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Abstract
In this paper, we develop third-order conservative sign-preserving and steady-state-preserving

time integrations and seek their applications in multispecies and multireaction chemical reactive
flows. In this problem, the density and pressure are nonnegative, and the mass fraction for the
ith species, denoted as zi, 1 ≤ i ≤ M , should be between 0 and 1, where M is the total number
of species. There are four main difficulties in constructing high-order bound-preserving techniques
for multispecies and multireaction detonations. First of all, most of the bound-preserving tech-
niques available are based on Euler forward time integration. Therefore, for problems with stiff
source, the time step will be significantly limited. Secondly, the mass fraction does not satisfy a
maximum-principle and hence it is not easy to preserve the upper bound 1. Thirdly, in most of the
previous works for gaseous denotation, the algorithm relies on second-order Strang splitting meth-
ods where the flux and stiff source terms can be solved separately, and the extension to high-order
time discretization seems to be complicated. Finally, most of the previous ODE solvers for stiff
problems cannot preserve the total mass and the positivity of the numerical approximations at the
same time. In this paper, we will construct third-order conservative sign-preserving Rugne-Kutta
and multistep methods to overcome all these difficulties. The time integrations do not depend
on the Strang splitting, i.e. we do not split the flux and the stiff source terms. Moreover, the
time discretization can handle the stiff source with large time step and preserves the steady-state.
Numerical experiments will be given to demonstrate the good performance of the bound-preserving
technique and the stability of the scheme for problems with stiff source terms.

Key Words: Discontinuous Galerkin method, bound-preserving, third-order, stiff source, detona-
tion.

1 Introduction

In this paper, we develop third-order conservative sign-preserving and steady-state-preserving time
integrations and construct high-order bound-preserving numerical methods for stiff multispecies and
multireaction chemical reactive flows. We investigate the following convection-reaction equation in
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two space dimensions

ρt +mx + ny = 0, (1.1a)

mt + (mu+ p)x + (nu)y = 0, (1.1b)

nt + (mv)x + (nv + p)y = 0, (1.1c)

Et + ((E + p)u)x + ((E + p)v)y = 0, (1.1d)

(r1)t + (mz1)x + (nz1)y = s1, (1.1e)

· · ·
(rM−1)t + (mzM−1)x + (nzM−1)y = sM−1, (1.1f)

where ρ, u, v, m = ρu, n = ρv, E and p are the total density, velocity in x direction, velocity in
y direction, momentum in x direction, momentum in y direction, the total energy, and pressure,
respectively. M is the total number of chemical species. For 1 ≤ i ≤ M , ri = ρzi with zi being the
mass fraction for the ith species, and

∑M
i=1 zi = 1. Therefore, we have

M∑
i=1

ri = ρ, (1.2)

and hence 0 ≤ zi ≤ 1. The equation of state is given as

p = (γ − 1)

(
E − 1

2
ρ(u2 + v2)− ρz1q1 − · · · − ρzMqM

)
,

where qi is the enthalpy of formation for the ith species and the temperature is defined as T = p/ρ.
The si given in the source term describes the chemical reactions. We consider R reactions of the
form

ν ′1,rX1 + ν ′2,rX2 + · · ·+ ν ′M,rXM → ν ′′1,rX1 + ν ′′2,rX2 + · · ·+ ν ′′M,rXM , r = 1, 2, · · · , R,

where ν ′i,r and ν ′′i,r are the stoichiometric coefficients of the reactants and products, respective, of
the ith species in the rth reaction. For non-equilibrium chemistry, the rate of production of the
ith species can be written as

si = Mi

R∑
r=1

(ν ′′i,r − ν ′i,r)

kr(T ) M∏
j=1

(
rj
Mj

)ν′j,r

 , i = 1, 2, · · · ,M,

where Mi is the molar mass of the ith species. kr(T ), a function of the temperature T , indicates
the reaction rate. In this paper, we take

kr(T ) =

{
BrT

αr , T > Tr,
0, T ≤ Tr,

where Tr is the ignition temperature for the rth reaction, and Br and αr are pre-exponential factor
and index of temperature, respectively. Moreover, it is easy to check that

∑M
i=1 si = 0. Therefore,

using the fact
∑M

i=1 zi = 1, we can subtract (1.1e)-(1.1f) from (1.1a) to obtain a new equation

(rM )t + (mzM )x + (nzM )y = sM , (1.3)

which is similar to (1.1e)-(1.1f), and this can help us construct the bound-preserving technique.
Numerical simulations for wave propagation in gaseous detonation are essential for minimizing

devastating hazards. It is well known that correct ignition process of the mixture could not be pre-
dicted by single-step models. Therefore, it is common to use detailed chemical model to reproduce
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results that agree with the experimental data. Thus, designing an efficient and accurate numerical
method is of practical importance. However, due to the complexity of chemical kinetics, the con-
struction of the numerical methods is not an easy task. There are three main difficulties. Firstly,
the reaction speed of the chemical species is extremely fast, leading to stiff source terms in the
model system, see e.g. [6, 19]. Hence, the time step would be significantly limited if some explicit
time integrations, such as Euler forward, are applied. Secondly, due to the existence of shocks in
the exact solutions, direct numerical simulation may be highly oscillatory near the shocks and send
positive density and pressure to be negative. Furthermore, the mass fraction may not be between
0 and 1, either. The physically irrelevant numerical approximations may yield ill-posedness of
the problems leading to the blow-up of the numerical simulations. This phenomenon is especially
significant for high-order numerical schemes. Therefore, it is very important to develop special
bound-preserving techniques to preserve the physical bounds in the numerical simulations. Finally,
direct numerical simulations on coarse meshes may yield nonphysical shock waves due to the stiff
source, see e.g. [19] for the discussion. In this paper, we will focus on the first two problems and
construct suitable high-order bound-preserving numerical schemes. The key step in this technique
is to develop suitable high-order time integrations in which the time step restriction depends on
the convection term only, not the stiff source term. Therefore, the time step can be large. We
will extend the idea to deal with the last problem in the future. For the spacial discretization, we
would like to apply the discontinuous Galerkin (DG) method, as it is high-order accurate and uses
piecewise polynomials as the numerical approximations and hence is easy to apply limiters.

The DG method, first introduced by Reed and Hill [25] in the framework of neutron linear
transport, gained even greater popularity for good stability, high order accuracy, and flexibility on
h-p adaptivity and on complex geometry. There were some previous works discussing DG methods
in solving gaseous denotation, see [20, 21] as an incomplete list. However, neither of them focused
on the bound-preserving technique. In the last few years, there were several works focusing on
the construction of high-order bound-preserving numerical methods for conservation laws. In [32],
genuinely maximum-principle-preserving high-order DG schemes for scalar conservation laws have
been constructed. Subsequently, positivity-preserving (PP) high-order DG schemes for compressible
Euler equations were given in [33, 35]. Later, the technique was applied to other hyperbolic systems,
see for example [31, 36, 24], and the L1 stability was demonstrated. In [34], the authors studied
the compressible Euler equations with source terms, and the idea was later extended to gaseous
detonation in [29] to preserve the positivity of density, pressure and all the mass fractions except
the last one. The PP technique in [29] is based on Euler forward time discretization. The extension
to high-order time discretization is based on the strong-stability-preserving (SSP) Runge-Kutta
(RK)/multistep methods [9, 26, 27], which can be written as convex combinations of Euler forwards.
It is not easy to extend the idea in [29] to preserve the upper bound 1 for the mass fractions. We
will encounter three main difficulties in designing high-order time integrations.

1. The construction of conservative time integrations.

Most of the previous works that preserve two bounds are based on the maximum-principle-
preserving technique, see for example [32, 35]. However, the mass fraction zi does not satisfy
a maximum-principle. Therefore, the bound-preserving technique discussed before cannot be
applied directly. Recently, one of the authors studied miscible displacements in porous media
and constructed a second-order DG scheme that preserves the two bounds 0 and 1 for the
volumetric percentage in [10] on rectangular meshes, and the extension to triangular meshes
has been given in [5]. In this paper, we follow the ideas given in [10, 5] to gaseous detonation
to construct high-order DG schemes on general rectangular and triangular meshes. The basic
idea is to solve (1.1) and (1.3) together, and apply the PP technique to each ri (or zi),
i = 1, · · · ,M . By doing so, the total mass conservation (1.2) might be missing. Therefore, to

enforce
∑M

i=1 ri = ρ (or
∑M

i=1 zi = 1), we need to choose consistent fluxes (see the Definition
3.1) in the convection term and conservative time integrations that guarantee the total mass

conservation. Then with positive zi and total mass conservation
∑M

i=1 zi = 1, the numerical
approximation of zi would be between 0 and 1.

