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Abstract

In this paper, we develop high-order bound-preserving (BP) discontinuous Galerkin (DG) meth-

ods for the coupled system of compressible miscible displacements on triangular meshes. We consider

the problem with multi-component �uid mixture and the (volumetric) concentration of the jth com-

ponent, cj , should be between 0 and 1. There are three main di�culties. Firstly, cj does not satisfy

a maximum-principle. Therefore, the numerical techniques introduced in (X. Zhang and C.-W. Shu,

Journal of Computational Physics, 229 (2010), 3091-3120) cannot be applied directly. The main

idea is to apply the positivity-preserving techniques to all c′js and enforce
∑

j cj = 1 simultaneously

to obtain physically relevant approximations. By doing so, we have to treat the time derivative

of the pressure dp/dt as a source in the concentration equation and choose suitable �uxes in the

pressure and concentration equations. Secondly, it is not easy to construct �rst-order numerical

�uxes for interior penalty DG methods on triangular meshes. One of the key points in the high-

order BP technique applied in this paper is the combination of high-order and lower-order numerical

�uxes. We will construct second-order BP schemes and use the second-order numerical �uxes as

the lower-order one. Finally, the classical slope limiter cannot be applied to cj . To construct the

BP technique, we will not approximate cj directly. Therefore, a new limiter will be introduced.

Numerical experiments will be given to demonstrate the high-order accuracy and good performance

of the numerical technique.

Key Words: compressible miscible displacements, bound-preserving, high-order, discontinuous

Galerkin method, triangular meshes, multi-component �uid, �ux limiter

1 Introduction

In this paper, we are interested in constructing high-order bound-preserving discontinuous Galerkin

(DG) schemes for compressible miscible displacements in porous media on triangular meshes. We

consider the �uid mixture with N components and the governing equations over the computational

domain Ω = [0, 1]× [0, 1] read

d(c)
∂p

∂t
+∇ · u = d(c)

∂p

∂t
−∇ ·

(
κ(x, y)

µ(c)
∇p
)

= q, (x, y) ∈ Ω, 0 < t ≤ T, (1.1)
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φ
∂cj
∂t

+∇(u · cj)−∇ · (D∇cj) = c̃jq − φcjzjpt, (x, y) ∈ Ω, 0 < t ≤ T, j = 1, · · · , N − 1, (1.2)

where the dependent variables are the pressure in �uid mixture denoted by p, the Darcy velocity

of the mixture (volume �owing across a unit across-section per unit time) denoted by u and the

concentration of interested species measured in amount of species per unit volume denoted by

c = (c1, · · · , cN )T , with cj being the concentration of the jth component. φ and κ are the porosity

and permeability of the rock, respectively. µ refer to the concentration-dependent viscosity. q is

the external volumetric �ow rate, and c̃j is the concentration of the �uid in the external �ow. c̃j
must be speci�ed at points where injection (q > 0) takes place, and is assumed to be equal to

cj at production points (q < 0). The di�usion coe�cient D is symmetric and arises from two

aspects: molecular di�usion, which is rather small for �eld-scale problems, and dispersion, which is

velocity-dependent, in the petroleum engineering literature. Its form is

D = φ(x, y)(dmolI + dlong|u|E + dtran|u|E⊥), (1.3)

where E, a 2× 2 matrix, represents the orthogonal projection along the velocity vector given as

E = (eij(u)) =

(
uiuj
|u2|

)
, u = (u1, u2),

and E⊥ = I−E is the orthogonal complement. The di�usion coe�cient dlong measures the dispersion

in the direction of the �ow and dtran shows that transverse to the �ow. To ensure the stability of

the scheme, D is assumed to be strictly positive de�nite in almost all of the previous works. In this

paper, we assume D to be positive semide�nite. Moreover, the pressure is uniquely determined up

to a constant, thus we assume
∫

Ω p dxdy = 0 at t = 0. However, this assumption is not essential.

Other coe�cients can be stated as follows:

cN = 1−
N−1∑
j=1

cj , d(c) = φ
N∑
j=1

zjcj ,

where zj is the compressibility factor of the jth component of the �uid mixture. In this paper, we

consider homogeneous Neumann boundary conditions

u · n = 0, (D∇c− cu) · n = 0,

where n is the unit outer normal of the boundary ∂Ω. Moreover, the initial solutions are given as

cj(x, y, 0) = cj0(x, y), p(x, y, 0) = p0(x, y), (x, y) ∈ Ω.

The miscible displacements in porous media were �rst presented in [9, 10], where mixed �-

nite element methods were applied. Later, the compressible problem was studied in [11] and the

optimal order estimates in L2-norm and almost optimal order estimates in L∞-norm were given

in [5]. Subsequently, many new numerical methods were introduced, such as the �nite di�erence

method [41, 42, 43], characteristic �nite element method [21], splitting positive de�nite mixed el-

ement method [34] and H1-Galerkin mixed method [3]. Besides the above, in [29], an accurate

and e�cient simulator was developed for problems with wells. Later, the authors introduced an

2



Eulerian-Lagrangian localized adjoint method to solve the transport partial di�erential equation

for concentration, while a mixed �nite element method to solve the pressure equation [28]. Re-

cently, DG methods have been popular to solve compressible miscible displacements in porous

media [7, 8, 35, 36, 17, 37, 40]. Some special numerical techniques were introduced to control the

jumps of numerical approximations as well as the nonlinearality of the convection term. Besides

the above, there were also signi�cant works discussing the DG methods for incompressible misci-

ble displacements, see e.g. [1, 18, 20, 22, 25, 26, 30] and for general porous media �ow, see e.g.

[2, 13, 12, 27] and the references therein. However, no previous works above focused on the bound-

preserving techniques. In many numerical simulations, the approximations of cj can be placed

out of the interval [0, 1]. Especially for problems with large gradients, the value of d(c) might

be negative, leading to ill-posedness of the problem, and the numerical approximations will blow

up. We will use numerical experiments to demonstrate this point in Section 5. In [16], we have

introduced second-order bound-preserving DG methods on rectangular meshes for two-component

miscible displacements in porous media. In this paper, we will extend the idea to multi-component

miscible displacements and construct high-order bound-preserving techniques on triangular meshes.

Moreover, the idea can be extended to incompressible �ows with some minor changes.

