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for velocity u are derived. The main techniques in the analysis include the treatment of
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1 Introduction

Numerical modeling of miscible displacement in porous media is important and interesting

in oil recovery and enviromental pollution problem. The miscible displacement problem

is described by a coupled system of nonlinear partial differential equations. The need for

accurate solutions to the coupled equations challenges numerical analysts to design new

methods. Popular methods for solving miscible displacement in porous media numerically

employ nonconforming discrete spaces containing discontinuous functions and introduce

special numerical techniques to control jumps of numerical approximations as well as the

nonlinearality of the convection term, known as discontinuous Galerkin (DG) methods.

The DG method gained even greater popularity recently for good stability, high order

accuracy, and flexibility on h-p adaptivity and on complex geometry. But, it is difficult to
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apply the DG method directly to the equations with higher order derivatives. The idea

of the local discontinuous Galerkin (LDG) method is to rewrite the equations with higher

order derivatives into a first order system, then apply the DG method to the system.

As an extension of DG schemes for hyperbolic conservation laws, this scheme shares the

advantages of the DG methods. Besides, a key advantage of this scheme is the local

solvability, that is, the auxiliary variables approximating the derivatives of the solution

can be locally eliminated. The first LDG method was constructed by Cockburn and Shu

in [9] for solving nonlinear convection diffusion equations containing second order spatial

derivatives. Their work was motivated by the successful numerical experiments of Bassi

and Rebay [3] for the compressible Navier-Stokes equations. The methods were further

developed in [37, 35, 36] for solving many nonlinear wave equations with higher order

derivatives.

In a previous work, Douglas et. al. [11, 12] presented the mixed finite element method

for miscible displacement problem. Subsequently, there were plenty of significant works

with conforming methods have been studied [16, 14, 25, 33]. Later, many numerical tech-

niques have been introduced to obtain better approximations, such as numerical methods

of characteristics, e.g., [15, 40], Eulerian-Lagrangian localized adjoint methods [29], up-

stream weighting and mixed finite elements [21] and mass-conservative characteristic finite

element method [23]. Besides, in [6], the authors applied the DDFV scheme to the problem

and studied convergence of the scheme. In [1], the authors introduced the mixed finite ele-

ment and finite volume methods. Later, Kumar [22] discussed a mixed and discontinuous

finite volume method for incompressible miscible displacement problems, another related

work can be found in [38]. Moreover, the DG methods for miscible displacement have

been investigated by numerical experiments and was reported to exhibit good numerical

performance [34, 2, 24]. In [27], [28], [10], primal semi-discrete discontinuous Galerkin

methods with interior penalty are proposed to solve the coupled system of flow and reac-

tive transport in porous media. For a more detailed early works in the literature, we refer

to [17].

In our previous work [19], we have used the LDG method to discretize the transport

equation. For the flow equation, we still used the continuous mixed finite element methods

to avoid having discontinuities of two independent solution variables at cell interfaces. In

this paper, we continue our work for developing LDG method for flow and transport in

two space dimensions. Different from [19], the flow equation is also discretized by the LDG

method. Although there have been many theoretical analyses of the LDG method, the

one for incompressible miscible displacement problem, by a unified LDG method to both

for the flow equation and transport equation, still seems to be unavailable. The main

difficulty is how to treat the inter-element discontinuities of two independent solution
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variables (one from the flow equation and the other from the transport equation) at cell

interfaces. More precisely, in this problem, the approximations of u in the convection

term in (2.1) are discontinuous across the cell interfaces and it is difficult to obtain error

estimates if we analyze the convection and diffusion terms separately. To explain this

point, let us consider the following hyperbolic equation

ut + (a(x)u)x = 0,

where a(x) is discontinuous at x = x0. In [18, 20], the authors studied such a problem

and defined

Q =
a(x0 + b)− a(x0)

b
.

If Q is bounded from below for all b, then the solution exists, but may not be unique. If Q

is bounded from above for all b, we can guarantee the uniqueness, but the solution may not

exist. In our problem, even though the velocity can be continuous, the DG approximations

of the velocity are discontinuous across the cell interfaces, leading to ill-posed problems.

To obtain the error estimates, we need the help of the diffusion term in the equation.

Recently, Wang et al. [30, 31, 32] obtained optimal error estimates of the LDG methods

with implicit-explicit time marching for linear and nonlinear convection-diffusion problems.

The key idea is to explore an important relationship between the gradient and interface

jump of the numerical solution with the approximation of auxiliary variable for the gradient

in the LDG methods, which is stated in Lemma 3.4. We will use this key lemma to obtain

optimal error estimates in L∞(0, T ;L2) for concentration c, in L2(0, T ;L2) for s = −∇c

and L∞(0, T ;L2) for velocity u. Here we should mention the difference between our LDG

method and the DG methods in [28], where the interior penalty method was developed

and optimal error estimates in L2(0, T ;H1) norm for concentration c were derived. In our

proof, induction hypothesis is used as a tool, instead of the cut-off operator introduced in

[28]. This can avoid the difficulty in how to choose the sufficiently large positive constant

M , and the possibility of infinite times of loops for extreme cases.