2. The construction of high-order time integration for the stiff source term.
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The time discretization in the analysis in [29, 10, 5] was chosen as Euler forward method.
However, in gaseous detonation, kr(T ) would be a large constant, leading to an extremely stiff
source si. Therefore, by applying the idea in [29, 10, 5], the time step will be significantly
limited. One alternative is to consider backward Euler discretization and derive the PP
technique. To the best knowledge of the author, the only work in this direction is given in [23],
where the maximum-principle-preserving technique was investigated for hyperbolic equations.
However, by using backward Euler method, the scheme is only first-order accurate in time and
the idea cannot be extended to high-order methods following [29, 10, 5] since no high-order
SSP RK methods can be written as a convex combination of backward Euler methods [9].
Moreover, due to the time step restriction by the PP technique, any time integration that is the
combination of Euler forward and backward Euler, such as Crank-Nicolson method, cannot
be applied. Notice that, the time step constraint of the PP technique with Euler forward time
discretization is due to the stiffness of the source. Some alternative time integrations such as
the integration factor RK method [16], implicit-explicit Runge-Kutta (RK) schemes, see, e.g.,
[1, 11, 12, 22] and semi-implicit method, where only a portion of the stiff term is implicitly
treated, see. e.g. [2, 3, 4, 37]. However, all the methods given above cannot preserve the
positivity of the numerical approximations and the total mass conservation at the same time.
Hence they cannot be applied to construct bound-preserving technique for gaseous detonation.
Besides the above two methods, in almost all the previous works for gaseous detonation, the
splitting methods were applied to separate the convection and the source terms. By doing
so, it is possible to apply Euler forward time discretization for the convection term and
other suitable ODE solvers for the source term. However, the most commonly used splitting
method is the second-order Strang splitting method [28], and the extension to high-order time
integration is complicated. Another possible idea to construct the time integration is to apply
the modified Patankar-Runge-Kutta scheme blue[17, 18, 14, 15]. However, high-order schemes
contain some defects as the fraction used in the trick may has zero denominator with nonzero
numerator. Therefore, one has to assume the exact solution to be strictly positive. However,
this may not be true as one of the species may not appear initially and will be created during
the chemical reaction. Moreover, it is very difficult to preserve the positivity of pressure by
using the modified Patankar-Runge-Kutta scheme. Recently, there is a new idea introduced
in [13] to solve scalar hyperbolic equations with stiff source terms by using the modified
exponential RK/multistep DG methods. The algorithm in [13] is not based on the splitting
methods nor the Patankar-Runge-Kutta method. However, the scheme does not preserve the
total mass conservation. Hence, it cannot to applied to construct bound-preserving technique
in the stiff multispecies detonation.

3. The construction of high-order conservative sign-preserving RK method.

In [7], the authors have constructed high-order multistep methods to preserve the total mass
following [13]. It is well known that the time step in a multistep method is fixed. However,
the time step size needed for stability such as positivity is usually dependent on the wave
speed, which can be changing very quickly, or even wildly in detonations. So in practice, it
is significantly difficult to use the multistep method in [7] for detonation.

In this paper, we would like to construct third-order conservative sign-preserving RK methods that
are suitable for the bound-preserving technique given in [7]. We will modify the scheme introduced
in [13] to preserve the total mass and demonstrate the sufficient and necessary conditions for the
third-order accuracy. Then we will analyze other properties of the proposed schemes, such as
the steady-state-preserving, sign-preserving, A(π4 )-stability, decay property. Moreover, we will also
prove the same properties for the third-order multistep method discussed in [7]. Then we will use
the new time integrations to construct bound-preserving schemes and apply to stiff multispecies
and multireaction detonations. The time integrations constructed in this paper are explicit and
the time step restriction comes from the convection term only and does not depend on the stiff
source. Therefore, the time step can be large. Moreover, it is possible to sufficiently refine the
mesh to capture the correct position of the shocks. In this paper, we only discuss the bound-
preserving technique on fine meshes and the numerical simulations on coarse meshes will be given
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in the future. Before we finish the introduction, we would like to summarize the advantages of the
proposed scheme. The algorithm

1. is third-order accurate in time and high-order accurate in space;

2. is explicit and can handle stiff source term with relatively large time steps;

3. is not based on the splitting technique nor the Patankar-Runge-Kutta methods;

4. has local mass conservation;

5. preserves the total mass;

6. preserves the bounds, such as the positivity of the density and pressure, and the two bounds
0 and 1 of the mass fractions;

The organization of this paper is as follows. In Section 2, we construct third-order conserva-
tive sign-preserving Runge-Kutta and multistep methods, and discuss the properties of the time
integrations. In Section 3, we consider DG spatial discretizations. We will demonstrate the new
bound-preserving technique and the full algorithm. Numerical experiments will be given in Section
4. We will finish in Section 5 with some conclusion remarks.

2 Conservative sign-preserving and steady-state-preserving time
integrations

In this section, we proceed to construct and analyze high order time integrations. We consider the
following ODE system

wt = F(w) +
1

ε
s(w), (2.1)

where ε is a positive real number, w = (w1, · · · , wℓ)
T is the unknown variable, F = (f1, · · · , fℓ)T

is the spatial discretization of the flux, and s = (s1, · · · , sℓ)T is the source term. The problem
becomes stiff if ε is small. Moreover, we make the following three assumptions:

1. The system is conservative: there exists a constant vector v ∈ Rℓ such that v ·F = v · s = 0.
In this case, we can easily obtain

d

dt
(w · v) = 0, (2.2)

and hence v ·w(t) = v ·w(0) for all t > 0.

2. There exists a sufficiently small ∆tE such that if w ≥ 0 and ∆t ≤ ∆tE then

w +∆tF(w) ≥ 0. (2.3)

For simplicity, here and below we say a vector is nonnegative if each component in the vector
is nonnegative.

3. We write the stiff source term as s = p−d, where p and d are nonnegative vectors, denoting
the production and destruction terms, respectively. Then we assume that

lim
wi→0

di
wi

exists, ∀ i = 1, · · · , ℓ. (2.4)

Remark 2.1. In the first assumption, we just consider the most general conservative property.
Different problems may have different constant vectors v. For the gaseous detonation (1.1e)-(1.1f)
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together with the ghost equation (1.3), w = (ρ,m, n,E, r1, · · · , rM )T and v takes the special form
(1, 0, 0, 0,−1, · · · ,−1)T ∈ RM+4. In this case, (2.2) becomes

d

dt

M∑
i=1

ri =
d

dt
ρ. (2.5)

Moreover, for the special case F + 1
εs = 0, v can be any constant vector and (2.2) just indicates

the steady-state case wt = 0.

From now on, we use the notation wn to denote the numerical solution at the n-th time level.
Considering an explicit numerical scheme that uses wn−p, · · · ,wn to compute wn+1 (p ≥ 0), our
goal is to construct a suitable high order numerical scheme that enjoys the following properties:

1. Conservative: v · wn = v · w0 for all n ≥ 0. This is an important property for designing
bound preserving technique when applying to the gaseous detonation problem;

2. Sign-preserving: If w0 = w(0) ≥ 0, then wn ≥ 0 for all n ≥ 0;

3. Steady-state-preserving: If wn−p = · · · = wn = ŵ satisfies F(ŵ) + 1
εs(ŵ) = 0, then wn+1 =

ŵ.

The third-order conservative RK and multistep methods will be discussed in Subsections 2.1 and
2.2, respectively.

Remark 2.2. The conservative RK and multistep methods to be discussed in the following two
subsections have the strong stability preserving structure, i.e. they can be written as convex combi-
nations of several first-order schemes. Therefore, the properties satisfied by the first-order scheme
is also satisfied by the proposed RK and multistep methods. If not otherwise stated, we only consider
the first stage in the proofs.

2.1 Third-order RK method

In this subsection, we construct third-order RK methods. For the RK method, time steps can
change in different time levels. Hence, for practical problems in which the wave speed changes
quickly, Runge-Kutta method can be a good choice. We start with the exponential Runge-Kutta
methods constructed in [13], and then make some further modifications to make them to be con-
servative and high order accurate. Moreover, we will prove sign-preserving property, steady-state-
preserving property and A(π4 )-stability of our new schemes.

Following [13], we rewrite (2.1) as

wt + µw = F(w) +
1

ε
s(w) + µw,

where µ ≥ 0 is a constant to be determined in each time step but may depend on the time level n.
The above equation further yields

(eµtw)t = eµt(F(w) +
1

ε
s(w) + µw).

