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Abstract

In this paper, we apply the local discontinuous Galerkin (LDG) method to solve the clas-

sical Keller-Segel (KS) chemotaxis model. The exact solution of the KS chemotaxis model

may exhibit blow-up patterns with certain initial conditions, and is not easy to approximate

numerically. Moreover, it has been proved that there exists a definition of free energy of the KS

system which dissipates with respect to time. We will construct a consistent numerical energy

and prove the energy dissipation with the LDG discretization. Several numerical experiments

in one and two space dimensions will be given. Especially, for solutions with blow-up (converge

to Dirac delta functions), the densities of KS model are computed to be strictly positive in the

numerical experiments and the energies are also numerically observed to be strictly positive

and decreasing as are seen in the figures. Therefore, the scheme is stable for the KS model

with blow-up solutions.
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1 Introduction

In this paper, we study the classical Keller-Segel (KS) chemotaxis model [36, 29]. Let Ω

be a convex, bounded and open set in R2, then we focus on the following common formulation

[7],

ρt = ∆ρ−∇ · (χρ∇c), xxx ∈ Ω, t > 0, (1.1a)

ct = ∆c+ ρ− c, xxx ∈ Ω, t > 0, (1.1b)

as well as its one dimensional version. Chemotaxis is the nonlinear movement of cell in re-

action to a chemical substance, where cell approaches chemically favorable environments and

avoids unpleasant ones. In (1.1) ρ represents the densities of cells and c denotes the chemical

concentration. The chemotactic sensitivity function χ is supposed to be a positive constant.

For simplicity, we take χ ≡ 1 in this paper. However, this assumption is not essential. The

initial conditions are given as

ρ(xxx, 0) = ρ0(xxx), and c(xxx, 0) = c0(xxx), xxx ∈ Ω. (1.2)

In addition, the boundary conditions are set to be homogeneous Neumann boundary condition

∇ρ · n = ∇c · n = 0, (1.3)

where n is the outer normal of the boundary ∂Ω. With this boundary condition,
∫

Ω ρdxxx =∫
Ω ρ

0dxxx is a constant during the time evolution and the system is thus isolated.

It is not easy to obtain the existence and uniqueness of the weak solutions to (1.1). In

[19, 20], the initial densities ρ0 and c0 are assumed to be strictly positive and satisfy

ρ0(x, y) ∈ L2(Ω), ρ0 ≥ a0 > 0 and c0(x, y) ∈W 1,p(Ω), p > 2, ∀ (x, y) ∈ Ω, (1.4)

where W 1,p(Ω) denote the Sobolev space of functions on Ω with the usual norm ‖ · ‖1,p.
Moreover, ρ0 is assumed to satisfy a smallness condition [19], that is, there exists a constant

CGNS
Ω > 0, such that

CGNS
Ω χ‖ρ0‖L1(Ω) < 1,

where CGNS
Ω denotes the best constant in the Gagliardo-Nirenberg-Sobolev inequality. Then

for appropriate T > 0, there exists a unique weak solution (ρ, c) (see details in [20]) such that

ρ ∈ C
(
[0, T ];L2(Ω) ∩ L2(0, T ;H1(Ω))

)
, c ∈ L2(0, T ;H1(Ω)). (1.5)

The exact solutions of the KS chemotaxis model are always non-negative. Moreover, the model

exhibits blow-up patterns with certain initial conditions [34, 25, 24, 20, 19]. Biologically, finite-

time blow up for solutions is expected to describe chemotactic collapse, that is the tendency of

cells to concentrate to form spora, which can be explained mathematically as concentration of

ρ(x, t) towards a Dirac delta mass in finite time [25, 34] in the sense of distribution. When the

blow-up patterns occur, the density ρ of cells will strengthen in the vicinity of isolated points,

and these regions become sharper and eventually result in finite time point-wise blow-ups. It

was well known that blow-up never occurs in problems in one space dimension [34], whereas

blow-up occurs within finite time in 2D and 3D cases. In 2D space, mathematical proofs for
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spherically symmetric solutions in a ball have been given in [24, 34]. When the initial mass is

greater than a certain threshold

χ‖ρ0‖L1(Ω) > 8π,

the exact solution will blow up at the center of the ball, and this is proved to be the only

possible singularity. For nonsymmetric cases, if 4π < χ‖ρ0‖L1(Ω) < 8π and the corresponding

solution of (1.1) blows up at finite time, then the blow-up happens at the boundary of Ω

[26, 27]. However, no such restriction in mass appears for the 3D case [24]. More theoretical

work can be found in [20, 25, 24, 26].

