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Abstract

Wormhole propagation, arising in petroleum engineering, is used to describe the distribution of acid

and the increase of porosity in carbonate reservoir under dissolution of injected acid. The important

physical features of porosity and acid concentration include their boundedness between 0 and 1, as

well as the monotone increasing for porosity. How to keep these properties in the simulation is crucial

to the robustness of the numerical algorithm. In this paper, we propose high-order bound-preserving

discontinuous Galerkin methods to keep these important physical properties. The main technique is to

introduce a new variable r to replace the original acid concentration and use a consistent �ux pair to

deduce a ghost equation such that the positive-preserving technique can be applied on both original and

deduced equations. A high-order slope limiter is used to keep a polynomial upper bound which changes

over time for r. Moreover, the high-order accuracy is attained by the �ux limiter. Numerical examples are

given to demonstrate the high-order accuracy and bound-preserving property of the numerical technique.

Key Words: wormhole propagation, bound-preserving, high-order, discontinuous Galerkin method,

triangular meshes, �ux limiter

1 Introduction

As an important technique of enhanced oil recovery (EOR), acid treatment has been widely practiced in

carbonate reservoir to improve the productivity of oil wells. In this technique, acid is injected into wells to

dissolve the �nes deposed in wellbore and the rock near the wellbore. By doing so, the permeability and

porosity of the rock close to a well can be increased prominently, which facilitates oil �ow into production

well and thereby improves the production rate of oil.
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However, the e�ciency of this technique has a strong relevance with the dissolution patterns which depend

on the injection rate. With a very low injection rate, the acid only dissolves the face of wellbore since it will

be consummated all before they get into deeper region and this scenario is called face dissolution pattern.

In contrast, with a very high injection rate, the acid can be pushed uniformly into the wellbore region with

certain depth and this results is the so-called uniform dissolution pattern. In addition to the above two

extreme cases, with an appropriate injection rate, wormhole patterns can be formed as the injected acid in

the rock tends to �ow through the paths with high permeability and porosity, which causes the permeability

and porosity of these path to be further increased under the dissolution of acid, and facilitate more acid

to �ow through. Therefore, under optimal injection rate, maximum number of narrow channels with high

conductivity will be formed in the rocks after the acidizing process. These highly conducting channels, also

known as wormholes because of its shape, can build a good connectivity between reservoir and wellbore,

and improve the productivity of oil well enormously. Because of the important role that wormhole plays in

improving productivity, a lot of research works have been taken to investigate the formation and propagation

of wormholes.

In the early days, researchers investigated the wormhole propagation phenomenon by means of exper-

iments [11, 5]. Later, several mathematical models, such as dimensionless model, capillary tube model,

network model, and continuum models, were established to help people understand the process of wormhole

propagation. Among these models, the most popular one is the two-scale continuum model developed by

Panga et al. in [16], where the authors proposed a partial di�erential equations (PDE) system to describe

the formation and propagation of wormholes. There were a lot of follow-up works based on this model. In

[33], the authors analyzed the front instability of wormhole propagation theoretically and numerically. In

[15], Maheshwari et al. presented a 3D simulation for this model. A parallel simulation was conducted by

Wu et al. in [21] under a modi�cation of �ow equation. In [1], the authors studied the numerical-simulation

approach for a modi�ed model. Later, Wei et al. extended this model from single phase to two-phase �ow

in [19] and discussed the simulation results. Besides the above, many researchers designed speci�c numerical

schemes for this kind of models as well. In [12], the authors constructed a conservative scheme for �ow and

transport based on mixed �nite element method. Later, Li et al. applied �nite di�erence methods to this

problem in [13, 14]. Recently, the discontinuous Galerkin (DG) method was applied to this model in [8].

In all the above works, some theoretical works, such as the stability and error estimates, were established

under di�erent norms. However, to the best of our knowledge, no works has been undertaken to preserve

the boundedness of porosity and concentration of acid without loss of mass conservative. In fact, the bound-

edness of these variables is essential for the stability of numerical simulations. Firstly, the rate of change

of porosity φ in this model depends on the concentration of acid cf . If the exact solutions contain large

gradients or even discontinuities, the numerical approximations of cf can be negative, which further leads

to φ < 0 in some regions with low porosity. Secondly, the oscillations of φ itself near the wormhole may

also result in negative values. Both of the above two cases will bring a negative coe�cient in the di�usion

term of the transport equation, leading to ill-posedness of the problems, and �nally cause the blow-up of

the numerical simulations. We will demonstrate this feasibility by a numerical example in Section 6 and

show how bound-preserving technique can prevent the blow-up phenomenon. Moreover, as we will see in the

later section, many coe�cients in the model appear as functions of φ, which require φ to take values in the

physically relevant range [0, 1] as well. To construct high-order bound-preserving technique, we have to apply

suitable limiters to modify the numerical approximations. Therefore, we would like to use DG methods.

The DG methods become increasingly popular due to their good stability, high-order accuracy, and �ex-
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ibility on h-p adaptivity. In 2010, the genuinely maximum-princip le-satisfying high-order DG schemes were

constructed for conservation laws on rectangular meshes in [29] by Zhang and Shu. The basic idea is to take

the test function to be 1 in each cell to yield an equation satis�ed by the cell average of the target variable r,

and prove the desired boundedness of the cell average r̄. Then a slope limiter which do not a�ect accuracy

and mass conservation can be used to modify the variable r to obtain a new one r̃ = r̄+θ(r−r̄) such that r̃ has
the physically relevant bounds. In the case that the variable r only need a lower bound zero, this technique

is also called positivity-preserving technique. The physically positivity-preserving and bound-preserving

numerical schemes have been actively studied since then. In 2012, this technique has been successfully ex-

tended to triangular meshes in [30], where the general criteria for quadrature rule on triangular elements was

proposed. After that, this technique was applied to many problems including compressible Euler equations

with source terms [31], hyperbolic equations involving δ-singularities [26, 27], relativistic hydrodynamics

[17], extended MHD equations [34], shallow water equations [22], etc. For convection-di�usion equations,

the genuinely second-order maximum-principle-preserving technique were introduced in [32]. Subsequently,

the extension to third-order or even higher order bound-preserving techniques for parabolic equations were

also developed in [25, 2, 4]. Besides the above, the �ux limiter [24, 23, 10] can also be used to obtain the

high-order accuracy and maintain the boundedness. However, with the �ux limiters we have to modify the

numerical �uxes, hence the accuracy is not easy to analyze. Recently, in [9, 3], the authors studied miscible

displacements in porous media and applied the techniques introduced in [32, 10, 23, 24] to preserve the two

bounds, 0 and 1, of the volumetric fractions. In this paper, we will construct high-order bound-preserving