Motivated by [13], the general framework of the exponential SSP RK scheme for solving the above
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equation is

w(1) = e−β10µ∆t

[
α10w

n + β10∆tF(wn) + β10∆t(
1

ε
s(wn) + µwn)

]
, (2.6)

w(2) = e−Aµ∆t

[
α20w

n + β20∆tF(wn) + β20∆t(
1

ε
s(wn) + µwn)

]
+e(β10−A)µ∆t

[
α21w

(1) + β21∆tF(w(1)) + β21∆t(
1

ε
s(w(1)) + µw(1))

]
, (2.7)

wn+1 = e−µ∆t

[
α30w

n + β30∆tF(wn) + β30∆t(
1

ε
s(wn) + µwn)

]
+e(β10−1)µ∆t

[
α31w

(1) + β31∆tF(w(1)) + β31∆t(
1

ε
s(w(1)) + µw(1))

]
+e(A−1)µ∆t

[
α32w

(2) + β32∆tF(w(2)) + β32∆t(
1

ε
s(w(2)) + µw(2))

]
, (2.8)

where A = β20 +α21β10 + β21, all αij and βij given above are positive constants to be determined
by the order conditions and µ is a nonnegative constant to be determined by the bound-preserving
technique. Take dot product with v in (2.6)-(2.8) and define w = v ·w to obtain

w(1) = e−β10µ∆t [α10 + β10µ∆t]wn,

w(2) = e−Aµ∆t [α20 + β20µ∆t]wn + e(β10−A)µ∆t [α21 + β21µ∆t]w(1),

wn+1 = e−µ∆t [α30 + β30µ∆t]wn + e(β10−1)µ∆t [α31 + β31µ∆t]w(1)

+e(A−1)µ∆t [α32 + β32µ∆t]w(2).

It is easy to see that wn+1 ̸= wn for µ ̸= 0 and hence the scheme (2.6)-(2.8) is not conservative.
Therefore, we modify (2.6)-(2.8) and construct

w(1) =

[
α10w

n + β10∆tF(wn) + β10∆t(
1

ε
s(wn) + µwn)

]
/A1, (2.9)

w(2) =

[
α20w

n + β20∆tF(wn) + β20∆t(
1

ε
s(wn) + µwn)

]
/A2

+eβ10µ∆t

[
α21w

(1) + β21∆tF(w(1)) + β21∆t(
1

ε
s(w(1)) + µw(1))

]
/A2, (2.10)

wn+1 =

[
α30w

n + β30∆tF(wn) + β30∆t(
1

ε
s(wn) + µwn)

]
/A3

+eβ10µ∆t

[
α31w

(1) + β31∆tF(w(1)) + β31∆t(
1

ε
s(w(1)) + µw(1))

]
/A3

+eAµ∆t

[
α32w

(2) + β32∆tF(w(2)) + β32∆t(
1

ε
s(w(2)) + µw(2))

]
/A3, (2.11)

where
A1 = α10 + β10µ∆t, A2 = [α20 + β20µ∆t] + eβ10µ∆t [α21 + β21µ∆t] ,

A3 = [α30 + β30µ∆t] + eβ10µ∆t [α31 + β31µ∆t] + eAµ∆t [α32 + β32µ∆t] .

Taking dot product with v, one can check that this new scheme is conservative for any choice of µ
and we summarize this property in the following theorem.

Theorem 2.1. Consider the ODE system (2.1), the new exponential Runge-Kutta time discretiza-
tion (2.9)-(2.11) is conservative is the sense that

v ·wn = v ·w(1) = v ·w(2) = v ·wn+1.
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Next, we consider the accuracy issue. After some basic computations, we can rewrite (2.9)-(2.11)
into the three-stage SSP explicit RK scheme in the Shu-Osher form [27] as

w(1) =

[
α̃10w

n + β̃10∆tF(wn) + β̃10∆t
1

ε
s(wn)

]
,

w(2) =

[
α̃20w

n + β̃20∆tF(wn) + β̃20∆t
1

ε
s(wn)

]
+

[
α̃21w

(1) + β̃21∆tF(w(1)) + β̃21∆t
1

ε
s(w(1))

]
,

wn+1 =

[
α̃30w

n + β̃30∆tF(wn) + β̃30∆t
1

ε
s(wn)

]
+

[
α̃31w

(1) + β̃31∆tF(w(1)) + β̃31∆t
1

ε
s(w(1))

]
+

[
α̃32w

(2) + β̃32∆tF(w(2)) + β̃32∆t
1

ε
s(w(2))

]
,

where

α̃10 = 1, α̃20 = (α20 + β20µ∆t)/A2, α̃21 = eβ10µ∆t(α21 + β21µ∆t)/A2,

α̃30 = (α30 + β30µ∆t)/A3, α̃31 = eβ10µ∆t(α31 + β31µ∆t)/A3, α̃32 = eAµ∆t(α32 + β32µ∆t)/A3,

β̃10 = β10/A1, β̃20 = β20/A2, β̃21 = eβ10µ∆tβ21/A2,

β̃30 = β30/A3, β̃31 = eβ10µ∆tβ31/A3, β̃32 = eAµ∆tβ32/A3.

Following the derivation steps in [27], the sufficient and necessary conditions for third-order accu-
racy are

α̃10 = α̃20 + α̃21 = α̃30 + α̃31 + α̃32 = 1, (2.12)

α̃31β̃10 + α̃32A+ β̃30 + β̃31 + β̃32 = 1 +O(∆t3), (2.13)

β̃10(α̃32β̃21 + β̃31) + β̃32A =
1

2
+O(∆t2), (2.14)

β̃2
10(α̃32β̃21 + β̃31) + β̃32A

2 =
1

3
+O(∆t), β̃10β̃21β̃32 =

1

6
+O(∆t). (2.15)

It is easy to see that (2.12) is satisfied for all α̃ and β̃. Without loss of generality, we assume

α10 = 1, α20 + α21 = 1, α30 + α31 + α32 = 1. (2.16)

Next, we take µ = 0, then we have A1 = A2 = A3 = 1 and (2.13)-(2.15) yield

α31β10 + α32A+ β30 + β31 + β32 = 1, (2.17)

β10(α32β21 + β31) + β32A =
1

2
, (2.18)

β2
10(α32β21 + β31) + β32A

2 =
1

3
, β10β21β32 =

1

6
. (2.19)

(2.16)-(2.19) are necessary order conditions and can be used to derive the sufficient conditions
below. For general µ > 0, we apply Taylor’s expansion to all the exponential functions in α̃ and
β̃ and use Mathematica for all the computations. For simplicity, we skip all the complicated and
tedious algebra to simplify (2.13)-(2.15), and only demonstrate the results. Under the conditions
(2.16)-(2.19), we can verify (2.14) and (2.15) for general µ. Yet (2.13) is not satisfied. To obtain
(2.13), we need a new condition

β2
10α31(1− β10) + α32A

2(1−A) + β2
10α21α32(A− β10) = 2β10β21α32(1−A). (2.20)

Now, we have finished constructing the sufficient and necessary conditions for third-order accuracy
and we can demonstrate the following theorem.

8



Theorem 2.2. Consider the ODE system (2.1), the exponential Runge-Kutta time discretization
(2.9)-(2.11) is third-order accurate if and only if the conditions (2.16)-(2.20) are satisfied.

It is easy to check that the following parameters satisfy all the conditions in the above theorem:

α10 = 1, β10 =
2

3
, α20 =

7

8
, , β20 =

1

12
, α21 =

1

8
, β21 =

1

2
,

α30 =
1

2
, β30 =

1

12
, α31 =

1

6
, β31 =

1

12
, α32 =

1

3
, β32 =

1

2
. (2.21)

Remark 2.3. In (2.9)-(2.11), we can apply Taylor’s expansion to all the exponential functions
following [7], e.g.

eAµ∆t ≈
[
1−Aµ∆t+

1

2
(Aµ∆t)2 − 1

6
(Aµ∆t)3 +

1

24
(Aµ∆t)4

]−1

. (2.22)

As demonstrated in [13], if µ is large, eAµ∆t would be an extremely large number. Numerical
experiments demonstrated that with the trick (2.22), we can obtain better numerical approximations.
Moreover, such a trick keeps the properties to be discussed below, i.e. the scheme is also sign-
preserving, steady-state-preserving and has A(π4 )-stability. The proofs would be basically the same,
so we skip them.

However, the above choice of the parameters may not be the best one we want. Before we
seek the best choice, we would like to demonstrate the sign-preserving property of the conservative
third-order RK scheme. The result is given in the following theorem.

