
Stability analysis and error estimates of local discontinuous Galerkin methods

for convection-diffusion equations on overlapping meshes1

Jie Du2, Yang Yang3 and Eric Chung4

Abstract

Local discontinuous Galerkin (LDG) methods are popular for convection-diffusion equations.

In LDG methods, we introduce an auxiliary variable p to represent the derivative of the primary

variable u, and solve them on the same mesh. In this paper, we will introduce a new LDG method,

and solve u and p on different meshes. The stability and error estimates will be investigated.

The new algorithm is more flexible and flux-free for pure diffusion equations without introducing

additional computational cost compared with the original LDG methods, since it is not necessary

to solve each equation twice. Moreover, it is possible to construct third-order maximum-principle-

preserving schemes based on the new algorithm [12]. However, one cannot anticipate optimal

accuracy in some special cases. In this paper, we will find out the reason for accuracy degeneration

which further leads to several alternatives to obtain optimal convergence rates. Finally, several

numerical experiments will be given to demonstrate the stability and optimal accuracy of the new

algorithm.

Key Words: Stability, Error estimates, Convection-diffusion equations, Local discontinuous Galerkin

method, Overlapping meshes.

1 Introduction

In this paper, we aim to construct new local discontinuous Galerkin (LDG) schemes for solving the

following nonlinear convection-diffusion equation

ut + f(u)x = b(u)xx, (1.1)

or equivalently

ut + f(u)x = (a2(u)ux)x, (1.2)

as well as their two-dimensional versions, where a2(u) = b′(u) ≥ 0. We also assume that a(u) ≥ 0.

The initial condition is given as u(x, 0) = u0(x).

The discontinuous Galerkin (DG) method was first introduced in 1973 by Reed and Hill [24] in

the framework of neutron linear transport. Subsequently, Cockburn et al. developed Runge-Kutta

1Supported by National Natural Science Foundation of China (11571367 and 11601536) and the Fundamental
Research Funds for the Central Universities 18CX05003A

2Yau Mathematical Sciences Center, Tsinghua University, Beijing, China. E-mail: jdu@mail.tsinghua.edu.cn
3Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931. E-mail:

yyang7@mtu.edu
4Department of Mathematics, The Chinese University of Hong Kong, Hong Kong SAR. E-mail:

tschung@math.cuhk.edu.hk

1

discontinuous Galerkin (RKDG) methods for hyperbolic conservation laws in a series of papers

[7, 5, 6, 8]. In [9], Cockburn and Shu introduced the LDG method to solve the convection-diffusion

equations. Their idea was motivated by Bassi and Rebay [1], where the compressible Navier-Stokes

equations were successfully solved. As in traditional LDG methods, we introduce an auxiliary

variable p to represent a(u)ux and thus can rewrite (1.2) into the following system of first order

equations {
ut + f(u)x = (a(u)p)x,
p = A(u)x,

(1.3)

where A(u) =
∫ u

a(t) dt. Usually, u and p are solved on the same mesh.

The LDG method is one of the most important numerical methods for convection-diffusion

equations. However, for some special convection-diffusion systems, such as chemotaxis model [19,

22] and miscible displacements in porous media [10, 11], the LDG methods are not easy to construct

and analyze. In each of the two models, the convection term is the product of one of the primary

variables and the derivatives of the another primary variable. Most of the well established numerical

fluxes for the convection terms, such as the upwind fluxes, cannot be applied, since the coefficients of

the convection terms turn out to be discontinuous after the spatial discretization. It is well known

that hyperbolic equations with discontinuous coefficients are in general not well-posed [13, 18].

Therefore, the DG schemes may not be stable when applied to those model equations. Within

the DG framework, there are three different ways to bridge this gap. Firstly, in [30, 15, 20] the

authors combined the convection terms and diffusion terms together and obtain the optimal error

estimates. The idea was motivated by Wang et. al. [25, 26, 27], where ux and the jump of u across

the cell interfaces were proved to be bounded by p. Moreover, to make the numerical solutions

to be physically relevant, we have to add a very large penalty which depends on the numerical

approximations of the derivatives of the primary variables [20, 16]. The second approach is to

applied the flux-free numerical methods such as the Central DG (CDG) methods [21]. However,

for CDG methods, we have to solve each equation in (1.3) on both the primary and dual meshes,

which double the computational cost. The last idea is to apply the Staggered DG (SDG) methods

[3]. However, the method requires some continuity of the numerical approximations, which is not

easy to apply limiters. In this paper, we introduce a new LDG method, and solve u and p on the

primitive and dual meshes, respectively, and do not require any continuity across the cell interfaces.

Since p is continuous across the cell interfaces in the primitive mesh, we can apply the upwind fluxes

for the convection term for the complicated systems discussed above.