The DG method gained even greater popularity for good stability, high-order accuracy, and

�exibility on h-p adaptivity and on complex geometry. In 2010, the genuinely maximum-principle-

satisfying high-order DG and �nite volume schemes were constructed in [44] by Zhang and Shu,

the extension to unstructured meshes was given in [47]. After that, the idea was applied to many

problems such as compressible Euler equations [45, 46], hyperbolic equations involving δ-singularities

[38, 39, 49], relativistic hydrodynamics [23] and shallow water equations [31], etc. The basic idea is

to take the test function to be 1 in each cell to obtain an equation of the numerical cell average of

the target variable, say r, and prove the cell average, r̄, is within the desired bounds. Then we can

apply a slope limiter to the numerical approximation and construct a new one

r̃ = r̄ + θ(r − r̄), θ ∈ [0, 1]. (1.4)

If the problem has only one lower bound zero, the technique is also called positivity-preserving

technique. Thanks to the limiter, the whole algorithm were proved to be L1-stable [39, 23] for some

complicated systems. Moreover, the technique does not rely on the trouble cell detector and the

limiter keeps the high-order accuracy in regions with smooth solutions for scalar equations [44]. In

case of convection-di�usion equations, the same idea was applied to construct genuinely second-

order maximum-principle-satisfying DG method on unstructured meshes [48]. Recently, the �ux

limiter [19, 32, 33] and third-order maximum-principle-preserving direct DG method [4] were also

introduced. However, it is not easy to apply the �ux limiter to unstructured meshes since the lower

order �uxes are not easy to construct, and the only work available is [6] in which the technique

for hyperbolic equations was analyzed, and no previous works aimed to discuss convection-di�usion

equations. In this paper, we will extend the ideas in [32, 44] and construct high-order bound-

preserving DG methods for multi-component compressible miscible displacements. However, there

are signi�cant di�erences from previous techniques. First of all, most of the problems in [32, 44]

satisfy maximum-principles while the concentration cj in (1.2) does not. To solve this problem, we

would like to apply the positivity-preserving technique to each cj and enforce
∑

j cj = 1. Secondly,

the high-order positivity-preserving technique in this paper is based on the �ux limiter [19, 32].

3



The basic idea is to combine higher order and lower order �uxes to construct a new one which yield

positive numerical cell averages. However, for triangular meshes, �rst-order �uxes are not easy to

construct. Therefore, we will consider the second-order �ux as the lower order one. Finally, to

obtain the equation satis�ed by the cell averages, we need to numerically approximate rj = φcj
instead of cj . By doing so, the upper bound of rj is not a constant and the limiter (1.4) may fail to

work, since such a θ may not exist (see the counterexample in [16]). Moreover, the limiter applied in

[16] is not straightforward extendable to multi-component problems, since we cannot simply set the

upper bound of cj to be 1 if the �uid mixture contains more than two components. Therefore, a new

bound-preserving limiter will be introduced. In summary, the whole algorithm can be separated

into three parts. We �rst treat pt as another source in (1.2) to obtain the positivity of cj by the �ux

limiter [19, 32]. Then we choose consistent �uxes (see De�nition 2.1) with suitable parameter in

the �ux limiter in the concentration and pressure equations to obtain the positivity of 1−
∑N−1

j=1 cj .

More precisely, in our analysis, instead of solving p and cj , j = 1, · · · , N − 1, we rewrite (1.1)

and (1.2) into a system of cj , j = 1, · · · , N and enforce
∑N

i=j cj = 1 by choosing consistent �uxes.

Finally, we will introduce a new limiter to obtain physically relevant numerical approximations.

The paper is organized as follows: we �rst discuss the DG scheme in two dimension on triangular

mesh in Section 2. In Section 3, we demonstrate the bound-preserving technique for second-order

scheme. The high-order bound-preserving technique with �ux limiter will be given in Section 4. In

Section 5, some numerical experiments and results will be shown. We will end in Section 6 with

concluding remarks.

2 The DG scheme

In this section, we will construct the DG scheme for compressible miscible displacements in porous

media. We �rst demonstrate the notations to be used throughout the paper. We consider triangular

meshes and denote Ωh to be the set of cells. For any K ∈ Ωh, we denote the three edges of K to

be eiK (i = 1, 2, 3), with corresponding lengths `iK (i = 1, 2, 3) and unit outer normal vectors

νi (i = 1, 2, 3). We also denote the neighboring triangle along eiK as Ki. We use Γ for all the cell

interfaces, and Γ0 = Γ \ ∂Ω for all the interior ones. For any e ∈ Γ, denote |e| to be the length of e.

Let u± denote the numerical solution on the edges, evaluated from K or Ki. The
′±′ for each edge

eiK is determined by the inner product of νi and a predetermined constant vector ν0 which is not

parallel to any edge in the mesh: for each edge eiK in the cell K,

u− = uK , u+ = uKi , if ν0 · νi > 0,

u+ = uK , u− = uKi , if ν0 · νi < 0.

Moreover, we de�ne ne as the unit outer normal of each edge e ∈ Γ0 such that ne · ν0 > 0 and

de�ne the jump and average of any function v at the cell interface e as

[v]e = v+
e − v−e , {v}e =

1

2
(v+
e + v−e ).
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We also denote ∂Ω+ = {e ∈ ∂Ω : n · ν0 > 0}, where n is the unit outer normal of ∂Ω and

∂Ω− = ∂Ω\∂Ω+. The �nite element space is chosen as

Wh = {z : z|K ∈ P k(K), ∀K ∈ Ωh},

where P k(K) denotes polynomials of degree at most k ≥ 1 in K.

To construct the DG method, we �rst rewrite the system (1.1)-(1.2) into the following form

d(c)pt +∇ · u = q, (2.1)

a(c)u = −∇p, (2.2)

(φcj)t +∇ · (ucj)−∇ · (D(u)∇cj) = c̃jq − φcjzjpt, j = 1, 2, · · · , N − 1, (2.3)

where a(c) =
µ(c)

κ
.

Next, we would like to demonstrate the key points in this paper that are quite di�erent from

most of the previous works.

1. Approximate rj = φcj instead of cj . We cannot simply take the test function to be 1 to obtain

the cell average of cj .

2. Treat pt in (2.3) as a source to apply the positivity-preserving techniques.

3. Apply �ux limiters to the high-order scheme by combining the second- and high-order �uxes.

4. Suitably choose the parameters in the �ux limiter to obtain consistent �uxes for (2.1) and

(2.3) to make r̄j < φ̄, where r̄j and φ̄ are the cell averages of rj and φ, respectively.

5. Take the L2-projection of φ into Wh, denoted as Φ, and use which as the new approximation

of the porosity.

6. Construct a new limiter to maintain the cell average r̄j and modify the numerical approxima-

tions of rj such that 0 < rj < Φ, which further yields cj = Pk

{rj
Φ

}
∈ [0, 1], where Pk is the

L2-projection projection into Wh is k ≥ 2 while P1u|K is the interpolation of u at the three

vertices of cell K.