DG schemes for the porosity of the rocks φ and the concentration of the acid cf . However, there are signif-

icant di�erences from most of the previous techniques. First of all, most of the problems in [24, 29] satisfy

maximum-principles while the concentration of acid cf does not. To solve this problem, we derive a ghost

equation satis�ed by c = 1−cf and apply the positivity-preserving technique to both cf and c. Secondly, the

high-order positivity-preserving technique in this paper is based on the �ux limiter [23, 10]. The basic idea

is to combine higher order and lower order �uxes to construct a new one which can yield positive numerical

cell averages. However, for triangular meshes, �rst-order �uxes are not easy to construct. Therefore, we will

consider the second-order �ux as the lower order one. Moreover, to obtain the equation satis�ed by the cell

averages, we need to numerically approximate r = φcf instead of cf . By doing so, the upper bound of r

is not a constant and the traditional slope limiter may fail to work [9]. Therefore, a new bound-preserving

limiter will be introduced. A similar obstacle appeared in the design of high-order bound-preserving methods

for general relativistic hydrodynamics, see [20] for the discussion. Finally, di�erent from [9, 3], the porosity

is increasing and less than 1. Therefore, the upper bound of r is changing during time evolution and special

techniques will be introduced to make φ to be physically relevant. In summary, the whole algorithm can be

separated into four parts. We �rst apply positivity-preserving technique to obtain positive φt and use which

as another source to �nd the velocity and pressure. Then apply the positivity-preserving technique again

to φ and cf simultaneously to obtain positive numerical cell averages by the �ux limiter [23, 10]. Subse-

quently, we choose consistent �ux pair [9, 3] with suitable parameters in the �ux limiter in the concentration

and pressure equations to obtain the positivity of 1 − cf . Finally, we introduce suitable limiters to obtain

physically relevant numerical approximations.

The rest of the paper is organized as follows. In Section 2, we introduce the mathematical model of

wormhole propagation. In Section 3, we establish the DG scheme used in this paper. In Sections 4 and

5, we construct the second-order bound-preserving scheme and then extend it to high-order spatial and

time discretizations. Some numerical examples are given in Section 6. We will end in Section 7 with some
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concluding remarks.

2 Mathematical model

Let the computational domain Ω = [0, 2π]× [0, 2π] and simulation time J = [0, T ], the mathematical model

of the wormhole propagation is given as follows:

∂φ

∂t
+∇ · u = f, (x, y) ∈ Ω, 0 < t ≤ T, (2.1)

u =
−κ(φ)

µ
∇p, (x, y) ∈ Ω, 0 < t ≤ T, (2.2)

∂(φcf )

∂t
+∇ · (ucf ) = ∇ · (φD∇cf ) + kcav(cs − cf ) + fIcI − fP cf , (2.3)

∂φ

∂t
=
αkcav(cf − cs)

ρs
, (x, y) ∈ Ω, 0 < t ≤ T, (2.4)

where φ is the porosity which is de�ned as the percentage of the empty space in a rock, κ is the permeability

that measures the ability for a rock to allow �uid to pass through it, u is the Darcy's velocity de�ned as the

volume of �ow crossing a unit across-section per unit time, p is the pressure of �uid in porous media, and

µ is the viscosity of �uid. f = fI − fP is the external volumetric �ow rate with fI = max{f, 0} being the

injection �ow rate and fP = −min{f, 0} being the production �ow rate. cf , cs and cI are the concentrations

of acid in the �uid phase, the �uid-solid interface and in the injected �ow, respectively. D is the dispersion

tensor for the acid in porous media and kc is the local mass-transfer coe�cient. av is the interfacial area

available for reaction, ρs is the density of the rock and α is the dissolving constant of the acid, de�ned as

grams of solid dissolved per mole of acid reacted. Moreover, in the case of �rst order kinetic reaction, the

concentration cs of acid in the �uid-solid interface have a simple relationship with cf :

cs =
cf

1 + ks/kc
,

where ks is the kinetic constant for reaction. The coe�cients κ and av are functions of φ de�ned as

κ

κ0
=

φ

φ0

(
φ(1− φ0)

φ0(1− φ)

)2

,
av
a0

=
1− φ
1− φ0

, (2.5)

respectively, where κ0, a0, and φ0 are the initial values for κ, av, φ. Throughout this paper, the values

µ, kc, ks, α, ρs are positive constants, D, f, fI , fP , cI are known functions independent of time and φ,u, p, cf ,

are unknown time-dependent variables.

We consider impermeable boundary conditions

u · n = 0, (D∇c− cu) · n = 0,

where n is the unit outer normal of the boundary ∂Ω. The initial concentration and porosity are given as

cf (x, y, 0) = c0(x, y), φ(x, y, 0) = φ0(x, y), (x, y) ∈ Ω.

Before we �nish this section ,we would like to make an important reasonable hypothesis for the initial

porosity: 0 < φ? ≤ φ0(x, y) ≤ φ? < 1.
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3 The DG scheme

In this section, we will construct the DG scheme for wormhole propagation on triangular meshes. We �rst

demonstrate the notations to be used throughout the paper.

Consider a regular triangulation Ωh of domain Ω, i.e. ∃ρ > 0, such that diam(BK) ≥ ρ diam(K),∀K ∈
Ωh, where BK is the largest ball contained in K. For any triangle K ∈ Ωh, we denote the three edges of K to

be eiK (i = 1, 2, 3), with corresponding lengths `iK (i = 1, 2, 3), unit outer normal vectors νiK (i = 1, 2, 3) and

neighboring elements Ki(i = 1, 2, 3). We denote Γ =
⋃
K∈Ωh

{e|e ∈ ∂K} to be the set of all cell interfaces

and Γ0 = Γ \ ∂Ωh as all the interior ones. Set a predetermined constant unit vector ν0 which is not parallel

to any edge e and de�ne ne as the unit normal vector of each edge e ∈ Γ such that ne · ν0 > 0. For any

discontinuous function v (scalar or vector) crossing edge e, let v±e denote its traces on e evaluated from K

or Ki . The
′±′ for each edge eiK in the cell K is determined by the inner product of νiK and ν0 as follows:

v−e = vK , v+
e = vKi

, if ν0 · νiK > 0,

v+
e = vK , v−e = vKi , if ν0 · νiK < 0.

Moreover, we de�ne the jump and average of v (either a scalar or a vector) on the cell interface e as

[v]e = v+
e − v−e , {v}e =

1

2
(v+
e + v−e ).