The paper is organized as follows. In Section 2, we present some preliminaries, in-

cluding the basic notations and norms we use throughout the paper, the LDG spatial

discretization as well as the error equations. Section 3 is the main body of the paper

where we present the projections and some essential properties of the finite element spaces,

error equations and the details of the optimal error estimates for incompressible miscible

displacement problem. Then numerical results are given to demonstrate the accuracy and

capability of the method in Section 4. We will end in Section 5 with some concluding

remarks.
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2 Incompressible miscible displacement problem

In this section, we give the analysis for incompressible miscible displacement problem.

Detailed discussion on physical theories of miscible displacement in porous media can

be found in [4, 13]. Let Ω be a bounded domain. The classical equations governing

the incompressible miscible displacement in porous media in two space dimensions are as

follows:
∇ · u = q, (x, y) ∈ Ω, 0 < t ≤ T,

u = −κ(x,y)
µ(c) ∇p, (x, y) ∈ Ω, 0 < t ≤ T,

φ∂c
∂t +∇ · (uc) = ∇ · (D(u)∇c) + c̃q, (x, y) ∈ Ω, 0 < t ≤ T,

(2.1)

where the dependent variables p, u and c are the pressure in the fluid mixture, the Darcy

velocity of the mixture (volume flowing across a unit cross-section per unit time), and the

concentration of interested species measured in amount of species per unit volume of the

fluid mixture, respectively. φ and κ are the porosity and the permeability of the rock,

respectively. µ is the concentration-dependent viscosity. q is the external volumetric flow

rate, and c̃ is the concentration of the fluid in the external flow. c̃ must be specified at

points at which injection (q > 0) takes place, and is assumed to be equal to c at production

points (q < 0). The diffusion coefficient D arises from two aspects: molecular diffusion,

which is rather small for field-scale problems, and dispersion, which is velocity-dependent,

in the petroleum engineering literature. Its form is

D = φ(x)(dmolI+ dlong|u|E+ dtran|u|E
⊥), (2.2)

where E, a 2 × 2 matrix, represents the orthogonal projection along the velocity vector

and is given by

E = (eij(u)) =

(
uiuj
|u|2

)
, u = (u1, u2),

and E⊥ = I−E is the orthogonal complement. The diffusion coefficient dlong measures the

dispersion in the direction of the flow and dtran shows that transverse to the flow. In this

paper, the tensor matrix D(u) is assumed to be positive definite. Moreover, the pressure

is uniquely determined up to a constant, thus we assume
∫
Ω pdxdy = 0. For simplicity, we

only consider periodic boundary conditions. However, this assumption is not essential, the

proof for homogeneous Neumann boundary conditions can be obtained with some minor

changes. In this problem, the initial concentration is given as

c(x, y, 0) = c0(x, y), (x, y) ∈ Ω.

Finally, we make the following hypotheses (H) for (2.1).

1. 0 < κ∗ ≤ κ(x, y) ≤ κ∗, 0 < µ∗ ≤ µ(c) ≤ µ∗, 0 < φ∗ ≤ φ(x, y) ≤ φ∗ and |q| ≤ C,
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2. µ(c) is uniformly Lipschtiz continuous with respect to c.

3. D(u) is positive definite, i.e. there exists D∗ > 0, such that for any v ∈ R2,

D∗‖v‖
2 ≤ vTD(u)v.

4. u,∇ · u, c,∇c,D(u) are uniformly bounded in R2.

Besides the above, D(u) also satisfies the following property [27]

Lemma 2.1 D(u) is uniformly Lipschtiz continuous with respect to u.

2.1 Basic notations

In this section, we demonstrate the notations that will be used throughout the paper.

Let 0 = x 1

2

< · · · < xNx+
1

2

= 1 and 0 = y 1

2

< · · · < yNy+
1

2

= 1 be the grid points in

the x and y directions, respectively. Define Ii = (xi− 1

2

, xi+ 1

2

) and Jj = (yj− 1

2

, yj+ 1

2

). Let

Kij = Ii × Jj , i = 1, · · · , Nx, j = 1, · · · , Ny, be a partition of Ω and denote Ωh = {Kij}.

