1

1 + 1
4(µ∆t)2

.

It is easy to check B1
1 , B1

2 and B2
2 are positive for all ∆t, and the scheme is globally conservative:

(1 + µ∆t)B1
1 = B1

2 + (1 + µ∆t)B2
2 = 1. (5.5)

Then following the analyses in Theorem 4.1, we can easily obtain the following one.

Theorem 5.1. Consider the DG scheme (2.2) with time integration (5.3) and (5.4), where µ
satisfies (4.9) for w = wn. If wn ∈ G̃ for all (x, y) ∈ S, where S is defined in (3.5) and (3.7)
for rectangular and triangular meshes, respectively. Then we have w̄(1) ∈ G̃ under the condition
∆t ≤ ∆t̃, where ∆t̃ is the time step given in (3.6) and (3.8) for rectangular and triangular meshes,
respectively. In addition to the above conditions, if µ satisfies (4.9) for w = w(1) and w(1) ∈ G̃ for
all (x, y) ∈ S, then we have w̄n+1 ∈ G̃ under the condition ∆t ≤ ∆t̃.

Remark 5.1. In the above theorem, µ satisfies (4.9) for w = w(1), hence it is not easy to find out
µ in (5.3). In practice, we choose two different µ in (5.3) and (5.4), say µn and µ(1), satisfying
(4.9) for w = wn and w = w(1), respectively. Numerical experiments in Section 6 demonstrate
that the scheme is also second-order accurate in time.

Based on the above theorem, we can construct physically relevant numerical cell averages w̄(1)

and w̄n+1. However, we still need the bound-preserving limiter discussed in Section 4.2 to modify
the numerical approximations w(1) and wn+1.

Finally, different from the multistep method, it is not easy to observe the accuracy for (5.3)-(5.4)
as we introduced second-order errors in the denominators in B′s. Before we state the accuracy of
the scheme, we would like to demonstrate the following lemma, whose proof follows from direct
computation, hence we omit it here.

Lemma 5.1.

B1
2 +B2

2B
1
1(1 + µ∆t)2 =

1− 1
4(µ∆t)2 +O(∆t3)

1− 1
4(µ∆t)2 +O(∆t3)

= 1 +O(∆t3),

B2
2∆t[(1 + µ∆t)B1

1 + 1] = ∆t
1 +O(∆t2)

1 +O(∆t2)
= ∆t+O(∆t3),

B2
2 =

1

2
+O(∆t2).

We will prove that the scheme is indeed second-order accurate in the following theorem.

Theorem 5.2. Consider the ordinary differential system wt = L(w), with L(u) = F(u) + s(u).
The globally conservative Runge-Kutta scheme (5.3)-(5.4) is second-order accurate.
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Proof. We can rewrite (5.3)-(5.4) as

w(1) = B1
1 [wn + ∆tL(wn) + µ∆twn] , (5.6)

wn+1 = B1
2wn +B2

2

[
w(1) + ∆tL(w(1)) + µ∆tw(1)

]
. (5.7)

By using (5.5), we have

w(1) = wn + (1 +O(∆t))∆tL(wn) = wn + ∆tL(wn) +O(∆t2). (5.8)

Substitute (5.6) into (5.7) to obtain

wn+1 = B1
2wn +B2

2(1 + µ∆t)w(1) +B2
2∆tL(w(1))

= [B1
2 +B2

2B
1
1(1 + µ∆t)2]wn +B2

2∆t[(1 + µ∆t)B1
1 + 1]L(wn)

+B2
2∆t(L(w(1))− L(wn))

= wn + ∆tL(wn) +
1

2
∆t(L(w(1))− L(wn)) +O(∆t3)

= wn + ∆tL(wn) +
1

2
∆t(L(wn + ∆tL(wn) +O(∆t2))− L(wn)) +O(∆t3)

= wn + ∆tL(wn) +
1

2
∆t2∇L(wn)L(wn) +O(∆t3),

where in the third step we use Lemma 5.1 and (5.5), and the fourth step requires (5.8). Substitute
wn and wn+1 with the exact solutions, we obtain that the local truncation error is O(∆t2).