For simplicity, if not otherwise stated, we use p,u, cj , rj , j = 1, 2, · · · , N as the numerical

approximations from now on. Then the DG scheme for (2.1) - (2.3) is to �nd p, rj ∈ Wh and
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u ∈Wh = Wh ×Wh such that for any ξ, ζ ∈Wh and η ∈Wh,

(d̃(r)pt, ξ) = (u,∇ξ) +
∑
e∈Γ0

∫
e
û · ne[ξ]ds+ (q, ξ), (2.4)

(a(c)u,η) = (p,∇ · η) +
∑
e∈Γ

∫
e
p̂[η · ne]ds, (2.5)

(rjt , ζ) = (ucj −D(u)∇ci,∇ζ) + (čjq − rjzjpt, ζ) +
∑
e∈Γ0

∫
e
ûcj · ne[ζ]ds

−
∑
e∈Γ0

∫
e

(
{D(u)∇cj · ne}[ζ] + {D(u)∇ζ · ne}[cj ] +

α̃

|e|
[cj ][ζ]

)
ds, (2.6)

where

cj = Pk

{rj
Φ

}
, d̃(r) =

N∑
j=1

zjrj , (u, v) =

∫
K
uvdx, čj =

 c̃j , q > 0,

rj
Φ , q < 0.

In (2.4)-(2.6), p̂, û and ûcj are the numerical �uxes. We use alternating �uxes for the di�usion term

and for any e ∈ Γ0

û|e = u+|e, p̂|e = p−|e, (2.7)

and on ∂Ω we take

p̂|e = p−|e, ∀e ∈ ∂Ω+, p̂|e = p+|e, ∀e ∈ ∂Ω−.

For the convection term, for any e ∈ Γ0 we take

ûcj = u+c+
j − α[cj ]ne. (2.8)

In (2.6) and (2.8), α and α̃ are two positive constants to be chosen by the bound-preserving tech-

nique. Before we complete this subsection, we would like to introduce the following de�nition that

will be used in the bound-preserving technique.

De�nition 2.1. We say the �ux ûcj is consistent with û if ûcj = û by taking cj = 1 in Ω.

The numerical �ux ûcj in (2.8) is consistent with the �ux û in (2.7), and this is required by the

bound-preserving technique.

Remark 2.1. There are plenty of �uxes can be used following the procedures introduced in the next

section. The proofs are basically the same with some minor changes, so we only list some of them

below without more details.

• û = u−, p̂ = p+, ûcj = u−c−j − α[cj ]ne.

• û = 1
2(u+ + u−), p̂ = 1

2(p+ + p−), ûcj = 1
2(u+c+

j + u−c−j )− α[cj ]ne.
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3 Second-order bound-preserving scheme

In this section, we will construct second-order bound-preserving DG scheme with Euler forward

time discretization on triangular meshes. For simplicity, we only discuss the technique for cells

away from ∂Ω, while the boundary cells can be analyzed following the same lines with some minor

changes. A similar analysis for the boundary cells can be found in [16]. We use oK for the numerical

approximation of o in K with cell average ōK . Moreover, we use on as the solution o at time level

n. Now, we will demonstrate the bound-preserving technique in detail. For simplicity, we will drop

the subindex j in (2.6) and use r, c, č, z for rj , cj , čj , zj , respectively.

In (2.6), we take ζ = 1 in K to obtain the equation satis�ed by the cell average of r

r̄n+1
K = Hc

K(r,u, c) +Hd
K(r,u, c) +Hs

K(r, č, q, z, p) (3.1)

where

Hc
K(r,u, c) =

1

3
r̄nK − λ

3∑
i=1

∫
eiK

ûc · νids, (3.2)

Hd
K(r,u, c) =

1

3
r̄nK + λ

3∑
i=1

∫
eiK

(
{D(u)∇c · νi}+

α̃

`iK
[c]ne · νi

)
ds, (3.3)

Hs
K(r, č, q, z, p) =

1

3
r̄nK +4tčq − rzpt, (3.4)

with λ = 4t
|K| being the ratio of the time step and the area of triangle K, and čq − rzpt being

the cell average of čq − rzpt. We denote Vi, i = 1, 2, 3 as the three vertices of cell K. In this

section, we will construct the bound-preserving technique in K, hence for any w ∈ Wh, we de�ne

w(Vi) to be the limit evaluated in K. We use the (k+1)-point Gaussian quadrature to approximate

the integrals along the cell interfaces in (3.2)-(3.4), and denote xi,β , β = 1, 2, · · · , k + 1 as the

quadrature points on eiK with wβ as the corresponding weights on the reference interval [−1
2 ,

1
2 ].

Moreover, we use quadratures discussed in [47] to compute the cell average r̄nK . The quadrature

contains L = 3(NG − 2)(k + 1) quadrature points, denoted as xγ , lying in the interior of K with

2NG − 3 ≥ k, and the quadratures points on the cell interfaces are exactly the k + 1 Gaussian

quadratures points. We denote the quadrature weights corresponding to the interior quadrature

points as w̃γ and those on the cell interfaces as ŵβ . In [47], it was shown that ŵβ = 2
3wβŵ, where

ŵ is the quadrature weight corresponding to the �rst quadrature point in the NG-point Gauss-

Lobatto quadrature on the interval [−1
2 ,

1
2 ]. Based on the above notations, we de�ne the values of o

(o = r, c, p, q,Φ) at the quadrature points as oi,βK = o(xi,β) along the boundary of K and oγK = o(xγ)

in cell K. Now, we can demonstrate the bound-preserving techniques. We will consider the source

term Hs
K �rst, and discuss the high-order bound-preserving technique.

Lemma 3.1. Suppose rn > 0 (cn > 0), then Hs
K(r, č, q, z, p) > 0 under the conditions

4t ≤ 1

6zpM
, 4t ≤ Φm

6qM
, (3.5)

where

pM = max
i,β,γ

((pt)
i,β
K , (pt)

γ
K , 0) Φm = min

x
Φ(x), qM = max

i,β,γ

{
−qi,βK ,−qγK , 0

}
. (3.6)
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Proof. We can write Hs
K as

Hs
K(r, č, q, z, p) =

(
1

6
r̄nK −4trzpt

)
+

(
1

6
r̄nK +4tčq

)
:= L1 + L2.

Applying the quadrature in [47], we have

L1 =
1

6
r̄nK −4trzpt

=
1

6

 3∑
i=1

k+1∑
β=1

ŵβr
i,β
K +

L∑
γ=1

w̃γr
γ
K

−4tz
 3∑
i=1

k+1∑
β=1

ŵβr
i,β
K (pt)

i,β
K +

L∑
γ=1

w̃γr
γ
K(pt)

γ
K


=

3∑
i=1

k+1∑
β=1

ŵβ

(
1

6
−4tz(pt)i,βK

)
ri,βK +

L∑
γ=1

w̃γ

(
1

6
−4tz(pt)γK

)
rγK .