For simplicity, if not otherwise stated, we always use K to denote the cell. The mesh

sizes in the x and y directions are given as ∆xi = xi+ 1

2

− xi− 1

2

and ∆yj = yj+ 1

2

− yj− 1

2

,

respectively and denote h = max(max
i

∆xi, max
j

∆yj). Moreover, we assume the partition

is quasi-uniform. The finite element space is chosen as

W k
h = {z : z|K ∈ Qk(K),∀K ∈ Ωh},

where Qk(K) denotes the space of tensor product of polynomials of degrees at most k in

K. Note that functions in W k
h are discontinuous across element interfaces. This is one of

the main differences between the DG method and traditional finite element methods. We

choose β = (1, 1)T to be a fixes vector that is not parallel to any normals of the element

interfaces. We denote Γh be the set of all element interfaces and Γ0 = Γh\∂Ω. Let e ∈ Γ0

be an interior edge shared by elements Kℓ and Kr, where β · nℓ > 0, and β · nr < 0,

respectively, with nℓ and nr being the outward normal of Kℓ and Kr, respectively. For

any z ∈ W k
h , we define z− = z|∂Kℓ

and z+ = z|∂Kr
, respectively. The jump is given

as [z] = z+ − z−. Moreover, for s ∈ Wk
h = W k

h × W k
h , we define s+ and s− and [s]

analogously. Further more, we define ∂Ω− = {e ∈ ∂Ω|β · n < 0}, where n is the outer

normal of e, and ∂Ω+ = ∂Ω\∂Ω−. For any e ∈ ∂Ω−, there exists K ∈ Ωh such that

e ∈ ∂K, we define z+|e = z|∂K and z− on ∂Ω+ is defined analogously. For simplicity,

given e = {x 1

2

} × Jj ∈ ∂Ω−, and ẽ = {xNx+
1

2

} × Jj ∈ ∂Ω+, by periodic boundary

condition, we define

z−|e = z−|ẽ, and z+|ẽ = z+|e.
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Similarly, given e = Ii × {y 1

2

} ∈ ∂Ω−, and ẽ = Ii × {yNy+
1

2

} ∈ ∂Ω+ we define

z−|e = z−|ẽ, and z+|ẽ = z+|e.

Throughout this paper, the symbol C is used as a generic constant which may appear

differently at different occurrences.

2.2 Norms

In this subsection, we define several norms that will be used throughout the paper.

Denote ‖u‖0,K to be the standard L2 norm of u in cell K. For any natural number ℓ,

we consider the norm of the Sobolev space Hℓ(K), given as

‖u‖ℓ,K =





∑

0≤α+β≤ℓ

∥∥∥∥
∂α+βu

∂xα∂yβ

∥∥∥∥
2

0,K





1

2

.

Moreover, we define the norms on the whole computational domain as

‖u‖ℓ =


 ∑

K∈Ωh

‖u‖2ℓ,K




1

2

.

For convenience, if we consider the standard L2 norm, then the corresponding subscript

will be omitted.

Let ΓK be the edges of K, and we define

‖u‖2ΓK
=

∫

∂K
u2ds.

We also define

‖u‖2Γh
=

∑

K∈Ωh

‖u‖2ΓK
.

Moreover, we denote the standard L∞ norm of u in K as ‖u‖∞,K , and the L∞ norm

on the whole computational domain is given as

‖u‖∞ = max
K∈Ωh

‖u‖∞,K .

Finally, we define similar norms for vector u = (u1, u2)
T as

‖u‖2ℓ,K = ‖u1‖
2
ℓ,K+‖u2‖

2
ℓ,K , ‖u‖2ΓK

= ‖u1‖
2
ΓK

+‖u2‖
2
ΓK

, ‖u‖∞,K = max{‖u1‖∞,K , ‖u2‖∞,K}.

Similarly, the norms on the whole computational domain are given as

‖u‖2ℓ =
∑

K∈Ωh

‖u‖2ℓ,K , ‖u‖2Γh
=

∑

K∈Ωh

‖u‖2ΓK
, ‖u‖∞ = max

K∈Ωh

‖u‖∞,K .
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2.3 LDG scheme and the main theorem

To construct the LDG scheme, we introduce some auxiliary variables to approximate the

derivatives of the solution which further yields a first order system:

φ
∂c

∂t
+∇ · (uc) +∇ · z = c̃q, (2.3)

s = −∇c, (2.4)

z = D(u)s, (2.5)

A(c)u = −∇p, (2.6)

∇ · u = q, (2.7)

where A(c) = A(x, y, c) = µ(c)
k(x,y) . We multiply (2.3)-(2.7) by test functions v, ζ ∈ W k

h ,

θ,w,ψ ∈ Wk
h, respectively. Formally integrate by parts in K to get

(φct, v)K = (uc+ z,∇v)K − 〈(uc+ z) · νK , v〉∂K + (c̃q, v)K ,

(s,w)K = (c,∇ ·w)K − 〈c,w · νK〉∂K ,

(z,ψ)K = (D(u)s,ψ)K ,

(A(c)u,θ)K = (p,∇ · θ)K − 〈p,θ · νK〉∂K ,

−(u,∇ζ)K = −〈u · νK , ζ〉∂K + (q, ζ)K .

where (u, v)K =
∫
K uvdxdy, (u,v)K =

∫
K u · vdxdy, 〈u, v〉∂K =

∫
∂K uvds and νK is the

outer normal of K. Replacing the exact solutions c, p, s, z, u in the above equations

by their numerical approximations ch, ph ∈ W k
h and sh, zh, uh ∈ Wk

h, respectively and

using numerical fluxes at the cell interfaces to obtain the LDG scheme:

(φcht, v)K = Lc
K(uh, ch, v) + Ld

K(zh, v) + (c̃hq, v)K , (2.8)

(sh,w)K = DK(ch,w), (2.9)

(zh,ψ)K = (D(uh)sh,ψ)K , (2.10)

(A(ch)uh,θ)K = DK(ph,θ), (2.11)

(q, ζ)K = −Ld
K(uh, ζ), (2.12)

where

Ld
K(s, v) = (s,∇v)K − 〈ŝ · νK , v〉∂K , (2.13)

Lc
K(s, c, v) = (sc,∇v)K − 〈ŝc · νK , v〉∂K , (2.14)

DK(c,w) = (c,∇ ·w)K − 〈ĉ,w · νK〉∂K . (2.15)

We use alternating fluxes for the diffusion term and take

ẑh = z−h , ĉh = c+h , ûh = u−
h , p̂h = p+h .
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For the convection term, we consider Lax-Friedrichs flux

ûhch =
1

2
(u+

h c
+
h + u−

h c
−
h − ανe(c

+
h − c−h )),

where α > 0 can be chosen as any constant and νe is the normal of the e ∈ Γ0 such that

β · νe > 0. Moreover, we define

(u, v) =
∑

K∈Ωh

(u, v)K , (u,v) =
∑

K∈Ωh

(u,v)K ,

and

Ld(s, v) =
∑

K∈Ωh

Ld
K(s, v), Lc(s, c, v) =

∑

K∈Ωh

Lc
K(s, c, v), D(c,w) =

∑

K∈Ωh

DK(c,w).

It is easy to check the following identity by integration by parts on each cell: for any

functions v and w,

Ld(w, v) +D(v,w) = 0. (2.16)

The initial solution is taken as the L2-projection (see (3.1) for the definition). Now we

state the main theorem.

Theorem 2.1 Let c ∈ Hk+3, s ∈ (Hk+2)2,u ∈ (Hk+1)2 be the exact solutions of the

problem (2.3)-(2.7), and let ch, sh,uh be the numerical solution of the semi-discrete LDG

scheme (2.8)-(2.12). If the finite element space is the piecewise polynomials of degree k ≥ 1

and h is sufficiently small, then we have the error estimate

‖c− ch‖L∞(0,T ;L2) + ‖s− sh‖L2(0,T ;L2) + ‖u− uh‖L∞(0,T ;L2) ≤ Chk+1, (2.17)

where the constant C is independent of the mesh parameter h.

Remark 2.1 In this paper, we consider Lax-Friedrichs flux for convection term only.

However, the result in Theorem 2.1 is also valid for general fluxes that are consistent and

Lipschitz continuous.

3 The proof of the main theorem

In this section, we proceed to the proof of Theorem 2.1. We first introduce several projec-

tions and present some auxiliary results. Subsequently, we make an a priori error estimate

which provides the boundedness of the numerical approximations. Then we construct the

error equations which further yield two main energy inequalities and complete the proof

of (2.17). Finally, we verify the a priori error estimate at the end of this section.
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3.1 Projections and interpolation properties

In this section, we will demonstrate the projections and several useful lemmas. Let us

start with the classical inverse properties [7].

Lemma 3.1 Assuming u ∈ W k
h , there exists a positive constant C independent of h and

u such that

h‖u‖∞,K + h1/2‖u‖ΓK
≤ C‖u‖K .

We will use several special projections in this paper. Firstly, we define P+ into W k
h which

is, for each cell K

(P+u− u, v)K = 0,∀v ∈ Qk−1(K),

∫

Jj

(P+u− u)(xi− 1

2

, y)v(y)dy = 0,∀v ∈ P k−1(Jj),

(P+u− u)(xi− 1

2

, yj− 1

2

) = 0,

∫

Ii

(P+u− u)(x, yj− 1

2

)v(x)dx = 0,∀v ∈ P k−1(Ii).

where P k denotes the polynomials of degree k. Moreover, we also define Πx and Πy into

W k
h which are, for each cell K,

(Πxu− u, vx)K = 0,∀v ∈ Qk(K),

∫

Jj

(Πxu− u)(xi+ 1

2

, y)v(y)dy = 0,∀v ∈ P k(Jj),

(Πyu− u, vy)K = 0,∀v ∈ Qk(K),

∫

Ii

(Πyu− u)(x, yj+ 1

2

)v(x)dx = 0,∀v ∈ P k(Ii),

as well as a two-dimensional projectionΠ = Πx⊗Πy. Finally, we also use the L2-projection

Pk into W k
h which is, for each cell K

(Pku− u, v)K = 0,∀v ∈ Qk(K), (3.1)

and its two dimensional version Pk = Pk ⊗ Pk. For the special projections mentioned

above, we give the following lemma by the standard approximation theory [7].

Lemma 3.2 Suppose w ∈ Hk+1(Ω), then for any projection Ph, which is either P+, Πx,

Πy or Pk, we have

‖w − Phw‖+ h1/2‖w − Phw‖Γh
≤ Chk+1.