Theorem 2.3. Consider the ODE system (2.1) with the flux F and the stiff source satisfying
(2.3) and (2.4), respectively. The scheme (2.9)-(2.11) is sign-preserving: If wn ≥ 0, then we have

w(1) ≥ 0 under the conditions

µ ≥ 1

ε
max
0≤i≤l

{
− si
wi

(wn), 0

}
and ∆t ≤ α10

β10
∆tE .

In addition to the above conditions, if

µ ≥ 1

ε
max
1≤i≤ℓ

{− si
wi

(w(1)),− si
wi

(w(2))}, and ∆t ≤ ζ∆tE ,

where
ζ = min{α10

β10
,
α20

β20
,
α21

β21
,
α30

β30
,
α31

β31
,
α32

β32
},

then wn+1 ≥ 0.

Proof. We only prove w(1) ≥ 0, since the proof for positive wn+1 can be obtained following the

same lines. The conditions wn ≥ 0 and µ ≥ 1
ε max0≤i≤l

{
− si

wi
(wn), 0

}
implies

1

ε
s(wn) + µwn ≥ 0. (2.23)

Moreover if we choose ∆t ≤ α10
β10

∆tE , then

α10w
n + β10∆tF(wn) = α10

(
wn +

β10
α10

∆tF(wn)

)
≥ 0, (2.24)

where we have used the basic property (2.3) and the fact that all αij and βij are positive constants.
Combining (2.23) and (2.24), and using the fact that A1 > 0, we have

w(1) =

[
α10w

n + β10∆tF(wn) + β10∆t(
1

ε
s(wn) + µwn)

]
/A1 ≥ 0.
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Notice that if we write s = p − d, where p and d are the production and destruction terms,

respectively, then the requirement µ ≥ 1
ε max0≤i≤l

{
− si

wi
, 0
}
becomes

µ ≥ 1

ε
max
0≤i≤l

{
di − pi
wi

, 0

}
.

Since we have assumed that limwi→0
di
wi

exists, we are able to obtain a suitable µ. In practice, we

can also take µ = 1
ε max0≤i≤l

{
di
wi
, 0
}
.

Based on the above theorem, we would like the value of ζ to be large. One can check that
ζ = 0.25 if we choose the parameters in (2.21) . We further solve for nonnegative α and β satisfying
the order conditions (2.16)-(2.20) such that ζ is maximized. We use the MATLAB function fmincon
to solve this optimization problem and take (2.21) as the initial data for iteration. The optimal
coefficients are

α10 = 1, β10 = 0.7071933376925014,

α20 = 0.6686892933074404, β20 = 0,

α21 = 0.3313107066925596, β21 = 0.4178047564915065,

α30 = 0.3487419430256090, β30 = 0,

α31 = 0.2039576138780898, β31 = 0,

α32 = 0.4473004430963011, β32 = 0.5640754637100439, (2.25)

with
ζ = min{α10

β10
,
α20

β20
,
α21

β21
,
α30

β30
,
α31

β31
,
α32

β32
} = 0.7929797388491311.

The above results may be locally optimal and it is difficult to solve the global optimization problem.
Besides the above, we can also show that the conservative time integration (2.9)-(2.11) is steady-

state-preserving.

Theorem 2.4. Consider the ODE system (2.1) and the time integration is given as (2.9)-(2.11).
The scheme is steady-state-preserving, namely, if wn = ŵ satisfies F(ŵ) + 1

εs(ŵ) = 0, then

wn+1 = ŵ.

Proof. Take wn = ŵ in (2.9), then

w(1) =

[
α10ŵ + β10∆tF(ŵ) + β10∆t(

1

ε
s(ŵ) + µŵ)

]
/A1

=

[
(α10 + β10µ∆t)ŵ + β10∆t

(
F(ŵ) +

1

ε
s(ŵ)

)]
/A1

= A1ŵ/A1

= ŵ.

Following the same analysis above, we can use the fact that wn = w(1) = ŵ to show that w(2) = ŵ
in (2.10), which further yields wn+1 = ŵ. So we skip the details here.

Finally, we discuss the A(π4 )-stability of the scheme and the result is given below.

Theorem 2.5. Consider the scalar ODE wt = λw (F = 0, 1εs(w) = λw), where λ ∈ C is a constant
with Reλ < 0. We can rewrite the time integration (2.9)-(2.11) as

wn+1 = R(z)wn,

where z = λ∆t and R(z) is a function of z. Then the scheme satisfies

10



1. A(α)-stability with α = π/4: If µ ≥ −Reλ and Rez ≤ −|Imz| (i.e. Reλ ≤ −|Imλ|), then

|R(z)| ≤ 1.

2. Decay property: If we take µ = −Reλ, then R(z) → 0 as Rez → −∞.

Proof. We first consider the A(α)-stability. Since Reλ ≤ −|Imλ|, then |Reλ| = −Reλ ≥ |Imλ|.
From (2.9), we have

w(1) =
α10w

n + β10∆t(λwn + µwn)

α10 + β10µ∆t
=

α10 + β10µ∆t+ β10λ∆t

α10 + β10µ∆t
wn := R(1)wn,

then

R(1) =
α10 + β10(µ+Reλ)∆t+ iβ10Imλ∆t

α10 + β10µ∆t

which further yields

|R(1)|2 =
(α10 + β10(µ+Reλ)∆t)2 + (β10Imλ∆t)2

(α10 + β10µ∆t)2

≤ (α10 + β10(µ+Reλ)∆t)2 + (−β10Reλ∆t)2

(α10 + β10(µ+Reλ)∆t+ (−β10Reλ∆t))2

≤ 1,

where in the last step we use the fact that both a10 + β10(µ + Reλ)∆t and −β10Reλ∆t are

nonnegative real numbers. Hence we have proved |w(1)| ≤ |wn|. Applying the same analysis above

to (2.10) and (2.11) we can obtain w(2) = R(2)wn and wn+1 = Rwn with

R(2) =
α20 + β20(µ+ λ)∆t+ eβ10µ∆t(α21 + β21(µ+ λ)∆t)R(1)

α20 + β20µ∆t+ eβ10µ∆t(α21 + β21µ∆t)
,

R =
α30 + β30(µ+ λ)∆t+ eβ10µ∆t(α31 + β31(µ+ λ)∆t)R(1) + eAµ∆t(α32 + β32(µ+ λ)∆t)R(2)

α30 + β30µ∆t+ eβ10µ∆t(α31 + β31µ∆t) + eAµ∆t(α32 + β32µ∆t)
.

Then

R(2) = ν1 + ν2
−Imλ

Reλ
i+ ν3R

(1) + ν4
−Imλ

Reλ
iR(1),

where

ν1 =
α20 + β20(µ+Reλ)∆t

A2
, ν2 = −β20Reλ∆t

A2
,

ν3 = eβ10µ∆tα21 + β21(µ+Reλ)∆t

A2
, ν4 = −eβ10µ∆tβ21Reλ∆t

A2
.

It is easy to see that νi ≥ 0, i = 1, · · · , 4 and
∑4

i=1 νi = 1. Therefore, R(2) can be written
as a convex combination of points in the unit circle centered at the origin in the complex plane.
Therefore, |R(2)| ≤ 1. Following the same analysis with some minor changes, we can also obtain
that |R| ≤ 1, hence we skip it. Now we finish the proof of part 1.

In part 2, we take µ = −Reλ, then Rez = −µ∆t. Since β10 ̸= 0, we have

R(1) =
α10 + iβ10Imz

α10 − β10Rez
→ 0 as Rez → −∞.

Similarly, since β21 ̸= 0, we can obtain that

R(2) =
α20 + iβ20Imz + e−β10Rez(α21 + iβ21Imz)R(1)

α20 − β20Rez + e−β10Rez(α21 − β21Rez)
→ 0 as Rez → −∞.

Following the same analysis with some minor changes, we can prove R → 0 as Rez → −∞.
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Remark 2.4. In the above theorem, we require µ ≥ −Reλ which is exactly the same as that given
in Theorem 2.3. In the decay property, though we assume µ = −Reλ, the conclusion is still valid
if we take µ = O(−Reλ). However, if µ ≫ −Reλ, the conclusion may not be true.

Remark 2.5. In this paper, we consider third-order RK scheme only, and the fourth-order scheme
will be discussed in the future. There are two main difficulties. The first one is how to find the
sufficient and necessary conditions for the fourth-order accuracy. The second one is to find the
parameters αij and βij based on the accuracy condition.