Remark 5.2. The construction of third-order globally conservative Runge-Kutta scheme is highly
nontrivial. We will discuss this in the future.

6 Numerical examples

In this section, we will use numerical experiments to demonstrate the effect of the bound-preserving
DG method. We refine the meshes to match the positions of the shocks with those given in [19].
Therefore, we only plot the numerical approximations in this section. Moreover, the numerical
results obtained by using Runge-Kutta method and multistep method are similar. If not otherwise
stated, the figures in this section are obtained by using DG method with piecewise P 1 polynomials
and second-order time integration given in (4.5).

6.1 Test of the ODE solver

Example 6.1. Accuracy test for the ODE solver
We first test the stability and accuracy of the ODE solver, and study the following problem:

u′(t) = −cu7, u(0) = u0,

where c is a parameter that we can adjust. The problem becomes stiff as c increases. The exact
solution is

u(t) = u0(6ctu6
0 + 1)−1/6.

We take the final time to be t = 0.5 and denote the total number of time steps as Nt.
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Table 6.1: Accuracy test for ODE solvers with u0 = 0.1 with c = 10000.

Nt L∞ norm order L∞ norm order L∞ norm order
2nd order Runge-Kutta 2nd order multistep 3rd order multistep

2 1.30E-08 – 5.24E-08 – 3.20E-09 –
4 3.25E-09 2.00 1.17E-08 2.16 2.13E-10 3.90
8 8.10E-10 2.00 3.62E-09 1.70 3.52E-11 2.60
16 2.02E-10 2.00 1.01E-09 1.84 5.21E-12 2.76
32 5.06E-11 2.00 2.65E-10 1.93 6.97E-13 2.90
64 1.26E-11 2.00 6.80E-11 1.96 9.00E-14 2.95

Table 6.2: Accuracy test for ODE solvers with u0 = 1.

c=1 c=100 c=10000
Nt L∞ norm order L∞ norm order L∞ norm order

2nd order Runge-Kutta
20 7.07E-05 – 7.96E-04 – 1.93E-03 –
40 1.74E-05 2.02 4.59E-04 0.79 8.92E-04 1.11
80 4.28E-06 2.02 2.33E-04 0.98 4.24E-04 1.07
160 1.07E-06 2.00 8.65E-05 1.43 1.89E-04 1.17
320 2.68E-07 2.00 2.45E-05 1.82 7.13E-05 1.40

2nd order multistep
20 3.07E-04 – 2.92E-03 – 2.84E-04 –
40 8.47E-05 1.86 1.25E-03 1.22 6.02E-05 2.24
80 2.22E-05 1.94 4.99E-04 1.33 1.56E-04 -1.37
160 5.71E-06 1.96 1.90E-04 1.39 1.51E-04 0.05
320 1.45E-06 1.97 6.71E-05 1.50 9.35E-05 0.69

3rd order multistep
20 6.68E-05 – 3.90E-02 – 7.06E-02 –
40 1.02E-05 2.71 6.96E-03 2.49 5.82E-02 0.28
80 1.41E-06 2.86 3.19E-04 4.45 4.23E-02 0.46
160 1.87E-07 2.91 1.19E-04 1.43 2.62E-02 0.69
320 2.42E-08 2.95 3.76E-05 1.66 1.23E-02 1.10

We first take u0 = 0.1 with c = 10000. Numerical results for all ODE solvers proposed in this
paper are listed in Table 6.1. The initial condition is well-prepared, and we can observe optimal
convergence rates. Next, we take u0 = 1, the results are given in Table 6.2. For this problem, the
initial condition is not well-prepared, and we can only observe optimal convergence rate for all time
integrations if the problem is not stiff, e.g. c = 1. However, if the problem is stiff, e.g. c = 100 or
100000, we can hardly observe the expected accuracy.