The �nite element spaces are chosen as

Vh = {v : v|K ∈ P k(K), ∀K ∈ Ωh} and Wh = Vh × Vh,

where P k(K) denotes the space of polynomials of degree at most k in K. Then the semidiscrete DG scheme

for (2.1) - (2.4) can be written as: �nd φ, r, p ∈ Vh and u ∈ Wh such that for any ζ, ξ, v ∈ Vh and η ∈ Wh,

the following equations hold:(
∂φ

∂t
, ζ

)
= (u,∇ζ) +

∑
e∈Γ0

∫
e

û · ne[ζ]ds+ (f, ζ), (3.1)

(a(φ)u,η) = (p,∇ · η) +
∑
e∈Γ

∫
e

p̂ ne · [η]ds, (3.2)(
∂r

∂t
, ξ

)
= (ucf − φD∇cf ,∇ξ) +

∑
e∈Γ0

∫
e

ûcf · ne[ξ]ds+ (fIcI − fP cf −B1(φ)cf , ξ)

−
∑
e∈Γ0

∫
e

(
{φD(u)∇cf} · ne[ξ] + {φD(u)∇ξ} · ne[cf ] +

α̃

|e|
[cf ][ξ]

)
ds, (3.3)(

∂φ

∂t
, v

)
= (B2(φ)cf , v), (3.4)

where

a(φ) =
µ

k
,B1(φ) =

a0(1− φ)kskc
(1− φ0)(ks + kc)

, B2(φ) =
αa0(1− φ)kskc

ρs(1− φ0)(ks + kc)
.

Moreover, we use a new variable r instead of φcf on the left hand side of (3.3), and de�ne cf as the L2-

projection of r
φ if k ≥ 2, while take cf to be the interpolation of r

φ at the three vertices in each triangle K

if k = 1.
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Following the idea in [9, 3], we take a consistent �ux pair û, ûcf in the sense that û = ûcf when cf = 1.

The consistent �ux pair is used in the construction of the bound-preserving techniques. The numerical �uxes

û, ûcf and p̂ in (3.1)-(3.4) are chosen as

û|e = {u}e, p̂|e = {p}e, ûcf |e = {ucf}e − α[cf ]ene, if e ∈ Γ0,

û|e = 0, p̂|e = pK , ûcf |e = 0, if e ∈ ∂Ω ∩ ∂K. (3.5)

In the DG schemes, we introduced two penalty parameters α and α̃. These two parameters will be chosen

by the bound-preserving technique.

4 Second-order bound-preserving schemes

In this section, we will construct second-order bound-preserving scheme with forward Euler time discretiza-

tion. High-order time discretizations will be discussed in the next section. At time level n, we assume

φ0 < φn < 1 and 0 ≤ rn ≤ φn, and would like to construct physically relevant numerical approximations at

time level n+ 1, i.e. φn ≤ φn+1 < 1 and 0 ≤ rn+1 ≤ φn+1.

At time level n, we will �rst solve (3.4) for φnt , then substitute which to the left-hand side of (3.1). With

forward Euler time discretization, (3.1), (3.3) and (3.4) can be written as(
φn+1 − φn

∆t
, ζ

)
= (u,∇ζ) +

∑
e∈Γ0

∫
e

û · ne[ζ]ds+ (f, ζ), (4.1)

(
rn+1 − rn

∆t
, ξ

)
= (ucf − φD∇cf ,∇ξ) +

∑
e∈Γ0

∫
e

ûcf · ne[ξ]ds+ (fIcI − fP cf −B1(φ)cf , ξ)

−
∑
e∈Γ0

∫
e

(
{φD(u)∇cf} · ne[ξ] + {φD(u)∇ξ} · ne[cf ] +

α̃

|e|
[cf ][ξ]

)
ds, (4.2)

(
φn+1 − φn

∆t
, v

)
= (B2(φ)cf , v), (4.3)

with all the superscript n on the right hand sides being omitted for simplicity.

Remark 4.1. After the time discretization, there are two discrete evolution equations for φ. We use (4.3)

to �nd φn+1, then the discrete evolution for φ in (4.1) is treated as another source.

Because of the usage of consistent �ux pair û and ûcf , we can get a ghost equation for r2 by subtracting

(4.2) from (4.1) and introducing ghost variables c2 = 1− cf , c2I = 1− cI , r2 = φc2,(
rn+1
2 − rn2

∆t
, ξ

)
= (uc2 − φD∇c2,∇ξ) +

∑
e∈Γ0

∫
e

ûc2 · ne[ξ]ds+ (fIc2I − fP c2 +B1(φ)cf , ξ)

−
∑
e∈Γ0

∫
e

(
{φD(u)∇c2} · ne[ξ] + {φD(u)∇ξ} · ne[c2] +

α̃

|e|
[c2][ξ]

)
ds. (4.4)

Therefore, though we solve (4.1) and (4.2) in the real computation, we analyze (4.2) and (4.4) instead of the

former pair as the two forms are equivalent.

The second-order bound-preserving scheme is built and analyzed based on (4.2), (4.4) and (4.3).

In this paper, we use the quadrature rule of order k proposed in [28] to compute the integral in cells, and
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Figure 1: Distribution of quadrature points for k = 1 and k = 2.

use the corresponding k + 1 points Gaussian quadrature rule to evaluate integration on cell interfaces. The

quadrature rule of order k has the following crucial properties:

• All of the quadrature points lie in the cells with positive weights,

• The quadrature points contains k + 1 Gaussian quadrature points in each of its edges,

• It is exact for polynomials up to degree 2k − 1,

The distribution of quadrature points in the case of k = 1 and k = 2 are shown in Figure 1. We denote

xi,β , β = 1, 2, · · · , k + 1, as the quadrature points on eiK with w̃β being the corresponding weights, and

denote xγ , γ = 1, 2, · · · , L, as the quadrature points in cell K with ω̂γ being the corresponding weights.

Moreover, We denote ωβ , β = 1, 2, · · · , k + 1, as the k + 1 Gaussian quadrature weights on the reference

interval [− 1
2 ,

1
2 ]. Based on the above notations, we de�ne the values of o (o = r, c, φ, p, · · · ) at the quadrature

points as oi,βK = o(xi,β) along the boundary of K and oγK = o(xγ) in cell K.

In (3.4), we take v = 1 in K to obtain the equation satis�ed by the cell average of φ:

φ̄n+1
K = φ̄nK +4tB2(φn)cf . (4.5)

We will demonstrate how to preserve the monotonicity and the upper bound of φ̄n+1
K in the following lemma:

Lemma 4.1. Given 0 ≤ rn ≤ φn (0 ≤ cnf ≤ 1) and φn < 1, we have φ̄nK ≤ φ̄n+1
K < 1, if the time step

satis�es

4t < B−1
30 , (4.6)

where B30 is a constant de�ned as

B30 =
αa0kskc

ρs(1− φ?)(ks + kc)
.