In this subsection, we proved several properties of the proposed time integration. However,
due to the conservative requirement of the system, it is very difficulty to obtain the asymptotic-
preserving (AP) property for general systems. However, following the analysis in [13], we can
obtain the weak AP property. So we skip the proof and only demonstrate the result in the following
statement.

Proposition 2.1. Consider the scalar ODE ut =
1
εs(u) with s(0)=0 and s′(u) ≤ 0. Assuming that

s(u) ̸= 0 for u ̸= 0 and β30 > 0, then the new RK3 scheme (2.9)-(2.11) with modification (2.22) is
AP in the weak sense: for any ε > 0 and any initial value u0, and ∆t ≫ ε, there exists an integer
Nε ≥ 1 (independent of ∆t), such that

s(un) = O(ε), n ≥ Nε.

We can see that (2.21) satisfies the condition given in the proposition but (2.25) does not. How-
ever, β30 > 0 is only a sufficient condition. Numerical experiments also demonstrate convergence
of the numerical approximations in the stiff regime by using (2.25).

2.2 Multistep method

In this subsection, we proceed to analyze the multistep method. For problems in which the wave
speed changes slowly, multistep method can be used as an alternative to the RK method.

In [7], we have used the SSP exponential multistep methods with some modifications to dis-
cretize (2.1). The scheme is given as

wn+1 = A1
3

[
wn + 3∆tF(wn) + 3∆t

(
1

ε
s(wn) + µwn

)]
+A2

3

[
wn−3 +

12

11
∆tF(wn−3) +

12

11
∆t

(
1

ε
s(wn−3) + µwn−3

)]
. (2.26)

where

A1
3 =

16

27

1− µ∆t+ 1
2(µ∆t)2 − 1

6(µ∆t)3 + 1
24(µ∆t)4

1− 2
3(µ∆t)4 + 130

27 (µ∆t)5
,

A2
3 =

11

27

1− 4µ∆t+ 8(µ∆t)2 − 32
3 (µ∆t)3 + 32

3 (µ∆t)4

1− 2
3(µ∆t)4 + 130

27 (µ∆t)5
.

It is easy to verify the following facts via direct computation:

A1
3 ≥ 0, A2

3 ≥ 0, A1
3(1 + 3µ∆t) +A2

3(1 +
12

11
µ∆t) = 1. (2.27)

In [7], we have proved that this scheme is conservative and third-order accurate. In this paper,
we will continue to prove that the scheme is also sign-preserving and steady state-preserving. We
state these properties in the following theorems.
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Theorem 2.6. Consider the ODE system (2.1), the multistep time integration (2.26) is third-order
accurate and conservative. Moreover, the scheme is sign-preserving. If wn ≥ 0 and wn−3 ≥ 0,
then we have wn+1 ≥ 0 under the conditions

µ ≥ 1

ε
sup
1≤i≤ℓ

{− si
wi

(wn),− si
wi

(wn−3)} and ∆t ≤ 1

3
∆tE .

Proof. We only need to prove the sign-preserving property. Following the proof of Theorem 2.3,
we have

1

ε
s(wn) + µwn ≥ 0,

1

ε
s(wn−3) + µwn−3 ≥ 0, (2.28)

Moreover if we choose ∆t ≤ 1
3∆tE , then

wn + 3∆tF(wn) ≥ 0, wn−3 +
12

11
∆tF(wn−3) ≥ 0, (2.29)

where we have used the basic property (2.3). Combing the above equations, we have

wn+1 = A1
3

[
wn + 3∆tF(wn) + 3∆t

(
1

ε
s(wn) + µwn

)]
+A2

3

[
wn−3 +

12

11
∆tF(wn−3) +

12

11
∆t

(
1

ε
s(wn−3) + µwn−3

)]
≥ 0. (2.30)

Next, we will show that the scheme (2.26) is steady-state-preserving.

Theorem 2.7. Consider the ODE system (2.1), the multistep time integration (2.26) is steady-
state-preserving, namely, if wn−3 = wn = ŵ satisfies F(ŵ) + 1

εs(ŵ) = 0, then wn+1 = ŵ.

Proof. Taking wn−3 = wn = ŵ, we have

wn+1 = A1
3

[
ŵ + 3∆tF(ŵ) + 3∆t

(
1

ε
s(ŵ) + µŵ

)]
+A2

3

[
ŵ +

12

11
∆tF(ŵ) +

12

11
∆t

(
1

ε
s(ŵ) + µŵ

)]
= A1

3 [ŵ + 3∆tµŵ] +A2
3

[
ŵ +

12

11
∆tµŵ

]
=

[
A1

3(1 + 3µ∆t) +A2
3(1 +

12

11
µ∆t)

]
ŵ = ŵ.

Finally, we will investigate the region of absolute stability of the multistep method (2.26).

Theorem 2.8. Consider the scalar ODE wt = λw (F = 0, 1εs(w) = λw), where λ ∈ C is a
constant with Reλ < 0. Define wn to be the numerical approximation at time level n. Then, the
time integration (2.26) satisfies

1. A(π4 )-stability: If µ ≥ −Reλ then the region of absolute stability contains {z : |Rez ≤
−|Imz|}, where z = λ∆t.

2. Decay property: If we take µ = −Reλ, then |wn| → 0 as Rez → −∞.
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Proof. It is easy to check that

wn+1 = A1
3 [1 + 3∆t(µ+ λ)]wn +A2

3

[
1 +

12

11
∆t(µ+ λ)

]
wn−3.

The characteristic equation is

ξ4 = A1
3 [1 + 3∆t(µ+ λ)] ξ3 +A2

3

[
1 +

12

11
∆t(µ+ λ)

]
. (2.31)

We assume Rez ≤ −|Imz| (i.e. Reλ ≤ −|Imλ|) and first show that all the roots of (2.31) are ≤ 1
in modulus. If false, there exists η with |η| > 1 to be a solution to (2.31), then

|η3| < |η4| ≤ |A1
3 [1 + 3∆t(µ+ λ)] η3|+

∣∣∣∣A2
3

[
1 +

12

11
∆t(µ+ λ)

]∣∣∣∣ ,
which further implies

1 < A1
3 |1 + 3∆t(µ+ λ)|+A2

3

∣∣∣∣1 + 12

11
∆t(µ+ λ)

∣∣∣∣
≤ A1

3 (1 + 3∆t(µ+Reλ) + |3∆tImλ|) +A2
3

(
1 +

12

11
∆t(µ+Reλ) +

12

11
∆t|Imλ|

)
≤ A1

3 (1 + 3∆t(µ+Reλ)− 3∆tReλ) +A2
3

(
1 +

12

11
∆t(µ+Reλ)− 12

11
∆tReλ

)
= A1

3 (1 + 3∆tµ) +A2
3

(
1 +

12

11
∆tµ

)
= 1,

which is a contradiction.
Next, we will show that if η is a solution to (2.31) with |η| = 1, then η is a single solution.

If false, suppose η with |η| = 1 is not a single solution to (2.31). Take derivative of (2.31) with
respect to ξ to obtain

4ξ3 = 3A1
3 [1 + 3∆t(µ+ λ)] ξ2. (2.32)

Then η is a solution to (2.32). Hence

4η = 3A1
3 [1 + 3∆t(µ+ λ)] ,

which further yields

4 = 3A1
3 |1 + 3∆t(µ+ λ)|

≤ 3A1
3 (1 + 3∆t(µ+Reλ) + 3∆t|Imλ|)

≤ 3A1
3 (1 + 3∆t(µ+Reλ)− 3∆tReλ)

= 3A1
3(1 + 3∆tµ)

≤ 3.

Now, we find a contradiction. Therefore, if η is a solution to (2.31), then |η| ≤ 1. Moreover, if
|η| = 1, then η is a single solution. We finish the proof of part 1.

Assume µ = −Reλ, then (2.31) can be written as

ξ4 = A1
3 [1 + 3i∆tImλ] ξ3 +A2

3

[
1 +

12

11
i∆tImλ

]
.

It is easy to see that A1
3 → 0 and A2

3 → 0 as Rez → −∞. Hence ξ → 0 as Rez → −∞ and we
finish the proof.
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3 Applications in non-equilibrium stiff multispecies and multire-
action detonations

In this section, we aim to solve the multispecies and multireaction detonations problem (1.1). We
will simply review the DG method for spacial discretization in Section 3.1 and use the new ODE
solvers constructed in this paper for the time discretizations. For simplicity, we only discuss RK
methods in this section. Moreover, we will also construct the bound-preserving technique in Section
3.2. We will demonstrate that the conservative property of the new time integrations is essential
for the bound-preserving technique. For simplicity, we define v = (−1, 0, 0, 0, 1, · · · , 1)T ∈ RM+4

throughout this section.