6.2 One space dimension

Example 6.2. Accuracy test for 1D system
In this example, we consider periodic boundary condition and take u = 1 and p = 0 in the exact
solution. We choose M = 2 and the source term is given as s1 = −cr7

1. Hence, we need to solve
the following system {

ρt + ρx = 0,
(r1)t + (r1)x = −c(r1)7,

x ∈ [0, 2π].
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The initial conditions are given as r1(x, 0) = 0.1
(
1+sin(x)

)
and ρ(x, 0) = 0.1

(
2+sin(x)+cos(x)

)
.

The parameter c can be used to adjust the stiffness of the equation. For this problem, the total
density ρ should be non-negative and the mass fraction r1/ρ should be between 0 and 1.

We apply DG method with piecewise P 1 (P 2) polynomials coupled with second-order multistep
and Runge-Kutta (third-order multistep) time discretizations with and without bound-preserving
limiter. The final time is taken as t = 0.5. Both stiff and non-stiff cases are calculated. The errors
are listed in Table 6.3 and the last column shows the percentage of cells that have been modified
by the limiter. We can observe optimal orders of accuracy with and without limiter.

Table 6.3: Accuracy test for the one dimensional problem.

without limiter with limiter
N L∞ norm order L2 norm order L∞ norm order L2 norm order percentage

2nd order multistep method, cfl=0.1, c=100
10 1.19E-02 – 9.86E-03 – 1.33E-02 – 1.03E-02 – 20.00%
20 3.16E-03 1.91 2.55E-03 1.95 3.78E-03 1.81 2.63E-03 1.97 20.00%
40 8.04E-04 1.98 6.41E-04 1.99 9.83E-04 1.94 6.66E-04 1.98 12.50%
80 2.02E-04 1.99 1.60E-04 2.00 2.78E-04 1.82 1.65E-04 2.02 10.00%
160 5.07E-05 2.00 4.01E-05 2.00 7.05E-05 1.98 4.10E-05 2.01 9.38%

2nd order multistep method, cfl=0.1, c=10000
10 1.21E-02 – 9.85E-03 – 1.34E-02 – 1.01E-02 – 20.00%
20 3.20E-03 1.91 2.56E-03 1.94 3.82E-03 1.80 2.58E-03 1.97 20.00%
40 8.13E-04 1.97 6.55E-04 1.97 9.93E-04 1.94 6.58E-04 1.97 12.50%
80 2.05E-04 1.99 1.65E-04 1.98 2.81E-04 1.82 1.63E-04 2.01 10.00%
160 5.15E-05 1.99 4.16E-05 1.99 7.13E-05 1.98 4.05E-05 2.01 9.37%

2nd order Runge-Kutta method, cfl=0.1, c=100
10 1.18E-02 – 9.89E-03 – 1.59E-02 – 1.11E-02 – 50.00 %
20 3.15E-03 1.91 2.54E-03 1.96 4.38E-03 1.86 2.77E-03 2.00 40.00 %
40 8.04E-04 1.97 6.40E-04 1.99 1.13E-03 1.95 6.89E-04 2.00 25.00 %
80 2.02E-04 1.99 1.60E-04 2.00 3.17E-04 1.82 1.68E-04 2.03 20.00 %
160 5.07E-05 2.00 4.01E-05 2.00 8.10E-05 1.97 4.15E-05 2.02 18.75 %

2nd order Runge-Kutta method, cfl=0.1, c=10000
10 1.18E-02 – 9.62E-03 – 1.65E-02 – 1.10E-02 – 50.00 %
20 3.15E-03 1.90 2.49E-03 1.95 4.37E-03 1.91 2.69E-03 2.04 40.00 %
40 8.03E-04 1.97 6.31E-04 1.98 1.12E-03 1.95 6.58E-04 2.03 22.50 %
80 2.02E-04 1.99 1.58E-04 1.99 3.17E-04 1.83 1.62E-04 2.02 13.75 %
160 5.07E-05 2.00 3.96E-05 2.00 8.10E-05 1.97 4.04E-05 2.01 10.63 %

