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1 Introduction

Numerical modeling of miscible displacements in porous media is important and interesting

in oil recovery and enviromental pollution problem. The miscible displacement problem

is described by a coupled system of nonlinear partial differential equations. The need for

accurate solutions to the coupled equations challenges numerical analysts to design new

methods.

The compressible miscible displacements have been studied intensively in the liter-

ature. In [9, 10] , Douglas and Roberts presented the mixed finite element method for
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miscible displacement problem. A variety of numerical techniques have been introduced to

obtain better approximations, such as the modified method of characteristic finite element

method (MMOC) [11, 12, 33], characteristic finite element method [32], high-order Go-

dunov scheme [3], streamline diffusion method [18], and Mass-conservative characteristic

finite element method [19]. Recently, discontinuous Galerkin (DG) for miscible displace-

ment has been investigated by numerical experiments and was reported to exhibit good

numerical performance [1, 21]. In [23, 24, 7], primal semi-discrete discontinuous Galerkin

methods with interior penalty are proposed to solve the coupled system of flow and reactive

transport in porous media.

The DG method gained even greater popularity recently for good stability, high order

accuracy, and flexibility on h-p adaptivity and on complex geometry. But, it is difficult to

apply the DG method directly to the equations with higher order derivatives. The idea

of the local discontinuous Galerkin (LDG) method is to rewrite the equations with higher

order derivatives into a first order system, then apply the DG method to the system. As

an extension of DG schemes for hyperbolic conservation laws, the LDG methods share

the advantages of the DG methods. Besides, a key advantage of this scheme is the local

solvability, i.e. the auxiliary variables approximating the gradient of the solution can

be locally eliminated. The first LDG method was introduced by Cockburn and Shu in

[6] for solving nonlinear convection diffusion equations containing second order spatial

derivatives. Their work was motivated by the successful numerical experiments of Bassi

and Rebay [2] for the compressible Navier-Stokes equations. The methods were further

developed in [28, 29, 30] for solving many nonlinear wave equations with higher order

derivatives.

In our previous work [14], we have used the LDG method to the one-dimensional cou-

pled system of compressible miscible displacement problem. But the method in [14] is not

conservative. Recently, we [15] applied the LDG methods to solve incompressible miscible

displacements in porous media. In this paper we continue our works to develop a con-

servative LDG method for compressible miscible displacements in two space dimensions.

The main difficulty is how to treat the inter-element discontinuities of two independent

solution variables (one from the flow equation and the other from the transport equation)

at cell interfaces. More precisely, in this problem, the approximations of u in the convec-

tion term in (2.1) is discontinuous across the cell interfaces and it is difficult to obtain

error estimates if we analyze the convection and diffusion terms separately. To explain

this point, let us consider the following hyperbolic equation

ut + (a(x)u)x = 0,

where a(x) is discontinuous at x = x0. In [13, 16], the authors studied such a problem
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and defined

Q =
a(x0 + b)− a(x0)

b
.

If Q is bounded from below for all b, then the solution exists, but may not be unique. If

Q is bounded from above for all b, we can guarantee the uniqueness, but the solution may

not exist. Recently, Wang et al. [25, 26] obtained optimal error estimates of the LDG

methods with IMEX time marching for linear and nonlinear convection-diffusion problems.

The key idea is to explore an important relationship between the gradient and interface

jump of the numerical solution polynomial with the numerical approximation of auxiliary

variable for the gradient in the LDG methods, which is stated in Lemma 4.4. Moreover,

the systems are coupled together. Therefore, we will derive four energy inequalities to

obtain optimal error estimates in L∞(0, T ;L2) for concentration c, in L2(0, T ;L2) for

s = −∇c and L∞(0, T ;L2) for velocity u. Here we should mention the difference between

our LDG method and the DG method in [7], where the interior penalty discontinuous

Galerkin (IPDG) method was introduced and optimal error estimates in L2(0, T ;H1)

norm for concentration c were given. In our proof, induction hypothesis is used as a tool,

instead of the cut-off operator proposed in [24]. Therefore, it is not necessary to choose

the sufficiently large positive constant M , and the possibility of infinite times of loops for

extreme cases can be avoided.

The paper is organized as follows. In Section 2, we demonstrate the governing equations

of the compressible miscible displacements in porous media. In Section 3, we present some

preliminaries, including the basic notations and norms to be used throughout the paper,

the LDG spatial discretization and the error equations. Section 4 is the main body of the

paper where we present the projections and some essential properties of the finite element

spaces, error equations and the details of the optimal error estimates for compressible

miscible displacement problem. Then numerical results are given to demonstrate the

accuracy and capability of the method in Section 5. We will end in Section 6 with some

concluding remarks.

2 Compressible miscible displacement problem

In this section, we demonstrate the governing equations of the compressible miscible dis-

placements in porous. Detailed discussion on physical theories can be found in [8]. Let

Ω be a rectangular domain. The classical equations governing the compressible miscible

displacement in porous media in two space dimensions are as follows:

d(c)∂p∂t +∇ · u = q, (x, y) ∈ Ω, 0 < t ≤ T,
u = −κ(x,y)

µ(c) ∇p, (x, y) ∈ Ω, 0 < t ≤ T,
φ∂c∂t + b(c)∂p∂t + u · ∇c = ∇ · (D∇c) + (c̃− c)q, (x, y) ∈ Ω, 0 < t ≤ T,

(2.1)
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where the dependent variables p, u and c are the pressure in the fluid mixture, the Darcy

velocity of the mixture (volume flowing across a unit across-section per unit time), and

the concentration of interested species measured in amount of species per unit volume of

the fluid mixture, respectively. φ and κ are the porosity and the permeability of the rock,

respectively. µ is the concentration-dependent viscosity. q is the external volumetric flow

rate, and c̃ is the concentration of the fluid in the external flow. c̃ must be specified at

points at which injection (q > 0) takes place, and is assumed to be equal to c at production

points (q < 0). We shall also consider only molecular diffusion, so that D = φ(x, y)dmI

with I being the identity matrix. In this paper the tensor matrix D is assumed to be

positive definite. Moreover, the pressure is uniquely determined up to a constant, thus we

assume
∫

Ω pdxdy = 0 at t = 0. For simplicity, we confine ourselves to a two component

displacement problem. The numerical method can be applied to the multi-component

model. The coefficients can be stated as follows:

c = c1 = 1− c2,

a(c) = a(x, y, c) =
κ(x, y)

µ(c)
,

b(c) = b(x, y, c) = φ(x, y)c1{m1 −
2∑
j=1

mjcj},

d(c) = d(x, y, c) = φ(x, y)
2∑
j=1

mjcj ,

with ci being the concentration of i th component of the fluid mixture, and mi being the

“constant compressibility” factor. In this problem, the initial concentration are pressure

are given as

c(x, y, 0) = c0(x, y), p(x, y, 0) = p0(x, y), (x, y) ∈ Ω.

Finally, we make the following hypotheses (H) for (2.1).

1. 0 < κ∗ ≤ κ(x, y) ≤ κ∗, 0 < µ∗ ≤ µ(c) ≤ µ∗, 0 < φ∗ ≤ φ(x, y) ≤ φ∗, 0 < d∗ ≤ d(c) ≤
d∗, |q| ≤ C, |b(c)| ≤ C, |µ′(c)| ≤ C and |d′(c)| ≤ C.

2. d(c), µ′(c) and d′(c) are uniformly Lipschtiz continuous with respect to c, respec-

tively.

3. D is uniformly Lipschtiz continuous, and for any v, w ∈ R2 there exist two positive

constants D∗, D
∗ such that vTDv ≥ D∗vTv = D∗‖v‖2 and vTDw ≤ D∗‖v‖‖w‖.

4. u,ut, c,∇c, ct, pt and ptt are uniformly bounded in R2.
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3 Preliminaries

In this section, we will demonstrate some preliminary results that will be used through

out the paper.

