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1 Introduction

To increase the production rate, acid treatment of carbonate reservoirs has been widely

applied in oil and gas well stimulation techniques by increasing permeability of the dam-

aged zone near the well. The material near the well can be dissolved by the injectd acid

and flow channels that establish a good connectivity between the reservoir and the well

can be constructed. It is well known that the relative increase in permeability for a given

amount of acid is a strong function of the injection conditions and only at suitable flow

rates, wormholes (long conductive channels) are formed. These channels penetrate deep

into the formation and facilitate the flow of oil. Thus, for successful stimulation of a well

it is required to produce wormholes with optimum density and penetrating deep into the

formation.

The mathematical model of the wormhole propagation has been investigated inten-

sively [23, 9, 20, 24, 18, 11]. To the best knowledge, there are not too many works dis-
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cussing numerical simulations. Theoretical and numerical analyses of chemical-dissolution

front instability were investigated in [35]. Later, parallel simulation for wormhole propa-

gation was discussed in [28]. Subsequently, in [15], the authors applied the mixed finite

element method to the problem. The stability analysis and a priori error estimates for

velocity, pressure, concentration and porosity were established in different norms. More-

over, in [16] the authors considered block-centered finite difference method. However, the

scheme is only second-order accurate. To the best knowledge of the authors, no previous

work focused on discontinuous Galerkin (DG) methods for wormhole propagation. In this

paper, we would like to apply the high-order local discontinuous Galerkin (LDG) methods

for compressible wormhole propagation.

The DG method gained even greater popularity recently for good stability, high order

accuracy, and flexibility on h-p adaptivity and on complex geometry. The DG method was

first introduced in 1973 by Reed and Hill [21] in the framework of neutron linear transport.

Subsequently, Cockburn et al. developed Runge-Kutta discontinuous Galerkin (RKDG)

methods for hyperbolic conservation laws in a series of papers [4, 5, 6, 7]. In [8], Cockburn

and Shu first introduced the local discontinuous Galerkin (LDG) method to solve the

convection-diffusion equation. Their idea was motivated by Bassi and Rebay [1], where

the compressible Navier-Stokes equations were successfully solved. The idea of the LDG

method is to rewrite the equation with higher order derivatives into a first order system,

then apply the DG method to the system. With suitable numerical fluxes, the stability

and optimal error estimates can be proved for some model equations [29, 30, 31, 32]. As

an extension of DG schemes for hyperbolic conservation laws, the LDG methods share

the advantages of the DG methods. Besides, a key advantage of this scheme is the local

solvability, i.e. the auxiliary variables approximating the gradient of the solution can be

locally eliminated.

It is not easy to apply the LDG methods to wormhole propagation directly due to

the inter-element discontinuities of two independent solution variables. More precisely,

in this problem, the approximations of u in the convection term in (2.3) is discontinuous

across the cell interfaces and it is difficult to obtain the error estimates if we analyze

the convection and diffusion terms separately. To explain this point, let us consider the

following hyperbolic equation

ut + (a(x)u)x = 0,

where a(x) is discontinuous at x = x0. In [10, 14], the authors studied such a problem

and defined

Q =
a(x0 + b)− a(x0)

b
.

If Q is bounded from below for all b, then the solution exists, but may not be unique.
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If Q is bounded from above for all b, we can guarantee the uniqueness, but the solution

may not exist. Recently, Wang et al. [25, 26, 27] obtained optimal error estimates of the

LDG methods with IMEX time integration for linear and nonlinear convection-diffusion

problems. Subsequently, the idea has been applied to miscible displacements in porous

media [12, 13, 34], chemotaxis model [17] to obtain optimal rates of convergence. The key

idea is to explore an important relationship between the gradient and interface jump of

the numerical solution polynomial with the numerical approximation of auxiliary variable

for the gradient in the LDG methods, which is stated in Lemma 4.4. Moreover, the

systems are coupled together. Therefore, we will derive four energy inequalities to obtain

optimal error estimates in L∞(0, T ;L2) for concentration c, in L2(0, T ;L2) for s = −∇c,

in L∞(0, T ;L2) for porosity ϕ and in L∞(0, T ;L2) for pressure p.

The paper is organized as follows. In Section 2, we demonstrate the governing equations

of the compressible wormhole propagation. In Section 3, we present some preliminaries,

including the basic notations and norms to be used throughout the paper and the LDG

spatial discretization. Section 4 is the main body of the paper where we present the

projections and some essential properties of the finite element spaces, error equations

and the details of the optimal error estimates for compressible wormhole propagation.

Numerical results are given to demonstrate the accuracy and capability of the method in

Section 5. We will end in Section 6 with some concluding remarks.