3rd order multistep method, cfl=0.05, c=100
10 1.78E-04 – 3.08E-04 – 2.20E-04 – 3.35E-04 – 10.00%
20 2.13E-05 3.06 3.77E-05 3.03 2.13E-05 3.37 3.80E-05 3.14 15.00%
40 3.08E-06 2.79 5.38E-06 2.81 3.08E-06 2.79 5.38E-06 2.82 12.50%
80 3.77E-07 3.03 6.61E-07 3.02 3.77E-07 3.03 6.61E-07 3.02 10.00%
160 4.73E-08 2.99 8.31E-08 2.99 4.73E-08 2.99 8.31E-08 2.99 8.75%

3rd order multistep method, cfl=0.05, c=10000
10 3.36E-04 – 4.78E-04 – 3.36E-04 – 4.89E-04 – 10.00%
20 4.35E-05 2.95 5.46E-05 3.13 4.35E-05 2.95 5.47E-05 3.16 15.00%
40 5.86E-06 2.89 6.83E-06 3.00 5.86E-06 2.89 6.83E-06 3.00 12.50%
80 7.00E-07 3.06 8.41E-07 3.02 7.00E-07 3.06 8.41E-07 3.02 10.00%
160 8.63E-08 3.02 1.05E-07 3.00 8.63E-07 3.02 1.05E-07 3.00 8.75%
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Example 6.3. A 1D detonation wave with 3 species and 1 reaction
In this case, we solve a reacting model with three species and one reaction,

2H2 +O2 → 2H2O.

The parameters are taken as T1 = 2.0, B1 = 500, α1 = 1, q1 = 1000, q2 = 0, q3 = 0,M1 = 2,M2 =
32,M3 = 18. The computational domain is [0, 50] and the initial condition is given as piecewise
constants

(ρ, u, p, z1, z2, z3)(x, 0) =

{
(2.0, 10.0, 40.0, 0.325, 0.0, 0.625), x 6 2.5,
(1.0, 0.0, 1.0, 0.4, 0.6, 0.0), x > 2.5.

We take the final time to be t = 3. This is a simple one-step chemical model for hydrogen-oxygen
mixtures. The fuel rich hydrogen-oxygen mixture is on the right-hand side. And the mixture is
totally burnt on the left-hand side.

To resolve the thin reaction zone, we take ∆x = 0.01 and CFL = 0.05. The profiles of density,
pressure and mass fraction for each species are shown in Figure 6.1. From the figure, we can see
that the shocks are captured well and the shock positions are correct. Moreover, the density and
pressure are positive and all mass fractions are in the interval [0, 1]. Since we only implemented
the bound-preserving limiter, there are some oscillations in the density and mass fractions.

In addition, we also compared the results obtained using positivity-preserving technique in [18]
with the one achieved by using bound-preserving technique demonstrated in this paper. Figure 6.2
shows the profile of mass fraction of H2O (the last species that not solved explicitly in the DG
scheme) with different techniques at time T=0.055. We can observe some negative values in the
left panel, where we used the PP technique in [18]. As expected, the bound-preserving technique
given in this paper yields positive value of the mass fraction in the right panel.

We also investigate the influence of the denominators of A1
2 and A2

2 in the time integral scheme
(4.5). We take the denominators to be 1, the numerical scheme is not stable until we reduce the
CFL to 0.001. This is because the lack of mass conservation will lead to the “add mass” effect,
especially for µ is large. Therefore, a sufficiently small ∆t is necessary to suppress this effect.

Moreover, we applied the second-order Runge-Kutta method and the observations are similar.

Example 6.4. A 1D detonation wave with 5 species and 2 reaction
In this example, we would resolve a two-step chemical reaction model with 4 species for hydrogen-
oxygen-nitrogen mixture.

H2 +O2 → 2OH, 2OH +H2 → 2H2O.

Here nitrogen is considered as a catalyst. The parameters are T1 = 2.0, T2 = 10, B1 = B2 =
106, α1 = α2 = 0, q1 = q2 = 0, q3 = −20, q4 = −100, q5 = 0,M1 = 2,M2 = 32,M3 = 17,M4 =
18,M5 = 28. The initial data are as follows:

(ρ, u, p, z1, z2, z3, z4, z5)(x, 0) =

{
(2.0, 10.0, 40.0, 0.0, 0.0, 0.17, 0.63, 0.2), x 6 2.5,
(1.0, 0.0, 1.0, 0.08, 0.72, 0.0, 0.0, 0.2), x > 2.5.