It is difficult to construct numerical schemes for (1.1), and most of the previous works are

for the following simplified system

ρt −∇ · (∇ρ− χρ∇c) = 0, x ∈ Ω, t > 0,

−4c = ρ− c, x ∈ Ω, t > 0,

(See, for example, [41, 33, 19, 23] and the references therein). Recently, there are some signifi-

cant works designed to solve (1.1) directly [35, 17, 39, 40]. In [35], the semigroup methods were

used to obtain the stability and error estimates of the finite element methods. Later, In [39],

the author constructed conservative upwind finite-element method to yield positive numerical

approximations under mild assumptions of the meshes. Subsequently, in [40], the authors con-

structed implicit second-order positivity preserving finite-volume schemes in three-dimensional

space, and their technique requires solving a large dense linear system of equations coupling

together all grid points at each stage of the two stage TR-BDF2 method when updating the

diffusion terms at each time step. In [17], the interior penalty discontinuous Galerkin (IPDG)

method was applied to rectangular meshes to obtain suboptimal rate of convergence, and the

finite element space is assumed to be piecewise polynomials of degree k ≥ 2. Other related

works in this direction include [16, 14, 15]. Besides the above, in [38] the authors applied the

conservative upwind finite volume method for the simplified system. Later in [6], the authors

constructed a second order positivity-preserving scheme to a revised system by differentiating

(1.1) with respect to x and y, hence the schemes were not designed to solve (1.1) directly.

Subsequently, in [18], the author developed a composite particle-grid numerical method with

adaptive time stepping to resolve and propagate singular solutions of (1.1). In [31], the au-

thors applied finite difference method to the 2D problem and investigated the problem in the

transient regime. The scheme is proved to be stable as long as the initial condition does not

exceed certain threshold. Recently, in [30], the local discontinuous Galerkin methods were

considered and the optimal rates of convergence were proved under some special finite element

spaces. Moreover, following [44], the positivity-preserving technique was also introduced to

obtain physically relevant numerical approximations and defined the numerical blow-up time

which was verified to be convergent to the exact value by numerical benchmarks. Besides the

above, for the KS chemotaxis model (1.1), one can define a free energy

E(t) =

∫
Ω

(
ρ ln(ρ)− ρc+

1

2
c2 +

1

2
|∇c|2

)
dΩ. (1.6)

In most of the previous works the energy (1.6), which was proved to be decreasing during

time evolution, has been used to prove the existence of the global solutions of the system

(1.1), see [20, 2, 5, 3, 28, 32, 13] as an incomplete list. Numerical method based on a hybrid
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variational principle was introduced in [4]. The implementation utilizes the steepest descent

of free energy under a special distance metric. In this paper, we will apply a special LDG

scheme and construct a numerical energy which is consistent with (1.6). It is well known that

in LDG methods, the axillary variables must be introduced, and in general we can obtain

the L2 stability. However, for the (1.1), such a stability cannot be obtained since the exact

solution may yield blow-up patten. Therefore, one of the most significant difficulty is how

to introduce the axillary variables. In this paper, we will rewrite (1.1) into several special

first-order equations and construct consistent and dissipating numerical energy accordingly.

The DG method was first introduced in 1973 by Reed and Hill [37] in the framework of

neutron linear transport. Subsequently, Cockburn et al. developed Runge-Kutta discontinuous

Galerkin (RKDG) methods for hyperbolic conservation laws in a series of papers [10, 8, 9, 11].