Moreover, the projection P+ on the Cartesian meshes has the following superconvergence

property (see [5], Lemma 3.6).

Lemma 3.3 Suppose w ∈ Hk+2(Ω), then for any ρ ∈ Wh we have

|D(w − P+w,ρ)| ≤ Chk+1‖w‖k+2‖ρ‖. (3.2)
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In this paper, we use e to denote the error between the exact and numerical solutions, i.e.

ec = c− ch, ep = p− ph eu = u− uh, es = s− sh, ez = z− zh. As the general treatment

of the finite element methods, we split the errors into two terms as

ec = ηc − ξc, ηc = c− P+c, ξc = ch − P+c,
ep = ηp − ξp, ηp = p− P+p, ξp = ph − P+p,
eu = ηu − ξu, ηu = u−Πu, ξu = uh −Πu,
es = ηs − ξs, ηs = s−Pks, ξs = sh −Pks,
ez = ηz − ξz, ηz = z−Πz, ξz = zh −Πz.

Based on the above, it is easy to see that

Ld(ηu, v) = Ld(ηz, v) = 0, ∀v ∈ W k
h . (3.3)

Following [39, 30, 31, 32] with some minor changes, we have the following lemma

Lemma 3.4 Suppose ξc and ξs are defined above, we have

‖∇ξc‖ ≤ C(‖ξs‖+ hk+1), h−
1

2‖[ξc]‖Γh
≤ C(‖ξs‖+ hk+1).

3.2 A priori error estimate

In this subsection, we would like to make an a priori error estimate

‖c− ch‖+ ‖u− uh‖ ≤ h, (3.4)

which further implies

‖ch‖∞ + ‖uh‖∞ ≤ C (3.5)

by hypotheses 4. Then by the Lemma 2.1 and hypothesis 4, we have

|‖D(uh)|‖ ≤ C, (3.6)

where |‖D|‖ = ‖max{|d11|, |d12|, |d21|, |d22|}‖∞ with D = {dij}2×2. This idea has been

used to obtain error estimates for nonlinear hyperbolic equations [41, 42]. With this

assumption, we can proceed to the main proof of the theorem.

3.3 Error equations

In this section, we proceed to construct the error equations. From (2.8)-(2.12), we have

the following error equations

(φect, v) = Lc(u, c, v) − Lc(uh, ch, v) + Ld(ez, v) + (ẽcq, v), (3.7)

(es,w) = D(ec,w), (3.8)

(ez,ψ) = (D(u)s −D(uh)sh,ψ), (3.9)

((A(c)u −A(ch)uh),θ) = D(ep,θ), (3.10)

Ld(eu, ζ) = 0, (3.11)
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∀v, ζ ∈ W k
h ,θ,w,ψ ∈ Wk

h, where

ẽc =

{
0, q > 0,
ec, q < 0.

3.4 The first energy inequality

We start from an easier case. Take θ = ξu and ζ = ξp in (3.10) and (3.11), respectively

and use (2.16) and (3.3) to obtain

(A(c)ξu, ξu) = T1 + T2 − T3, (3.12)

where

T1 = (A(c)ηu, ξu),

T2 = ((A(c) −A(ch))uh, ξu),

T3 = D(ηp, ξu).

Now, we estimate T ′
is term by term. Using Lemma 3.2 and Schwarz inequality, we can

get

T1 ≤ C‖ηu‖‖ξu‖ ≤ Chk+1‖ξu‖, (3.13)

Here, we use the hypotheses 1 then A(c) ≤ µ∗/κ∗. The estimate of T2 is slightly compli-

cated,

T2 ≤ C‖(A(c)−A(ch))‖‖ξu‖

≤ C‖c− ch‖‖ξu‖

≤ C
(
hk+1 + ‖ξc‖

)
‖ξu‖, (3.14)

where in the first step we use Schwarz inequality and hypothesis 4, the second step follows

from hypothesis 2, and the last step requires Lemma 3.2. For T3, we use Lemma 3.3 to

obtain

T3 ≤ Chk+1‖p‖k+2‖ξu‖. (3.15)

Substituting (3.13), (3.14) and (3.15) into (3.12), we have the estimate

‖
√

A(c)ξu‖
2 ≤ C

(
hk+1 + ‖ξc‖

)
‖ξu‖.

which further yield the first energy estimate

‖ξu‖ ≤ Chk+1 + C‖ξc‖, (3.16)

by hypothesis 1.
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3.5 The second energy inequality