3.1 Basic notations

In this section, we present the notations. Let 0 = x 1
2
< · · · < xNx+ 1

2
= 1 and 0 =

y 1
2
< · · · < yNy+ 1

2
= 1 be the grid points in the x and y directions, respectively. Define

Ii = (xi− 1
2
, xi+ 1

2
) and Jj = (yj− 1

2
, yj+ 1

2
). Let K = Ii × Jj , i = 1, · · · , Nx, j = 1, · · · , Ny,

be a partition of Ω and denote Ωh = {K}. The mesh sizes in the x and y directions are

given as ∆xi = xi+ 1
2
− xi− 1

2
and ∆yj = yj+ 1

2
− yj− 1

2
, respectively and h = max(max

i
∆xi,

max
j

∆yj). Moreover, we assume the partition is quasi-uniform. The finite element space

is chosen as

W k
h = {z : z|K ∈ Qk(K),∀K ∈ Ωh},

where Qk(K) denotes the space of tensor product polynomials of degrees at most k in

K. Note that functions in W k
h are discontinuous across element interfaces. This is one of

the main differences between the DG method and traditional finite element methods. We

choose β = (1, 1)T to be a fixes vector that is not parallel to any normals of the element

interfaces. We denote Γh be the set of all element interfaces and Γ0 = Γh\∂Ω. Let e ∈ Γ0

be an interior edge shared by elements K` and Kr, where β · n` > 0, and β · nr < 0,

respectively, with n` and nr being the outward normal of K` and Kr, respectively. For

any z ∈ W k
h , we define z− = z|∂K`

and z+ = z|∂Kr , respectively. The jump is given

as [z] = z+ − z−. Moreover, for s ∈ Wk
h = W k

h × W k
h , we define s+ and s− and [s]

analogously. We also define ∂Ω− = {e ∈ ∂Ω|β · n < 0}, where n is the outer normal of e,

and ∂Ω+ = ∂Ω\∂Ω−. For any e ∈ ∂Ω−, there exists K ∈ Ωh such that e ∈ ∂K, we define

z+|e = z|∂K , and define z− on ∂Ω+ analogously. For simplicity, given e = {x 1
2
}×Jj ∈ ∂Ω−

and ẽ = {xNx+ 1
2
} × Jj ∈ ∂Ω+, by periodic boundary condition, we define

z−|e = z−|ẽ, and z+|ẽ = z+|e.

Similarly, given e = Ii × {y 1
2
} ∈ ∂Ω− and ẽ = Ii × {yNy+ 1

2
} ∈ ∂Ω+, we define

z−|e = z−|ẽ, and z+|ẽ = z+|e.

Throughout this paper, the symbol C is used as a generic constant which may appear

differently at different occurrences.
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3.2 Norms

In this subsection, we define several norms that will be used throughout the paper.

Denote ‖u‖0,K to be the standard L2 norm of u in cell K. For any natural number `,

we consider the norm of the Sobolev space H`(K), defined by

‖u‖`,K =

 ∑
0≤α+β≤`

∥∥∥∥ ∂α+βu

∂xα∂yβ

∥∥∥∥2

0,K


1
2

.

Moreover, we define the norms on the whole computational domain as

‖u‖` =

 ∑
K∈Ωh

‖u‖2`,K

 1
2

.

For convenience, if we consider the standard L2 norm, then the corresponding subscript

will be omitted.

Let ΓK be the edges of K, and we define

‖u‖2ΓK
=

∫
∂K

u2ds.

We also define

‖u‖2Γh
=
∑
K∈Ωh

‖u‖2ΓK
.

Moreover, we define the standard L∞ norm of u in K as ‖u‖∞,K , and define the L∞

norm on the whole computational domain as

‖u‖∞ = max
K∈Ωh

‖u‖∞,K .

Finally, we define similar norms for vector u = (u1, u2)T as

‖u‖2`,K = ‖u1‖2`,K+‖u2‖2`,K , ‖u‖2ΓK
= ‖u1‖2ΓK

+‖u2‖2ΓK
, ‖u‖∞,K = max{‖u1‖∞,K , ‖u2‖∞,K}.

Similarly, the norms on the whole computational domain are given as

‖u‖2` =
∑
K∈Ωh

‖u‖2` , ‖u‖2Γh
=
∑
K∈Ωh

‖u‖2ΓK
, ‖u‖∞ = max

K∈Ωh

‖u‖∞,K .
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3.3 LDG scheme and the main theorem

To construct the LDG scheme, we introduce some auxiliary variables to approximate the

derivatives of the solution which further yields a first order system:

φ
∂c

∂t
+B(c)

∂p

∂t
+∇ · (uc) +∇ · z = c̃q, (3.2)

s = −∇c, (3.3)

z = Ds, (3.4)

A(c)u +∇p = 0, (3.5)

d(c)
∂p

∂t
+∇ · u = q, (3.6)

where A(c) = µ(c)κ(x, y)−1, B(c) = cd(c) + b(c) = cφ(x, y)m1. We multiply (3.2)-(3.6) by

test functions v, ζ ∈W k
h , θ,w,ψ ∈Wk

h, respectively. Formally integrate by parts in K to

get

(φct, v)K + (B(c)pt, v)K = (uc+ z,∇v)K − 〈(uc+ z) · νK , v〉∂K + (c̃q, v)K ,

(s,w)K = (c,∇ ·w)K − 〈c,w · νK〉∂K ,

(z,ψ)K = (Ds,ψ)K ,

(A(c)u,θ)K = (p,∇ · θ)K − 〈p,θ · νK〉∂K ,

(d(c)pt, ζ)K = (u,∇ζ)K − 〈u · νK , ζ〉∂K + (q, ζ)K ,

where (u, v)K =
∫
K uvdxdy, (u,v)K =

∫
K u · vdxdy, 〈u, v〉∂K =

∫
∂K uvds and νK is the

outer normal of K. Replacing the exact solutions c, p, s, z, u in the above equations

by their numerical approximations ch, ph ∈ W k
h and sh, zh, uh ∈ Wk

h, respectively and

using numerical fluxes at the cell interfaces to obtain the LDG scheme:

(φcht, v)K + (B(ch)pht, v)K = LcK(uh, ch, v) + LdK(zh, v) + (c̃hq, v)K , (3.7)

(sh,w)K = DK(ch,w), (3.8)

(zh,ψ)K = (Dsh,ψ)K , (3.9)

(A(ch)uh,θ)K = DK(ph,θ), (3.10)

(d(ch)pht, ζ)K = LdK(uh, ζ) + (q, ζ)K , (3.11)

where

LcK(s, c, v) = (sc,∇v)K − 〈ŝc · νK , v〉∂K , (3.12)

LdK(s, v) = (s,∇v)K − 〈ŝh · νK , v〉∂K , (3.13)

DK(c,w) = (c,∇ ·w)K − 〈ĉ,w · νK〉∂K . (3.14)
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We use alternating fluxes for the diffusion term and take

ẑh = z−h , ĉh = c+
h , ûh = u−h , p̂h = p+

h .

For the convection term, we consider Lax-Friedrichs flux

ûhch =
1

2
(u+

h c
+
h + u−h c

−
h − ανe(c

+
h − c

−
h )),

where α > 0 can be chosen as any constant and νe is the unit normal of the e ∈ Γ0 such

that β · νe > 0. Moreover, we define

(u, v) =
∑
K∈Ωh

(u, v)K , (u,v) =
∑
K∈Ωh

(u,v)K ,

and

Lc(s, c, v) =
∑
K∈Ωh

LcK(s, c, v), Ld(s, v) =
∑
K∈Ωh

LdK(s, v), D(c,w) =
∑
K∈Ωh

DK(c,w).

It is easy to check the following identities by integration by parts on each cell

Lemma 3.1 For any functions v and w,

Ld(w, v) +D(v,w) = 0. (3.15)

Now we state the main theorem.

Theorem 3.1 Let c ∈ Hk+3, s ∈ (Hk+2)2,u ∈ (Hk+1)2 be the exact solutions of the

problem (3.2)-(3.6), and let uh, ph, ch, sh, zh be the numerical solutions of the semi-discrete

LDG scheme (3.7)-(3.11) with initial discretization given as (4.4). If the finite element

space is the piecewise tensor product polynomials of degree k ≥ 1 and h is sufficiently

small, then we have the error estimate

‖c− ch‖L∞(0,T ;L2) + ‖s− sh‖L∞(0,T ;L2)

+‖u− uh‖L∞(0,T ;L2) + ‖p− ph‖L∞(0,T ;L2) + ‖(p− ph)t‖L∞(0,T ;L2)

+‖(c− ch)t‖L2(0,T ;L2) + ‖(u− uh)t‖L2(0,T ;L2) ≤ Chk+1, (3.16)

where the constant C is independent of h.