3.1 DG methods coupled with the conservative RK methods

We rewrite (1.1) into the form of

wt + f(w)x + g(w)y = s(w), (3.1)

where

w = (ρ,m, n,E, ρz1, · · · , ρzM−1)
T ,

f(w) = (m,mu+ p,mv, (E + p)u,mz1, · · · ,mzM−1)
T ,

g(w) = (n, nu, nv + p, (E + p)v, nz1, · · · , nzM−1)
T ,

s(w) = (0, 0, 0, 0, s1, · · · , sM−1)
T .

We first consider the spacial discretization. Let Ωh = {K} be a quasi-uniform partition of the
computational domain Ω with rectangular or triangular elements. We define the finite element
space V k

h as

V k
h =

{
z : z

∣∣
K

∈ P k(K), ∀K ∈ Ωh

}
,

where P k(K) denotes the set of polynomials of degree up to k in cell K. For simplicity, we also use
the notation w as the numerical approximations. The DG scheme is to find w ∈ Vh = [V k

h ]
M+3

such that for any test functions ξ ∈ Vh and K ∈ Ωh we have∫
K
wt · ξ dx =

∫
K
F(w) · ∇ξ dx−

∫
∂K

H(wint,wext,ν) · ξds+
∫
K
s(w) · ξ dx, (3.2)

where F = ⟨f ,g⟩ and ν is the unit outer normal of ∂K in cell K. Here, wint and wext are the
values of w on the edge ∂K obtained from the interior and the exterior of K, respectively, and
H(wint,wext,ν) is the numerical flux. In this paper, we consider Lax-Friedrichs flux and

H(w1,w2,ν) =
1

2
[F(w1) · ν + F(w2) · ν − α(w2 −w1)] , α = ∥|⟨u, v⟩|+ c∥∞, (3.3)

where c =
√

γp
ρ is the sound speed.

Definition 3.1. We say the elements in the numerical flux H = (hρ, hm, hn, hE , h1, · · · , hM−1)
T

are consistent if hρ = hi if we take zi = 1 for all 1 ≤ i ≤ M − 1.

The elements in the numerical flux H in (3.3) are consistent and

hρ(w1,w2,ν) =
1

2
[Fρ(w1) · ν + Fρ(w2) · ν − α(ρ2 − ρ1)] ,

hi(w1,w2,ν) =
1

2
[Fi(w1) · ν + Fi(w2) · ν − α(ri2 − ri1)] , i = 1, 2, · · · ,M − 1,
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where Fρ = (m,n) and Fi = (mzi, nzi). Define hM = hρ −
∑M−1

i=1 hi, and we can obtain

hM (w1,w2,ν) =
1

2
[FM (w1) · ν + FM (w2) · ν − α(rM 2 − rM 1)] ,

with
FM = (mzM , nzM ).

Moreover, we can define

H̃ = (HT , hM )T , F̃ = (FT ,FM )T , s̃ = (sT , sM )T , w̃ = (wT , rM )T ,

then it is easy to see that v · H̃ = v · F̃ = v · s̃ = v · w̃ = 0 Then (3.2) together with the “hidden”
condition that v · w̃ = 0 due to the total mass conservation is equivalent to∫

K
w̃t · ξ̃ dx =

∫
K
F̃(w̃) · ∇ξ̃ dx−

∫
∂K

H̃(w̃int, w̃ext,ν) · ξ̃ds+
∫
K
s̃(w̃) · ξ̃ dx, (3.4)

where ξ̃ ∈ [V k
h ]

M+4. We can see that (3.4) is in the weak form of (2.1). Then instead of forcing the

total mass conservation explicitly by letting rM = ρ−
∑M−1

i=1 ri, we analyze the equivalent system
(3.4). In fact, the last equation in (3.4) is used for solving rM and it is a numerical scheme for the
hidden equation (1.3). The total mass conservation can be obtained by using the conservative time
integration introduced in Section 2.

3.2 Bound-preserving technique

In this subsection, we develop the bound-preserving technique for the gaseous detonation. We
consider the new equivalent DG scheme (3.4). For simplicity, we omit the tilde in the scheme, and
use o for õ with o = w,F,H, ξ, s in this subsection.

The convex admissible set of solutions in [7] is defined as

G =


w =



ρ
m
n
E
r1
· · ·

rM−1


, ρ > 0, p > 0, z1 > 0, · · · , zM > 0,

M∑
i=1

zi = 1


.

We aim to obtain the numerical approximations that lie in G.
We first introduce some notations. For each cell K ∈ Ωh, we need to define a set of quadrature

points, denoted as SK , which will be used in the bound-preserving technique. We first consider
the rectangular cell. Let Kij = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] be the (i, j)-th cell. For simplicity,

we assume uniform meshes and denote ∆x and ∆y as the mesh sizes in the x and y direc-
tions, respectively. However, this assumption is not essential. We choose L ≥ k + 1 and use

pxi =
{
xβi : β = 1, · · · , L

}
and pyj =

{
yβj : β = 1, · · · , L

}
to denote the Gauss quadrature points

on
[
xi− 1

2
, xi+ 1

2

]
and

[
yj− 1

2
, yj+ 1

2

]
, respectively. Moreover, we use p̂xi =

{
x̂αi : α = 0, · · · , L̂

}
and

p̂yj =
{
ŷαj : α = 0, · · · , L̂

}
to denote the Gauss-Lobatto quadrature points on

[
xi− 1

2
, xi+ 1

2

]
and[

yj− 1
2
, yj+ 1

2

]
, respectively, with 2L̂ − 1 ≥ k. Also, we denote ŵα as the corresponding Gauss-

Lobatto quadrature weights on the interval
[
−1

2 ,
1
2

]
. As in [29], we denote SKi,j as

SKi,j = (pxi ⊗ p̂yj ) ∪ (p̂xi ⊗ pyj ) ∪ (pxi ⊗ pyj ). (3.5)

16



Next, we consider the triangular cell K. We use ℓiK (i = 1, 2, 3) to denote the length of its three
edges eiK (i = 1, 2, 3). We consult the quadrature introduced in [35], where the quadrature points
are given in the barycentric coordinates as

SK =

{(
1

2
+ zβ, (

1

2
+ ẑα)(

1

2
− zβ), (

1

2
− ẑα)(

1

2
− zβ)

)
,(

(
1

2
− ẑα)(

1

2
− zβ),

1

2
+ zβ, (

1

2
+ ẑα)(

1

2
− zβ)

)
,(

(
1

2
+ ẑα)(

1

2
− zβ), (

1

2
− ẑα)(

1

2
− zβ),

1

2
+ zβ

)
,

α = 0, · · · , L̂, β = 1, · · · , L
}
, (3.6)

where ẑα (α = 0, · · · , L̂) and zβ (β = 1, · · · , L) are the Gauss-Lobatto and Gaussian quadrature
points on the reference interval [−1

2 ,
1
2 ], respectively.

For the time discretization, we adopt the new conservative three-stage RK method designed in
(2.9)-(2.11). Specially, if we take the test function as 1 in each component of the DG scheme (3.4),
then we get

d

dt
w̄K = − 1

|K|

∫
∂K

H(wint,wext,ν)ds+
1

|K|

∫
K
s(w)dx, (3.7)

where w̄K = 1
|K|

∫
K wdx is the cell average of w in cell K. We further denote

G(w) = − 1

|K|

∫
∂K

H(wint,wext,ν)ds and s̄(w) =
1

|K|

∫
K
s(w)dx,

then we obtain the following formulations to compute the cell averages in each stage of RK:

w̄(1) = [α10w̄
n + β10∆tG(wn) + β10∆t(̄s(wn) + µw̄n)] /A1, (3.8)

w̄(2) = [α20w̄
n + β20∆tG(wn) + β20∆t(̄s(wn) + µw̄n)] /A2

+eβ10µ∆t
[
α21w̄

(1) + β21∆tG(w(1)) + β21∆t(̄s(w(1)) + µw̄(1))
]
/A2, (3.9)

w̄n+1 = [α30w̄
n + β30∆tG(wn) + β30∆t(̄s(wn) + µw̄n)] /A3

+eβ10µ∆t
[
α31w̄

(1) + β31∆tG(w(1)) + β31∆t(̄s(w(1)) + µw̄(1))
]
/A3

+eAµ∆t
[
α32w̄

(2) + β32∆tG(w(2)) + β32∆t(̄s(w(2)) + µw̄(2))
]
/A3. (3.10)

Before we state the main theorem, we would like to demonstrate the following lemma whose proof
has been given in Theorem 3.3 and Lemma 4.1 in [7].