The computational domain is [0, 10] and final time is t = 0.5.

In this example, we take ∆x = 0.005 and CFL = 0.01. Figure 6.3 shows the numerical density,
pressure and mass fractions. All shock waves are captured accurately, as well as the mass fraction
of the intermediate component OH. Also, Figure 6.3 shows that all bounds are preserved.
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Figure 6.1: Numerical solutions of Example 6.3 at t = 3.
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Figure 6.2: Numerical solutions of Example 6.3 at t = 0.055.
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Figure 6.3: Numerical solutions of Example 6.4 at t = 0.5.
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6.3 Two space dimensions

Example 6.5. Accuracy test for 2D system
From now on, we consider the two dimensional problem. In this example, we consider periodic
boundary condition and take u = v = 1 and p = 0 in the exact solution. We choose M = 2 and the
source is given as s1 = −cr7

1. Hence, we need to solve the following system{
ρt + ρx + ρy = 0,
(r1)t + (r1)x + (r1)y = −c(r1)7,

(x, y) ∈ [0, 2π]2.

The initial conditions are given as ρ(x, y, 0) = 0.1
(
2 + sin(x + y) + cos(x + y)

)
and r1(x, y, 0) =

0.1
(
1 + sin(x + y)

)
, respectively. For this problem, the total density ρ should be non-negative and

the mass fraction r1/ρ should be between 0 and 1.

We use piecewise P 1(P 2) polynomials coupled with second-order (third-order) time discretiza-
tions and take the final time to be t = 0.5. Numerical errors for different time discretizations with
different c are given in the left column of Table 6.4. From the left column of Table 6.4 we can again
observe the expected high order of accuracy of our scheme. We further add the limiter to preserve
the lower bound of ρ and the two bounds of r1/ρ, and show the results in the right part of the error
table. The percentage of cells that have been modified by the limiter is listed in the last column.
By comparing the results with and without limiter, we can see that the limiter dose not harm the
original high order of accuracy.

Example 6.6. A 2D detonation wave with 4 species and 1 reaction.
In this example, we test a 2D reacting model with four species and one reaction. A prototype
reaction for this model is

CH4 + 2O2 → CO2 + 2H2O.

The parameters are T1 = 2, B1 = 106, α1 = 0, q1 = 200, q2 = 0, q3 = 0, q4 = 0, M1 = 16,
M2 = 32, M3 = 44, M4 = 18. The initial values consist of totally burnt gas inside of a circle with
radius 10 and totally unburnt gas everywhere outside this circle. The set up is as follows

(ρ, u, v, p, z1, z2, z3, z4)(x, y, 0) =

{
(2, 10x/r, 10y/r, 40, 0, 0.2, 0.475, 0.325), r 6 10,
(1, 0, 0, 1, 0.1, 0.6, 0.2, 0.1), r > 10.

The computational domain is [0, 50]× [0, 50].

This is a radially symmetric problem and the detonation front is circular. We take Nx = Ny =
600 and CFL = 0.01. We test both the second-order Runge-Kutta method and the second-order
multistep method with piecewise P 1 polynomials. Figure 6.4 shows the one dimensional cuts of
pressure, density and mass fractions along the line x = y at t = 2. We can see that both schemes
preserve the positivity of the density and pressure, and the two bounds 0 and 1 of each mass
fraction. Also, we can see that our schemes can capture the detonations well. The results obtained
by using second-order multistep method is exactly the same, so we skip them here.