4 The proof of the main theorem

In this section, we proceed to the proof of Theorem 3.1. We first introduce several projec-

tions and present some auxiliary results. Subsequently, we make an a priori error estimate

which provides the boundedness of the numerical approximations. Then we construct the

error equations which further yield five main energy inequalities and complete the proof

of (3.16). Finally, we verify the a priori error estimate at the end of this section.
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4.1 Projections and interpolation properties

In this section, we will demonstrate the projections and several useful lemmas. Let us

start with the classical inverse properties [5].

Lemma 4.1 Assuming u ∈ W k
h , there exists a positive constant C independent of h and

u such that

h‖u‖∞,K + h1/2‖u‖ΓK
≤ C‖u‖K .

We will use several special projections in this paper. Firstly, we define P+ into W k
h which

is, for each cell K

(P+u− u, v)K = 0,∀v ∈ Qk−1(K),

∫
Jj

(P+u− u)(xi− 1
2
, y)v(y)dy = 0,∀v ∈ P k−1(Jj),

(P+u− u)(xi− 1
2
, yj− 1

2
) = 0,

∫
Ii

(P+u− u)(x, yj− 1
2
)v(x)dx = 0,∀v ∈ P k−1(Ii),

where P k denotes the polynomials of degree k. Moreover, we also define Π−x and Π−y into

W k
h which are, for each cell K,

(Π−x u− u, vx)K = 0,∀v ∈ Qk(K),

∫
Jj

(Π−x u− u)(xi+ 1
2
, y)v(y)dy = 0,∀v ∈ P k(Jj),

(Π−y u− u, vy)K = 0, ∀v ∈ Qk(K),

∫
Ii

(Π−y u− u)(x, yj+ 1
2
)v(x)dx = 0,∀v ∈ P k(Ii),

as well as a two-dimensional projection Π− = Π−x ⊗ Π−y . Finally, we also use the L2-

projection Pk into W k
h which is, for each cell K

(Pku− u, v)K = 0,∀v ∈ Qk(K), (4.1)

and its two dimensional version Pk = Pk ⊗ Pk. For the special projections mentioned

above, we give the following lemma by the standard approximation theory [5].

Lemma 4.2 Suppose w ∈ Hk+1(Ω), then for any project Ph, which is either P+, Π−x , Π−y

or Pk, we have

‖w − Phw‖+ h1/2‖w − Phw‖Γh
≤ Chk+1.

Moreover, the projection P+ on the Cartesian meshes has the following superconvergence

property [4].

Lemma 4.3 Suppose w ∈ Hk+2(Ω), then for any ρ ∈Wh we have

|D(w − P+w,ρ)| ≤ Chk+1‖w‖k+2‖ρ‖. (4.2)
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In this paper, we use e to denote the error between the exact and numerical solutions, i.e.

ec = c− ch, ep = p− ph, eu = u−uh, es = s− sh, ez = z− zh. As the general treatment

of the finite element methods, we split the errors into two terms as

ec = ηc − ξc, ηc = c− P+c, ξc = ch − P+c,
ep = ηp − ξp, ηp = p− P+p, ξp = ph − P+p,
eu = ηu − ξu, ηu = u−Π−u, ξu = uh −Π−u,
es = ηs − ξs, ηs = s−Pks, ξs = sh −Pks,
ez = ηz − ξz, ηz = z−Π−z, ξz = zh −Π−z.

Based on the above, it is easy to see that

Ld(ηu, v) = Ld(ηz, v) = 0. (4.3)

Following [25, 26, 27, 31] with some minor changes, we have the following lemma

Lemma 4.4 Suppose ξc and ξs are defined above, we have

‖∇ξc‖ ≤ C(‖ξs‖+ hk+1), h−
1
2 ‖[ξc]‖Γh

≤ C(‖ξs‖+ hk+1).

The proof of the main error estimate requires the following initial discretization, whose

detailed construction will be given in the appendix.

Lemma 4.5 We choose the initial solution

c0
h = P+c0, u0

h = Π−u0, (4.4)

where u0 = −a(c0)∇p0, Then we have

‖c(x, 0)− ch(x, 0)‖ ≤ Chk+1, (4.5)

‖u(x, 0)− uh(x, 0)‖ ≤ Chk+1, (4.6)

‖s(x, 0)− sh(x, 0)‖ ≤ Chk+1, (4.7)

‖pt(x, 0)− pht(x, 0)‖ ≤ Chk+1, (4.8)

‖p(x, 0)− ph(x, 0)‖ ≤ Chk+1. (4.9)

The proof of this lemma will also be given in the appendix.

4.2 A priori error estimates

In this subsection, we would like to make an a priori error estimate assumption that

‖c− ch‖+ ‖u− uh‖+ ‖pt − pht‖ ≤ h, (4.10)

which further implies

‖ch‖∞ + ‖uh‖∞ + ‖pht‖∞ ≤ C (4.11)

by hypothesis 4.
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4.3 Error equations

In this section, we proceed to construct the error equations. From (3.7)-(3.11), we have

the following error equations

(B(c)pt −B(ch)pht + φect, v) = Lc(u, c, v)− Lc(uh, ch, v) + Ld(ez, v) + (ẽcq, v),(4.12)

(es,w) = D(ec,w), (4.13)

(ez,ψ) = (D(s− sh),ψ), (4.14)

((A(c)u−A(ch)uh),θ) = D(ep,θ), (4.15)

(d(c)pt − d(ch)pht, ζ) = Ld(eu, ζ), (4.16)

∀v, ζ ∈W k
h ,w,ψ,θ ∈Wk

h, where

ẽc =

{
0, q > 0,
ec, q < 0.

4.4 The first energy inequality

Taking the test functions v = ξc, w = ξz, and ψ = −ξs in (4.12), (4.13) and (4.14),

respectively, and use Lemma 3.1 and (4.3) to obtain

(φ
∂ξc
∂t
, ξc) + (Dξs, ξs) = R1 +R2 −R3 −R4 +R5, (4.17)

where

R1 = (φ
∂ηc
∂t

, ξc) + (Dηs, ξs) ,

R2 = (B(c)pt −B(ch)pht, ξc),

R3 = (uc− uhch,∇ξc) +
∑
e∈Γe

〈(uc− ûhch) · νe, [ξc]〉e,

R4 = D(ηc, ξz),

R5 = (ηs, ξz)− (ηz, ξs)− (ẽcq, ξc),

with Γe = Γ0 ∪ ∂Ω− and 〈u, v〉e =
∫
e uvds. Now, we estimate R′is term by term. Using

hypotheses 1 and 3, Lemma 4.2 and the Schwarz inequality, we can get

R1 ≤ C‖ηct‖‖ξc‖+ C‖ηs‖‖ξs‖ ≤ Chk+1 (‖ξc‖+ ‖ξs‖) , (4.18)

For R2, we have

R2 =
[(
B(c)(p− ph)t, ξc

)
+
(

(B(c)−B(ch))pht, ξc

)]
≤ C‖(p− ph)t‖‖ξc‖+ C‖c− ch‖‖ξc‖

≤ C‖ξc‖‖ξpt‖+ ‖ξc‖+ hk+1), (4.19)
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where in the second step we use Schwarz inequality and hypothesis 1 and (4.11), and the

last step requires Lemma 4.2. We estimate R3 by dividing it into three parts

R3 = R31 +R32 −R33, (4.20)

where

R31 = (uc− uch,∇ξc) + (uch − uhch,∇ξc), (4.21)

R32 =
1

2

∑
e∈Γe

〈(2uc− u+
h c

+
h − u−h c

−
h ) · νe, [ξc]〉e, (4.22)

R33 =
1

2

∑
e∈Γe

〈α[ηc − ξc], [ξc]〉e. (4.23)

Using hypothesis 4 and (4.11), we have

R31 ≤ C (‖c− ch‖+ ‖u− uh‖) ‖∇ξc‖

≤ C
(
hk+1 + ‖ξu‖+ ‖ξc‖

)(
‖ξs‖+ hk+1

)
, (4.24)

where in the first step, we use Schwarz inequality while the second step follows from

Lemmas 4.2 and 4.4. C depends on ‖u‖∞ and ‖ch‖∞. The estimate of R32 also requires

hypothesis 4 and (4.11),

R32 =
1

2

∑
e∈Γe

〈
(
u(c− c+

h ) + (u− u+
h )c+

h + u(c− c−h ) + (u− u−h )c−h
)
· νe, [ξc]〉e

≤ C (‖c− ch‖Γh
+ ‖u− uh‖Γh

) ‖[ξc]‖Γh

≤ Ch
1
2 (‖ηc‖Γh

+ ‖ξc‖Γh
+ ‖ηu‖Γh

+ ‖ξu‖Γh
)(‖ξs‖+ hk+1)