Proof. De�ne B3(x) = αa0kskc
ρs(1−φ0(x))(ks+kc) . Then B3(x) is independent of time t and it's easy to check that

B2(x, φ) = B3(x) · (1− φ) ≤ B30 · (1− φ).
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Applying quadrature rule in [28] to (4.5) with enough algebraic order k, we have

φ̄n+1
K = φ̄nK +4tB2(φn)cf

= φ̄nK +4t

 3∑
i=1

k+1∑
β=1

ŵβ(B3)
i,β
K (1− φi,βK )(cf )i,βK +

L∑
γ=1

ŵγ(B3)
γ
K(1− φγK)(cf )γK


≥ φ̄nK

under the assumption 0 ≤ cnf ≤ 1 and φnK < 1. Moreover, we have

φ̄n+1
K = φ̄nK +4t

 3∑
i=1

k+1∑
β=1

ŵβ(B3)
i,β
K (1− φi,βK )(cf )i,βK +

L∑
γ=1

ŵγ(B3)
γ
K(1− φγK)(cf )γK


≤ φ̄nK +4t

 3∑
i=1

k+1∑
β=1

ŵβ(B3)
i,β
K (1− φi,βK ) +

L∑
γ=1

ŵγ(B3)
γ
K(1− φγK)


≤ φ̄nK +4t

 3∑
i=1

k+1∑
β=1

ŵβB30(1− φi,βK ) +

L∑
γ=1

ŵγB30(1− φγK)


= φ̄nK +4tB30

 3∑
i=1

k+1∑
β=1

ŵβ(1− φi,βK ) +

L∑
γ=1

ŵγ(1− φγK)


= φ̄nK +4tB30(1− φ̄nK).

Thus φ̄n+1
K < 1 under the condition (4.6).

The bound-preserving property for r̄n+1
K is relatively di�cult to derive. Therefore, instead of obtaining

0 ≤ r̄n+1
K ≤ φ̄n+1

K directly, we apply the positivity-preserving technique to r̄n+1
K and r̄n+1

2K in (4.2) and (4.4),

respectively, which further yields 0 ≤ r̄n+1
K ≤ φ̄n+1

K due to the fact that r̄n+1
K + r̄n+1

2K = φ̄n+1
K . To construct

the positivity-preserving technique, in (4.2), we take ξ = 1 in K to obtain the equation satis�ed by the cell

average of r

r̄n+1
K = Hc

K(r, cf ,u) +Hd
K(r, cf ,u, φ) +Hs

K(r, cf , cI , fP , fI , φ), (4.7)

where

Hc
K(r, cf ,u) =

1

3
r̄nK − λ

3∑
i=1

∫
eiK

ûcf · νiKds, (4.8)

Hd
K(r, cf ,u, φ) =

1

3
r̄nK + λ

3∑
i=1

∫
eiK

(
{D(u)∇c} · νiK +

α̃

`iK
[c]ne · νiK

)
ds, (4.9)

Hs
K(r, cf , cI , fP , fI , φ) =

1

3
r̄nK +4tfIcI − fP cf −B1(φ)cf , (4.10)

with λ = 4t
|K| being the ratio of time step and area of triangular element K, and fP cf − fIcI −B1(φ)cf being

the cell average of fP cf − fIcI −B1(φ)cf on K. We will demonstrate the positivity-preserving property for

r̄n+1
K by collecting the following three lemmas.
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Lemma 4.2. Given rn > 0 (cnf > 0), we have Hs
K(r, cf , cI , fP , fI , φ) > 0, if the time step satis�es

4t ≤ φ?
6fPM

, 4t ≤ φ?
6B1(φ?)

, (4.11)

where

fPM = max
i,β,γ
{(fP )i,βK , (fP )γK}.

Proof. We can split (4.10) as

Hs
K = 4tfIcI +

(
1

6
r̄nK −4tfP cf

)
+

(
1

6
r̄nK −4tB1(φ)cf

)
:= L1 + L2 + L3.

It is easy to check that L1 = 4tfIcI ≥ 0. We only need to consider L2 and L3. Applying quadrature rule

in [28] with enough algebraic order k to L2 and L3, respectively, we can get

L2 =
1

6
r̄nK −4tfP cf

=
1

6

 3∑
i=1

k+1∑
β=1

w̃βr
i,β
K +

L∑
γ=1

ŵγr
γ
K

−4t
 3∑
i=1

k+1∑
β=1

w̃β(fP )i,βK (cf )i,βK +

L∑
γ=1

ŵγ(fP )γK(cf )γK


=

3∑
i=1

k+1∑
β=1

w̃β

(
1

6
ri,βK −4t(fP )i,βK (cf )i,βK

)
+

L∑
γ=1

ŵγ

(
1

6
rγK −4t(fP )γK(cf )γK

)

≥
3∑
i=1

k+1∑
β=1

w̃β

(
1

6
ri,βK −4t(fP )i,βK ri,βK φ−1

?

)
+

L∑
γ=1

ŵγ

(
1

6
rγK −4t(fP )γKr

γ
Kφ
−1
?

)

=

3∑
i=1

k+1∑
β=1

w̃β

(
1

6
−4t(fP )i,βK φ−1

?

)
ri,βK +

L∑
γ=1

ŵγ

(
1

6
−4t(fP )γKφ

−1
?

)
rγK .

Thus L2 > 0 under the condition (4.11).

L3 =
1

6
r̄nK −4tB1(φ)cf

=
1

6

 3∑
i=1

k+1∑
β=1

w̃βr
i,β
K +

L∑
γ=1

ŵγr
γ
K

−4t
 3∑
i=1

k+1∑
β=1

w̃βB1(φi,βK )(cf )i,βK +

L∑
γ=1

ŵγB1(φγK)(cf )γK


=

3∑
i=1

k+1∑
β=1

w̃β

(
1

6
ri,βK −4tB1(φi,βK )(cf )i,βK

)
+

L∑
γ=1

ŵγ

(
1

6
rγK −4tB1(φγK)(cf )γK

)

≥
3∑
i=1

k+1∑
β=1

w̃β

(
1

6
ri,βK −4tB1(φi,βK )ri,βK φ−1

?

)
+

L∑
γ=1

ŵγ

(
1

6
rγK −4tB1(φγK)rγKφ

−1
?

)

=

3∑
i=1

k+1∑
β=1

w̃β

(
1

6
−4tB1(φi,βK )φ−1

?

)
ri,βK +

L∑
γ=1

ŵγ

(
1

6
−4tB1(φγK)φ−1

?

)
rγK

≥
3∑
i=1

k+1∑
β=1

w̃β

(
1

6
−4tB1(φ?)φ

−1
?

)
ri,βK +

L∑
γ=1

ŵγ

(
1

6
−4tB1(φ?)φ

−1
?

)
rγK .