7 Conclusion

In this paper, we have introduced the high-order conservative bound-preserving DG methods for
stiff multispecies detonation. A new explicit time integration has been constructed. Numerical
experiments demonstrated the good performance of the scheme.
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Table 6.4: Accuracy test for the two dimensional system.

without limiter with limiter
N L2 norm order L∞ norm order L2 norm order L∞ norm order percentage

2nd order Runge-Kutta, cfl=0.1, c=100
10 5.23E-03 – 1.28E-02 – 5.99E-03 – 1.71E-02 – 28.00%
20 1.31E-03 2.00 3.76E-03 1.76 1.49E-03 2.01 5.25E-03 1.70 13.75%
40 3.26E-04 2.00 1.01E-03 1.90 3.63E-04 2.04 1.42E-03 1.89 5.88%
80 8.14E-05 2.00 2.60E-04 1.95 8.85E-05 2.04 3.74E-04 1.92 2.48%
160 2.03E-05 2.00 6.60E-05 1.98 2.16E-05 2.03 1.00E-04 1.90 1.05%

2nd order Runge-Kutta, cfl=0.1, c=10000
10 5.12E-03 – 1.33E-02 – 5.91E-03 – 1.74E-02 – 30.00%
20 1.29E-03 1.99 3.88E-03 1.77 1.46E-03 2.02 5.10E-03 1.78 14.00%
40 3.22E-04 2.00 1.03E-03 1.91 3.49E-04 2.07 1.44E-03 1.82 5.31%
80 8.04E-05 2.00 2.66E-04 1.96 8.43E-05 2.05 3.80E-04 1.92 1.80%
160 2.01E-05 2.00 6.73E-05 1.98 2.08E-05 2.02 1.02E-04 1.90 0.63%

2nd order multistep, cfl=0.1, c=100
10 5.13E-03 – 1.30E-02 – 5.78E-03 – 1.70E-02 – 34.00%
20 1.31E-03 1.97 3.77E-03 1.79 1.48E-03 1.97 5.22E-03 1.70 21.50%
40 3.27E-04 2.00 1.01E-03 1.90 3.61E-04 2.03 1.41E-03 1.89 8.81%
80 8.18E-05 2.00 2.60E-04 1.95 8.83E-05 2.03 3.73E-04 1.92 3.84%
160 2.05E-05 2.00 6.61E-05 1.98 2.16E-05 2.03 9.96E-05 1.90 1.59%

2nd order multistep, cfl=0.1, c=10000
10 5.01E-03 – 1.36E-02 – 5.65E-03 – 1.65E-02 – 37.00%
20 1.29E-03 1.96 3.92E-03 1.79 1.44E-03 1.97 5.07E-03 1.71 22.00%
40 3.23E-04 1.99 1.05E-03 1.91 3.47E-04 2.05 1.45E-03 1.80 7.88%
80 8.11E-05 2.00 2.70E-04 1.95 8.46E-05 2.04 3.85E-04 1.92 2.53%
160 2.03E-05 2.00 6.97E-05 1.96 2.10E-05 2.01 1.03E-04 1.90 0.89%

3rd order multistep, cfl=0.03, c=100
10 6.42E-04 – 3.45E-03 – 1.26E-03 – 5.58E-03 – 14.00%
20 8.07E-05 2.99 4.33E-04 2.99 8.47E-05 3.90 4.96E-04 3.49 3.00%
40 1.01E-05 3.00 5.41E-05 3.00 1.01E-05 3.07 5.45E-05 3.19 0.56%
80 1.26E-06 3.00 6.75E-06 3.00 1.26E-06 3.00 6.75E-06 3.01 0.11%
160 1.58E-07 3.00 8.44E-07 3.00 1.58E-07 3.00 8.44E-07 3.00 0.04%

3rd order multistep, cfl=0.03, c=10000
10 7.22E-04 – 4.19E-03 – 1.27E-03 – 6.09E-03 – 15.00%
20 9.34E-05 2.95 6.11E-04 2.78 9.55E-05 3.74 6.11E-04 3.32 1.25%
40 1.17E-05 2.99 7.65E-05 3.00 1.18E-05 3.02 7.65E-05 3.00 0.38%
80 1.47E-06 3.00 9.65E-06 2.99 1.47E-06 3.00 9.65E-06 2.99 0.11%
160 1.84E-07 3.00 1.20E-06 3.00 1.84E-07 3.00 1.20E-06 3.00 0.04%
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Figure 6.4: Numerical solutions of Example 6.6 along the line x = y at t = 2. The 2nd
order Runge-Kutta method with piecewise P 1 polynomials.
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