2 Compressible wormhole propagation

In this section, we demonstrate the governing equations of the compressible wormhole

propagation. Let Ω = [0, 1]× [0, 1] be a rectangular domain in R2. The classical equations

governing the compressible wormhole propagation in two space dimensions are as follows

[16, 15]:

γ
∂p

∂t
+

∂ϕ

∂t
+∇ · u = f, (x, y) ∈ Ω, 0 < t ≤ T, (2.1)

u =
−κ(ϕ)

µ
∇p, (x, y) ∈ Ω, 0 < t ≤ T, (2.2)

∂(ϕcf )

∂t
+∇ · (ucf ) = ∇ · (ϕD∇cf ) + kcav(cs − cf ) + fpcf + fIcI , (2.3)

∂ϕ

∂t
=

αkcav(cf − cs)

ρs
, (x, y) ∈ Ω, 0 < t ≤ T, (2.4)

where p and u are the pressure in the fluid mixture, the Darcy velocity of the mixture

(volume flowing across a unit across-section per unit time), respectively. µ is the viscosity

and γ is a pseudo-compressibility parameter that results in slight change of the density of

the fluid phase in the dissolution process. f = fI + fp is the external volumetric flow rate
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with fP and fI being the production and injection rates, respectively. cf is the cup-mixing

concentration of the acid in the fluid phase. cI is the injected concentration. Following

[16], we consider only molecular diffusion, so that D = dmI with I being the identity

matrix. In this paper the tensor matrix D is assumed to be positive definite. Moreover,

the pressure is uniquely determined up to a constant, thus we assume
∫
Ω pdxdy = 0 at

t = 0. kc is the local mass-transfer coefficient, av is the interfacial area available for

reaction per unit volume of the medium. The variable cs is the concentration of the acid

at the fluid-solid interface given as

cs =
cf

1 + ks/kc
, (2.5)

where ks is the surface reaction rate constant. ϕ and κ in the first term on the right

hand side of (2.2) are the porosity and permeability of the rock, respectively and the

relationship between the permeability and the porosity is established by the Carman-

Kozeny correlation [19]

κ

κ0
=

ϕ

ϕ0

(
ϕ(1− ϕ0)

ϕ0(1− ϕ)

)2

, (2.6)

where ϕ0 and κ0 are the initial porosity and permeability of the rock, respectively. There-

fore, we can consider κ as a function of ϕ, and it is easy to derive

1

κ(ϕ)
= κ−1(ϕ) =

ϕ0

ϕκ0

(
ϕ0(1− ϕ)

ϕ(1− ϕ0)

)2

.

In (2.4), α is the dissolving power of the acid and ρs is the density of the solid phase.

Using porosity and permeability, av is shown as

av
a0

=
ϕ

ϕ0

√
κ0ϕ

κϕ0
=

1− ϕ

1− ϕ0
, (2.7)

where a0 is the initial interfacial area. In this problem, the initial concentration are

pressure are given as

cf (x, y, 0) = c0(x, y), p(x, y, 0) = p0(x, y), ϕ(x, y, 0) = ϕ0(x, y), (x, y) ∈ Ω.

For simplicity, we consider periodic boundary condition in this paper. The analysis for

homogeneous Neumann boundary can be obtained following the same lines with some

minor changes, and we thus omit it.

Finally, we make the following hypotheses (H) for the problem.

1. 0 < ϕ∗ ≤ ϕ(x, y) ≤ ϕ∗ < 1.
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2. D is uniformly Lipschtiz continuous, and for any v, w ∈ R2 there exist two positive

constants D∗, D
∗ such that vTDv ≥ D∗v

Tv = D∗∥v∥2 and vTDw ≤ D∗∥v∥∥w∥,
where ∥v∥ is the standard Euclidian norm in R2.

3. γ, α, ρs, µ, kc, and ks are all given positive constants, and 0 < ϕ0∗ ≤ ϕ0 ≤ ϕ∗
0 < 1,

0 < a0∗ ≤ a0 ≤ a∗0.

4. cf , ϕ, cf t, ϕt,u and s = −∇cf are uniformly bounded in R2 × [0, T ].

It is easy to obtain the following lemma

Lemma 2.1 Suppose hypotheses 1 and 3 are satisfied, then av(ϕ) and κ−1(ϕ) are bounded

and Lipschitz continuous, i.e. there exists C such that

av(ϕ) ≤ C, κ−1(ϕ) ≤ C, |av(ϕ1)−av(ϕ2)| ≤ C|ϕ1−ϕ2| |κ−1(ϕ1)−κ−1(ϕ2)| ≤ C|ϕ1−ϕ2|.

3 Preliminaries

In this section, we will demonstrate some preliminary results that will be used throughout

the paper.

3.1 Basic notations

In this section, we present the notations. Let 0 = x 1
2
< · · · < xNx+

1
2
= 1 and 0 =

y 1
2
< · · · < yNy+

1
2
= 1 be the grid points in the x and y directions, respectively. Define

Ii = (xi− 1
2
, xi+ 1

2
) and Jj = (yj− 1

2
, yj+ 1

2
). Let K = Ii × Jj , i = 1, · · · , Nx, j = 1, · · · , Ny,

be a partition of Ω and denote Ωh = {K}. The mesh sizes in the x and y directions are

given as ∆xi = xi+ 1
2
− xi− 1

2
and ∆yj = yj+ 1

2
− yj− 1

2
, respectively and h = max{max

i
∆xi,

max
j

∆yj}. Moreover, we assume the partition is quasi-uniform, i.e. there exists a positive

constant λ such that h ≤ λhmin, where hmin = min{min
i

∆xi, min
j

∆yj}. The finite element

space is chosen as

W k
h = {z : z|K ∈ Qk(K),∀K ∈ Ωh},

where Qk(K) denotes the space of tensor product polynomials of degrees at most k in

K. Note that functions in W k
h are discontinuous across element interfaces. This is one of

the main differences between the DG method and traditional finite element method. We

choose β = (1, 1)T to be a fixed vector that is not parallel to any normals of the element

interfaces. We denote Γh to be the set of all element interfaces and Γ0 = Γh\∂Ω. Let