Then L1 > 0 under the condition (3.5). We apply the same quadrature for L2 to obtain

L2 =
1

6

 3∑
i=1

k+1∑
β=1

ŵβr
i,β
K +

L∑
γ=1

w̃γr
γ
K

+4t

 3∑
i=1

k+1∑
β=1

ŵβ č
i,β
K qi,βK +

L∑
γ=1

w̃γ č
γ
Kq

γ
K


=

3∑
i=1

k+1∑
β=1

ŵβ

(
1

6
ri,βK +4tči,βK qi,βK

)
+

L∑
γ=1

w̃γ

(
1

6
rγK +4tčγKq

γ
K

)
.

Notice that č = r/Φ if q < 0 while č > 0 if q > 0. Therefore, under the condition (3.5), each term

in the summation above is positive.

In the rest part of this section, we will consider second-order scheme only, i.e. k = 1, N = 2,

L = 0, then ŵ = 1
2 and wβ = 3ŵβ . Now we can analyze the convection term Hc

K and the result is

given below.

Lemma 3.2. Suppose rn > 0 (cn > 0), if α satis�es

α > max
i,β
{|ui,βKi |, 0}, (3.7)

and the time step satis�es

∆t ≤ min
i,β

{
1

9`iKα
,

1

9`iK(|ui,βK |+ α)

}
Φm|K|. (3.8)

we have Hc
K(r,u, c) > 0.

Proof. Following the same analysis for the source term, we write

Hc
K =

3∑
i=1

2∑
β=1

wβH
c
i,β, Hc

i,β =
1

9
ri,βK − λ`

i
Kûc

i,β · νi.
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We only need to show Hc
i,β > 0.

Case 1: νi = ne, i.e. u
− = uK , u

+ = uKi , c
− = cK and c+ = cKi . Then

Hc
i,β =

1

9
ri,βK − λ`

i
K(ui,βKic

i,β
Ki
· νi − αci,βKi + αci,βK ).

Since r and c are both linear functions, we can write the function values of r and c as the interpolation

of the values at vertices {V1, V2, V3} of K, i.e. for any point xρ in K,

rρK = µρ1rK(V1) + µρ2rK(V2) + µρ3rK(V3), cρK = µρ1cK(V1) + µρ2cK(V2) + µρ3cK(V3), (3.9)

with µρm ≥ 0, m = 1, 2, 3, and
3∑

m=1

µρm = 1. Then

Hc
i,β =

3∑
m=1

µi,βm

(
1

9
rK(Vm)− λ`iKαcK(Vm)

)
+ λ`iK(α− ui,βKi · νi)c

i,β
Ki

=
3∑

m=1

µi,βm

(
1

9
ΦK(Vm)− λ`iKα

)
cK(Vm) + λ`iK(α− ui,βKi · νi)c

i,β
Ki
.

Then we have Hc
i,β > 0, if α and ∆t satisfy (3.7) and (3.8), respectively.

Case 2: νi = −ne, i.e. u+ = uK , u
− = uKi , c

+ = cK and c− = cKi . Then

Hc
i,β =

1

9
ri,βK − λ`

i
K(ui,βK ci,βK · νi − αc

i,β
Ki

+ αci,βK ).

Applying (3.9) again, we have

Hc
i,β =

3∑
m=1

µm

(
1

9
ΦK(Vm)− λ`iKui,βK · νi − λ`

i
Kwβα

)
cK(Vm) + λ`iKαc

i,β
Ki
.

Then we have Hc
i,β > 0 under the condition (3.8).

Finally, we discuss the di�usion part. We also take k = 1, N = 2, L = 0 and the result is given

in the following lemma.

Lemma 3.3. Assume the minimum angle of each triangle K is uniformly bounded away from zero.

Suppose rn > 0 (cn > 0), then Hd
K(r,u, c) > 0 under the conditions

α̃ ≥ (3 +
√

3)Λ

2 minK,i,j

(
sin
(
θi,jK

)) , (3.10)

and

∆t ≤ Φm|K|
18α̃

,
4t
|K|

(3 +
√

3)Λ

minK,i,j

(
sin
(
θi,jK

)) ≤ 1

54
Φm, (3.11)

where θi,jK , i, j = 1, 2, 3, i 6= j denotes the angle between the edge eiK and ejK , and Λ is the largest

absolute value of the eigenvalue of D.
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K

Ki

•
x̃i,βK

•
xi,β • x̃

i,β
Ki

νe

Figure 1: Two intersection points for the numerical �ux in di�usion part on the triangular mesh.

Proof. First, we will consider the term∫
eiK

(
{D(u)∇c · νi}+

α̃

`iK
[c]ne · νi

)
ds.

Following [48], we write

D(u)∇c · νi = ∇c ·D(u)νi =
∂c

∂ηi
‖η̃i‖,

where

η̃i = D(u)νi, ηi =
η̃i
‖η̃i‖

.

De�ne ηK = ηi|K and ηKi = ηi|Ki . Likewise for η̃K and η̃Ki . For each quadrature point xi,β on the

edge eiK , we can draw a straight line from xi,β with direction ηKi intersects ∂Ki at x̃
i,β
Ki
. Similarly,

we can draw another straight line from xi,β with direction −ηK intersects ∂K at x̃i,βK . See Figure 1

for an illustration. It is easy to verify that at x = xi,β

{D(u)∇c · νi}+
α̃

`iK
[c]ne · νi =

1

2
D(uK)∇cK · νi +

1

2
D(uKi)∇cKi · νi + α̃

(cKi − cK)

`iK

=
1

2

ci,βK − c(x̃
i,β
K )

‖xi,βK − x̃
i,β
K ‖
‖η̃K‖+

1

2

c(x̃i,βKi)− c
i,β
Ki

‖x̃i,βKi − x
i,β
Ki
‖
‖η̃Ki‖+

α̃

`iK
(ci,βKi − c

i,β
K )

=

(
‖η̃K‖

2‖xi,βK − x̃
i,β
K ‖
− α̃

`iK

)
ci,βK +

(
α̃

`iK
− ‖η̃Ki‖

2‖x̃i,βKi − x
i,β
Ki
‖

)
ci,βKi

− ‖η̃K‖
2‖xi,βK − x̃

i,β
K ‖

c(x̃i,βK ) +
‖η̃Ki‖

2‖x̃i,βKi − x
i,β
Ki
‖
c(x̃i,βKi).

We write the cell average r̄nK as

r̄nK =
3∑
i=1

2∑
β=1

ŵβr
i,β
K =

3∑
i=1

2∑
β=1

3∑
m=1

ŵβµ
i,β
m ΦK(Vm)cK(Vm).