In [12], Cockburn and Shu introduced the LDG method to solve the convection-diffusion equa-

tions. Their idea was motivated by Bassi and Rebay [1], where the compressible Navier-Stokes

equations were successfully solved. Recently, the DG methods were applied to linear hyper-

bolic equations with δ-singularities [42] to obtain high-order approximations under suitable

negative-order norms. Subsequently, the methods have also been applied to nonlinear hyper-

bolic equations with δ-singularities [43, 45]. Recently, the idea has been extended to parabolic

equations with blow-up solutions by using the LDG method [22]. In this paper, we follow the

same direction and employ the LDG method to capture the blow-up phenomenon. For the KS

chemotaxis model (1.1), the exact solution may exhibits blow-up patten. Therefore, the L2

stability of the LDG method is missing. However, this leads another way to define the numer-

ical blow-up time. In [30], we introduced a new idea to capture the numerical blow-up time by

using the L2 norm of the numerical approximations under different resolutions. In this paper,

we will continue this approach and compute the numerical approximations up to the blow-up

appears. Moreover, we construct the numerical energy, consistent with (1.6), that is decreasing

during time evolution. Even though the energy can be negative, numerical experiments for

blow-up solutions demonstrate the positivity of the energy. Therefore, this approach provides

the stability of the LDG scheme for problems with blow-up solutions. Before we finish the

introduction, we would like to demonstrate the main differences between the LDG method in

this paper and the one introduced in [30]. In [30], we basically followed the idea introduced in

[12] and define p = ∇ρ, q = ∇c to rewrite (1.1) as

ρt = ∇ · p−∇ · (χρq), p = ∇ρ,
ct = ∇ · q + ρ− c, q = ∇c,

However, we cannot anticipate the numerical energy to be dissipative. Moreover, the numer-

ical approximation contains severe oscillations near the concentration of the δ-singularities.

In this paper, we will apply the new idea to decompose (1.1) and prove that the numerical

energy is dissipative during time evolution. Numerical experiments also demonstrate the same

conclusion.

The organization of this paper is as follows. In Section 2, we construct the energy stable

LDG scheme for the KS chemotaxis model. In Section 3, we construct the numerical energy

and prove the energy dissipation for the semi-discrete LDG scheme. Numerical experiments

in one and two space dimensions will be given in Section 4 to demonstrate the stability of

the LDG scheme for problems with blow-up solutions. Finally, we will end in Section 5 with

concluding remarks and remarks for future work.
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2 The LDG Scheme

In this section, we define the finite element spaces and proceed to construct the LDG scheme

for the KS chemotaxis model (1.1).

Let Ωh = {K} be a partition of the domain Ω with rectangular or triangular element

K. Denote hK to be the diameter of element K, and h = maxK hK . Moreover, assume the

partition is quasi-uniform, i.e. there exists a number τ > 0 such that every K ∈ Ωh contains a

circle of radius rK with rK ≥ hK/τ . We define the finite element space V k
h as

V k
h =

{
z : z

∣∣
K
∈ P k(K), ∀K ∈ Ωh

}
,

where P k(K) is the set of polynomials of degree up to k in cell K.

We choose β to be a fixed vector that is not parallel to any normals of element interfaces.

Moreover, we denote Γh to be the set of all element interfaces and Γ0 = Γh \ ∂Ω. Let e ∈
Γ0 be an interior edge shared by elements K` and Kr, where β · n` > 0, and β · nr < 0,

respectively, with n` and nr being the outward normals of K` and Kr, respectively. For any

z ∈ V k
h , we define z− = z|∂K`

and z+ = z|∂Kr , respectively. The jump and average of z across

the cell interface are given as [z] = z+ − z− and {z} = z++z−

2 , respectively. Moreover, for

s ∈ Vk
h = V k

h × V k
h , we define s+, s−, [s] and {s} analogously. Furthermore, we also define

∂Ω− = {e ∈ ∂Ω|β · n < 0,n is the outer normal of e}, and ∂Ω+ = ∂Ω \ ∂Ω−.

To construct the LDG method scheme, we introduce the axillary variables w, s, q ∈ Vk
h

and r ∈ V k
h , then the chemotaxis model (1.1) can be written as

ρt = ∇ ·w,
w = ρs,

s = ∇(r − c),
r = ln(ρ),

ct = ∇ · q + ρ− c,
q = ∇c.