E ∈ Γ0 be an interior edge shared by elements Kℓ and Kr, where β ·nℓ > 0, and β ·nr < 0,

respectively, with nℓ and nr being the outward normals of Kℓ and Kr, respectively. For

any z ∈ W k
h , we define z− = z|∂Kℓ

and z+ = z|∂Kr , respectively. The jump is given
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as [z] = z+ − z−. Moreover, for s ∈ Wk
h = W k

h × W k
h , we define s+ and s− and [s]

analogously. We also define ∂Ω− = {E ∈ ∂Ω|β · n < 0}, where n is the outer normal of E ,
and ∂Ω+ = ∂Ω\∂Ω−. For any E ∈ ∂Ω−, there exists K ∈ Ωh such that E ∈ ∂K, we define

z+|E = z|∂K , and define z− on ∂Ω+ analogously. For simplicity, given E = {x 1
2
}×Jj ∈ ∂Ω−

and Ẽ = {xNx+
1
2
} × Jj ∈ ∂Ω+, by periodic boundary condition, we define

z−|E = z−|Ẽ , and z+|Ẽ = z+|E .

Similarly, given E = Ii × {y 1
2
} ∈ ∂Ω− and Ẽ = Ii × {yNy+

1
2
} ∈ ∂Ω+, we define

z−|E = z−|Ẽ , and z+|Ẽ = z+|E .

Throughout this paper, the symbol C is used as a generic constant which may appear

differently at different occurrences. Moreover, the symbol ϵ is a sufficiently small positive

constant.

3.2 Norms

In this subsection, we define several norms that will be used throughout the paper.

Denote ∥u∥0,K to be the standard L2 norm of u in cell K. For any natural number ℓ,

we consider the norm of the Sobolev space Hℓ(K), defined by

∥u∥ℓ,K =

 ∑
0≤α+β≤ℓ

∥∥∥∥ ∂α+βu

∂xα∂yβ

∥∥∥∥2
0,K


1
2

.

Moreover, we define the norms on the whole computational domain as

∥u∥ℓ =

 ∑
K∈Ωh

∥u∥2ℓ,K

 1
2

.

For convenience, if we consider the standard L2 norm, then the corresponding subscript

will be omitted.

Let ΓK be the edges of K, and we define

∥u∥2ΓK
=

∫
∂K

u2ds.

We also define

∥u∥2Γh
=

∑
K∈Ωh

∥u∥2ΓK
.

Moreover, we define the standard L∞ norm of u in K as ∥u∥∞,K , and define the L∞

norm on the whole computational domain as

∥u∥∞ = max
K∈Ωh

∥u∥∞,K .
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Finally, we define similar norms for vector u = (u1, u2)
T as

∥u∥2ℓ,K = ∥u1∥2ℓ,K+∥u2∥2ℓ,K , ∥u∥2ΓK
= ∥u1∥2ΓK

+∥u2∥2ΓK
, ∥u∥∞,K = max{∥u1∥∞,K , ∥u2∥∞,K}.

Similarly, the norms on the whole computational domain are given as

∥u∥2ℓ =
∑

K∈Ωh

∥u∥2ℓ , ∥u∥2Γh
=

∑
K∈Ωh

∥u∥2ΓK
, ∥u∥∞ = max

K∈Ωh

∥u∥∞,K .

3.3 LDG scheme

Applying (2.5)-(2.7), we can transform the nonlinear system (2.1)-(2.4) into

γ
∂p

∂t
+

∂ϕ

∂t
+∇ · u = f, (3.1)

u =
−κ(ϕ)

µ
∇p, (3.2)

∂(ϕcf )

∂t
+∇ · (ucf )−∇ · (ϕD∇cf ) +Aav(ϕ)cf = fpcf + fIcI , (3.3)

∂ϕ

∂t
= Bav(ϕ)cf , (3.4)

where A = kcks
kc+ks

, B = αkcks
ρs(kc+ks)

and av(ϕ) =
a0(1−ϕ)
1−ϕ0

. Then we introduce some auxiliary

variables to represent the derivatives of the solution which further yields a first order

system:

γ
∂p

∂t
+

∂ϕ

∂t
+∇ · u = f, (3.5)

µ

κ(ϕ)
u+∇p = 0, (3.6)

∂(ϕcf )

∂t
+∇ · (ucf ) +∇ · z+Aav(ϕ)cf = fpcf + fIcI , (3.7)

s = −∇cf , (3.8)

z = ϕDs, (3.9)

∂ϕ

∂t
= Bav(ϕ)cf . (3.10)
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We multiply (3.5)-(3.10) with test functions and formally integrate by parts in K to obtain(
γ
∂p

∂t
, ζ

)
K

+

(
∂ϕ

∂t
, ζ

)
K

= (u,∇ζ)K − ⟨u · νK , ζ⟩∂K + (f, ζ)K ,(
µ

κ(ϕ)
u,θ

)
K

= (p,∇ · θ)K − ⟨p,θ · νK⟩∂K ,

((ϕcf )t, v)K = (ucf + z,∇v)K − ⟨(ucf + z) · νK , v⟩∂K
−(Aav(ϕ)cf , v)K + (fpcf + fIcI , v)K ,