10



we can rewrite Hd
K(r,u, c) as

Hd
K =

1

3

3∑
i=1

2∑
β=1

3∑
m=1

ŵβµ
i,β
m ΦK(Vm)cK(Vm) + λ

3∑
i=1

`iK

2∑
β=1

wβ

[
{D(u)∇c · νi}+

α̃

`iK
[c]ne · νi

]
x=xi,β

=

3∑
i=1

2∑
β=1

wβ

(
1

9

3∑
m=1

µi,βm ΦK(Vm)cK(Vm) + λ`iK

[
{D(u)∇c · νi}+

α̃

`iK
[c]ne · νi

]
x=xi,β

)

:=
3∑
i=1

2∑
β=1

wβLi,β + L,

where

Li,β =
1

18

3∑
m=1

µi,βm ΦK(Vm)cK(Vm) + λ`iK

[(
‖η̃K‖

2‖xi,βK − x̃
i,β
K ‖
− α̃

`iK

)
ci,βK +

(
α̃

`iK
− ‖η̃Ki‖

2‖x̃i,βKi − x
i,β
Ki
‖

)
ci,βKi

+
‖η̃Ki‖

2‖x̃i,βKi − x
i,β
Ki
‖
c(x̃i,βKi)

]
,

L =
1

6
r̄nK − λ

3∑
i=1

2∑
β=1

`iK‖η̃K‖
2‖xi,βK − x̃

i,β
K ‖

c(x̃i,βK ).

We need to make Li,β > 0. In fact

Li,β =
1

18

3∑
m=1

µi,βm ΦK(Vm)cK(Vm) + λ`iK

(
‖η̃K‖

2‖xi,βK − x̃
i,β
K ‖
− α̃

`iK

)
ci,βK

+ λ`iK

(
α̃

`iK
− ‖η̃Ki‖

2‖x̃i,βKi − x
i,β
Ki
‖

)
ci,βKi + λ`iK

‖η̃Ki‖
2‖x̃i,βKi − x

i,β
Ki
‖
c(x̃i,βKi)

=
3∑

m=1

µi,βm

(
1

18
ΦK(Vm) + λ`iK

(
‖η̃K‖

2‖xi,βK − x̃
i,β
K ‖
− α̃

`iK

))
cK(Vm)

+ λ`iK

(
α̃

`iK
− ‖η̃Ki‖

2‖x̃i,βKi − x
i,β
Ki
‖

)
ci,βKi + λ`iK

‖η̃Ki‖
2‖x̃i,βKi − x

i,β
Ki
‖
c(x̃i,βKi).

Notice that ‖η̃‖ ≤ Λ. To make Li,β > 0, we need

α̃ ≥
`iKΛ

2‖x̃i,βKi − x
i,β
Ki
‖
, λ`iK

(
α̃

`iK
− ‖η̃K‖

2‖xi,βK − x̃
i,β
K ‖

)
≤ 1

18
ΦK(Vm).

It is easy to compute that

`iK

‖x̃i,βK − x
i,β
K ‖
≤ 6

(3−
√

3) minj sin
(
θi,jK

) .

11



and we conclude Li,β > 0 under the conditions (3.10) and (3.11). Finally, we can apply the same

idea above to estimate L. Similar to (3.9), we write

c(x̃i,βK ) =

3∑
m=1

µ̃i,βm cK(Vm),

with 0 ≤ µ̃i,βm ≤ 1 and
3∑

m=1

µ̃i,βm = 1. Then

L =
1

6
r̄nK − λ`iK

3∑
i=1

2∑
β=1

‖η̃K‖
2‖xi,βK − x̃

i,β
K ‖

c(x̃i,βK )

=

3∑
m=1

 1

18
ΦK(Vm)− λ`iK

3∑
i=1

2∑
β=1

‖η̃K‖µ̃i,βK
2‖xi,βK − x̃

i,β
K ‖

 cK(Vm)

≥
3∑

m=1

 1

18
ΦK(Vm)− λ

3∑
i=1

2∑
β=1

(3 +
√

3)Λ

2 minj sin
(
θi,jK

)
 cK(Vm)

Therefore, we have L > 0 under the condition (3.11).

Base on the above three lemmas, we can state the following theorem.

Theorem 3.4. Suppose rn > 0 (cn > 0), and the parameters α and α̃ satisfy (3.7) and (3.10),

respectively. Then r̄n+1 > 0 under the conditions (3.5), (3.8) and (3.11).

Now, we have proved r̄j > 0 for j = 1, 2, · · · , N − 1. To obtain r̄N > 0, we need to subtract

(2.6) from (2.4) to obtain

(rNt , ζ) =(ucN −D(u)∇cN ,∇ζ) + (čNq − rNzNpt, ζ) +
∑
e∈Γ0

∫
e
ûcN · ne[ζ]ds

−
∑
e∈Γ0

∫
e

(
{D(u)∇cN · ne}[ζ] + {D(u)∇ζ · ne}[cN ] +

α̃

|e|
[cN ][ζ]

)
ds. (3.12)

Here, we have used the fact that the �ux for (2.6) is consistent with that in (2.4). We can observe

that the above equation is similar to (2.6). Therefore, following the same analysis above with minor

changes we have the following theorem.

Theorem 3.5. Suppose 0 ≤ rn ≤ Φ, and the conditions in Theorem 3.4 are satis�ed. Moreover, if

the �uxes ûcj and û are consistent, then r̄n+1 ≤ Φ̄, under the condition

4t ≤ 1

6zMpM
, (3.13)

where pM is given in (3.6) and zM = max
1≤j≤N

zj.

12



4 Bound-preserving technique for high-order scheme

In this section, we will apply the �ux limiter to construct high-order bound-preserving technique.

4.1 Flux limiter

We use P k (k>2) polynomials and write (3.1) as

r̄n+1
K = r̄nK + λ

3∑
i=1

F̂ei + ∆ts̄,

where

F̂ei = −
∫
ei
ûc · νids+

∫
ei

(
{D(u)∇c · νi}+

α̃

`iK
[c]

)
ds, s̄ = c̃q − rz1pt (4.1)

are high-order �ux and source, respectively. In Section 3, we have demonstrated how to treat the

source terms. Therefore, we only discuss the modi�cation of the high-order �uxes only. We will

apply the �ux limiter [19, 32] and combine the high-order �ux F̂ei and the second-order �uxes,

which was analyzed in Section 3, denoted as f̂ei . We de�ne the new �ux as

F̃ei = f̂ei + θei(F̂ei − f̂ei),

where θei is a parameter that to be chosen. Then the cell average can be written as

r̄n+1
K = r̄nK + λ

3∑
i=1

f̂ei + λ
3∑
i=1

θei(F̂ei − f̂ei) + ∆ts̄ = r̄n+1
L + λ

3∑
i=1

θei(F̂ei − f̂ei),

where

r̄n+1
L = r̄nK + λ

3∑
i=1

f̂ei + ∆ts̄

is the second order cell average which was proved to be positive if ∆t is su�ciently small. Notice

that, we need the �uxes in (2.6) and (2.4) to be consistent. Therefore, we have to discuss the

�uxes for all components together. We de�ne f̂ j
ei
and F̂ j

ei
as the second- and high-order �uxes for

component j, j = 1, 2, · · · , N , respectively, and the cell average r̄ for the jth component to be r̄j .