≤ C
(
hk+1 + ‖ξu‖+ ‖ξc‖

)(
‖ξs‖+ hk+1

)
, (4.25)

where in the second step we use Schwarz inequality, the third step follows from Lemma

4.4, the last one requires Lemmas 4.1 and 4.2. C depends on ‖u‖∞ and ‖ch‖∞. Now we

proceed to the estimate of R33,

R33 ≤ C(‖ηc‖Γh
+ ‖ξc‖Γh

)‖[ξc]‖Γh

≤ Ch
1
2 (‖ηc‖Γh

+ ‖ξc‖Γh
)(‖ξs‖+ hk+1)

≤ C
(
hk+1 + ‖ξc‖

)(
‖ξs‖+ hk+1

)
, (4.26)

where the first step follows from Schwarz inequality, the second step is based on Lemma

4.4, the third one requires Lemma 4.2. Plug (4.24), (4.25) and (4.26) into (4.20) to obtain

R3 ≤ C
(
hk+1 + ‖ξu‖+ ‖ξc‖

)(
‖ξs‖+ hk+1

)
. (4.27)
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The estimate of R4 follows from Lemma 4.3

R4 ≤ Chk+1‖c‖k+2‖ξz‖. (4.28)

Now we begin to deal with R5. Using Lemma 4.2 and the Schwartz inequality, we easily

obtain

R5 ≤ ‖ηs‖‖ξz‖+ ‖ηz‖‖ξs‖+ C‖ẽc‖‖ξc‖

≤ Chk+1 (‖ξz‖+ ‖ξs‖) + Chk+1‖ξc‖+ C‖ξc‖2. (4.29)

Substituting the estimation (4.18), (4.19), (4.27), (4.28), (4.29) into (4.17) and use hy-

pothesis 3, we obtain

d

dt
‖φ

1
2 ξc‖2 + ‖D

1
2 ξs‖2 ≤ C

[(
hk+1 + ‖ξu‖+ ‖ξc‖

)(
‖ξs‖+ hk+1

)
+hk+1‖ξz‖+ h2(k+1) + ‖ξc‖2 + ‖ξpt‖

2
]
. (4.30)

Integrating with the equation with respect to time between 0 and t, we obtain

‖ξc‖2 +

∫ t

0
‖ξs‖2dt

≤ C

∫ t

0
(‖ξc‖2 + ‖ξu‖2 + ‖ξpt‖

2 + ‖ξz‖2 + ‖ξs‖2)dt+ Ch2(k+1). (4.31)

We take the time derivative in equation (4.13), we have

(est,w) = D(ect,w), (4.32)

Taking the test functions v = ξct, w = ξz, and ψ = −ξst in (4.12), (4.32) and (4.14),

respectively, and use (3.15) and (4.3) to obtain

(φξct, ξct) +
1

2

d

dt
(Dξs, ξs) = R̃1 + R̃2 + R̃3 + R̃4 + R̃5 + R̃6, (4.33)

where

R̃1 = (φηct, ξct),

R̃2 = (Dηs, ξst),

R̃3 = (B(c)pt −B(ch)pht, ξct),

R̃4 = −(uc− uhch,∇ξct)−
∑
e∈Γe

〈(uc− ûhch) · νe, [ξct]〉e,

R̃5 = −D(ηct, ξz),

R̃6 = (ηst, ξz)− (ηz, ξst)− (ẽcq, ξct),
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Now, we estimate R̃′is term by term. Using the projection and the Schwartz inequality,

we can get

R̃1 ≤ C‖ηct‖2 + C‖ξct‖2 ≤ Ch2(k+1) + ε‖ξct‖2, (4.34)

R̃2 =
d

dt
(Dηs, ξs)− (Dηst, ξs)

≤ d

dt
(Dηs, ξs) + C‖ξs‖2 + Ch2(k+1), (4.35)

R̃3 =
[(
B(c)(p− ph)t, ξct

)
+
(

(B(c)−B(ch))pht, ξct

)]
≤ C‖(p− ph)t‖‖ξct‖+ C‖c− ch‖‖ξct‖

≤ C‖ξpt‖
2 + C‖ξc‖2 + ε‖ξct‖2 + Ch2(k+1), (4.36)

where in the second step we use Schwarz inequality and hypothesis 1, and the last step

requires Lemma 4.2. We estimate R4 by dividing it into three parts

R̃4 = R̃41 + R̃42 + R̃43, (4.37)

where

R̃41 = −(uc− uhch,∇ξct),

R42 = −1

2

∑
e∈Γe

〈(2uc− u+
h c

+
h − u−h c

−
h ) · νe, [ξct]〉e,

R43 =
1

2

∑
e∈Γe

〈α[ηc − ξc], [ξct]〉e.

Using hypothesis 4 and (4.11), we have

R̃41 =
d

dt

(
uhch − uc,∇ξc

)
+
(

(uc− uhch)t,∇ξc
)

=
d

dt

(
uhch − uc,∇ξc

)
+
(
utc− uhtch,∇ξc

)
+
(
uct − uhcht,∇ξc

)
=

d

dt

(
uhch − uc,∇ξc

)
+
(
ut(c− ch),∇ξc

)
+
(

(u− uh)tch,∇ξc
)

+(ct(u− uh),∇ξc) + ((c− ch)tuh,∇ξc)

≤ d

dt

(
uhch − uc,∇ξc

)
+ C‖c− ch‖2 + ε‖(u− uh)t‖2

+C‖u− uh‖2 + ε‖(c− ch)t‖2 + C‖∇ξc‖2

≤ d

dt

(
uhch − uc,∇ξc

)
+ Ch2(k+1) + C‖ξc‖2 + ε‖ξut‖2

+C‖ξu‖2 + ε‖ξct‖2 + C‖ξs‖2, (4.38)
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where in the forth step, we use Schwarz inequality while the last step follows from Lemmas

4.2 and 4.4. The estimate of R̃42 also requires hypothesis 4 and (4.11),

R̃42 = −1

2

∑
e∈Γe

d

dt
〈(2uc− u+

h c
+
h − u−h c

−
h ) · νe, [ξc]〉e

+
∑
e∈Γe

〈(u+c+ + u−c−

2
−

u+
h c

+
h + u−h c

−
h

2
)t · νe, [ξc]〉e

≤ 1

2

∑
e∈Γe

d

dt
〈(u+

h c
+
h + u−h c

−
h − 2uc) · νe, [ξc]〉e + C‖(uc− uhch)t‖Γh

‖[ξc]‖Γh

≤ 1

2

∑
e∈Γe

d

dt
〈(u+

h c
+
h + u−h c

−
h − 2uc) · νe, [ξc]〉e

+Ch
1
2 (‖ct(u− uh)‖Γh

+ ‖(c− ch)tuh‖Γh
)(‖ξs‖+ hk+1)

+Ch
1
2 (‖ut(c− ch)‖Γh

+ ‖(u− uh)tch‖Γh
)(‖ξs‖+ hk+1)

≤ 1

2

∑
e∈Γe

d

dt
〈(u+

h c
+
h + u−h c

−
h − 2uc) · νe, [ξc]〉e

+Ch2(k+1) + C‖ξu‖2 + ε‖ξct‖2 + C‖ξc‖2 + ε‖ξut‖2 + C‖ξs‖2, (4.39)

where in the second step we use Schwarz inequality, the third step follows from and

Lemma 4.4, the last one requires Lemmas 4.1 and 4.2. Now we proceed to the estimate of

R̃43,

R̃43 =
1

2

∑
e∈Γe

d

dt
〈α[ηc − ξc], [ξc]〉e −

1

2

∑
e∈Γe

〈α[ηct − ξct], [ξc]〉e

≤ 1

2

∑
e∈Γe

d

dt
〈α[ηc − ξc], [ξc]〉e + C(‖ηct‖Γh

+ ‖ξct‖Γh
)‖[ξc]‖Γh

≤ 1

2

∑
e∈Γe

d

dt
〈α[ηc − ξc], [ξc]〉e + Ch

1
2 (‖ηct‖Γh

+ ‖ξct‖Γh
)(‖ξs‖+ hk+1)

≤ 1

2

∑
e∈Γe

d

dt
〈α[ηc − ξc], [ξc]〉e + Ch2(k+1) + ε‖ξct‖2 + C‖ξs‖2, (4.40)

where the second step follows from Schwarz inequality, the third one is based on Lemma