(s,w)K = (cf ,∇ ·w)K − ⟨cf ,w · νK⟩∂K ,

(z,ψ)K = (ϕDs,ψ)K ,

(ϕt, β)K = (Bav(ϕ)cf , β)K ,

where ζ, v, β ∈ W k
h , θ,w,ψ ∈ Wk

h, (u, v)K =
∫
K uvdxdy, (u,v)K =

∫
K u · vdxdy,

⟨u, v⟩∂K =
∫
∂K uvds and νK is the outer unit normal of K. Replacing the exact solutions

cf , p, ϕ, s, z, u in the above equations by their numerical approximations ch, ph, ϕh ∈
W k

h and sh, zh, uh ∈ Wk
h, respectively and using numerical fluxes along the cell interfaces,

we can obtain the LDG scheme: for any t ∈ [0, T ],(
γ
∂ph
∂t

, ζ

)
K

+

(
∂ϕh

∂t
, ζ

)
K

= Ld
K(uh, ζ) + (f, ζ)K (3.11)(

µ

κ(ϕh)
uh,θ

)
K

= DK(ph,θ) (3.12)

((ϕcf )t, v)K = Lc
K(uh, ch, v) + Ld

K(zh, v)

+(fpch + fIcI , v)K − (Aav(ϕh)ch, v)K (3.13)

(sh,w)K = DK(ch,w) (3.14)

(zh,ψ)K = (ϕhDsh,ψ)K (3.15)

(ϕht, β)K = (Bav(ϕh)ch, β)K (3.16)

where

Lc
K(s, c, v) = (sc,∇v)K − ⟨ŝc · νK , v⟩∂K ,

Ld
K(s, v) = (s,∇v)K − ⟨ŝ · νK , v⟩∂K ,

DK(c,w) = (c,∇ ·w)K − ⟨ĉ,w · νK⟩∂K .

The main error estimate requires the following initial discretization whose proof follows

from Lemma 4.2 directly, and we thus omit it.
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3.4 The main theorem

We will use several special projections in this paper. Firstly, we define P+ into W k
h which

is, for each cell K

(P+u− u, v)K = 0, ∀v ∈ Qk−1(K),∫
Jj

(P+u− u)(xi− 1
2
, y)v(y)dy = 0, ∀v ∈ P k−1(Jj),∫

Ii

(P+u− u)(x, yj− 1
2
)v(x)dx = 0, ∀v ∈ P k−1(Ii),

(P+u− u)(xi− 1
2
, yj− 1

2
) = 0,

where P k denotes the polynomials of degree k. Moreover, we also define Π−
x and Π−

y into

W k
h which are, for each cell K,

(Π−
x u− u, vx)K = 0, ∀v ∈ Qk(K),∫

Jj

(Π−
x u− u)(xi+ 1

2
, y)v(y)dy = 0, ∀v ∈ P k(Jj),

(Π−
y u− u, vy)K = 0, ∀v ∈ Qk(K),∫

Ii

(Π−
y u− u)(x, yj+ 1

2
)v(x)dx = 0, ∀v ∈ P k(Ii),

as well as a vectored-valued projection Π− = Π−
x ⊗ Π−

y . Finally, we also use the L2-

projection Pk into W k
h which is, for each cell K

(Pku− u, v)K = 0, ∀v ∈ Qk(K), (3.17)

and its two dimensional version Pk = Pk⊗Pk. For the special projections given above, we

will demonstrate the following lemma by the standard approximation theory [3].

Lemma 3.1 We choose the initial solution as

ch(x, y, 0) = P+c0, ϕh(x, y, 0) = Pkϕ0 ph(x, y, 0) = Π+p0, (3.18)

then we have

∥cf (x, y, 0)− ch(x, y, 0)∥ ≤ Chk+1,

∥p(x, y, 0)− ph(x, y, 0)∥ ≤ Chk+1,

∥ϕ(x, y, 0)− ϕh(x, y, 0)∥ ≤ Chk+1.

We use alternating fluxes for the diffusion term and take

ẑh = z−h , ĉh = c+h , ûh = u−
h , p̂h = p+h .
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For the convection term, we take

ûhch =
1

2
(u+

h c
+
h + u−

h c
−
h − ανe(c

+
h − c−h )),

where α ≥ 0 can be chosen as any fixed constant independent of h and νe is the unit

normal of e ∈ Γ0 such that β · νe > 0. Moreover, we define

(u, v) =
∑

K∈Ωh

(u, v)K , (u,v) =
∑

K∈Ωh

(u,v)K ,

and

Lc(s, c, v) =
∑

K∈Ωh

Lc
K(s, c, v), Ld(s, v) =

∑
K∈Ωh

Ld
K(s, v), D(c,w) =

∑
K∈Ωh

DK(c,w).

It is easy to check the following identity by integration by parts on each cell

Lemma 3.2 For any functions v and w,

Ld(w, v) +D(v,w) = 0. (3.19)

Now we state the main theorem.

Theorem 3.1 Let cf ∈ L∞(0, T ;Hk+3), s ∈ L∞(0, T ; (Hk+2)2),u ∈ L∞(0, T ; (Hk+2)2),

ϕ ∈ L∞(0, T ;Hk+3) be the exact solutions of the problem (3.5)-(3.10), and let uh, ph, ch,

sh, zh, ϕh be the numerical solutions of the semi-discrete LDG scheme (3.11)-(3.16) with

initial discretization given as (3.18). If the finite element space is the piecewise tensor

product polynomials of degree at most k and h is sufficiently small, then we have the error

estimate

∥cf − ch∥L∞(0,T ;L2) + ∥s− sh∥L2(0,T ;L2)

+∥p− ph∥L∞(0,T ;L2) + ∥ϕ− ϕh∥L∞(0,T ;L2) ≤ Chk+1, (3.20)

where the constant C is independent of h.