Thus L3 > 0 under the condition (4.11). To sum up, Hs
K(r, cf , cI , fP , fI , φ) = L1 + L2 + L3 > 0 under the

condition (4.11).
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In the following two lemmas, we only consider second order scheme, i.e. we use P 1 element, and apply

quadrature rule in [28] with k = 1 in cell and the the corresponding 2 point Gaussian quadrature rule on

cell interface. Note that in this case, ω̂β = 1
3ωβ .

Lemma 4.3. Given rn > 0 (cnf > 0), we have Hc
K(r, cf ,u) > 0, if α satis�es

α ≥ max
i,β,K
{|ui,βK |}, (4.12)

and the time step satis�es

4t ≤ min
i,β,m
{ |K|φ(Vm)

9`iK(|ui,βK |+ α)
}, (4.13)

where φ(Vm), m = 1, 2, 3 are the values of φ at vertices Vm ∈ K at time level n.

Proof. Applying quadrature rule for k = 1, we can rewrite (4.8) as

Hc
K =

1

3
r̄nK − λ

3∑
i=1

∫
eiK

ûcf · νiKds

=
1

9

 3∑
i=1

2∑
β=1

wβr
i,β
K

− λ 3∑
i=1

2∑
β=1

wβ`
i
K(ûcf )i,β

eiK
· νiK

=

3∑
i=1

2∑
β=1

wβ

(
1

9
ri,βK − λ`

i
K(ûcf )i,β

eiK
· νiK

)

=

3∑
i=1

2∑
β=1

wβ

(
1

9
ri,βK − λ`

i
K

(
1

2
ui,βKi
· νiK(cf )i,βKi

+
1

2
ui,βK · ν

i
K(cf )i,βK − α(cf )

i,β
Ki

+ α(cf )
i,β
K

))

=

3∑
i=1

2∑
β=1

wβ

{(
1

18
ri,βK −

1

2
λ`iK

(
ui,βKi
· νiK(cf )i,βKi

− α(cf )
i,β
Ki

+ α(cf )
i,β
K

))

+

(
1

18
ri,βK −

1

2
λ`iK

(
ui,βK · ν

i
K(cf )i,βK − α(cf )

i,β
Ki

+ α(cf )
i,β
K

))}

:=

3∑
i=1

2∑
β=1

wβ

(
Li,β1 + Li,β2

)
.

Since cf and r are both approximated by linear functions, they can be represented as a linear combination

of their values on three vertices {V1, V2, V3} of K, i.e. for any point xρK ∈ K,

(cf )
ρ
K =

3∑
m=1

µρmcf (Vm), rρK =

3∑
m=1

µρmr(Vm) =

3∑
m=1

µρmφ(Vm)cf (Vm), (4.14)

where 0 ≤ µρ1, µ
ρ
2, µ

ρ
3 ≤ 1 and µρ1 + µρ2 + µρ3 = 1 are the barycentric coordinates of xρK in K. Then we have

Li,β1 =
1

18
ri,βK −

1

2
λ`iK

(
ui,βKi
· νiK(cf )i,βKi

− α(cf )
i,β
Ki

+ α(cf )
i,β
K

)
=

3∑
m=1

1

18
µi,βm φ(Vm)cf (Vm)− 1

2
λ`iK

(
ui,βKi
· νiK(cf )i,βKi

− α(cf )
i,β
Ki

+ α

3∑
m=1

µi,βm cf (Vm)

)

=

3∑
m=1

µi,βm

(
1

18
φ(Vm)− 1

2
λ`iKα

)
cf (Vm) +

1

2
λ`iK(α− ui,βKi

· νiK)(cf )
i,β
Ki
,

10



and

Li,β2 =
1

18
ri,βK −

1

2
λ`iK

(
ui,βK · ν

i
K(cf )i,βK − α(cf )

i,β
Ki

+ α(cf )
i,β
K

)
=

3∑
m=1

1

18
µi,βm φ(Vm)cf (Vm)− 1

2
λ`iK

(
ui,βK · ν

i
K

3∑
m=1

µi,βm cf (Vm)− α(cf )
i,β
Ki

+ α

3∑
m=1

µi,βm cf (Vm)

)

=

3∑
m=1

µi,βm

(
1

18
φ(Vm)− 1

2
λ`iK(ui,βK · ν

i
K + α)

)
cf (Vm) +

1

2
λ`iKα(cf )

i,β
Ki
.

Therefore Li,β1 , Li,β2 > 0 under the conditions (4.12) and (4.13), respectively, which further yieldsHc
K > 0.

Lemma 4.4. Given rn > 0 (cnf > 0), we have Hd
K(r, cf ,u, φ) > 0, if α̃ satis�es

α̃ ≥ (3 +
√

3)Λ

2ρ
, (4.15)

and the time step satis�es

∆t ≤ min
m
{ |K|φ(Vm)

18α̃
}, ∆t ≤ min

m
{ ρ|K|φ(Vm)

27(3 +
√

3)Λ
}, (4.16)

where φ(Vm), m = 1, 2, 3 are the values of φ at the vertices Vm ∈ K at time level n, ρ is the parameter used

in the de�nition of regularity of Ωh, and Λ is the largest spectral radius of D in K's.

Proof. For the di�usion part

Hd
K(r, cf ,u, φ) =

1

3
r̄nK + λ

3∑
i=1

∫
eiK

(
{D(u)∇cf} · νiK +

α̃

`iK
[cf ]ne · νiK

)
ds.

Since D is symmetric, following [32], we can rewrite the di�usion term as a directional derivative

D∇cf · νiK = DνiK · ∇cf = Si
∂cf
∂li

,

where Si = ‖DνiK‖ ≤ Λ and li = DνiK/‖DνiK‖. De�ne SiK = Si|K , SiKi
= Si|Ki

and liK = li|K ,
liKi

= li|Ki
. For each quadrature point xi,βK on the edge eiK , we can �nd the corresponding points x̃i,βK ∈ ∂K

and x̃i,βKi
∈ ∂Ki such that

−−−−−→
x̃i,βK xi,βK and

−−−−−→
xi,βK x̃i,βKi

are the same direction with liK and liKi
, respectively. See

Figure 2 for an illustration. At the quadrature point x = xi,βK , we have

{D(u)∇cf}i,βeiK · ν
i
K =

1

2
D(ui,βK )∇(cf )

i,β
K · ν

i
K +

1

2
D(ui,βKi

)∇(cf )
i,β
Ki
· νiK

=
1

2
Si,βK

(cf )i,βK − cf (x̃i,βK )

‖xi,βK − x̃
i,β
K ‖

+
1

2
Si,βKi

cf (x̃i,βKi
)− (cf )i,βKi

‖x̃i,βKi
− xi,βK ‖

=
Si,βK

2‖xi,βK − x̃
i,β
K ‖

(cf )i,βK −
Si,βKi

2‖x̃i,βKi
− xi,βK ‖

(cf )i,βKi
−

Si,βK
2‖xi,βK − x̃

i,β
K ‖

cf (x̃i,βK ) +
Si,βKi

2‖x̃i,βKi
− xi,βK ‖

cf (x̃i,βKi
).
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K

Ki

•
x̃i,βK

• xi,βK•
x̃i,βKi

eiK

νiK

Figure 2: The points chosen to evaluate directional derivative in the di�usion part.