The formulation of the LDG scheme is to find ρh, rh, ch ∈ V k
h and wh, sh, qh ∈ Vk

h, such that

for any test functions v, u, θ ∈ V k
h and φ, ψ, ξ ∈ Vk

h, we have

(ρht, v)K = −(wh,∇v)K + 〈ŵh · n, v〉∂K , (2.1a)

(wh,φ)K = (ρhsh,φ)K , (2.1b)

(sh,ψ)K = −(rh − ch,∇ ·ψ)K + 〈r̂h − ĉh,ψ · n〉∂K , (2.1c)

(rh, u)K = (ln(ρh), u)K , (2.1d)

(cht, θ)K = −(qh,∇θ)K + 〈q̂h · n, θ〉∂K + (ρh − ch, θ)K , (2.1e)

(qh, ξ)K = −(ch,∇ · ξ)K + 〈ĉh, ξ · n〉∂K , (2.1f)

where (u, v)K :=
∫
K uvdxdy, (φ,ψ)K :=

∫
K φ · ψdxdy and 〈u, v〉∂K :=

∫
∂K uvds. n is the

outward normal vector of cell K. The “hat” terms in (2.1) at the cell interfaces are numerical

fluxes. In this paper, we choose

ŵh = {wh}+ α[wh], r̂h = {rh} − α[rh], ĉh = {ch} − α[ch] q̂h = {qh}+ α[qh]. (2.2)
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If we take α = ±1, then the fluxes (2.2) turn out to be the alternating fluxes. Moreover, due

to the Neumann boundary condition, we take

ŵh · n|e = 0, r̂h|e = r+
h , ĉh|e = c+

h , q̂h · n|e = 0,

if e ∈ ∂Ω−, and

ŵh · n|e = 0, r̂h|e = r−h , ĉh|e = c−h , q̂h · n|e = 0,

if e ∈ ∂Ω+.

We also denote

(u, v) =
∑

K∈Ωh

(u, v)K , (φ,ψ) =
∑

K∈Ωh

(φ,ψ)K ,

then (2.1) can be written as

(ρht, v) = −Ld(wh, v), (2.3a)

(wh,φ) = (ρhsh,φ), (2.3b)

(sh,ψ) = −Q(rh − ch,ψ), (2.3c)

(rh, u) = (ln(ρh), u), (2.3d)

(cht, θ) = −Ld(qh, θ) + (ρh − ch, θ), (2.3e)

(qh, ξ) = −Q(ch, ξ), (2.3f)

where

Ld(p, w) := (p,∇w)−
∑

K∈Ωh

〈p̂ · nK , w〉∂K ,

Q(u,w) := (u,∇ ·w)−
∑

K∈Ωh

〈û,w · nK〉∂K .

It is easy to check the following identities by integration by parts on each cell, with the given

choice of the numerical fluxes, for any functions u and w,

Ld(w, u) +Q(u,w) = 0. (2.4)

Remark 2.1. It is not easy to derive the a priori error estimates for the new LDG method

proposed above. The main difficulty is the numerical energy Eh given in (3.1) may not be

positive. However, numerical experiments in Section 4 demonstrate optimal convergence rates

if P k polynomials are applied for problems in two space dimensions. We will discuss the error

estimates in the future.

3 Energy Dissipation

In this section, we will construct a suitable numerical energy Eh(t) obtained from the

semi-discretized LDG scheme (2.1) and prove the energy dissipation.
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3.1 Free energy of the LDG scheme

In this subsection, we proceed to construct the numerical energy Eh(t), which is consistent

with the free energy E(t) given in (1.6) and prove that it is decreasing with respect to t.

The numerical energy Eh(t) is defined as follows

Eh(t) =

∫
Ω
ρh ln(ρh)− ρhch +

1

2
c2
h +

1

2
|qqqh|2dΩ. (3.1)

The numerical energy given above is similar to that in (1.6). However, Eh is used for the

numerical approximations while (1.6) is for the exact solution.

Theorem 3.1. The numerical energy given in (3.1) satisfies the following identity

d

dt
Eh(t) = −(cht, cht)− (ρhsh, sh). (3.2)

Proof. Firstly, we take the derivative of (2.3f) with respect to time and choose ξ = qh to obtain

(qht,qh) = −Q(cht,qh). (3.3)

Next, take θ = cht in (2.3e), one can obtain

(cht, cht) = −Ld(qh, cht) + (ρh − ch, cht). (3.4)

We add (3.3) and (3.4) and use (2.4) to get

(qht,qh) + (cht, cht) = (ρh − ch, cht). (3.5)

Secondly, we choose the test functions v = rh − ch in (2.3a) and ψ = wh in (2.3c) to obtain

(ρht, rh − ch) = −Ld(wh, (rh − ch)),

(sh,wh) = −Q(rh − ch,wh).