Lemma 3.1. Consider the DG scheme (3.4) (or the equivalent scheme (3.2)). If w ∈ G for all
(x, y) ∈ S, where S is defined in (3.5) and (3.6) for rectangular and triangular meshes, respectively.
Then we have w̄ +∆tG(w) ∈ G under the condition ∆t ≤ ∆t̃, where ∆t̃ satisfies

α(
∆t̃

∆x
+

∆t̃

∆y
) ≤ ω̂1 (3.11)

for rectangular meshes, and satisfies

α
∆t̃

|K|

3∑
i=1

ℓiK ≤ 2

3
ω̂1. (3.12)
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for triangular meshes. Moreover, if we take

µ ≥ max
0≤i≤M

{
−si
ri
,

∑M
j=1 sjqj

p
, 0

}
, (3.13)

then 1
µ (̄s(w) + µw̄) ∈ G.

Remark 3.1. The sufficient condition for µ in Theorem 2.3 is different from that in Lemma 3.1
because we only consider the positivity-preserving of w in Theorem 2.3. In Lemma 3.1, we also
include the positivity-preserving of the pressure following the analysis in [7].

Now, we can state the main theorem for bound-preserving technique.

Theorem 3.1. Consider the DG scheme (3.4) (or the equivalent scheme (3.2)) coupled with the

three-stage RK method (2.9)-(2.11), where µ satisfies (3.13) for w = wn,w(1),w(2). If wn(x),

w(1)(x), w(2)(x) ∈ G for all x ∈ SK on each K ∈ Ωh, where SK is defined in (3.5) and (3.6) for
rectangular and triangular meshes, respectively. Then we have w̄n+1 ∈ G under the condition

∆t ≤ min{α10

β10
,
α20

β20
,
α21

β21
,
α30

β30
,
α31

β31
,
α32

β32
}∆t̃,

where ∆t̃ satisfies (3.11) and (3.12) for rectangular and triangular meshes, respectively.

Proof. For simplicity, we consider the first stage of the RK method only and prove w̄(1) ∈ G. After
simple computations, we get

w̄(1) = [α10R1 + β10µ∆tR2] /A1,

where

R1 = w̄n +
β10
α10

∆tG(wn) and R2 =
1

µ
(̄s(wn) + µw̄n).

In Lemma 3.1, we have proved R1 ∈ G under the condition ∆t ≤ α10
β10

∆t̃ and R2 ∈ G under the

condition (3.13). Recall that the time integration is conservative and A1 = α10 + β10µ∆t, then

w̄(1) is a convex combination of R1 and R2. Since G is a convex set, we have w̄(1) ∈ G.
Following the same analysis above, we can also prove that w̄(2), w̄n+1 ∈ G.

Remark 3.2. In the theorem above, the value of µ is not easy to compute. In practice, at time
level n, we want µ satisfies (3.13) for w = wn and choose a suitably small ∆t. We monitor w(1),

w(2) and wn+1. If one of the above three values is not in G̃, we will double the value of µ and halve
the value of ∆t, then restart the time integration at time level n. After we have reached the next
time level, we reset the values of µ and ∆t.

Based on the above theorem, we can construct physically relevant numerical cell averages w̄.
However, the numerical approximations w may be out of the bounds. Hence, we need to apply suit-
able limiters to w(1), w(2) and wn+1, and construct physically relevant numerical approximations
in each RK stage. The full algorithm on each fixed element K is given below:

1. Set a small number ϵ = 10−13.

2. If ρ̄ > ϵ, then we proceed to the next step. Otherwise, w is identified as the approximation
to vacuum, then we take w = w̄, and skip the following steps.
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3. We modify the density ρ first. Compute

ρmin = min
(x,y)∈SK

ρ(x, y).

If ρmin < 0, then take

ρ̂ = ρ+ θ (ρ− ρ) , r̂i = ri + θ (ri − ri) , i = 1, · · · ,M − 1,

with

θ =
ρ− ε

ρ− ρmin
,

Here we implicitly modify r̂M = rM + θ (rM − rM ) to keep
∑M

i=1 r̂i = ρ̂. For simplicity, we

can also take r̂i = ri, i = 1, · · · ,M − 1 and implicitly modify r̂M = ρ̂−
∑M−1

i=1 r̂i.

4. Modify the mass fraction. For 1 ≤ i ≤ M , define Ŝi = {(x, y) ∈ SK : r̂i(x, y) ≤ 0}. Take

r̃i = r̂i+θ

(
r̄i
ρ̄
ρ̂− r̂i

)
, 1 ≤ i ≤ M−1, θ = max

1≤i≤M
max

(x,y)∈Ŝi

{
−r̂i(x, y)ρ̄

r̄iρ̂(x, y)− r̂i(x, y)ρ̄
, 0

}
. (3.14)

5. Modify the pressure. Denote w̃ = (ρ̂,m, n,E, r̃1, · · · , r̃M−1)
T . For each x ∈ S, if w̃(x) ∈ G̃,

then take θx = 1. Otherwise, take

θx =
p(w)

p(w)− p(w̃(x))
.

Then, we use
wnew = w + θ(w̃ −w), θ = min

x∈SK

θx,

as the new DG approximation. The proof for p(wnew) ≥ 0 can be found in [29].

4 Numerical examples

We use the third-order conservative Runge-Kutta method with the choice of optimal coefficients.
Also, we expand the exponential terms by (2.22) as demonstrated in Remark 2.3.

Example 4.1. Accuracy test for the ODE solver
We first test the stability and accuracy of the ODE solver, and study the following problem:

u′(t) = −cu7, u(0) = u0,

where c is a parameter that we can adjust. The problem becomes stiff as c increases. The exact
solution is

u(t) = u0(6ctu
6
0 + 1)−1/6.

We take the final time to be t = 0.5 and denote the total number of time steps as Nt.

We first take u0 = 0.1 with c = 10000. Numerical results for the 3rd order conservative RK
method are listed in Table 4.1. The initial condition is well-prepared, and we can observe optimal
convergence rates. Next, we take u0 = 1, the results are given in Table 4.2. For this problem, the
initial condition is not well-prepared, and we can observe optimal convergence rate if the problem
is not stiff, e.g. c = 1. If the problem is stiff, e.g. c = 10000, with the exact exponential term, the
method may not converge at the expected rate. However, by applying the Taylor expansion (2.22),
we can observe better convergence rates.
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Table 4.1: Accuracy test for the new RK method with u0 = 0.1 and c = 10000.

Nt L∞ norm order
2 5.90E-11 –
4 7.36E-12 3.00
8 9.18E-13 3.00
16 1.15E-13 3.00
32 1.44E-14 2.99
64 1.78E-15 3.02

Table 4.2: Accuracy test for the new RK method with u0 = 1.

c=1 c=100 c=10000
Nt L∞ norm order L∞ norm order L∞ norm order

Without expansion (2.22)
20 2.04E-06 – 2.67E-02 – 1.74E-01 –
40 2.51E-07 3.02 1.27E-03 4.39 1.68E-01 0.05
80 3.08E-08 3.03 1.00E-04 3.67 1.57E-01 0.10
160 3.85E-09 3.00 2.00E-05 2.32 1.36E-01 0.21
320 4.82E-10 3.00 3.32E-06 2.59 9.65E-02 0.49

With expansion (2.22)
20 2.04E-06 – 1.79E-02 – 8.20E-01 –
40 2.51E-07 3.02 1.25E-03 3.84 8.16E-01 0.01
80 3.08E-08 3.03 9.99E-05 3.65 3.91E-02 4.38
160 3.85E-09 3.00 2.00E-05 2.32 1.19E-03 5.04
320 4.82E-10 3.00 3.32E-06 2.59 2.18E-04 2.45

Example 4.2. Steady-state-preserving test for the ODE solver
We consider the following scalar ODE:

u′(t) = 1− k|u|u,

where k is a positive real number. This problem has one equilibrium point u∗ = 1/
√
k, and its exact

solution is given by

u(t) =


1√
k
coth(

√
kt+ coth−1(

√
ku(0))), u(0) > u∗,

1√
k
tan(

√
kt+ tan−1(

√
ku(0))), u(0) < 0 and t < − tan−1(

√
ku(0))√
k

,
1√
k
tanh(

√
kt+ tanh−1(

√
ku(0))), otherwise.

We take the final time as t = 0.05 and also denote the total number of time steps as Nt.

We take k = 10, 000, which corresponds to the equilibrium point u∗ = 0.01. We consider three
different initial values,

(a) u(0) = u∗, (b) u(0) = 0.9u∗, (c) u(0) = 1.1u∗.