Therefore, we can rewrite Hd
K(r, cf ,u, φ) as

Hd
K =

1

6
r̄nK +

1

6
r̄nK + λ

3∑
i=1

∫
eiK

(
{D(u)∇cf} · νiK +

α̃

`iK
[cf ]ne · νiK

)
ds

=
1

6
r̄nK +

1

18

3∑
i=1

2∑
β=1

wβr
i,β
K + λ

3∑
i=1

2∑
β=1

wβ`
i
K

(
{D(u)∇cf}i,βeiK · ν

i
K +

α̃

`iK
(cf )i,βKi

− α̃

`iK
(cf )i,βK

)

=
1

6
r̄nK +

1

18

3∑
i=1

2∑
β=1

3∑
m=1

wβµ
i,β
m φ(Vm)cf (Vm) + λ

3∑
i=1

2∑
β=1

wβ`
i
K

(
{D(u)∇cf}i,βeiK · ν

i
K +

α̃

`iK
(cf )i,βKi

− α̃

`iK
(cf )i,βK

)

=
1

6
r̄nK +

3∑
i=1

2∑
β=1

wβ

(
1

18

3∑
m=1

µi,βm φ(Vm)cf (Vm) + λ`iK

(
{D(u)∇cf}i,βeiK · ν

i
K +

α̃

`iK
(cf )i,βKi

− α̃

`iK
(cf )i,βK

))

:=

3∑
i=1

2∑
β=1

wβL
i,β
1 + L2,

where

Li,β1 =
1

18

3∑
m=1

µi,βm φ(Vm)cf (Vm) + λ`iK

[(
Si,βK

2‖xi,βK − x̃
i,β
K ‖
− α̃

`iK

)
(cf )i,βK +

(
α̃

`iK
−

Si,βKi

2‖x̃i,βKi
− xi,βK ‖

)
(cf )i,βKi

+
Si,βKi

2‖x̃i,βKi
− xi,βK ‖

cf (x̃i,βKi
)

]
,

L2 =
1

6
r̄nK − λ`iK

3∑
i=1

2∑
β=1

ωβS
i,β
K

2‖xi,βK − x̃
i,β
K ‖

cf (x̃i,βK ).
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h
BKi

Ki

s

θjKi

Figure 3: Triangle Ki and its sine

We need to make Li,β1 , L2 > 0. In fact

Li,β1 =
1

18

3∑
m=1

µi,βm φ(Vm)cf (Vm) + λ`iK

(
Si,βK

2‖xi,βK − x̃
i,β
K ‖
− α̃

`iK

)
(cf )i,βK

+ λ`iK

(
α̃

`iK
−

Si,βKi

2‖x̃i,βKi
− xi,βK ‖

)
(cf )i,βKi

+ λ`iK
Si,βKi

2‖x̃i,βKi
− xi,βK ‖

cf (x̃i,βKi
)

=

3∑
m=1

µi,βm

(
1

18
φ(Vm) + λ`iK

(
Si,βK

2‖xi,βK − x̃
i,β
K ‖
− α̃

`iK

))
cf (Vm)

+ λ`iK

(
α̃

`iK
−

Si,βKi

2‖x̃i,βKi
− xi,βK ‖

)
(cf )i,βKi

+ λ`iK
Si,βKi

2‖x̃i,βKi
− xi,βK ‖

cf (x̃i,βKi
).

Since Si,βK , Si,βKi
≤ Λ, to make Li,β1 > 0, we need

α̃ ≥ `iKΛ

2‖x̃i,βKi
− xi,βK ‖

, λ`iK

(
α̃

`iK
−

Si,βK
2‖xi,βK − x̃

i,β
K ‖

)
≤ 1

18
φ(Vm).

It's easy to compute that
`iK

‖x̃i,βKi
− xi,βK ‖

≤ 3 +
√

3

minj sin
(
θjKi

) ,
where the θjKi

is the angle in triangle Ki which is opposite to the edge ejKi
. From Figure 3 and regularity

assumption of Ωh, for all angle θ
j
Ki

in Ki, we have

sin θjKi
=
h

s
≥ diam(BKi

)

diam(Ki)
≥ ρ.

Therefore Li,β1 > 0 under the conditions (4.15) and (4.16). As for L2, similar to (4.14), we write

cf (x̃i,βK ) =

3∑
m=1

µ̃i,βm cf (Vm),
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with 0 ≤ µ̃i,βm ≤ 1 and

3∑
m=1

µ̃i,βm = 1, and use the fact that ω1 = ω2 = 1
2 . Then

L2 =
1

6
r̄nK − λ`iK

3∑
i=1

2∑
β=1

3∑
m=1

µ̃i,βm Si,βK
4‖xi,βK − x̃

i,β
K ‖

cf (Vm)

=

3∑
m=1

 1

18
φ(Vm)− λ`iK

3∑
i=1

2∑
β=1

µ̃i,βm Si,βK
4‖xi,βK − x̃

i,β
K ‖

 cf (Vm)

≥
3∑

m=1

 1

18
φ(Vm)− λ

3∑
i=1

2∑
β=1

(3 +
√

3)Λ

4ρ

 cf (Vm)

=

3∑
m=1

(
1

18
φ(Vm)− λ3(3 +

√
3)Λ

2ρ

)
cf (Vm).

Thus, L2 > 0 under the condition (4.16). Therefore we have Hd
K(r, cf ,u, φ) > 0 under the conditions (4.15)

and (4.16).

Collecting the three lemmas above, we have the following Lemma:

Lemma 4.5. Given rn > 0, and the parameters α and α̃ satisfy (4.12) and (4.15), respectively. Then

r̄n+1
K > 0 under the conditions (4.11), (4.13) and (4.16).

Compare the equation (4.4) with (4.2), we can observe that the equation for r2 is almost the same as

that for r, except that its source term contains a positive term +B1(φ)cf instead of −B1(φ)cf , which will

bene�t its positivity. Therefore, we can get a similar lemma for r2:

Lemma 4.6. Given rn2 > 0, and the parameters α and α̃ satisfy (4.12) and (4.15), respectively. Then

r̄n+1
2K > 0 under the conditions (4.11), (4.13) and (4.16).