4.4, the last one requires Lemmas 4.1 and 4.2. Plug (4.38), (4.39) and (4.40) into (4.37)

to obtain

R̃4 ≤
d

dt

(
uhch − uc,∇ξc

)
+

1

2

∑
e∈Γe

d

dt
〈(u+

h c
+
h + u−h c

−
h − 2uc) · νe, [ξc]〉e

+
1

2

∑
e∈Γe

d

dt
〈α[ηc − ξc], [ξc]〉e + C(h2(k+1) + ‖ξu‖2 + ‖ξc‖2 + ‖ξs‖2)

+ε(‖ξct‖2 + ‖ξut‖2). (4.41)

15



The estimate of R̃5 follows from Lemma 4.3

R̃5 ≤ Chk+1‖c‖k+2‖ξz‖. (4.42)

Now we begin to deal with R̃6. Using Lemma 4.2 and the Schwartz inequality, we easily

obtain

R̃6 = (ηst, ξz)−
d

dt
(ηz, ξs) + (ηzt, ξs)− (ẽcq, ξct)

≤ ‖ηst‖‖ξz‖ −
d

dt
(ηz, ξs) + ‖ηzt‖‖ξs‖+ C‖ẽc‖‖ξct‖

≤ − d

dt
(ηz, ξs) + C

(
h2(k+1) + ‖ξz‖2 + ‖ξs‖2 + ‖ξc‖2

)
+ ε‖ξct‖2. (4.43)

Substituting the estimation (4.34)-(4.36) and (4.41)-(4.43)into (4.33) and use hypothesis

3, we obtain

‖φ
1
2 ξct‖2 +

1

2

d

dt
‖D

1
2 ξs‖2

≤ d

dt
(Dηs, ξs)−

d

dt
(ηz, ξs) +

d

dt

(
uhch − uc,∇ξc

)
+

1

2

∑
e∈Γe

d

dt
〈(u+

h c
+
h + u−h c

−
h − 2uc) · νe, [ξc]〉e +

1

2

∑
e∈Γe

d

dt
〈α[ηc − ξc], [ξc]〉e

+C(h2(k+1) + ‖ξu‖2 + ‖ξs‖2 + ‖ξc‖2 + ‖ξpt‖
2 + ‖ξz‖2)

+ε(‖ξct‖2 + ‖ξut‖2). (4.44)

Noticing that

(Dηs, ξs)− (ηz, ξs) ≤ C‖ηs‖2 + ‖ηz‖2 + ε‖ξs‖2 ≤ Ch2(k+1) + ε‖ξs‖2. (4.45)

and (
uhch − uc,∇ξc

)
= (c(uh − u),∇ξc) + (uh(ch − c),∇ξc)

≤ C‖u− uh‖2 + C‖c− ch‖2 + C‖∇ξc‖2

≤ Ch2(k+1) + C‖ξu‖2 + C‖ξc‖2 + ε‖ξs‖2, (4.46)

where the last one requires Lemmas 4.2 and 4.4.

1

2

∑
e∈Γe

〈(u+
h c

+
h + u−h c

−
h − 2uc) · νe, [ξc]〉e +

1

2

∑
e∈Γe

〈α[ηc − ξc], [ξc]〉e

≤ C(‖uc− uhch‖Γh
+ ‖ηc‖Γh

+ ‖ξc‖Γh
)‖[ξc]‖Γh

≤ Ch
1
2 (‖uc− uhc‖Γh

+ ‖uhc− uhch‖Γh
+ ‖ηc‖Γh

+ ‖ξc‖Γh
)(‖ξs‖+ hk+1)

≤ Ch2(k+1) + C‖ξu‖2 + C‖ξc‖2 + ε‖ξs‖2, (4.47)
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where the second step follows from Schwarz inequality, the third one is based on Lemma

4.4, the last one requires Lemmas 4.1 and 4.2. Integrating (4.44) with respect to time

between 0 and t, then applying (4.45)-(4.47), we obtain∫ t

0
‖ξct‖2dt+ ‖ξs‖2 ≤ C

∫ t

0
(‖ξu‖2 + ‖ξs‖2 + ‖ξc‖2 + ‖ξpt‖

2 + ‖ξz‖2)dt

+ε

∫ t

0
(‖ξct‖2 + ‖ξut‖2)dt+ Ch2(k+1)

+C‖ξu‖2 + C‖ξc‖2 + ε‖ξs‖2. (4.48)

Combining (4.48) and (4.31), we obtain∫ t

0
‖ξct‖2dt+ ‖ξs‖2 + ‖ξc‖2 ≤ C

∫ t

0
(‖ξu‖2 + ‖ξs‖2 + ‖ξc‖2 + ‖ξpt‖

2 + ‖ξz‖2)dt

+ε

∫ t

0
(‖ξct‖2 + ‖ξut‖2)dt+ Ch2(k+1) + C‖ξu‖2 + ε‖ξs‖2.

which further yields∫ t

0
‖ξct‖2dt+ ‖ξs‖2 + ‖ξc‖2 ≤ C

∫ t

0
(‖ξu‖2 + ‖ξs‖2 + ‖ξc‖2 + ‖ξpt‖

2 + ‖ξz‖2)dt

+ε

∫ t

0
‖ξut‖2dt+ Ch2(k+1) + C‖ξu‖2. (4.49)

Now, we proceed to eliminate ‖ξz‖ on the right-hand side to the above equation. Setting

ψ = ξz in (4.14) to obtain

(ξz, ξz) = (ηz, ξz)− (D(s− sh), ξz).

Then we have

‖ξz‖2 ≤ ‖ηz‖‖ξz‖+ C (‖ηs‖+ ‖ξs‖) ‖ξz‖ ≤ C(‖ξs‖2 + h2(k+1)) + ε‖ξz‖2,

where in the first step we use Schwarz inequality and hypothesis 3, the second step follows

from Lemma 4.2. We can cancel ‖ξz‖ in the above equation to obtain

‖ξz‖2 ≤ C(‖ξs‖2 + h2(k+1)). (4.50)

Combining (4.49) and (4.50), we obtain the first energy Inequality∫ t

0
‖ξct‖2dt+ ‖ξs‖2 + ‖ξc‖2 ≤ C

∫ t

0
(‖ξu‖2 + ‖ξs‖2 + ‖ξc‖2 + ‖ξpt‖

2)dt

+ε

∫ t

0
‖ξut‖2dt+ Ch2(k+1) + C‖ξu‖2. (4.51)

17



4.5 The second energy inequality

We start from an easier case. Take θ = ξu and ζ = ξp in (4.15) and (4.16), respectively

and use Lemma 3.1 and (4.3) to obtain

(A(c)ξu, ξu) +
1

2

d

dt
(d(c)ξp, ξp) = T1 + T2 + T3 + T4 + T5 − T6, (4.52)

where

T1 = (A(c)ηu, ξu),

T2 = ((A(c)−A(ch))uh, ξu),

T3 =
1

2
(d(c)tξp, ξp),

T4 = (d(c)ηpt, ξp),

T5 = ((d(c)− d(ch))pht, ξp),

T6 = D(ηp, ξu).

Now, we estimate T ′is term by term. Using Lemma 4.2 and Schwarz inequality, we can

get

T1 ≤ C‖ηu‖2 + ε‖ξu‖2 ≤ Ch2(k+1) + ε‖ξu‖2, (4.53)

where we use hypothesis 1 to obtain |A(c)| = | µ(c)
κ(x,y) | ≤

µ∗

κ∗
. Using 4.11, we have

T2 ≤ C‖A(c)−A(ch)‖2 + ε‖ξu‖2 ≤ C‖A
′
c(c− ch)‖2 + ε‖ξu‖2

≤ Ch2(k+1) + C‖ξc‖2 + ε‖ξu‖2, (4.54)

where in the first step we use Schwarz inequality, the second step follows from hypothesis

1, and the last step requires Lemma 4.2. Moreover, A
′
c is the mean value given by A

′
c =

A
′
(λcc+ (1− λc)ch) with 0 ≤ λc ≤ 1.

T3 =
1

2
(d
′
(c)ctξp, ξp) ≤ C‖ξp‖2, (4.55)

where we use hypothesis 1.