Taking the test functions v = ξc, w = ξz, and ψ = −ξs in (3.7), (3.8) and (3.9), respec-

tively, and using (2.16) and (3.3) we obtain

(φ
∂ξc
∂t

, ξc) + (D(uh)ξs, ξs) = R1 +R2 −R3 −R4 +R5, (3.17)

where

R1 = (φ
∂ηc
∂t

, ξc) + (D(uh)ηs, ξs) ,

R2 = ((D(u)−D(uh))s, ξs) ,

R3 = (uc− uhch,∇ξc)−
∑

e∈Γe

〈(uc− ûhch) · νe, [ξc]〉e,

R4 = D(ηc, ξz),

R5 = (ηs, ξz)− (ηz, ξs)− (ẽcq, ξc),

with Γe = Γ0 ∪ ∂Ω− and 〈u, v〉e =
∫
e uvds. Now, we estimate R′

is term by term. Using

(3.6), hypothesis 1, Lemma 3.2 and the Schwarz inequality, we can get

R1 ≤ C‖(ηc)t‖‖ξc‖+ C‖ηs‖‖ξs‖

≤ Chk+1 (‖ξc‖+ ‖ξs‖) , (3.18)

The estimate of R2 is slightly complicated,

R2 ≤ C‖D(u)−D(uh)‖‖ξs‖

≤ C‖u− uh‖‖ξs‖

≤ C
(
hk+1 + ‖ξu‖

)
‖ξs‖, (3.19)

where in the first step we use Schwarz inequality and hypothesis 4, the second step follows

from Lemma 2.1, and the last step requires Lemma 3.2. We estimate R3 by dividing it

into three parts

R3 = R31 +R32 +R33, (3.20)

where

R31 = (uc− uch,∇ξc) + (uch − uhch,∇ξc), (3.21)

R32 =
1

2

∑

e∈Γe

〈(2uc − u+
h c

+
h − u−

h c
−
h ) · νe, [ξc]〉e, (3.22)

R33 =
1

2

∑

e∈Γe

〈α[ηc − ξc], [ξc]〉e. (3.23)
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Using hypothesis 4 and (3.5), we have

R31 ≤ C (‖c− ch‖+ ‖u− uh‖) ‖∇ξc‖

≤ C
(
hk+1 + ‖ξu‖+ ‖ξc‖

)(
‖ξs‖+ hk+1

)
, (3.24)

where in the first step, we use Schwarz inequality while the second step follows from

Lemmas 3.2 and 3.4. The estimate of R32 also requires hypothesis 4 and (3.5),

R32 =
1

2

∑

e∈Γe

〈
(
u(c− c+h ) + (u− u+

h )c
+
h + u(c− c−h ) + (u− u−

h )c
−
h

)
· νe, [ξc]〉e

≤ C (‖c− ch‖Γh
+ ‖u− uh‖Γh

) ‖[ξc]‖Γh

≤ Ch
1

2 (‖ηc‖Γh
+ ‖ξc‖Γh

+ ‖ηu‖Γh
+ ‖ξu‖Γh

)
(
‖ξs‖+ hk+1

)

≤ C
(
hk+1 + ‖ξu‖+ ‖ξc‖

)(
‖ξs‖+ hk+1

)
, (3.25)

where in the second step we use Schwarz inequality, the third step follows from Lemma

3.4, the last one requires Lemmas 3.1 and 3.2. Now we proceed to the estimate of R33,

R33 ≤ C(‖ηc‖Γh
+ ‖ξc‖Γh

)‖[ξc]‖Γh

≤ Ch
1

2 (‖ηc‖Γh
+ ‖ξc‖Γh

)(‖ξs‖+ hk+1)

≤ C
(
hk+1 + ‖ξc‖

)(
‖ξs‖+ hk+1

)
, (3.26)

where the first step follows from Schwarz inequality, the second step is based on Lemma

3.4, the third one requires Lemma 3.2. Plug (3.24), (3.25) and (3.26) into (3.20) to obtain

R3 ≤ C
(
hk+1 + ‖ξu‖+ ‖ξc‖

)(
‖ξs‖+ hk+1

)
. (3.27)

The estimate of R4 follows from Lemma 3.3

R4 ≤ Chk+1‖c‖k+2‖ξz‖. (3.28)

Now we begin to deal with R5. Using Lemma 3.2 and the Schwartz inequality, we easily

obtain

R5 ≤ ‖ηs‖‖ξz‖+ ‖ηz‖‖ξs‖+ C‖ẽc‖‖ξc‖

≤ Chk+1 (‖ξz‖+ ‖ξs‖) + Chk+1‖ξc‖+ C‖ξc‖
2. (3.29)

Substituting the estimation (3.18), (3.19), (3.27), (3.28), (3.29) into (3.17) and use hy-

pothesis 3, we obtain

d

dt
‖φ

1

2 ξc‖
2 + ‖ξs‖

2

≤ C
[(

hk+1 + ‖ξu‖+ ‖ξc‖
)(

‖ξs‖+ hk+1
)
+ hk+1‖ξz‖+ h2(k+1) + ‖ξc‖

2
]
(3.30)
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Now, we proceed to eliminate ‖ξz‖ on the right-hand side of the above equation. Setting

ψ = ξz in (3.9) to obtain

(ξz, ξz) = (ηz, ξz)− (D(u)s −D(uh)sh, ξz)

= (ηz, ξz)− ((D(u) −D(uh))s, ξz)− (D(uh)(s− sh), ξz).