Combine Lemmas 4.5, 4.6 and 4.1, and use the fact that rn + rn2 = φn, rn+1 + rn+1
2 = φn+1, we �nally

reach our main theorem:

Theorem 4.7. Given 0 ≤ rn ≤ φn < 1, if we chose consistent �ux pair û, ûcf and the penalty parameters

α and α̃ satisfying (4.12) and (4.15), respectively, then φ̄nK ≤ φ̄n+1
K < 1 and 0 ≤ r̄n+1

K ≤ φ̄n+1
K under the

conditions (4.6), (4.11), (4.13), and (4.16).

5 Bound-preserving technique for high-order schemes

In this section, we proceed to discuss the high-order bound-preserving technique.

5.1 High-order spatial discretization

In Lemmas 4.3 and 4.4, our proofs are based on P 1 elements. To attain high-order accuracy, we use P k(k > 2)

polynomials and apply the �ux limiters following [10, 23].
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We write (4.7) as

r̄n+1
K = r̄nK + λ

3∑
i=1

(
θeiK F̂eiK + (1− θeiK )f̂eiK

)
+ ∆ts̄,

where

F̂eiK = −
∫
eiK

ûcf · νids+

∫
eiK

(
{D(u)∇c} · νiK +

α̃

`iK
[cf ]

)
ds, s̄ = fIcI − fP cf −B1(φ)cf (5.1)

are high-order �ux and source, respectively, and f̂eiK is the second-order bound-preserving �ux analyzed

in Section 4. In lemma 4.2, we considered high-order approximations of the source term. Therefore, we

only discuss the modi�cation of the high-order �uxes in this section, which is implemented by choosing an

appropriate parameter θiK . The cell average can be written as

r̄n+1
K = r̄nK + λ

3∑
i=1

f̂eiK + λ

3∑
i=1

θeiK (F̂eiK − f̂eiK ) + ∆ts̄ = r̄n+1
L + λ

3∑
i=1

θeiK (F̂eiK − f̂eiK ),

where

r̄n+1
L = r̄nK + λ

3∑
i=1

f̂eiK + ∆ts̄

is the second-order cell average which was proved to be physically relevant if ∆t is su�ciently small. To

compute f̂eiK , we replace the high-order cf in F̂ei by a second-order approximation čf ∈ [0, 1]. To construct

it, we can simply apply the second-order L2 projection to the high-order rn to get řnK and high-order φn to

get φ̌nK , and then apply the limiter discussed at the end of this section with k = 1 to obtain 0 ≤ řnK ≤ φ̌nK .

The čf can be obtained as the linear interpolation of ř
n

φ̌n at the three vertices in each cell K. We choose the

parameter θeiK as follows:

1. For any K ∈ Ωh, set β
1
K , β

2
K = 0.

2. For each edge eiK , if F̂eiK − f̂eiK ≤ 0, set β1
K = β1

K + F̂eiK − f̂eiK , otherwise set β2
K = β2

K + F̂eiK − f̂eiK .

3. Take θK,eiK = min

{
−
r̄n+1
L

λβ1
K

,
φ̄n+1
K − r̄n+1

L

λβ2
K

, 1

}
.

4. For any e ∈ Γ0, we can �nd K1,K2 ∈ Ωh such that K1 ∩K2 = e. We take θe = min{θK1,eiK
, θK2,eiK

}.

The above algorithm can guarantee the monotone increasing and bound-preserving properties for the cell

averages of φ and r: if 0 ≤ rn ≤ φn < 1, then φ̄nK ≤ φ̄n+1
K < 1 and 0 ≤ r̄n+1

K ≤ φ̄n+1
K , under the appropriate

penalty parameters α, α̃ and su�ciently small time step 4t. It remains to use proper slope limiter to modify

φn+1
K and rn+1

K such that φnK ≤ φn+1
K < 1 and 0 ≤ rn+1

K ≤ φn+1
K without loss of cell average and accuracy.

As discussed in [9], the traditional slope limiter [29] cannot be applied since the bounds of φn+1
K , rn+1

K are

not constants but polynomials changing overtime. In this paper, we extend the limiter introduced in [3] and

the algorithm can be described as follows: For polynomials u(x), U(x) ∈ P k(K) such that 0 ≤ ū ≤ Ū and

U? ≤ U(x) ≤ U?, where U?, U? are two positive constants. We obtain a modi�ed ũ(x) in the following way:

1. De�ne Ŝ = {x ∈ K : u(x) < 0}. Take

û = u+ θ
( ū
Ū
U − u

)
, θ = max

y∈Ŝ

{
−u(y)Ū

ūU(y)− u(y)Ū
, 0

}
. (5.2)
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2. Set v = U − û, and repeat the above step for v to get v̂ .

3. Take ũ = U − v̂ as the new approximation for u(x).

This limiter is proved in [3] to have the following three necessary properties:

• boundness: 0 ≤ ũ(x) ≤ U(x),∀x ∈ K,

• average:
∫
K
ũdx =

∫
K
udx,

• accuracy: ‖u(x)− ũ(x)‖∞ ≤ Chk+1, h = diam(K).

We use such a slope limiter in the following way: To obtain φnK ≤ φ̃n+1
K < 1, we take u = φn+1

K − φnK and

U = 1 − φnK in the limiter, and then φ̃n+1
K = ũ + φnK ; To obtain 0 ≤ r̃n+1

K ≤ φ̃n+1
K , we take u = rn+1

K and

U = φ̃n+1
K to apply this limiter directly.

5.2 High-order time discretization

In the previous subsection, we only discussed the bound-preserving technique based on Euler forward time

discretization. The technique can be extended to high-order time integrations that are convex combinations

of Euler forwards. In this paper, we use third-order strong stability preserving (SSP) time discretization to

solve the ODE system ut = L(u):

u(1) =un + ∆tL(u, tn),

u(2) =
3

4
un +

1

4

(
u(1) + ∆tL(u(1), tn+1)

)
,

un+1 =
1

3
un +

2

3

(
u(2) + ∆tL(u(2), tn +

∆t

2
)

)
.

Another choice is to use third-order SSP multi-step method which is also a convex combination of forward

Euler:

un+1 =
16

27
(un + 3∆tL(un, tn)) +

11

27
(un−3 +

12

11
∆tL(un−3, tn−3)).

More details can be found in [6, 7, 18].

6 Numerical experiments

In this section, we provide numerical experiments to show the performance of the high-order bound-preserving

DG scheme. In all the examples, we use third-order SSP Runge-Kutta discretization in time and P 2 element

in space unless otherwise stated. To construct Ωh, for simplicity, we �rst equally divide Ω into N × N

rectangles and then obtain a uniform triangular mesh by equally dividing every rectangle into two. See

Figure 4 for an illustration. However, the algorithms can be applied for any unstructured triangular meshes.