T4 ≤ C‖ηpt‖
2 + C‖ξp‖2 ≤ Ch2(k+1) + C‖ξp‖2, (4.56)

T5 ≤ C‖d(c)− d(ch)‖2 + C‖ξp‖2 ≤ C‖d
′
c(c− ch)‖2 + C‖ξp‖2

≤ Ch2(k+1) + C‖ξc‖2 + C‖ξp‖2, (4.57)

where in the first step we use (4.11), the second step follows from hypothesis 1 with d′c

being the mean value given by d′c = d′(λcc+ (1− λc)ch) with 0 ≤ λc ≤ 1. For T6, we use

Lemma 4.3 and Schwarz inequality to obtain

T6 ≤ Ch2(k+1) + ε‖ξu‖2. (4.58)
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Substituting (4.53)-(4.58) into (4.52), we have the estimate

‖A
1
2 (c)ξu‖2 +

1

2

d

dt
‖d

1
2 (c)ξp‖2 ≤ Ch2(k+1) + C‖ξp‖2 + C‖ξc‖2 + ε‖ξu‖2. (4.59)

Integrating (4.59) with respect to time between 0 and t and using the hypothesis 1 , we

obtain the second energy Inequality∫ t

0
‖ξu‖2dt+ ‖ξp‖2 ≤ Ch2(k+1) + C

∫ t

0
(‖ξp‖2 + ‖ξc‖2)dt. (4.60)

4.6 The third energy inequality

We take the time derivative in equation (4.15), we have

((A(c)u−A(ch)uh)t,θ) = D(ept,θ), (4.61)

Take θ = ξu and ζ = ξpt in (4.61) and (4.16), respectively and use (3.15) and (4.3) to

obtain
1

2

d

dt
(A(c)ξu, ξu) + (d(c)ξpt, ξpt) = T̃1 + T̃2 + T̃3 + T̃4 + T̃5 − T̃6, (4.62)

where

T̃1 = −1

2
((A(c))tξu, ξu),

T̃2 = ((A(c)ηu)t, ξu),

T̃3 = (((A(c)−A(ch))uh)t, ξu),

T̃4 = (d(c)ηpt, ξpt),

T̃5 = ((d(c)− d(ch))pht, ξpt),

T̃6 = D(ηpt, ξu).

Now, we estimate T̃ ′is term by term. Using hypothesis 1 and Schwarz inequality, we can

get

T̃1 = −1

2
(A
′
(c)ctξu, ξu) ≤ C‖ξu‖2, (4.63)

and

T̃2 = (A′(c)ctηu, ξu) + (A(c)ηut, ξu)

≤ C‖ξu‖2 + C‖ηu‖2 + C‖ηut‖2

≤ C‖ξu‖2 + Ch2(k+1). (4.64)
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The estimate of T̃3 is slightly complicated,

T̃3 = ((A(c)−A(ch))tuh, ξu)− ((A(c)−A(ch))(u− uh)t, ξu)

+((A(c)−A(ch))ut, ξu)

= ((A′(c)−A′(ch))ctuh, ξu) + (A′(ch)(c− ch)tuh, ξu)

−(A′c(c− ch)(u− uh)t, ξu) + (A′c(c− ch)ut, ξu)

≤ C‖c− ch‖‖ξu‖+ C‖(c− ch)t‖‖ξu‖

+C‖ξu‖∞‖c− ch‖‖(u− uh)t‖+ C‖c− ch‖‖ξu‖

≤ C‖c− ch‖2 + C‖ξu‖2 + ε‖(c− ch)t‖2 + ε‖(u− uh)t‖2

≤ C‖ξc‖2 + C‖ξu‖2 + ε‖ξct‖2 + ε‖ξut‖2 + Ch2(k+1), (4.65)

where in the third step we use Schwarz inequality and hypotheses 1 and 2, and the last

step requires Lemma 4.2. Applying the Schwarz inequality, we have

T̃4 ≤ C‖ηpt‖
2 + ε‖ξpt‖

2 ≤ Ch2(k+1) + ε‖ξpt‖
2, (4.66)

T̃5 ≤ C‖d(c)− d(ch)‖2 + ε‖ξpt‖
2 ≤ C‖d ′c (c− ch)‖2 + ε‖ξpt‖

2

≤ Ch2(k+1) + C‖ξc‖2 + ε‖ξpt‖
2, (4.67)

For T̃6, we use Lemma 4.3 to obtain

T̃6 ≤ Chk+1‖p‖k+2‖ξu‖. (4.68)

Substituting (4.63)-(4.68) into (4.62), we have the estimate

1

2

d

dt
‖A

1
2 (c)ξu‖2 + ‖d

1
2 (c)ξpt‖

2

≤ Ch2(k+1) + C‖ξu‖2 + C‖ξc‖2 + ε‖ξpt‖
2 + ε‖ξct‖2 + ε‖ξut‖2. (4.69)

Integrating (4.69) with respect to time between 0 and t and using the hypothesis 1 , we

obtain the third energy Inequality

‖ξu‖2 +

∫ t

0
‖ξpt‖

2dt

≤ Ch2(k+1) + C

∫ t

0
(‖ξu‖2 + ‖ξc‖2)dt+ ε

∫ t

0
(‖ξct‖2 + ‖ξut‖2)dt. (4.70)
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4.7 The fourth energy inequality

We take the time derivative in equation (4.16), we have

((d(c)pt − d(ch)pht)t, ζ) = Ld(eut, ζ), (4.71)

Take θ = ξut and ζ = ξpt in (4.61) and (4.71), respectively and use (3.15) and (4.3) to

obtain

(A(c)ξut, ξut) +
1

2

d

dt
(d(ch)ξpt, ξpt) = ˜̃T1 + ˜̃T2 + ˜̃T3 − ˜̃T4 + ˜̃T5 + ˜̃T6 − ˜̃T7, (4.72)

where

˜̃T1 = −((A(c))tξu, ξut),

˜̃T2 = ((A(c)ηu)t, ξut),

˜̃T3 = (((A(c)−A(ch))uh)t, ξut),

˜̃T4 = −1

2
((d(ch))tξpt, ξpt),

˜̃T5 = ((d(ch)ηpt)t, ξpt),

˜̃T6 = (((d(c)− d(ch))pt)t, ξpt),

˜̃T7 = D(ηpt, ξut).

Now, we estimate ˜̃T ′is term by term. Using hypothesis 1 and Schwarz inequality, we can

get
˜̃T1 = −1

2
(A′(c)ctξu, ξut) ≤ C‖ξu‖2 + ε‖ξut‖2, (4.73)

and

˜̃T2 = (A′(c)ctηu, ξut) + (A(c)ηut, ξut)

≤ ε‖ξut‖2 + C‖ηu‖2 + C‖ηut‖2

≤ ε‖ξut‖2 + Ch2(k+1). (4.74)

Now, we estimate ˜̃T3,

˜̃T3 = ((A(c)−A(ch))tuh, ξut)− ((A(c)−A(ch))(u− uh)t, ξut)

+((A(c)−A(ch))ut, ξut)

= ((A′(c)−A′(ch))ctuh, ξut) + (A′(ch)(c− ch)tuh, ξut)

+((A(c)−A(ch))ξut, ξut)− ((A(c)−A(ch))ηut, ξut) + (A′c(c− ch)ut, ξut)

≤ C‖c− ch‖‖ξut‖+ C‖(c− ch)t‖‖ξut‖

+‖A
1
2 (c)ξut‖2 − ‖A

1
2 (ch)ξut‖2 + C‖ηut‖‖ξut‖

≤ ‖A
1
2 (c)ξut‖2 − ‖A

1
2 (ch)ξut‖2 + C‖ξc‖2

+C‖ξct‖2 + ε‖ξut‖2 + Ch2(k+1), (4.75)
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where in the third step we use Schwarz inequality and hypotheses 1,2, and the last step

requires Lemma 4.2.