To compute f̂ j
ei
, we only replace the cj in F̂

j
ei
in (4.1) by a second-order approximation. We cannot

change u, since we want
∑N

j=1 F̂
j
ei

=
∑N

j=1 f̂
j
ei

= ûei , which due to the �ux consistency requirement.

To construct the second-order cj , we can simply apply the second-order L2 projection to the high-

order cj , and then apply the limiter discussed in 4.2 with k = 1 and Φ as the second-order L2

projection of φ. We can choose the parameter θei as follows:

1. For any K ∈ Ωh, set βK = 0.

2. De�ne F̂Nei = ûei −
N−1∑
j=1

F̂ j
ei
, f̂Nei = ûei −

N−1∑
j=1

f j
ei
and r̄n = Φ̄−

N−1∑
j=1

r̄j .

3. For any j = 1, 2, · · · , N , if F̂ j
ei
− f̂ j

ei
≥ 0, take θj

K,ei
= 1, otherwise set βK = βK + F̂ j

ei
− f̂ j

ei
.
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4. For those edges ei with F̂ j
ei
− f̂ j

ei
< 0, we set θj

K,ei
= min

{
−
r̄n+1
j,L

λβmK
, 1

}
.

5. Take θK,ei = min
1≤j≤N

θj
K,ei

.

6. For any e ∈ Γ0, we can �ndK1,K2 ∈ Ωh such thatK1∩K2 = e. We take θe = min{θK1,e, θK2,e}.

Following the same analyses in [6], we have r̄n+1
j ≥ 0, j = 1, 2, · · · , N . Thus, 0 ≤ r̄n+1

j ≤ Φ̄, since

we have the relationship r̄n+1
1 + r̄n+1

2 + . . .+ r̄n+1
N = Φ̄.

Remark 4.1. In (2.4)-(2.6), we do not compute rN (cN ) directly. Step 2 in the above algorithm

is used to compute the �uxes in (3.12). Actually, we can simply take FN
ei

= −
∑N−1

j=1 F j
ei
, f̂N

ei
=

−
∑N−1

j=1 f j
ei
, since we only need the di�erence of the higher order and lower order �uxes. Moreover,

step 5 is used to construct consistent �uxes (See de�nition 2.1).

4.2 Slope limiter

In this section, we discuss the limiters to be applied. As discussed in [16], the traditional slope

limiter (1.4) cannot be applied. In this paper, we will construct a new one. We consider problem

with 2 components �rst and then extend it to N-component ones. The algorithm is given as follows.

1. De�ne Ŝ = {x ∈ K : r(x) ≤ 0}. Take

r̂1 = r1 + θ
( r̄1

Φ̄
Φ− r1

)
, θ = max

y∈Ŝ

{
−r1(y)Φ̄

r̄1Φ(y)− r1(y)Φ̄
, 0

}
. (4.2)

2. Set r2 = Φ− r̂1, and repeat the above step for r2.

3. Take r̃1 = Φ− r̂2 as the new approximation.

Remark 4.2. In step 1, it is easy to see that r̂1 ≥ 0 which further implies r2 ≤ Φ. In step 2, we

have

r̂2 = r2 + θ
( r̄2

Φ̄
Φ− r2

)
= (1− θ)r2 + θ

r̄2

Φ̄
Φ ≤ (1− θ)Φ + θΦ = Φ, ∀θ ∈ [0, 1],

which means the property r̂2 ≤ Φ is inherited naturally from r2 ≤ Φ, no matter which parameter θ

is chosen. This fact gives us enough space to modify r̂2 such that r̂2 ≥ 0, as we did in step one.

Therefore, after step 3, we have 0 ≤ r̃1 ≤ Φ. Besides the above, it is easy to check that the limiter

does not change the numerical cell averages, i.e.,
∫
K r̃(x)dx =

∫
K r(x)dx.

Moreover, we can also prove that the limiter does not a�ect the accuracy.

Theorem 4.1. Let R(x) ∈ Ck+1(K) and r(x),Φ(x) ∈ P k(K) with 0 ≤ r̄ ≤ Φ̄ and ‖r(x)−R(x)‖∞ ≤
Chk+1. Assume there exist two positive constants Φm and ΦM such that 0 < Φm ≤ Φ(x) ≤ ΦM ,

then ‖r̃(x)−R(x)‖∞ ≤ Chk+1.
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Proof. WLOG, we assume θ > 0 in (4.2) and need to show the modi�cation in step 1 keeps the

accurate :‖r̂(x) − r(x)‖∞ ≤ Chk+1. Denote rm = minx∈K r(x), rM = maxx∈K r(x). Let y ∈ K be

the point at which the maximum in (4.2) is achieved and de�ne ry = r(y) < 0,Φy = Φ(y). Then

θ =
−ry

r̄
Φ̄

Φy − ry
≤ −ry
r̄ Φm

ΦM
− ry

≤ −ry
r̄ Φm

ΦM
− ry Φm

ΦM

=
−ry
r̄ − ry

ΦM

Φm
≤ −rm
r̄ − rm

ΦM

Φm
,

which further yields

|r̂ − r| =θ| r̄
Φ̄

Φ− r| ≤ ΦM

Φm

−rm
r̄ − rm

| r̄
Φ̄

Φ− r| = ΦM

Φm
(−rm)

|r̄Φ
Φ̄
− r|

r̄ − rm
.

Since
ΦM

Φm
is a constant and | − rm| ≤ Chk+1, we only need to prove that

|r̄φ
φ̄
− r|

r̄ − rm
≤ C for some

positive constant C independent of x and h. Notice that

r̄
Φm

ΦM
− rM ≤ r̄

Φ

Φ̄
− r ≤ r̄ΦM

Φm
− rm,

we have ∣∣∣∣r̄Φ

Φ̄
− r
∣∣∣∣ ≤ max

{∣∣∣∣r̄ΦM

Φm
− rm

∣∣∣∣ , ∣∣∣∣r̄Φm

ΦM
− rM

∣∣∣∣} ,
which further yields

|r̄Φ
Φ̄
− r|

r̄ − rm
≤ max

{
|r̄ΦM

Φm
− rm|

r̄ − rm
,
|r̄ Φm

ΦM
− rM |

r̄ − rm

}
.