Example 6.1. We �rst test the accuracy of the high-order bound-preserving DG scheme. Because of the

restriction 0 ≤ cI ≤ 1, f = fI − fP and fI , fP ≥ 0 of right hand side, it's di�cult to �nd a suitable exact
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Figure 4: Triangular mesh (N = 8)

solution. Therefore, we use periodic boundary condition and predetermine the Darcy's velocity u = (1, 1)T

in order to use spectral method to give a reference solution. Initial conditions are given as

cf (x, y, 0) = 0.5 + 0.5 cos(x) cos(y) φ(x, y, 0) = 0.5 + 0.4 sin(x) sin(y),

The source functions are taken as

fI = 2φt, fP = −φt, cI = 1,

where φt is obtained in the computation. The parameters are taken as:

D = 0.1‖u‖, kc = ks = a0 =
α

ρs
= 1

We use the uniform triangular meshes with N = 4, 8, 16, 32, 64, respectively, over the computational

domain Ω = [0, 2π]× [0, 2π] and set ∆t = 0.001h2 to reduce the time error. Moreover, the reference solution

is obtained by spectral method on 64 × 64 equispaced grid points with fourth-order Runge�Kutta time

discretization. The computational results at T = 0.01 are shown in Table 1, illustrating the error and

convergence order of cf and φ, with and without bound-preserving technique respectively. From the table,

we can observe optimal convergence rates. Therefore, the �ux limiter and slope limiter do not degenerate

the convergence order.

Example 6.2. We take the initial conditions with large gradients

cf (x, y, 0) =
sign(sin(2x) sin(2y)) + 1

2
, φ(x, y, 0) = 0.9

sign(sin(x) sin(y)) + 1

2
+ 0.05.

The source functions are taken as

fI = (1 +
π2

2
φ̄t) max{sin(2x) sin(2y), 0}, fP = −min{sin(2x) sin(2y), 0}, cI = 0,

where φ̄t is the average of φt over the whole computational domain. Other parameters are chosen as

µ = k0 = ks = kc = 1, a0 = 0.5, D(u) = 0.01.
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cf φ

no limiter with limiter no limiter with limiter

N L2 error order L2 error order L2 error order L2 error order

4 2.90e-1 � 9.48e-2 � 1.82e-1 � 1.11e-1 �

8 2.46e-2 3.56 1.21e-2 2.97 2.50e-2 2.87 1.50e-2 2.89

16 1.83e-3 3.74 1.16e-3 3.39 3.18e-3 2.97 1.91e-3 2.97

32 1.40e-4 3.71 1.47e-4 2.98 4.00e-4 2.99 2.39e-4 2.99

64 1.29e-5 3.47 1.53e-5 3.26 5.00e-5 3.00 2.99e-5 3.00

N L∞ error order L∞ error order L∞ error order L∞ error order

4 1.52e-1 � 2.45e-2 � 5.01e-2 � 2.64e-2 �

8 7.08e-3 4.42 3.61e-3 2.76 7.11e-3 2.82 3.98e-3 2.73

16 7.21e-4 3.29 6.21e-4 2.54 9.16e-4 2.96 5.20e-4 2.94

32 1.12e-4 2.69 1.33e-4 2.22 1.15e-4 2.99 6.56e-5 2.99

64 9.66e-6 3.53 1.53e-5 3.13 1.44e-5 3.00 8.22e-6 3.00

Table 1: Example 6.1: Accuracy test for cf and φ with and without bound-preserving technique.
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This example is used to demonstrate the necessity of the bound-preserving technique. The simulation

will blow up without the technique due to the negativity of φ in some region while the bound-preserving

scheme performs well.

We take N = 40 over the computational domain Ω = [0, 2π] × [0, 2π]. Moreover, we use P 1 element

in this example since it is more suitable to demonstrate the stability than higher order ones, and set the

time-step as small as ∆t = 0.001h2. All these e�ort is made to prevent the simulation without limiter from

blowing up.

However, numerical simulation shows that the simulation without bound-preserving technique blows

up at about T = 0.0155. The distributions of cf before blow-up is shown in Figure 5. While with the

(a) cf at T = 0.005s (b) cf at T = 0.015s

Figure 5: Evolution of cf without limiter

settings exactly the same, the simulation with bound-preserving technique is stable. The distribution of

cf with time evolution in this case is given in Figure 6. We can see that the numerical approximations

are high oscillatory. This is because the bound-preserving technique only preserves the bound but cannot

suppress the oscillations. Some suitable limiters such as TVD, TVB and WENO limiters can suitably smooth

the numerical approximations. Though oscillatory, the numerical simulation did not blow up. Therefore,

with the bound-preserving technique, the numerical scheme is quite stable. What's more, we plot the

evolution of extreme value of cf and φ in Ω along simulation time in Figure 7 to illustrate the e�ectiveness

of bound-preserving technique more clearly. We can observe that without the bound-preserving limiter, the

concentration of acid cf can be negative and greater than 1, and the porosity φ can also be negative, leading

to ill-posed problems. With the bound-preserving technique, all the numerical approximations are within

the physical bounds.

Example 6.3. We simulate a single wormhole propagation experiment in rectangular rock tube, from which

we can observe the formation and propagation of a wormhole starting from a singular point. The parameters
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(a) cf at T = 0.005s (b) cf at T = 0.015s

(c) cf at T = 0.030s (d) cf at T = 0.050s

Figure 6: Evolution of cf with limiter.
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Figure 7: Evolution of extreme value of cf and φ in Ω.
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are taken as

D = 0, K0 = 10−9m2, T = 15s,

α = 100kg/mol, kc = 1m/s, ks = 10m/s,

µ = 10−2Pa s, fI = fp = 0, cf0 = 0,

a0 = 2m−1, ρs = 2500kg/m2, φ0 = 0.2,

Moreover, the computational domain is Ω = [0, 0.2m]× [0, 0.2m].To investigate the phenomenon of wormhole

propagation, we set a singular area with high porosity φ = 0.4 and corresponding permeability determined

by (2.5) which is about 10−8m2 on the middle of the left boundary with size 0.01m × 0.01m. The left and

right boundary of the domain are Dirichlet conditions with pressure pd = 10000Pa and pd = −10000Pa,

respectively. The upper and lower boundaries of the domain are impermeable, i.e. u ·n = 0. The acid �ows

into the rock from the left boundary with a concentration of cI = 1mol/m2 and drained out of it from the

right boundary.

The contour plots of the concentration of acid and porosity of the rock at di�erent time are shown in

Figures 8-9, from which we can observe cf , φ ∈ [0, 1] and the phenomenon of wormhole propagation along

the whole simulation.

7 Concluding remarks

In this paper, we constructed high-order bound-preserving DG methods for wormhole propagation on trian-

gular meshes. We have obtained the bound-preserving and monotone-increasing properties for concentration

and porosity, respectively, with high-order accuracy. Numerical experiments have shown the accuracy and

e�ectiveness of the bound-preserving technique.
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