Adding up the above two equations and using (2.4), we have

(ρht, rh − ch) + (sh,wh) = 0. (3.6)

Then let φ = sh in (2.3b) and u = ρht in (2.3d), equation (3.6) becomes

(ln(ρh), ρht)− (ρht, ch) + (ρhsh, sh) = 0. (3.7)

Thirdly, take v = 1 in (2.3a) to obtain

(ρht, 1) = −Ld(wh, 1) = 0. (3.8)

Finally, we can obtain

d

dt
Eh(t) = (ln(ρh) + 1, ρht)− (ρht, ch)− (ρh, cht) + (ch, cht) + (qht,qh)

= −(cht, cht)− (ρhsh, sh)

where in the second step, we use (3.5), (3.7) and (3.8). Now we complete the proof.
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Remark 3.1. We proved the dissipation of the free energy with the LDG discretization. Also to

the best of our knowledge, we did not see any references claimed that the violation of the initial

threshold will make the energy to be negative infinity. On the other hand, the free energy of the

2D test examples are numerically observed to be strictly positive provided the exact solutions

blow up (see examples 4.6 and 4.7). Therefore, we numerically obtain the stability of our

scheme due to the monotonicity and boundedness of the free energy for problems with blow-up

solutions.

Remark 3.2. When ρh attains negative values, Eh in (3.1) is not well-defined and may not

decrease in (3.2). Hence the energy dissipation relies heavily on the positivity of ρh. However,

the positivity-preserving technique in [30] cannot be applied since we cannot obtain positive

numerical approximations for the first-order scheme. Moreover, the positivity-preserving tech-

nique require a special slope limiter. However, with the limiter, the energy equality in Theorem

3.1 will be violated. In (3.2), it is possible to redefine the numerical energy as

Eh(t) =

∫
Ω
ρh ln(|ρh|)− ρhch +

1

2
c2
h +

1

2
|qqqh|2dΩ,

and the numerical energy is well defined. With the new definition, it is easy to check that

Theorem 3.1 is still valid.

4 Numerical Experiments

In this section, we provide numerical experiments in one and two space dimensions to

verify the energy stability. We consider uniform meshes in this section for simplicity and apply

third-order Strong-Stability-Preserving (SSP) time discretization [21] to solve the ODE system

ut = L(u)

u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4

(
u(1) + ∆tL(u(1))

)
,

un+1 =
1

3
un +

2

3

(
u(2) + ∆tL(u(2))

)
.

The time step ∆t is chosen to be ∆t = cfl ∗ h2, with cfl = 0.1, 0.01, 0.001, 0.0001 for P 0, P 1,

P 2 and P 3 finite element spaces, respectively. For simplicity, if not otherwise stated, we choose

α = 1 and use alternating fluxes (see (2.2)).

In each of the following experiments, the numerical energy Eh(t) is decreasing during time

evolution. Especially, for problems with blow-up solutions, the energy is also positive. Following

[30], we compute the L2 norm of numerical approximations at time t with N ×N cells (N cells

for the 1D case), defined as S(N, t) and define the numerical blow-up time as

tb(N) = inf{t : S(2N, t) ≥ S(N, t) ∗ 1.05}. (4.1)

In [30], the authors used numerical experiments to verify the convergence of the numerical

blow-up time during mesh refinements. We will continue this approach and take the final time

to be the blow-up time if the blow-up appears.

8



4.1 One Dimensional Space

In this subsection, numerical experiments in one space dimension are presented. The prob-

lem in one space dimension does not exist blow-up patterns for any initial conditions. We first

check the accuracy of the algorithm.

Example 4.1. We consider 1D KS chemotaxis model with source terms.

ρt = ρxx − (ρcx)x −
2ρ

2 + sin(x)
+

(cos(2x)− 2 sin(x))ρ2

(2 + sin(x))2
, x ∈ [0, 2π],

ct = cxx+ ρ− c− 2c

2 + sin(x)
, x ∈ [0, 2π],

with the exact solution ρ = c = (2 + sin(x)) exp(−t) and periodic boundary conditions.

Table 4.1: Example 4.1, accuracy test at time=0.1.