The numerical results computed with different Nt are plotted in Figure 4.1. As one can see, when u
is initially at the equilibrium (case (a)), our method preserves the steady state exactly as expected.
In cases (b) and (c), our method also accurately captures and preserves the exact equilibrium as
the time increases.

Example 4.3. Accuracy test for 2D system
From now on, we consider the two dimensional reactive Euler equations. In this example, we
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consider periodic boundary condition and take u = v = 1 and p = 0 in the exact solution. We
choose M = 2 and the source is given as s1 = −cr71. Hence, we need to solve the following system{

ρt + ρx + ρy = 0,
(r1)t + (r1)x + (r1)y = −c(r1)

7,
(x, y) ∈ [0, 2π]2.

The initial conditions are given as ρ(x, y, 0) = 0.1
(
2 + sin(x + y) + cos(x + y)

)
and r1(x, y, 0) =

0.1
(
1 + sin(x + y)

)
, respectively. For this problem, the total density ρ should be non-negative and

the mass fraction r1/ρ should be between 0 and 1.

We use piecewise P 2 polynomials coupled with third-order Runge-Kutta discretization and take
the final time to be t = 0.5. Numerical errors with different c are given in the left column of Table
4.3. We can again observe the expected high order of accuracy of our scheme. We further add the
limiter to preserve the lower bound of ρ and the two bounds of r1/ρ, and show the results in the
right part of the error table. The percentage of cells that have been modified by the limiter is listed
in the last column. By comparing the results with and without limiter, we can see that the limiter
dose not harm the original high order of accuracy.

Table 4.3: Accuracy test for the two dimensional problem.

without limiter with limiter
N L2 norm order L∞ norm order L2 norm order L∞ norm order percentage

c=100, CFL=0.05
10 6.41E-04 – 3.45E-03 – 1.34E-03 – 6.21E-03 – 19.38%
20 8.07E-05 2.99 4.33E-04 2.99 8.50E-05 3.98 4.65E-04 3.74 5.36%
40 1.01E-05 3.00 5.41E-05 3.00 1.02E-05 3.06 5.63E-05 3.05 2.38%
80 1.26E-06 3.00 6.75E-06 3.00 1.27E-06 3.00 7.02E-06 3.00 0.85%
160 1.58E-07 3.00 8.44E-07 3.00 1.62E-07 2.97 8.79E-07 3.00 0.30%

c=10000, CFL=0.06
10 7.20E-04 – 4.15E-03 – 1.35E-03 – 6.76E-03 – 22.14%
20 9.32E-05 2.95 6.07E-04 2.77 9.53E-05 3.82 6.11E-04 3.47 4.57%
40 1.17E-05 2.99 7.67E-05 2.98 1.18E-05 3.01 7.67E-05 2.99 2.01%
80 1.47E-06 3.00 9.63E-06 2.99 1.49E-06 2.99 9.63E-06 2.99 0.71%
160 1.84E-07 3.00 1.20E-06 3.00 1.91E-07 2.97 1.20E-06 3.00 0.29%

Example 4.4. A 2D detonation wave with 4 species and 1 reaction.
In this example, we test a 2D reacting model with four species and one reaction. A prototype
reaction for this model is

CH4 + 2O2 → CO2 + 2H2O.

(a) u(0) = u∗ (b) u(0) = 0.9u∗ (c) u(0) = 1.1u∗

Figure 4.1: Convergence toward the equilibrium.
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The parameters are T1 = 2, B1 = 106, α1 = 0, q1 = 200, q2 = 0, q3 = 0, q4 = 0, M1 = 16,
M2 = 32, M3 = 44, M4 = 18. The initial values consist of totally burnt gas inside of a circle with
radius 10 and totally unburnt gas everywhere outside this circle. The set up is as follows

(ρ, u, v, p, z1, z2, z3, z4)(x, y, 0) =

{
(2, 10x/r, 10y/r, 40, 0, 0.2, 0.475, 0.325), r 6 10,
(1, 0, 0, 1, 0.1, 0.6, 0.2, 0.1), r > 10,

where r =
√

x2 + y2. The computational domain is [0, 50] × [0, 50]. This is a radially symmetric
problem and the detonation front is circular. The boundary conditions are solid-wall boundary
conditions on the left and lower boundaries and outflow boundary conditions on the right and upper
boundaries.

We test the 3rd order conservative Runge-Kutta method with piecewise P 2 polynomials. We
first take CFL = 0.1 and refine the meshes to match the correct positions of the shocks with those
given in [30]. Figure 4.2 shows the one dimensional cuts of pressure, density and mass fractions
along the line x = y at t = 2 by taking Nx = Ny = 600. We can see that our scheme captures
the detonations well and preserves the positivity of the density and pressure, and the two bounds
0 and 1 of each mass fraction.

Next, we treat the above numerical solutions as reference solutions and compare our method
with the traditional SSP-RK3 method [27]. To avoid the technique of subcell resolution [29], we
also take Nx = Ny = 600. As we can see in Figures 4.3(a) and 4.3(b), CFL = 0.2 is already enough
for our scheme to obtain the correct solutions. However, the traditional SSP-RK3 method will
blow up when CFL = 0.2. In this case, if we restart the time integration by halving the time step
each time when we detect solutions outside the physical bounds, we can obtain the green curves
in Figures 4.3(a) and 4.3(b). We observe that the majority time steps will be restarted and the
computational cost increases. However, there are still some spurious waves and an even denser
mesh is needed. Hence, the computational cost is bigger than our method in order to reach correct
shock locations.

Example 4.5. A 2D detonation wave with 5 species and 2 reactions.
The second 2D example is the 2D reacting model with 5 species and 2 reactions. Consider

H2 +O2 → 2OH, 2OH +H2 → 2H2O,

where N2 appearing as a catalyst. The parameters are T1 = 2, T2 = 10, B1 = B2 = 106, α1 = α2 =
0, q1 = 0, q2 = 0, q3 = −20, q4 = −100, q5 = 0, M1 = 2, M2 = 32, M3 = 17, M4 = 18, M5 = 28.
The initial values are given by

(ρ, u, v, p, z1, z2, z3, z4, z5)(x, y, 0) =

{
(2, 10, 0, 40, 0, 0, 0.17, 0.63, 0.2), x 6 ξ(y),
(1, 0, 0, 1, 0.08, 0.72, 0, 0, 0.2), x > ξ(y),

where

ξ(y) =

{
12.5− |y − 12.5|, |y − 12.5| 6 7.5,
5, |y − 12.5| > 7.5.

The computational domain is [0, 100]× [0, 25]. The inflow boundary conditions are used on the left
boundary and the outflow boundary conditions are used on the right boundary. The top and bottom
boundaries are solid walls. One important feature of this solution is the appearance of triple points,
which travel along the detonation front in the transverse direction and reflect from the upper and
lower walls, forming a cellular pattern. Behind the detonation front, there is a strong shock.

We take Nx = 1000, Ny = 251 and CFL = 0.1. We first show the solutions at the 1D cross
section y = 12.5 at t = 2 in Figure 4.4. Since at t = 2 the flow has not touched x = 40, the
results are computed on the cutoff computational domain [0, 40] × [0, 25]. We can see that there
are some oscillations, but the main purpose of our work is not to control oscillations. It is easy to
see from the pressure, temperature and mass fraction results that there are no spurious waves and
our scheme preserves the bounds. The density contours at different times are shown in Figure 4.5.
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(a) density (b) pressure (c) mass fraction of z1

(d) mass fraction of z2 (e) mass fraction of z3 (f) mass fraction of z4

Figure 4.2: Numerical solutions of Example 4.4 along the line x = y at t = 2 with
Nx = Ny = 600 and CFL = 0.1.

x

d
e

n
s

it
y

5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

reference
SSPRK3

new RK3

(a) density, Nx = 600, CFL = 0.2 (b) pressure, Nx = 600, CFL = 0.2

Figure 4.3: Example 4.4. Comparison of different RK methods.
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(a) density (b) pressure (c) temperature

(d) mass fraction of z1 (e) mass fraction of z2 (f) mass fraction of z3

(g) mass fraction of z4 (h) mass fraction of z5

Figure 4.4: Numerical solutions of Example 4.5 at t = 2.

24



(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure 4.5: Density plots of Example 4.5 at different times.

5 Conclusion

In this paper, we have introduced the high-order conservative bound-preserving DG methods for
stiff multispecies detonation. A new explicit Runge-Kutta time integration has been constructed.
Numerical experiments demonstrated the good performance of the scheme.
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