Next, we will prove the boundedness of
|r̄ΦM

Φm
− rm|

r̄ − rm
, and

|r̄ Φm
ΦM
− rM |

r̄ − rm
, respectively. For the �rst

term, we have
|r̄ΦM

Φm
− rm|

r̄ − rm
=
r̄ΦM

Φm
− rm

r̄ − rm
≤
r̄ΦM

Φm
− rmΦM

Φm

r̄ − rm
=

ΦM

Φm
.

while for the second term

|r̄ Φm
ΦM
− rM |

r̄ − rm
= −

r̄ − rM + r̄( Φm
ΦM
− 1)

r̄ − rm
≤ − r̄ − rM

r̄ − rm
−
r̄( Φm

ΦM
− 1)

r̄
≤ rM − r̄
r̄ − rm

+ 1− Φm

ΦM
.

In Appendix C of [45], Zhang proved that for any non-constant polynomial of degree k, say p(x),

we have

| p̄−max p(x)

p̄−min p(x)
| ≤ Ck,

where Ck is a constant only depends on the polynomial degree k. Thus,

|r̄ Φm
ΦM
− rM |

r̄ − rm
≤ Ck + 1− Φm

ΦM
,

and we �nish the proof.

Remark 4.3. There are two ways to apply this limiter in an N -component system. One way is

to compute the parameter θj for the jth component, (j = 1, 2, · · · , N) and then take θ = maxj θj.

Another way is to modify r1, r2, · · · , rN−1 one by one such that r1 ∈ [0,Φ], r2 ∈ [0,Φ − r1], r3 ∈
[0,Φ− r1 − r2], · · · , rN−1 ∈ [0,Φ− r1 − r2 · · · − rN−2].
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4.3 High-order time discretization

In this section, we extend the Euler forward time discretization to high-order ones which are convex

combinations of Euler forwards. In this paper, we use third-order strong stability preserving (SSP)

high-order time discretization to solve the ODE system ut = L(u):

u(1) =un + ∆tL(u, tn),

u(2) =
3

4
un +

1

4

(
u(1) + ∆tL(u(1), tn+1)

)
,

un+1 =
1

3
un +

2

3

(
u(2) + ∆tL(u(2), tn +

∆t

2
)

)
.

Another choice is third-order SSP multi-step method:

un+1 =
16

27
(un + 3∆tL(un, tn)) +

11

27
(un−3 +

12

11
∆tL(un−3, tn−3)).

More details can be found in [14, 15, 24].

5 Numerical experiments

In this section, we provide numerical experiments to test the accuracy and stability of the high-order

bound-preserving DG scheme. In all the examples, we choose N = 3, and consider �uid mixture

with 3 components. Moreover, we use the third-order SSP Runge-Kutta discretization in time and

P 2 element in space. The computational domain is set to be Ω = [0, 2π]× [0, 2π]. To construct Ωh,

we �rst equally divide Ω into M ×M rectangles and the triangles are obtained by equally divide

each rectangle into two. See Figure 2 for the mesh.

Figure 2: Triangular mesh (M = 10)
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Example 5.1. We set the initial conditions as

c1,0(x, y) =
1

6
(1 +

1

2
(cosx+ cos y)), c2,0(x, y) =

1

3
(1 + cosx cos y),

c3,0(x, y) = 1− c1,0(x, y)− c2,0(x, y), p0(x, y) = cosx cos y − 1,

and the source variables are taken as

c̃1(x, y, t) =
1

6
(1 +

1

2
e−γt(cosx+ cos y − 1

2
sinx cos y − 1

2
sin y cosx)),

c̃2(x, y, t) =
1

3
(1 + e−2γt(cosx cos y − 1

2
sin2 x cos2 y − 1

2
cos2 x sin2 y)),

c̃3(x, y, t) = 1− c̃1(x, y, t)− c̃2(x, y, t), q(x, y, t) = 2e−2t.

Other parameters are chosen as

φ(x, y) = µ(c1, c2) = k(x, y) = a(x, y, c1, c2) = z1 = z2 = z3 = 1, D(u) = diag(γ, γ).

It is easy to verify that the exact solutions are

c1(x, y, t) =
1

6
(1 +

1

2
e−γt(cosx+ cos y)), c2(x, y, t) =

1

3
(1 + e−2γt cosx cos y),

c3(x, y, t) = 1− c1(x, y, t)− c2(x, y, t), p(x, y, t) = e−2t(cosx cos y − 1).

In the numerical simulation, we choose γ = 0.01, �nal time T = 0.01 and ∆t = 0.001h2 to reduce

the time error. The computational results are shown in Table 1, illustrating the L2 error and

convergence orders for c1 and c2 with and without bound-preserving technique. From the table, we

observe optimal convergence rates. Therefore, the �ux limiter and slope limiter do not degenerate

the convergence order.

Example 5.2. We choose the initial conditions as

c1,0(x, y) =


1, x ≤ π

2
, y ≤ π

2
,

0, otherwise.

c2,0(x, y) =


1, x ≥ 3π

2
, y ≥ 3π

2
,

0, otherwise.

c3,0(x, y) = 1− c1,0(x, y)− c2,0(x, y) and p0(x, y) = cos(
x

2
) + cos(

y

2
).

Other parameters are taken as

z1 = z2 = 1, z3 = 10, q(x, y, t) = 0,D(u) = 0,

µ(c1, c2) = k(x, y) = a(x, y, c1, c2) = φ(x, y) = 1.
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c1 c2

no limiter with limiter no limiter with limiter

M L2 error order L2 error order L2 error order L2 error order

5 3.02e-3 � 4.61e-3 � 2.12e-2 � 2.39e-2 �

10 5.00e-4 2.59 5.30e-4 3.12 3.29e-3 2.69 3.47e-3 2.78

20 8.85e-5 2.50 8.86e-5 2.58 5.34e-4 2.63 5.34e-4 2.70

40 1.25e-5 2.82 1.25e-5 2.82 7.25e-5 2.88 7.25e-5 2.88

80 1.71e-6 2.87 1.71e-6 2.87 9.41e-6 2.95 9.41e-6 2.95

160 2.02e-7 3.09 2.02e-7 3.09 1.16e-6 3.02 1.16e-6 3.02

Table 1: Example 5.1: Accuracy test for c1 and c2 with and without bound-preserving technique.

(a) T=0.1 s (b) T=0.6 s

Figure 3: Example 5.2: Numerical approximations of c1 and c2
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We use this example to demonstrate the stability of the scheme. We choose D = 0, then the

di�usion term will not provide any dissipation to the scheme. We compute the components c1 and

c2 at time T = 0.1s and T = 0.6s, respectively, with M = 40 and ∆t = 0.001h2 (h = 2π
40 ). The

numerical results are shown as Figure 3. From the �gure we can see that the concentrations c1 and

c2 are between 0 and 1. To test the e�ectiveness of the bound-preserving technique, we simulate the

example without the bound-preserving limiters, and the numerical approximations blow up at about

0.003s even though we take time step size as small as ∆t = 0.0001h2. In [16], we demonstrated

that the reason for the blow-up of the numerical approximations is the ill-posedness of the system.