Finally, the most significant advantage of the new algorithm is the construction of third-

order maximum-principle-preserving (MPP) LDG methods. Recently, in [31], genuinely MPP

high-order DG schemes for scalar equations and two-dimensional incompressible flows in vorticity-

streamfunction formulation have been constructed. Subsequently, positivity-preserving high order

DG schemes for compressible Euler equations were given in [32]. Later, the technique was applied

to other hyperbolic systems, such as pressureless Euler equations [29], Extended MHD equations

[34], relativistic hydrodynamics [23], etc, and the L1 stability was demonstrated. For parabolic

2

equations, the extension was given in [33], where second-order MPP discontinuous Galerkin meth-

ods were demonstrated, and the construction of third-order schemes seem to be not straightforward.

Later another approach based on the flux limiter were discussed in [28, 17]. In [2], the third-order

MPP direct DG method was introduced. However, the scheme was not easy to implement and

we need to add two penalty terms. In [12], we applied the new LDG method and constructed

third-order MPP schemes. There is a mild penalty which does not depend on the numerical ap-

proximations. Since the dual meshes can be moved arbitrarily, we also showed that if the dual

mesh agree with the primitive mesh, the penalty coefficient turns out to be infinity. Therefore, our

algorithm does not violate the results given in [33].

In contrast to the above advantages, the new LDG method may not have optimal convergence

rates when applied to the pure diffusion equations if the dual mesh is generated by the midpoint

in each cell on the primitive mesh and piecewise odd order polynomials are applied. This is the

main reason why in the SDG method the numerical approximations are required to be continuous

across some of the cell interfaces. In this paper, we will theoretically study the stability and error

estimates of new algorithm. We will demonstrate the reason for the accuracy degeneration and

introduce several alternatives to gain the optimal convergence rates.

The organization of this paper is as follows. In Section 2, we construct the new LDG scheme

for nonlinear convection-diffusion equations on overlapping meshes in one space dimension. The

stability and error estimates will be given. The extension to problems in two space dimensions will

be discussed in Section 3. Numerical experiments will be given in Section 4 to demonstrate the

accuracy and good performance of the new LDG scheme. Finally, we will end in Section 5 with

concluding remarks.

2 Numerical scheme for one-dimensional case

In this section, we will introduce the new LDG method for solving the one-dimensional nonlinear

convection-diffusion equation (1.3) on overlapping meshes.

2.1 Overlapping meshes

Different from the LDG method introduced in [9], in which u and p are solved on the same mesh,

our new method solves (1.3) on two meshes, as shown in Figure 2.1. For simplicity, we consider

periodic boundary conditions and the algorithms for other boundary conditions will be discussed

in the future.

3

Figure 2.1: Overlapping meshes

We first define the primitive mesh on which the primary variable u is solved. It is just a

decomposition of the computational domain Ω = [0, 1], which can be non-uniform. We denote the

i-th cell as

Ii = [xi− 1
2
, xi+ 1

2
], i = 1, · · · , Nx.

The cell length and the cell center of Ii are denoted as

△xi = xi+ 1
2
− xi− 1

2
, xi =

xi− 1
2
+ xi+ 1

2

2
,

respectively. We define ∆x = maxi∆xi. In this paper, we consider regular meshes, i.e. there

exists a positive constant C ≥ 1 such that ∆x ≤ Cmini∆xi. Clearly, if C = 1, then the mesh is

uniformly distributed.

Based on the primitive mesh, we move each cell center within the corresponding cell to obtain

a new mesh called the P-mesh, which is used to solve the auxiliary variable p, i.e. in each cell Ii,

we choose a point x̃i given as

x̃i = xi +
△xi
2

ξi0, ξi0 ∈ [−1, 1], i = 1, · · · , Nx. (2.1)

For simplicity, we consider ξi0 to be a constant independent of i and denoted as ξ0 ∈ [−1, 1]. It is

easy to check x̃i ∈ [xi− 1
2
, xi+ 1

2
]. The (i− 1

2)-th cell of the dual mesh is defined as

Pi− 1
2
= [x̃i−1, x̃i], i = 1, · · · , Nx,

where we denote x̃0 = x̃Nx − 1. We further denote the cell length and the cell center of Pi− 1
2
as

△x̃i− 1
2
= x̃i − x̃i−1, x̃i− 1

2
=

x̃i−1 + x̃i
2

,

respectively. We can easily check that

min{∆xi−1,∆xi} ≤ ∆x̃i− 1
2
≤ max{∆xi−1,∆xi},

and hence we have maxi∆xi− 1
2
≤ ∆x. Due to the periodic boundary condition, we can also define

P 1
2
= [0, x̃1] ∪ [x̃Nx , 1]. Therefore, we consider a polynomial on P 1

2
as a polynomial on [x̃0, x̃1]. We

4

define the dual mesh to be the P-mesh which consists of all these P cells. Notice that when ξ0 = 0,

we have x̃i = xi and Pi+ 1
2
= [xi, xi+1]. In this case, the cell interfaces of the dual mesh are exactly

the cell centers of the primitive mesh. This kind of mesh is the most commonly used overlapping

mesh, such as in the central discontinuous Galerkin (CDG) method [21]. When ξ0 = 1, we have

x̃i = xi+ 1
2
and hence the P-mesh is the same as the primitive mesh.