α = 1 α = 0

N L2 error order L∞ error order L2 error order L∞ error order

P 0 16 1.80E-02 – 1.29E-02 – 1.81E-02 – 1.30E-02 –

32 7.24E-03 1.31 5.37E-03 1.26 7.24E-03 1.31 5.37E-03 1.26

64 3.36E-03 1.11 2.36E-03 1.19 3.36E-03 1.11 2.36E-03 1.19

128 1.64E-03 1.03 1.09E-03 1.11 1.64E-03 1.03 1.09E-03 1.11

P 1 16 1.06E-02 – 6.15E-03 – 3.25E-02 – 2.01E-02 –

32 2.59E-03 2.03 1.47E-03 2.06 1.55E-02 1.02 9.83E-03 1.03

64 6.45E-04 2.01 3.65E-04 2.02 7.64E-03 1.00 4.88E-03 1.01

128 1.61E-04 2.00 9.09E-05 2.00 3.81E-03 1.00 2.44E-03 1.00

P 2 16 4.49E-04 – 3.56E-04 – 3.30E-04 – 2.43E-04 –

32 5.62E-05 3.00 4.37E-05 3.03 4.06E-05 3.02 2.95E-05 3.04

64 7.03E-06 3.00 5.42E-06 3.01 5.06E-06 3.01 3.62E-06 3.03

128 8.79E-07 3.00 6.73E-07 3.01 6.31E-07 3.00 4.49E-07 3.01

P 3 16 9.07E-06 – 5.61E-06 – 4.94E-05 – 3.18E-05 –

32 5.41E-07 4.06 3.05E-07 4.20 5.88E-06 3.07 3.89E-06 3.05

64 3.34E-08 4.02 1.88E-08 4.02 7.26E-07 3.02 4.82E-07 3.01

128 2.08E-09 4.00 1.18E-09 4.00 9.05E-08 3.00 6.03E-08 3.00

Example 4.1 aims to verify the accuracy of the LDG scheme with α = 1 and α = 0

respectively. The results can be found in Table 4.1. We list the L2 and L∞ errors of ρ at final

time T = 0.1. From the table, we can observe optimal rates of convergence with α = 1. For

α = 0, we can see that the rates of convergence have optimal and suboptimal accuracy for odd

orders and even orders respectively.

Example 4.2. Consider 1D KS chemotaxis model (1.1) on the domain [0, π] with smooth

initial condition and homogeneous Neumann boundary conditions

ρ(x, 0) = c(x, 0) = 2 + cos(x), and ∇ρ · n = ∇c · n = 0.

In this example, the exact solution is smooth and the energy Eh(t) is negative. We choose

the final time to be T = 0.1. From Figure 4.1, we can see that the energy is decreasing during

time evolution and the numerical approximations of densities are positive in this example.
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Figure 4.1: Example 4.2: the energy (left) and ρ(right) with N = 80 and N = 160 by using

P 2 piecewise polynomials.

Example 4.3. Finally, we consider 1D KS chemotaxis model (1.1) on the computational

domain [−2, 2] with initial and Neumann boundary conditions given as

ρ(x, 0) =
400

1 + 40x2
, c(x, 0) =

200

1 + 20x2
, and ρx = cx = 0,

respectively.

In this example, the initial condition is symmetric and the derivative is large. Therefore, the

exact solution might be approximately singular at x = 0. Moreover, to preserve the symmetry,

we choose α = 0 in the numerical fluxes. We use P 3 polynomials and take N = 320 and

N = 640 to check the convergence of the numerical approximations at T = 0.001, and the

results are given in Figure 4.2.

x

ρ

1 0 1
1000

0

1000

20

x

ρ

1 0 1

Figure 4.2: Example 4.3: the numerical approximations of ρ with N = 320 (left) and N = 640

(right) by using P 3 polynomials.

From the figure, we can see that the numerical approximations under different resolutions

agree with each other, and the exact solution does not blow up. To demonstrate this point,
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we also compute the L2 norm of the numerical approximations with N = 160, 320, 640 at

T = 0.001, and the results are given in Figure 4.3.
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Figure 4.3: Example 4.3: the L2 norm of the numerical approximations with N = 160, 320, 640

with P 3 polynomials at T = 0.001.