4 The proof of the main theorem

In this section, we proceed to the proof of Theorem 3.1. We first introduce several projec-

tions and present some auxiliary results. Subsequently, we make an a priori error estimate

which provides the boundedness of the numerical approximations. Then we construct

the error equations which further yield several main energy inequalities and complete the

proof of (3.20). Finally, we verify the a priori error estimate at the end of this section.
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4.1 Projections and interpolation properties

In this section, we will demonstrate the projections and several useful lemmas. Let us

start with the classical inverse properties [3].

Lemma 4.1 Assume u ∈ W k
h , then there exists a positive constant C independent of h

and u such that

h∥u∥∞,K + h1/2∥u∥ΓK
≤ C∥u∥K .

Lemma 4.2 Suppose w ∈ Hk+1(Ω), then for any project Ph, which is either P+, Π−
x , Π

−
y

or Pk, we have

∥w − Phw∥+ h1/2∥w − Phw∥Γh
≤ Chk+1.

Moreover, the projection P+ on the Cartesian meshes has the following superconvergence

property [2].

Lemma 4.3 Suppose w ∈ Hk+2(Ω), then for any ρ ∈ Wh we have

|D(w − P+w,ρ)| ≤ Chk+1∥w∥k+2∥ρ∥. (4.1)

In this paper, we use e to denote the error between the exact and numerical solutions, i.e.

ec = cf − ch, ep = p − ph, eu = u − uh, es = s − sh, ez = z − zh, eϕ = ϕ − ϕh. As the

general treatment of the finite element methods, we split the errors into two terms as

ec = ξc − ηc, ηc = P+cf − cf , ξc = P+cf − ch,
ep = ξp − ηp, ηp = P+p− p, ξp = P+p− ph,
eu = ξu − ηu, ηu = Π−u− u, ξu = Π−u− uh,
es = ξs − ηs, ηs = Pks− s, ξs = Pks− sh,
ez = ξz − ηz, ηz = Π−z− z, ξz = Π−z− zh,
eϕ = ξϕ − ηϕ, ηϕ = Pkϕ− ϕ, ξϕ = Pkϕ− ϕh.

Based on the above natations, it is easy to verify that

Ld(ηu, v) = Ld(ηz, v) = 0, ∀v ∈ Qk(K). (4.2)

Following [25, 26, 27, 33] with some minor changes, we have the following lemma

Lemma 4.4 Suppose ξc and ξs are defined above, we have

∥∇ξc∥ ≤ C(∥ξs∥+ hk+1), h−
1
2 ∥[ξc]∥Γh

≤ C(∥ξs∥+ hk+1).
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4.2 A priori error estimate

In this subsection, we would like to make an a priori error estimate assumption that

∥cf − ch∥+ ∥ϕ− ϕh∥ ≤ h, (4.3)

which further implies

∥ch∥∞ + ∥ϕh∥∞ ≤ C (4.4)

by hypothesis 4. Moreover, by Hypothesis 1, we can obtain

∥ϕh∥∞ ≥ C, κ−1(ϕh) ≥ C. (4.5)

Finally, by Lemma 2.1, we have

av(ϕh) ≤ C, κ−1(ϕh) ≤ C. (4.6)

4.3 Error equations

In this subsection, we proceed to construct the error equations. From (3.11)-(3.16), we

have the following error equations(
γ
∂ep
∂t

+
∂eϕ
∂t

, ζ

)
= Ld(eu, ζ), (4.7)(

µ

κ(ϕ)
u− µ

κ(ϕh)
uh,θ

)
= D(ep,θ), (4.8)

((ϕcf )t − (ϕhch)t, v) = Lc(u, cf , v)− Lc(uh, ch, v) + Ld(ez, v)

− (A(av(ϕ)cf − av(ϕh)ch), v) + (fpec, v), (4.9)

(es,w) = D(ec,w), (4.10)

(ez,ψ) = (D(ϕs− ϕhsh),ψ), (4.11)

(eϕt, β) = (B(av(ϕ)cf − av(ϕh)ch), β), (4.12)

for any v, ζ, β ∈ W k
h and w, ψ, θ ∈ Wk

h.

4.4 The first energy inequality

In this subsection, we will derive the first energy inequality. Taking v = ξc, w = ξz, ψ =

−ξs in (4.9), (4.10) and (4.11), respectively, and using Lemma 3.2 and (4.2), we can obtain(
ϕh

∂ξc
∂t

, ξc

)
+ (Dϕhξs, ξs) = R1 +R2 +R3 +R4 +R5 +R6, (4.13)

12



where

R1 =

(
ϕh

∂ηc
∂t

, ξc

)
− (cf tξϕ, ξc) + (cf tηϕ, ξc)− (ϕtξc, ξc) + (ϕtηc, ξc)

−(chξϕt, ξc) + (chηϕt, ξc)