˜̃T4 =
1

2

(
d′(ch)(c− ch)tξpt, ξpt

)
− 1

2

(
d′(ch)ctξpt, ξpt

)
≤ C‖ξpt‖∞‖(c− ch)t‖‖ξpt‖+ C‖ξpt‖

2

≤ C‖ξct‖2 + C‖ξpt‖‖
2 + Ch2(k+1), (4.76)

where in the second step we use Schwarz inequality and hypothesis 1, and the last step

requires Lemma 3.2. C depends on ‖ct‖∞. Similarly, we can estimate ˜̃T5 and ˜̃T6

˜̃T5 = −(d′(ch)(c− ch)tηpt, ξpt) + (d′(ch)ctηpt, ξpt) + (d(ch)ηptt, ξpt)

≤ C‖ξpt‖∞‖(c− ch)t‖‖ηpt‖+ C‖ηpt‖‖ξpt‖+ C‖ηptt‖‖ξpt‖

≤ C‖ξct‖2 + C‖ξpt‖
2 + Ch2(k+1), (4.77)

˜̃T6 = ((d′(c)− d′(ch))ctpt, ξpt) + (d′(ch)(c− ch)tpt, ξpt) + ((d(c)− d(ch))ptt, ξpt)

≤ C‖c− ch‖2 + C‖(c− ch)t‖2 + C‖ξpt‖
2

≤ C‖ξc‖2 + C‖ξct‖2 + C‖ξpt‖
2 + Ch2(k+1). (4.78)

For ˜̃T7, we use Lemma 4.3 to obtain

˜̃T7 ≤ Chk+1‖p‖k+2‖ξut‖. (4.79)

Substituting (4.73)-(4.79) into (4.72), we have the estimate

‖A
1
2 (ch)ξut‖2 +

1

2

d

dt
‖d

1
2 (ch)ξpt‖

2

≤ Ch2(k+1) + C(‖ξu‖2 + C‖ξc‖2 + ‖ξpt‖
2 + ‖ξct‖2) + ε‖ξut‖2. (4.80)

Integrating (4.80) with respect to time between 0 and t and using the hypothesis 1 , we

obtain the fourth energy Inequality∫ t

0
‖ξut‖2dt+ ‖ξpt‖

2

≤ Ch2(k+1) + C

∫ t

0
(‖ξu‖2 + ‖ξc‖2 + ‖ξpt‖

2 + ‖ξct‖2)dt. (4.81)
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4.8 Proof of Theorem 3.1

Now we are ready to combine the four energy inequalities and finish the proof of Theorem

3.1. Firstly, combing (4.51) with (4.70), we obtain∫ t

0
‖ξct‖2dt+ ‖ξs‖2 + ‖ξc‖2

≤ C

∫ t

0
(‖ξu‖2 + ‖ξs‖2 + ‖ξc‖2 + ‖ξpt‖

2)dt+ ε

∫ t

0
‖ξut‖2dt+ Ch2(k+1). (4.82)

Secondly,combing (4.81) with (4.82), we obtain∫ t

0
‖ξut‖2dt+ ‖ξpt‖

2

≤ C

∫ t

0
(‖ξu‖2 + ‖ξs‖2 + ‖ξc‖2 + ‖ξpt‖

2)dt+ Ch2(k+1). (4.83)

Then, adding (4.60), (4.70), (4.82) and (4.83), we obtain

‖ξu‖2 + ‖ξp‖2 + ‖ξpt‖
2 + ‖ξc‖2 + ‖ξs‖2 +

∫ t

0
(‖ξut‖2 + ‖ξct‖2)dt

≤ Ch2(k+1) + C

∫ t

0
(‖ξu‖2 + ‖ξp‖2 + ‖ξpt‖

2 + ‖ξc‖2 + ‖ξs‖2)dt

+ε

∫ t

0
(‖ξut‖2 + ‖ξct‖2)dt. (4.84)

Employing Gronwall’s lemma, we obtain

‖ξu‖2 + ‖ξp‖2 + ‖ξpt‖
2 + ‖ξc‖2 + ‖ξs‖2 +

∫ t

0
(‖ξut‖2 + ‖ξct‖2)dt ≤ Ch2(k+1). (4.85)

Finally, by using the standard approximation result, we obtain (3.16).To complete the

proof, let us verify the a priori assumption (4.10). For k ≥ 1, we can consider h small

enough so that Chk+1 < 1
2h, where C is the constant determined by the final time T .

Then if t∗ = inf{t : ‖c − ch‖ + ‖u − uh‖ + ‖pt − pht‖ ≥ h}, we should have ‖c − ch‖ +

‖u − uh‖ + ‖pt − pht‖ = h by continuity in time at t = t∗. However, if t∗ < T , theorem

3.1 implies that ‖c − ch‖ + ‖u − uh‖ + ‖pt − pht‖ ≤ Chk+1 for t ≤ t∗, in particular

h = ‖(c−ch)(t∗)‖+‖(u−uh)(t∗)‖+‖(pt−pht)(t∗)‖ ≤ Chk+1 < 1
2h, which is a contradiction.

Therefore, there always holds t∗ ≥ T , and thus the a priori assumption (4.10) is justified.

5 Numerical example

In this section we provide numerical examples to illustrate the accuracy and capability

of the method. Time discretization is given as the third order strong-stability-preserving

Runge-Kutta method [22]. We take the time step to be sufficiently small such that the
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error in time is negligible compared to spatial error. In the scheme, the numerical flux in

the convection term is taken as ûhch = 1
2(u+

h c
+
h + u−h c

−
h ). Moreover, other parameters are

taken as follows

• The solution domain Ω = [0, 1] × [0, 1], T = 0.01, ∆t = r ∗ h2, here r denotes the

grid ratio and r depends on the polynomial degree.

• We take φ(x, y) = 1, κ(x, y) = 1, µ(c) = 1, for simplicity.

Example 5.1 We first consider the problem with the constant matrix D(u) = αI, where

α is a constant, in addition, we take the initial and boundary condition c0 = sin(2π(x+y)),

p0 = −2π(x2 +y2), c(0, t) = c(2π, t), and the parameters b(c) = 0, d(c) = 1 and the source

term

f = 2π cos(2π(x+ y + t))(4π(x+ y + t) + 1) + 8απ2 sin(2π(x+ y + t))− 2π,

the exact solution is

c = sin(2π(x+ y + t)),u = (4πx+ 2πt, 4πy + 2πt),

The L2 error and the numerical orders of accuracy at time t = 0.01 with uniform meshes

are contained in Tables 1 and 2. We can see that the method with Qk elements gives

(k + 1)−th order of accuracy in L2 norm.

Table 1: The numerical results for c with α = 1

N
Q1/r = 0.01 Q2/r = 0.01 Q3/r = 0.001

L2 error order L2 error order L2 error order
10 2.3021e-02 – 8.0016e-04 – 2.0744e-04 –
20 5.8006e-03 1.99 9.9746e-05 3.00 1.3097e-05 3.99
40 1.4512e-03 2.00 1.2417e-05 3.01 8.1846e-07 4.00
80 3.6279e-04 2.00 1.5521e-06 3.00 5.1097e-08 4.00
160 9.0695e-05 2.00 1.9400e-07 3.00 3.1875e-09 4.00

Example 5.2 Next we consider the problem with matrix D(u) = u⊗ u + I, in addition,

we take the initial and boundary condition c0 = sin(2π(x + y)), p0 = −2π(x2 + y2),

c(0, t) = c(2π, t), and the parameters b(c) = 0, d(c) = 1 and the source term

f = 2π cos(2π(x+y+t))(4π(x+y+t))(1−12π2)−2π+4π2(16π2(x+y+t)2+2) sin(2π(x+y+t)),

the exact solution is

c = sin(2π(x+ y + t)),u = (4πx+ 2πt, 4πy + 2πt),
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Table 2: The numerical results for c with α = 0.01

N
Q1/r = 0.01 Q2/r = 0.01 Q3/r = 0.001

L2 error order L2 error order L2 error order
10 2.3021e-02 – 7.9917e-04 – 2.0744e-04 –
20 5.8006e-03 1.99 9.9612e-05 3.00 1.3097e-05 3.99
40 1.4501e-03 2.00 1.2450e-05 3.00 8.1796e-07 4.00
80 3.6247e-04 2.00 1.5524e-06 3.00 5.1100e-08 4.00
160 9.0603e-05 2.00 1.9355e-07 3.00 3.1875e-09 4.00

The L2 error and the numerical orders of accuracy at time t = 0.01 with uniform meshes

is contained in Tables 3. We can see that the method with Qk elements gives (k + 1)−th

order of accuracy in L2 norm.

Table 3: The numerical results for c

N
Q1/r = 0.01 Q2/r = 0.01 Q3/r = 0.001

L2 error order L2 error order L2 error order
10 2.3022e-02 – 7.9948e-04 – 2.0756e-04 –
20 5.8006e-03 1.99 9.9643e-05 3.00 1.3104e-05 3.99
40 1.4492e-03 2.00 1.2393e-05 3.01 8.2105e-07 4.00
80 3.6223e-04 2.00 1.5477e-06 3.00 5.1348e-08 4.00
160 9.0551e-05 2.00 1.9308e-07 3.00 3.2097e-09 4.00

Example 5.3 We choose the initial condition as

c0 =
1

2
(1 + cos(2πx) cos(2πy)), p0 = cos(2πx) cos(2πy)− 1.