Moreover, we compute the numerical free energy (3.1) and the L2 norm of the numerical

approximations by using P 3 polynomials with N = 160, 320, 640 at T = 0.001. The results

are plotted in Figure 4.3-4.4. We can see that, the L2 norms of the numerical approximations

are almost identical, and the exact solution does not blow up at T = 0.001. Though the exact

solution contains a cusp at x=0 and looks like a delta-singularity shape, the numerical energy

is still positive and the solution is not a blow-up as in 1D. Figure 4.4 contains the numerical

energy with N = 160, N = 320 and N = 640.
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Figure 4.4: Example 4.3: the numerical energy with N = 160, N = 320 and N = 640 with P 3

polynomials at T = 0.001.

From the figure, we can observe that the numerical energy is positive and decreasing during

time evolution, which further implies the energy stability of the scheme. The result is consistent

with Theorem 3.1.
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4.2 Two Dimensional Space

In this subsection, we will present numerical examples in two space dimensions to show the

performance of our algorithm. For simplicity, we take Nx = Ny = N.

Example 4.4. We study the following KS chemotaxis model on the computational domain

[0, 2π]× [0, 2π] with source terms to check the accuracy

ρt = ∆ρ−∇ · (ρ∇c)− 4ρ

2 + sin(x+ y)
+

2ρ2(cos(2(x+ y))− 2 sin(x+ y))

(2 + sin(x+ y))2
,

ct = ∆c+ ρ− c− 4c

2 + sin(x+ y)
,

with the exact solution ρ = c = (2 + sin(x+ y)) exp(−2t) and periodic boundary conditions.

Table 4.2: Example 4.4, accuracy test at time=0.1.

α = 1 α = 0

N ×N L2 error order L∞ error order L2 error order L∞ error order

P 0 8× 8 2.25E-01 – 5.29E-01 – 2.26E-01 – 5.30E-01 –

16× 16 6.91E-02 1.70 2.13E-02 1.32 6.91E-02 1.70 2.13E-02 1.32

32× 32 2.61E-02 1.40 8.27E-03 1.36 2.61E-02 1.40 8.27E-03 1.36

64× 64 1.18E-02 1.15 3.52E-03 1.23 1.18E-02 1.15 3.52E-03 1.23

P 1 8× 8 2.03E-01 – 4.85E-02 – 2.60E-01 – 8.04E-02 –

16× 16 4.85E-02 2.07 1.08E-02 2.17 1.25E-01 1.06 3.83E-02 1.07

32× 32 1.18E-02 2.04 2.66E-03 2.01 6.15E-02 1.02 1.85E-02 1.05

64× 64 2.93E-03 2.01 6.60E-04 2.01 3.07E-02 1.00 9.06E-03 1.03

P 2 8× 8 1.16E-02 – 3.51E-03 – 2.53E-02 – 5.79E-03 –

16× 16 1.82E-03 2.67 5.74E-04 2.63 3.87E-03 2.71 8.97E-04 2.69

32× 32 2.47E-04 2.88 7.82E-05 2.88 5.18E-04 2.90 1.19E-04 2.91

64× 64 3.16E-05 2.97 9.77E-06 3.00 6.57E-05 2.98 1.49E-05 3.00

In Table 4.2, we present the L2 and L∞ errors of ρ at the final time T = 0.1 of Example

4.4 to test the accuracy of the LDG scheme. From the table, we can observe optimal rates of

convergence.

Example 4.5. Consider 2D KS chemotaxis model (1.1) on the computational domain [0, π]×
[0, π] with initial and Neumann boundary conditions given as

ρ(x, y, 0) = c(x, y, 0) = 2 + cos(x) cos(y), and ∇ρ · n = ∇c · n = 0,

respectively.

In this example, the exact solution is smooth and the energy E(t) is negative at t = 0. We

use P 1 polynomials and compute the numerical solutions at T = 0.1 with N = 40 and 80. The

numerical approximations of ρ are given in Figure 4.5. From the figure, we can see that the

numerical approximations of ρ are strictly positive. Moreover, Figure 4.6 shows the numerical

energy. We can see that the energy is decreasing during time evolution.

Now, we proceed to problems with blow-up solutions.
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Figure 4.5: Example 4.5: the numerical approximations of ρ with N = 40 (left) and N = 80

(right) and P 1 polynomials.
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Figure 4.6: Example 4.5: the numerical energy with N = 40 and N = 80 with P 1 piecewise

polynomials.
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Example 4.6. Let us consider 2D KS chemotaxis model (1.1) on the computational domain

[−2, 2]× [−2, 2] with homogeneous Neumann boundary conditions and the initial conditions are

given as

ρ(x, y, 0) =
400

1 + 40(x2 + y2)
,

c(x, y, 0) =
200

1 + 20(x2 + y2)
.