R2 = (Dϕhηs, ξs)− (Dsξϕ, ξs) + (Dsηϕ, ξs),

R3 = (ucf − uhch,∇ξc) +
∑
e∈Γe

⟨ucf − ûhch · νe, [ξc]⟩e

R4 = −D(ηc, ξz),

R5 = (ηs, ξz)− (ηz, ξs) + (fpec, ξc),

R6 = −(A(av(ϕ)cf − av(ϕh)ch), ξc),

where Γe = Γ0 ∪ ∂Ω− and ⟨u, v⟩e =
∫
e uv ds. Now, we estimate Ri (i = 1, · · · , 6) term by

term. Using hypotheses 4 and (4.4), we can get

R1 ≤ C∥ξc∥
(
∥ηct∥+ ∥ξϕ∥+ ∥ηϕ∥+ ∥ξc∥+ ∥ηc∥+ ∥ξϕt∥+ ∥ηϕt∥

)
≤ C

(
∥ξc∥2 + ∥ξϕ∥2 + ∥ξϕt∥

2 + h2k+2
)
, (4.14)

where the second step requires Lemma 4.2. Use hypotheses 2, 4 and Lemma 4.2 again to

obtain

R2 ≤ C∥ξs∥ (∥ηs∥+ ∥ξϕ∥+ ∥ηϕ∥)

≤ C
(
∥ξϕ∥2 + h2k+2

)
+ ϵ∥ξs∥2. (4.15)

We estimate R3 by dividing it into three parts

R3 = R31 +R32 −R33, (4.16)

where

R31 = (ucf − uch,∇ξc) + (uch − uhch,∇ξc),

R32 =
1

2

∑
e∈Γe

⟨(2ucf − u+
h c

+
h − u−

h c
−
h ) · νe, [ξc]⟩e,

R33 =
1

2

∑
e∈Γe

⟨α[ξc − ηc], [ξc]⟩e.

Using hypothesis 4 and (4.4), we have

R31 ≤ C (∥cf − ch∥+ ∥u− uh∥) ∥∇ξc∥

≤ C
(
hk+1 + ∥ξu∥+ ∥ξc∥

)(
∥ξs∥+ hk+1

)
, (4.17)
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where in the first step, we use Schwarz inequality while the second step follows from

Lemmas 4.2 and 4.4. C depends on ∥u∥∞ and ∥ch∥∞. The estimate of R32 also requires

hypothesis 4 and (4.4),

R32 =
1

2

∑
e∈Γe

⟨
(
u(cf − c+h ) + (u− u+

h )c
+
h + u(cf − c−h ) + (u− u−

h )c
−
h

)
· νe, [ξc]⟩e

≤ C (∥cf − ch∥Γh
+ ∥u− uh∥Γh

) ∥[ξc]∥Γh

≤ Ch
1
2 (∥ηc∥Γh

+ ∥ξc∥Γh
+ ∥ηu∥Γh

+ ∥ξu∥Γh
)(∥ξs∥+ hk+1)

≤ C
(
hk+1 + ∥ξu∥+ ∥ξc∥

)(
∥ξs∥+ hk+1

)
, (4.18)

where in the second step we use Schwarz inequality, the third step follows from Lemma

4.4, the last one requires Lemmas 4.1 and 4.2. Now we proceed to the estimate of R33,

R33 ≤ C(∥ηc∥Γh
+ ∥ξc∥Γh

)∥[ξc]∥Γh

≤ Ch
1
2 (∥ηc∥Γh

+ ∥ξc∥Γh
)(∥ξs∥+ hk+1)

≤ C
(
hk+1 + ∥ξc∥

)(
∥ξs∥+ hk+1

)
, (4.19)

where the first step follows from Schwarz inequality, the second step is based on Lemma

4.4, the third one requires Lemma 4.2. Plug (4.17), (4.18) and (4.19) into (4.16) to obtain

R3 ≤ C
(
hk+1 + ∥ξu∥+ ∥ξc∥

)(
∥ξs∥+ hk+1

)
≤ C

(
∥ξu∥2 + ∥ξc∥2 + h2k+2

)
+ ϵ∥ξs∥2. (4.20)

The estimate of R4 follows from Lemmas 4.3 and 4.2

R4 ≤ Chk+1∥cf∥k+2∥ξz∥ ≤ Ch2k+2 + ϵ∥ξz∥2. (4.21)

Use Hypotheses 4 and Lemma 4.2 to obtain

R5 ≤ ∥ηs∥∥ξz∥+ ∥ηz∥∥ξs∥+ C∥ec∥∥ξc∥

≤ C
(
∥ξc∥2 + h2k+2

)
+ ϵ

(
∥ξs∥2 + ∥ξz∥2

)
. (4.22)

Finally, we estimate R6,

R6 = (A(av(ϕ)(cf − ch), ξc) + (Ach(av(ϕ)− av(ϕh), ξc))

≤ C∥ξc∥∥cf − ch∥+ C∥ξc∥∥ϕ− ϕh∥

≤ C
(
∥ξc∥2 + ∥ξϕ∥2 + h2k+2

)
, (4.23)

where the second step follows from hypothesis 4, Lemma 2.1 and (4.4), and the last

step requires Lemma 4.2. Substituting the estimation (4.14), (4.15), (4.20), (4.21), (4.22),
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(4.23) into (4.13) and use hypothesis 2 and (4.5), we obtain

d∥ξc∥2

∂t
+ ∥ξs∥2 ≤ C

(
∥ξc∥2 + ∥ξϕ∥2 + ∥ξϕt∥

2 + ∥ξu∥2 + h2k+2
)