Other parameters are taken as

q(x, y, 0) = 0,m1 = 0.35,m2 = 1, φ(x) = 1,D(u) =

(
|u| 0
0 |u|

)
We choose ∆t = 0.01 min{∆x2,∆y2} with final time T = 0.1, and the numerical approxi-

mation of c is given in Figure 1.

Example 5.4 We change the initial condition in Example 5.3 to

c0 =

{
0.001, (x− 0.5)2 + (y − 0.5)2 < 0.09,
0, otherwise,

p0 = sin(πx) sin(πy).

Other parameters are taken as

q(x, y, 0) = 0,m1 = 1,m2 = 1, φ(x) = 1,D(u) = I

and the numerical approximation of c is given in Figure 2.
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Figure 1: Numerical approximations of c at t = 0.1 with Nx = Ny = 40 in Example 5.3.
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Figure 2: Numerical approximations of c at t = 0.1 with Nx = Ny = 40 in Example 5.4.
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6 Concluding remarks

In this paper, the conservative LDG method for both flow and transport equations is

introduced for the coupled system of compressible miscible displacement problem. The

optimal order of error estimates hold not only for the solution itself but also for the

auxiliary variables. Special projections and a priori assumption help to eliminate the

jump terms at the cell interfaces which arise from the discontinuity nature of the numerical

method, the nonlinearity and coupling of the model.
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A Proof of Lemma 4.5

Recall that we have chosen the initial condition c0
h = P+c0,u

0
h = Π−u0, where u0 =

−a(c0)∇p0, and p̂h = p+
h , ûh = u−h , ẑh = z−h , ĉh = c+

h . For simplicity, we will drop the

0 in the superscripts and subscripts in this section. It is clear that (4.5) and (4.6) hold.

Taking the test function ζ = ξpt and summing over K in (4.16), we have(
d(c)ξpt, ξpt

)
=
(
d(c)ηpt, ξpt

)
+
(
pht(d(c)− d(ch)), ξpt)

)
, (A.1)

where we have used uh = Π−u, ûh = u−h and the property of the projection (4.3) . Using

the Schwartz inequality, we can get

‖d
1
2 (c)ξpt‖

2 ≤ C‖ηpt‖‖ξpt‖+ C‖c− ch‖‖ξpt‖, (A.2)

By Lemma 4.2 and (4.5), we easily prove

‖ξpt‖ ≤ Ch
k+1. (A.3)

Similarly, taking the test function w = ξs and summing over K in (4.13), we have

(ξs, ξs) = (ηs, ξs)−D(ηc, ξs), (A.4)

where we have used ch = P+c. Using the Schwartz inequality and the Lemma 4.3, we can

get

‖ξs‖2 ≤ ‖ξs‖‖ηs‖+ Chk+1‖c‖k+2‖ξs‖. (A.5)
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By Lemma 4.2, we easily prove

‖ξs‖ ≤ Chk+1, (A.6)

By the standard approximation results, (4.7) and (4.8) hold. At last we estimate p− ph,

following the technique in [17]. By (3.10) the initial data ph is the solution of the following

equations

(A(ch)uh,θ)K − (ph,∇ · θ)K + 〈p̂h,θ · νK〉∂K = 0, (A.7)

and also satisfies

(p− ph, 1) = 0. (A.8)

From (4.15), we have

(A(c)u−A(ch)uh,θ)K − (p− ph,∇ · θ)K + 〈p− p̂h,θ · νK〉∂K = 0. (A.9)

We use uh to find a well-defined ph, and we only need to prove the uniqueness. If there

are two solutions p1 and p2 satisfying (A.7) and (A.8), then we can easily get

(p1 − p2,∇ · θ)K − 〈p̂1 − p̂2,θ · νK〉∂K = 0, (A.10)

(p1 − p2, 1) = 0. (A.11)

We consider the elliptic linear problem

−ζ∗ = ∇ξ∗, in Ω, (A.12)

η∗ = ∇ · ζ∗, in Ω, (A.13)

subject to periodic boundary conditions. To make the problem well-defined, we assume

that the average of ξ∗ on Ω is a given constant and that of η∗ is zero. We have the elliptic

regularity result

‖ζ∗‖H1(Ω) + ‖ξ∗‖H2(Ω) ≤ C‖η∗‖. (A.14)

Taking η∗ = p1 − p2 and p̂i = p+
i , i = 1, 2, we get

(p1 − p2, p1 − p2)K

= (p1 − p2,∇ · ζ∗)K
= (p1 − p2,∇ · (ζ∗ −Πζ∗))K + (p1 − p2,∇ ·Πζ∗)K
= (p1 − p2,∇ · (ζ∗ −Πζ∗))K − 〈p̂1 − p̂2, (ζ

∗ −Πζ∗) · νK〉∂K + 〈p̂1 − p̂2, ζ
∗ · νK〉∂K

= −(∇(p1 − p2), ζ∗ −Πζ∗)K + 〈p1 − p2, (ζ
∗ −Πζ∗) · νK〉∂K

−〈p̂1 − p̂2, (ζ
∗ −Πζ∗) · νK〉∂K + 〈p̂1 − p̂2, ζ

∗ · νK〉∂K (A.15)
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where the third step follows from (A.10) and the last equality is based on integration by

parts. We take Πζ∗ = Π−ζ∗ and sum over K. By the continuity of ζ∗ and the definition

of the projection Π−, we obtain

(p1 − p2, p1 − p2) = 0 (A.16)

Then we get p1 = p2. We have proved that ph is well-defined. In the following, we estimate

‖p− ph‖. We use the same technique above and take η∗ = p− ph to obtain

(p− ph, p− ph)K

= (p− ph,∇ · ζ∗)K
= (p− ph,∇ · (ζ∗ −Πζ∗))K + (p− ph,∇ ·Πζ∗)K
= (p− ph,∇ · (ζ∗ −Πζ∗))K − (A(c)u−A(ch)uh, ζ

∗ −Πζ∗)K

−〈p− p̂h, (ζ∗ −Πζ∗) · νK〉∂K + (A(c)u−A(ch)uh, ζ
∗)K + 〈p− p̂h, ζ∗ · νK〉∂K

= −(∇(p− ph), ζ∗ −Πζ∗)K + 〈p− ph, (ζ∗ −Πζ∗) · νK〉∂K
−(A(c)u−A(ch)uh, ζ

∗ −Πζ∗)K − 〈p− p̂h, (ζ∗ −Πζ∗) · νK〉∂K
+(A(c)u−A(ch)uh, ζ

∗)K + 〈p− p̂h, ζ∗ · νK〉∂K
= −(∇(p− ph), ζ∗ −Πζ∗)K + 〈p̂h − ph, (ζ∗ −Πζ∗) · νK〉∂K
−(A(c)u−A(ch)uh, ζ

∗ −Πζ∗)K + (A(c)u−A(ch)uh, ζ
∗)K

+〈p− p̂h, ζ∗ · νK〉∂K (A.17)

where the third one follows from (A.9) and the fourth equality is based on the integrate by

parts. Recalling that p̂h = p+
h , we take Πζ∗ = Π−ζ∗ and sum over K. By the continuity

of ζ∗ and the definition of the projection Π−, we obtain

‖p− ph‖2 = −(∇ηp, ζ∗ −Πζ∗)− (A(c)u−A(ch)uh, ζ
∗ −Πζ∗)

+(A(c)u−A(ch)uh, ζ
∗)

= −(∇ηp, ζ∗ −Πζ∗)− (A(c)(u− uh), ζ∗ −Πζ∗)

−((A(c)−A(ch))uh, ζ
∗ −Πζ∗)

+(A(c0)(u− uh), ζ∗) + ((A(c)−A(ch))uh, ζ
∗)

≤ Chk+1‖ζ∗‖H1(Ω) + Chk+2‖ζ∗‖H1(Ω) + Chk+1‖ζ∗‖

≤ Chk+1‖ζ∗‖H1(Ω)

≤ Chk+1‖p− ph‖, (A.18)

which further implies

‖p− ph‖ ≤ Chk+1. (A.19)
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