Then we have

‖ξz‖
2 ≤ ‖ηz‖‖ξz‖+ C‖D(u)−D(uh)‖‖ξz‖+ C (‖ηs‖+ ‖ξs‖) ‖ξz‖

≤ Chk+1‖ξz‖+ C‖u− uh‖‖ξz‖+ C
(
hk+1 + ‖ξs‖

)
‖ξz‖

≤ C
(
hk+1 + ‖ξu‖+ ‖ξs‖

)
‖ξz‖,

where in the first step we use (3.6), Schwarz inequality and hypothesis 4, the second step

follows from Lemmas 2.1 and 3.2, and the last one requires Lemma 3.2. We can cancel

‖ξz‖ in the above equation to obtain

‖ξz‖ ≤ C‖ξu‖+C‖ξs‖+ Chk+1 (3.31)

Combining (3.30) and (3.31), we have

d

dt
‖φ

1

2 ξc‖
2 + ‖ξs‖

2 ≤ C
[(

hk+1 + ‖ξu‖+ ‖ξc‖
)(

‖ξs‖+ hk+1
)
+ ‖ξc‖

2
]
, (3.32)

which further yields

d

dt
‖φ

1

2 ξc‖
2 + ‖ξs‖

2 ≤ C
(
h2(k+1) + ‖ξu‖

2 + ‖ξc‖
2
)
,

Integrate the equation with respect to time between 0 and t to yield the second energy

estimate

‖ξc‖
2 +

∫ t

0
‖ξs‖

2dt ≤ C

∫ t

0
(‖ξc‖

2 + ‖ξu‖
2)dt+ Ch2(k+1). (3.33)

Remark 3.1 To obtain (3.32), we need D to be positive definite, see (3.17). If we assume

D to be positive semidefinite, then the ‖ξs‖ term on the right-hand side of (3.32) cannot

be eliminated.

3.6 Proof of the error estimate

Now we are ready to combine the two energy inequalities to finish the proof of Theorem

2.1. Firstly, combing (3.16) with (3.33), we obtain

‖ξc‖
2 +

∫ t

0
‖ξs‖

2dt ≤ C

∫ t

0
‖ξc‖

2dt+ Ch2(k+1). (3.34)
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Employing Gronwall’s inequality, we have

‖ξc‖
2 +

∫ T

0
‖ξs‖

2dt ≤ Ch2(k+1).

which further yield

‖ξu‖ ≤ Chk+1

by the first energy estimate (3.16). Finally, by using the standard approximation result,

we obtain (2.17). To complete the proof, let us verify the a priori assumption (3.4). For

k ≥ 1, we can consider h small enough so that Chk+1 < 1
2h, where C is the constant

determined by the final time T . Then if t∗ = inf{t : ‖c − ch‖ + ‖u − uh‖ ≥ h}, we

should have ‖c − ch‖ + ‖u − uh‖ = h by continuity in time at t = t∗. However, if

t∗ < T , theorem 2.1 implies that ‖c − ch‖ + ‖u − uh‖ ≤ Chk+1 for t ≤ t∗, in particular

h = ‖(c − ch)(t
∗)‖ + ‖(u − uh)(t

∗)‖ ≤ Chk+1 < 1
2h, which is a contradiction. Therefore,

there always holds t∗ ≥ T , and thus the a priori assumption (3.4) is justified.

4 Numerical experiments

In this section, we provide numerical examples to illustrate the accuracy and capability

of the method. Time discretization is given as the third order strong-stability-preserving

Runge-Kutta method [26]. We take the time step to be sufficiently small such that the

error in time is negligible compared to spatial error. In the scheme, the numerical flux in

the convection term is taken as ûhch = 1
2 (u

+
h c

+
h +u−

h c
−
h ). We simulate the problem on the

computational domain Ω = [0, 1]×[0, 1] up to T = 0.01 with time step is ∆t = r∗h2, where

r varies based on the polynomial degrees. In all the following experiments, if not otherwise

stated, we take κ(x, y) = 1, µ(c) = 1 and use uniform meshes with Nx = Ny = N = 100.

Example 4.1 We first consider the problem with matrix D(u) = γI, where γ is a con-

stant. In addition, we take the initial condition c0 = sin(2π(x + y)), φ(x, y) = 1 and add

a source

f = 2πcos(2π(x+ y + t))(4π(x + y + t) + 1) + 8γπ2sin(2π(x + y + t))

in the concentration equation.

The exact solution is

c = sin(2π(x+ y + t)), u = (4πx+ 2πt, 4πy + 2πt).

The L2 error with with γ = 1 and 0.01 are contained in Tables 1 and 2, respectively. We

can see that the method with Qk elements gives a (k + 1)−th order of accuracy in L2

norm.
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Table 1: The numerical results for c with γ = 1.