This example demonstrates the necessity of the bound-preserving technique in solving compressible

miscible displacements in porous media.

Example 5.3. We investigate the displacement of 3-phase porous media �ow in the �ve-spot ar-

rangement of injection and production wells. The computational domain is a square region taken

as quarter-of-a-�ve-spot pattern. The three phases are light oil c1 (with low viscosity and high com-

pressibility), heavy oil c2 (with high viscosity and low compressibility) and water c3 (with medium

viscosity and medium compressibility).

The initial concentrations of oil (water) are

c1,0(x, y) =


1, x ≤ π

2
, y ≤ π

2
,

0, otherwise.

c2,0(x, y) =


0, x ≤ π

2
, y ≤ π

2
,

1, otherwise.

c3,0(x, y) = 0.

Therefore, the lower-left part of the region is light oil enrichment area while the other part is heavy

oil enrichment area. Moreover, no water exists initially and the initial pressure is taken as 0 in

the whole computational domain. To simulate the random perturbation of porosity and permeability

around their average value, we choose the porosity and permeability as

φ(x, y) = 0.5 + 0.05 sin(5x) sin(5y) and k(x, y) = 1.0 + 0.1 cos(5x) cos(5y),

respectively. Other parameters are taken as

µ(c1, c2, c3) = 0.4c1 + 2.0c2 + 1.0c3, z1 = 1.2, z2 = 0.8, z3 = 1.0, D = diag(|u|, |u|).

The injection well is located in lower-left corner and production well is located in upper-right corner,

treated as δ sources.

This example is used for petroleum production simulations. We compute the components c1 and

c2 at time T = 0.2, 0.8 with M = 35 and ∆t = 0.001h2(h =
2π

35
). The distributions of c1, c2 and

c1 + c2 at di�erent time are shown in �gures 4a-4f, respectively. From the �gure we can see that c1,

c2 and c1 + c2 are all between 0 and 1.

Example 5.4. To show the signi�cance of the bound-preserving technique in real petroleum produc-

tion simulations, we choose the exact parameters in Example 5.3, except D = 0 in order to avoid

any dissipation to the scheme which is resulted from the di�usion term.
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(a) c1 at T=0.2 s (b) c1 at T=0.8 s

(c) c2 at T=0.2 s (d) c2 at T=0.8 s

(e) c1 + c2 at T=0.2 s (f) c1 + c2 at T=0.8 s

Figure 4: Example 5.3: Concentrations of c1, c2 and c1 + c2.
20



This example is used for petroleum production simulations when di�usion e�ect is negligible. We

compute the components c1 and c2 at time T = 0.2, 0.8 with M = 35 and ∆t = 0.001h2(h =
2π

35
).

The distributions of c1, c2, and c3 at di�erent time along diagonal y = x are shown in �gures 5a-5f,

respectively. From the �gures we can see that the concentrations c1, c2, and c3 are between 0 and 1.

However, the numerical approximations without bound-preserving limiters blow up at about

T = 0.25 if we take the same time step as before. The distribution of components along diagonal

at time T = 0.1, 0.2 are shown in �gures 6a-6f, from which we can observe strong oscillations and

physically irrelevant values. Further experiments show that, even though we take the time step

as small as ∆t = 0.0001h2, the numerical approximations still blow up at about T = 0.26, which

implies the necessity of the bound-preserving technique.

6 Concluding remarks

In this paper, we constructed high-order bound-preserving DG methods for compressible miscible

displacements in porous media on triangular meshes. We have applied the technique to the problem

with multi-component �uid mixtures. Numerical simulations shown the accuracy and necessity of

the bound-preserving technique.

References

[1] S. Bartels, M. Jensen and R. Müller, Discontinuous Galerkin �nite element convergence for in-

compressible miscible displacement problem of low regularity, SIAM Journal on Numerical Anal-

ysis, 47 (2009), 3720-3743.

[2] P. Bastian, A fully-coupled discontinuous Galerkin method for two-phase �ow in porous media

with discontinuous capillary pressure, Computational Geosciences, 18 (2014), 779-796.

[3] H.-Z. Chen and H. Wang, An optimal-order error estimate on an H1-Galerkin mixed method for

a nonlinear parabolic equation in porous medium �ow, Numerical Methods for Partial Di�erential

Equations, 26 (2010), 188-205.

[4] Z. Chen, H. Huang and J. Yan, Third order Maximum-principle-satisfying direct discontinuous

Galerkin methods for time dependent convection di�usion equations on unstructured triangular

meshes, Journal of Computational Physics, 308 (2016), 198-217.

[5] S.-H. Chou and Q. Li, Mixed �nite element methods for compressible miscible displacement in

porous media, Mathematics of Computation, 57 (1991), 507-527.

[6] A. Christlieb, Y. Liu, Q. Tang and Z. Xu, Parametrized Maximum-principle-preserving and

positivity-preserving �ux limiter for WENO schemes on unstructured meshes, Journal of Compu-

tational Physics, 281 (2015), 334-351.

21



0 1 2 3 4 5 6 7 8 9

position along diagonal

-0.5

0

0.5

1

1.5
v
o

lu
m

e
tr

ic
 c

o
n

c
e

n
tr

a
ti
o

n

(a) c1 at T=0.2 s

0 1 2 3 4 5 6 7 8 9

position along diagonal

-0.5

0

0.5

1

1.5

v
o

lu
m

e
tr

ic
 c

o
n

c
e

n
tr

a
ti
o

n

(b) c1 at T=0.8 s

0 1 2 3 4 5 6 7 8 9

position along diagonal

-0.5

0

0.5

1

1.5

v
o

lu
m

e
tr

ic
 c

o
n

c
e

n
tr

a
ti
o

n

(c) c2 at T=0.2 s

0 1 2 3 4 5 6 7 8 9

position along diagonal

-0.5

0

0.5

1

1.5

v
o

lu
m

e
tr

ic
 c

o
n

c
e

n
tr

a
ti
o

n

(d) c2 at T=0.8 s

0 1 2 3 4 5 6 7 8 9

position along diagonal

-0.5

0

0.5

1

1.5

v
o

lu
m

e
tr

ic
 c

o
n

c
e

n
tr

a
ti
o

n

(e) c3 at T=0.2 s

0 1 2 3 4 5 6 7 8 9

position along diagonal

-0.5

0

0.5

1

1.5

v
o

lu
m

e
tr

ic
 c

o
n

c
e

n
tr

a
ti
o

n

(f) c3 at T=0.8 s

Figure 5: Example 5.4: Concentrations of c1, c2 and c3 with limiters
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Figure 6: Example 5.4: Concentrations of c1, c2 and c3 without limiters
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