+ϵ
(
∥ξs∥2 + ∥ξz∥2

)
(4.24)

Now we proceed to eliminate ∥ξz∥ on the right-hand side of the above equation. Take

ψ = ξz in (4.11) to obtain

(ξz, ξz) = (ηz, ξz) + (D(sϕ− shϕh), ξz),

= (ηz, ξz) + (Ds(ϕ− ϕh), ξz) + (Dϕh(s− sh), ξz),

which further implies

∥ξz∥2 ≤ ∥ηz∥∥ξz∥+ C∥ϕ− ϕh∥∥ξz∥+ C∥s− sh∥∥ξz∥

≤ C
(
∥ξϕ∥2 + ∥ξs∥2 + h2k+2

)
+ ϵ∥ξz∥2,

where in the first step we applied hypotheses 3, 4 and (4.4), the second step follows from

Lemma 4.2. Take ϵ to be small, we have

∥ξz∥2 ≤ C
(
∥ξϕ∥2 + ∥ξs∥2 + h2k+2

)
.

Substituting the above equation into (4.24), then integrating with respect to t, we have

the first energy inequality

∥ξc∥2 +
∫ t

0
∥ξs∥2 dt ≤ C

∫ t

0

(
∥ξc∥2 + ∥ξϕ∥2 + ∥ξϕt∥

2 + ∥ξu∥2
)
dt+ Ch2k+2. (4.25)

4.5 The second energy inequality

In this subsection, we will construct the second energy inequality. Take ζ = ξp, θ = ξu in

(4.7) and (4.8), respectively and use Lemma 3.2 and (4.2) to obtain

(γξpt, ξp) +

(
µ

κ(ϕh)
ξu, ξu

)
= T1 + T2 + T3, (4.26)

where

T1 = (γηpt, ξp)− (ξϕt, ξp) + (ηϕt, ξp),

T2 =

(
µ

κ(ϕh)
ηu, ξu

)
−
(
u

(
µ

κ(ϕ)
− µ

κ(ϕh)

)
, ξu

)
,

T3 = −D(ηp, ξu).

Now we estimate Ti (i = 1, 2, 3) term by term. Using Lemma 4.2 we have

T1 ≤ C∥ξp∥
(
∥ηpt∥+ ∥ξϕt∥+ ∥ηϕt∥

)
≤ C

(
∥ξp∥2 + ∥ξϕt∥

2 + h2k+2
)
. (4.27)
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The estimate of T2 requires Lemmas 2.1, (4.6) and hypothesis 4,

T2 ≤ C∥ξu∥∥ηu∥+ C∥ξu∥∥ϕ− ϕh∥

≤ C
(
∥ξϕ∥2 + h2k+2

)
+ ϵ∥ξu∥2. (4.28)

For T3, we use Lemma 4.3 to obtain

T3 ≤ Chk+1∥p∥k+2∥ξu∥ ≤ Ch2k+2 + ϵ∥ξu∥2. (4.29)

Substituting (4.27)-(4.29) into (4.26), we have∥∥∥∥∥ µ1/2

κ
1
2 (ϕh)

ξu

∥∥∥∥∥
2

+
1

2

d

dt
∥γ1/2ξp∥2 ≤ C

(
∥ξp∥2 + ∥ξϕt∥

2 + ∥ξϕ∥2 + h2k+2
)
+ ϵ∥ξu∥2.

Integrating the above equation with respect to t and using hypothesis 1, we obtain

∥ξp∥2 +
∫ t

0
∥ξu∥2 dt ≤ C

∫ t

0

(
∥ξp∥2 + ∥ξϕt∥

2 + ∥ξϕ∥2
)
dt+ Ch2k+2. (4.30)

4.6 The third energy inequality

In this subsection, we will derive the third energy inequality. We take β = ξϕ in (4.12) to

obtain

(ξϕt, ξϕ) = (ηϕt, ξϕ) + (Bav(ϕ)cf −Bav(ϕh)ch, ξϕ)

= (ηϕt, ξϕ) + (Bav(ϕ)(cf − ch), ξϕ) + (Bch(av(ϕ)− av(ϕh)), ξϕ) ,

which further yields

1

2

d

dt
∥ξϕ∥2 ≤ ∥ηϕt∥∥ξϕ∥+ C∥cf − ch∥∥ξϕ∥+ C∥ϕ− ϕh∥∥ξϕ∥

≤ C
(
∥ξϕ∥2 + ∥ξc∥2 + h2k+2

)
,

where we have used Lemma 2.1 and (4.4). Integrating the above inequality with respect

to t, we obtain the third energy inequality

∥ξϕ∥2 ≤ C

∫ t

0

(
∥ξϕ∥2 + ∥ξc∥2

)
dt+ Ch2k+2. (4.31)

4.7 The fourth energy inequality

In this subsection, we will demonstrate the last energy inequality. We take β = ξϕt in

(4.12) to obtain

(ξϕt, ξϕt) = (ηϕt, ξϕt) +
(
Bav(ϕ)cf −Bav(ϕh)ch, ξϕt

)
= (ηϕt, ξϕt) +

(
Bav(ϕ)(cf − ch), ξϕt

)
+
(
Bch(av(ϕ)− av(ϕh)), ξϕt

)
.
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Then we have

∥ξϕt∥
2 ≤ ∥ηϕt∥∥ξϕt∥+ C∥cf − ch∥∥ξϕt∥+ C∥ϕ− ϕh∥∥ξϕt∥

≤ C
(
∥ξc∥2 + ∥ξϕ∥2 + h2k+2

)
+ ϵ∥ξϕt∥

2,

which further yields the last energy inequality

∥ξϕt∥
2 ≤ C

(
∥ξc∥2 + ∥ξϕ∥2 + h2k+2

)
. (4.32)

4.8 Proof of Theorem 3.1

Now we are ready to combine the four energy inequalities and finish the proof of Theorem

3.1.