N
Q1/r = 0.01 Q2/r = 0.01 Q3/r = 0.001

L2 error order L2 error order L2 error order
10 2.3022e-02 – 7.9943e-04 – 2.7981e-04 –
20 5.7645e-03 2.00 9.9829e-05 3.00 1.7493e-05 4.00
40 1.4416e-03 2.00 1.2511e-05 3.00 1.0965e-06 4.00
80 3.5950e-04 2.00 1.5632e-06 3.00 6.8294e-08 4.00
160 9.0167e-05 2.00 1.9586e-07 3.00 4.2649e-09 4.00

Table 2: The numerical results for c with γ = 0.01.

N
Q1/r = 0.01 Q2/r = 0.01 Q3/r = 0.001

L2 error order L2 error order L2 error order
10 2.3022e-02 – 7.9894e-04 – 2.7991e-04 –
20 5.7503e-03 2.00 9.9566e-05 3.00 1.7474e-05 4.00
40 1.4420e-03 2.00 1.2450e-05 3.00 1.0895e-06 4.00
80 3.5982e-04 2.00 1.5557e-06 3.00 6.8323e-08 4.00
160 9.0254e-05 2.00 1.9480e-07 3.00 4.2650e-09 4.00

Example 4.2 We consider the problem with matrix D(u) = u ⊗ u + I. In addition, we

choose the initial condition c0 = sin(2π(x+ y)), and add a source

f = 2πcos(2π(x+y+t))(4π(x+y+t))(1−12π2 )+4π2(16π2(x+y+t)2+2)sin(2π(x+y+t))

in the concentration equation.

The exact solution is

c = sin(2π(x+ y + t)), u = (4πx+ 2πt, 4πy + 2πt).

The L2 errors and the numerical orders of accuracy at time t = 0.01 and t = 1 with

uniform meshes is contained in Tables 3. We can see that the method with Qk elements

also gives a (k + 1)−th order of accuracy in L2 norm.

Example 4.3 Now we take the porosity φ = 0.1, the tensor D = diag{1, 1}. We choose

the initial condition c0 = sin(πx) ∗ sin(πy). We consider a production well located in the

computational domain. The sink q and the velocity field u are taken as

q = −2π2 sin(πx) sin(πy), u = (π cos(πx) sin(πy), π sin(πx) cos(πy))T ,

respectively.
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Table 3: The numerical results for c.

t N
Q1/r = 0.01 Q2/r = 0.01 Q3/r = 0.001

L2 error order L2 error order L2 error order
10 2.5639E-02 – 8.4515E-04 – 6.2181E-04 –
20 6.4217E-03 2.00 1.0544E-04 3.00 3.8917E-05 4.00

0.01 40 1.6090e-03 2.00 1.3178e-05 3.00 2.4310e-06 4.00
80 4.0142e-04 2.00 1.6480e-06 3.00 1.5222e-07 4.00
160 1.0018e-04 2.00 2.0601e-07 3.00 9.4942e-08 4.00
10 8.1619e-02 – 8.0873e-04 – 4.6787e-04 –
20 2.0505e-02 1.99 1.0119e-05 3.00 2.9266e-05 4.00

1 40 5.1511e-03 1.99 1.2736e-05 2.99 1.8293e-06 4.00
80 1.2873e-03 2.00 1.5825e-06 3.00 1.1432e-07 4.00
160 3.1982e-04 2.00 1.9743e-07 3.00 7.1342e-09 4.00

The velocity field u and initial concentration are shown in Figure 1, and the concentration

at T
4 ,

T
2 ,

3T
4 and T are shown in Figure 2. From Figure 2, we can easily observe that the

total mass of c is decreasing, and the fluid mixture is getting out of the production well.

Example 4.4 We change the initial condition in Example 4.3 to

c0 =

{
0.001, (x− 0.5)2 + (y − 0.5)2 < 0.09,
0, otherwise,

and the velocity field u = (0.1, 0.4) is a constant vector. Therefore, the source q = 0, i.e.

no injection or production wells exist in the computational domain.

The velocity field u and initial concentration are given in Figure 3. Moreover, we also plot

the concentrations at T
3 ,

2T
3 and T in Figure 4. In this problem, the total mass

∫
Ω cdV

is a constant during the time evolution. We numerically monitor the total mass which is

equal to 9π × 10−5 for all t.

5 Concluding remarks

In this paper, we apply LDG methods to flow and transport equations in 2-dimensional

coupled system of incompressible miscible displacement problem. The optimal order of

error estimate holds for the solution itself and also for some auxiliary variables for incom-

pressible miscible displacement problem under suitable norms. Special projections and a

priori assumption help to eliminate the jump terms at the cell boundaries and provide

the boundedness of the numerical approximations. In general, it is not easy to apply this

method to the models with positive semi-definite D(u), we will continue this work in the
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Figure 1: The velocity field and initial concentration in Example 4.3.
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Figure 2: The concentrations c at T
4 (top left), T

2 (top right), 3T
4 (bottom left) and T

(bottom right) in Example 4.3.
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Figure 3: The velocity field and initial concentration in Example 4.4.
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future. Other possible future works include the study for P k polynomials instead of Qk

ones.
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