The exact solution is symmetric and will blow up if t is large. To preserve the symmetry,

we choose α = 0 in (2.2). We use both P 1 and P 2 polynomials and the schemes are first and

third order accurate, respectively, according to the error table in Example 4.4. Moreover, we

take N = 80 and 160 in this example. The L2 norms of the numerical approximations of ρ are

given in Figure 4.7.
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Figure 4.7: Example 4.6: the L2 norm of the numerical approximations of ρ with N = 80 and

N = 160 by using P 1 (left) and P 2 (right) polynomials.

Following the notations given in (4.1), the red line and green line are for S(80, t) and

S(160, t), respectively and the numerical blow-up time tb(80) is approximately t = 0.00032 for

both P 1 and P 2 polynomials. Moreover, we plot the contour and the cross section at x = 0

of ρ at T = 6 × 10−4 for P 2 polynomials in Figure 4.8. From the figure, we cannot observe

undershoots, and the numerical approximations remain positive in this example.

Moreover, we also plot the contours of ρ at T = 6× 10−4 for P 1 polynomials with N = 80

and N = 160 in Figure 4.9 and we can observe significant differences. Especially, the maximum

value of ρ for N = 160 is almost four times of that for N = 80. This clearly demonstrate the

appearance of the blow-up.

We plot the numerical energy for N = 80 and N = 160 in Figure 4.10. From the figure,

we can observe that the energy is decreasing and strictly positive during time evolution, which

clearly demonstrated the stability of the algorithm.

Finally, we repeat the example given in [30] and demonstrate the energy stability of the

algorithm.

14



x

y

1 0 1 2

1

0

1

26000

24000

22000

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

x

ρ

1 0 1
5000

0

5000

10000

15000

20000

25000

30000

Figure 4.8: Example 4.6: the contour (left) and cross section at x = 0 (right) of ρ with N = 160

by using P 2 at T = 6× 10−4 polynomials.
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Figure 4.9: Example 4.6: the contour plots of ρ with N = 80 (left) and N = 160 (right) by

using P 1 at T = 6× 10−4 polynomials.
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Figure 4.10: Example 4.6: the numerical energy with N = 80 and N = 160 by using P 2

polynomials.

Example 4.7. We consider 2D KS chemotaxis model (1.1) on the computational domain

[−0.5, 0.5]× [−0.5, 0.5] with homogeneous Neumann boundary conditions and the initial condi-

tions are given as

ρ(x, y, 0) = 840 exp(−84(x2 + y2)),

c(x, y, 0) = 420 exp(−42(x2 + y2)).

The exact solution is symmetric and will blow up if t is large. To preserve the symmetry,

we also choose α = 0 in (2.2).
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Figure 4.11: Example 4.7: the L2 norms of the numerical approximations of ρ with N = 50

and N = 100 by using P 1 (left) and P 2 (right) polynomials.

In Figure 4.11, we plot the L2 norm of the numerical approximations of ρ with N = 50

and N = 100 by using P 1 and P 2 polynomials, and based on the numerical experiments in
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Example 4.4, the schemes are first and third order accurate, respectively. We cannot observe

significant difference between the two panels. Following (4.1), we can see that the numerical

blow-up appears at about tb = 8.2× 10−5.

In [14], the authors computed the same example for P 2 polynomials with h = 1
50 (N = 50).

For comparison, we present the contour and the cross section at x = 0 of ρ at t = 1.21× 10−4

in Figure 4.12 for P 2 polynomials. We can obtain similar results given in [14].
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Figure 4.12: Example 4.7: the contour (left) and cross section at x=0 (right) of ρ with P 2

polynomials. We take h = 1
50 .

Finally, to demonstrate the energy stability, we plot the numerical energy in Figure 4.13.

We can see that the energy is strictly positive and decreasing during time evolution. Therefore,

our algorithm is stable.
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Figure 4.13: Example 4.7: the free energy with N = 50 and N = 100.
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5 Conclusion

In this paper, we construct a numerical energy for the LDG method for Keller-Segel chemo-

taxis model. The energy is proved to the decreasing during time evolution. For solutions with

blow-up, the energy is also strictly positive which further implies the stability of the numerical

algorithm.
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