Firstly, from (4.25) and (4.30), it is easy to derive the following estimate

∥ξc∥2 + ∥ξp∥2 +
∫ t

0
∥ξs∥2 dt ≤ C

∫ t

0

(
∥ξc∥2 + ∥ξp∥2 + ∥ξϕ∥2 + ∥ξϕt∥

2
)
dt+ Ch2k+2.

Thanks to (4.32), we can eliminate ξϕt in the above inequality to obtain

∥ξc∥2 + ∥ξp∥2 +
∫ t

0
∥ξs∥2 dt ≤ C

∫ t

0

(
∥ξc∥2 + ∥ξp∥2 + ∥ξϕ∥2

)
dt+ Ch2k+2.

Then adding (4.31) and the above inequality, we have

∥ξc∥2 + ∥ξp∥2 + ∥ξϕ∥2 +
∫ t

0
∥ξs∥2 dt ≤ C

∫ t

0

(
∥ξc∥2 + ∥ξp∥2 + ∥ξϕ∥2

)
dt+ Ch2k+2.

Now, we can employ Gronwall’s inequality to obtain

∥ξc∥2 + ∥ξp∥2 + ∥ξϕ∥2 +
∫ t

0
∥ξs∥2 dt ≤ Ch2k+2.

Finally, by using the standard approximation result, we obtain (3.20). To complete the

proof, let us verify the a priori assumption (4.3). For k ≥ 1, we can consider h small enough

so that Chk+1 < 1
2h, where C is the constant determined by the final time T . Then if

t∗ = inf{t : ∥cf−ch∥+∥ϕ−ϕh∥ ≥ h}, we should have ∥cf−ch∥+∥ϕ−ϕh∥ = h by continuity

in time at t = t∗. However, if t∗ < T , theorem 3.1 implies that ∥c−ch∥+∥ϕ−ϕh∥ ≤ Chk+1

for t ≤ t∗, in particular h = ∥(c − ch)(t
∗)∥ + ∥(ϕ − ϕh)(t

∗)∥ ≤ Chk+1 < 1
2h, which is a

contradiction. Therefore, there always holds t∗ ≥ T , and thus the a priori assumption

(4.3) is justified.
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5 Numerical example

In this section we provide numerical examples to illustrate the accuracy and capability

of the method. Time discretization is given as the third order explicit strong-stability-

preserving Runge-Kutta method [22].

w(1) = wn +∆tL(wn),

w(2) =
3

4
wn +

1

4

(
w(1) +∆tL(w(1))

)
,

wn+1 =
1

3
wn +

2

3

(
w(2) +∆tL(w(2))

)
,

We take the time step to be sufficiently small such that the error in time is negligible

compared to spatial error.

Example 5.1 We solve (2.1)-(2.4) and the parameters are taken as

D = 10−2I,K0 = 1, T = 0.1, (5.33)

α = kc = ks = µ = fI = 1, (5.34)

a0 = 0.5, ρs = 10, γ = 0.1, (5.35)

where I is an identity matrix.

The exact smooth solutions are given as

p(x, t) = et sin(2πx) sin(2πy), (5.36)

ϕ(x, t) = t sin(2πx) cos(2πy) + 0.2, (5.37)

cf (x, t) = 0.1et cos(2πx) cos(2πy) + 0.2. (5.38)

We can calculate the initial conditions and the right hand sides accordingly. Piecewise

linear and quadratic tensor product polynomials are used in the LDG scheme. We use

uniform meshes with M ×M cells over the computational domain Ω = [0, 1]× [0, 1], and

compute the numerical approximations at T = 0.1. Periodic boundary condition is used

in this numerical example. The numerical results are given in Table 1. From the table,

we can observe optimal convergence rates, which verifies the results in Theorem 3.1.

6 Concluding remarks

In this paper, we study the compressible wormhole prorogation, and optimal convergence

rates are derived. Numerical experiments verify the theoretical analysis.
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Table 1: Accuracy test for Example 5.1.
M ×M ||p− ph||L2(Ω) order ||cf − ch||L2(Ω) order ||ϕ− ϕh||L2(Ω) order

16× 16 1.99E-02 – 1.68E-02 – 1.67E-04 –
32× 32 5.00E-03 1.99 3.92E-03 2.10 4.20E-05 2.00

P 1 64× 64 1.25E-03 2.00 7.36E-04 2.41 1.05E-05 2.00
128× 128 3.13E-04 2.00 1.18E-04 2.64 2.62E-06 2.00

16× 16 1.40E-03 – 2.43E-03 – 1.17E-05 –
32× 32 1.76E-04 3.00 2.78E-04 3.13 1.48E-06 3.00

P 2 64× 64 2.20E-05 3.00 2.61E-05 3.41 1.85E-07 3.00
128× 128 2.75E-06 3.00 2.14E-06 3.61 2.31E-08 3.00
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