2.2 Norms

In this section, we proceed to define some norms to be used throughout the paper.

For any interval I, we define ∥u∥I and ∥u∥∞,I to be the standard L2- and L∞-norm of u on I,

respectively. For any natural number ℓ, we consider the norm of the Sobolev space Hℓ(I), defined

by

∥u∥ℓ,I =

 ∑
0≤β≤ℓ

∥∥∥∥∂βu

∂xβ

∥∥∥∥2
I


1
2

.

For convenience, if I is the whole computational domain, then the corresponding subscript will be

omitted.

Moreover, for any u ∈ C(Ii), we define

∥u∥Γi = |u−
i+ 1

2

|+ |u+
i− 1

2

|,

Similarly, for any u ∈ C(Pi− 1
2
), we define

∥u∥Γ
i+1

2

= |u−i |+ |u+i−1|.

2.3 LDG method on overlapping meshes

In this section, we introduce the LDG methods for the following pure diffusion equation{
ut = (a(u)p)x,
p = A(u)x,

(2.2)

where A(u) =
∫ u

a(t)dt. We define the finite element spaces to be

Vh := {uh : uh|Ii ∈ P k(Ii), i = 1, · · · , Nx},

Ph := {ph : ph|P
i− 1

2

∈ P k(Pi− 1
2
), i = 1, · · · , Nx}.

By multiplying (2.2) with test functions and using the integration by parts, our new LDG method

on overlapping meshes is defined as follows: find (uh, ph) ∈ Vh×Ph, such that for any test functions

(v, w) ∈ Vh × Ph, we have∫
Ii

(uh)tvdx = −
∫
Ii

a(uh)phvxdx+ âi+ 1
2
p̂i+ 1

2
v−
i+ 1

2

− âi− 1
2
p̂i− 1

2
v+
i− 1

2

, (2.3)∫
P
i− 1

2

phwdx = −
∫
P
i− 1

2

A(uh)wxdx+A(uh(x̃i))w
−
i −A(uh(x̃i−1))w

+
i−1. (2.4)

5

where v−
i+ 1

2

= v−(xi+ 1
2
) and w−

i = w−(x̃i). Likewise for v+
i− 1

2

and w+
i−1. For simplicity, we denote

v−1
2

= v−
Nx+

1
2

and v+
Nx+

1
2

= v+1
2

. The numerical flux â at the point xi+ 1
2
is taken as

âi+ 1
2
=

[A(uh)]i+ 1
2

[uh]i+ 1
2

, (2.5)

where [s]i+ 1
2
:= s+

i+ 1
2

− s−
i+ 1

2

denotes the jump of a function s across the cell interface x = xi+ 1
2
.

Similarly, we can also denote the jump of w across x = x̃i on the P-mesh as [w]i = w+
i −w−

i . Notice

that ph is continuous at the interfaces of the primitive cells and hence ph(xi+ 1
2
) is well defined. We

choose the numerical flux p̂i+ 1
2
as the value of ph evaluated at x = xi+ 1

2
with a penalty term

p̂i+ 1
2
= ph(xi+ 1

2
) +

αi+ 1
2

△x̃i+ 1
2

[uh]i+ 1
2
. (2.6)

Remark 2.1. The parameter αi+ 1
2

in (2.6) is used for optimal rates of convergence and the

maximum-principle-preserving technique introduced in [12].

Finally, we would like to define

Hu(uh, ph, v) = −
Nx∑
i=1

∫
Ii

a(uh)phvxdx−
Nx∑
i=1

âi− 1
2
p̂i− 1

2
[v]i− 1

2
, (2.7)

Hp(uh, w) = −
Nx∑
i=1

∫
P
i− 1

2

A(uh)wxdx−
Nx∑
i=1

A(uh(x̃i))[w]i, (2.8)

which would be useful is the stability analysis and error estimates. With the above notations, the

LDG scheme can be rewritten as ∫
Ω
(uh)tvdx = Hu(uh, ph, v), (2.9)∫
Ω
phwdx = Hp(uh, w). (2.10)

2.4 Stability analysis

In this section, we proceed to demonstrate the stability of the new LDG method. We would start

with the following lemma.

Lemma 2.1. Suppose Hu and Hp are defined in (2.7) and (2.8), respectively, then we have

Hu(uh, ph, uh) +Hp(uh, ph) = −
Nx∑
i=1

[A(uh)]i− 1
2

[uh]i− 1
2

αi− 1
2
[uh]

2
i− 1

2

△x̃i− 1
2

. (2.11)

6

Proof. Taking w = ph in (2.8) and using integration by parts, we obtain

Hp(uh, ph) = −
Nx∑
i=1

∫
P
i− 1

2

A(uh)(ph)xdx−
Nx∑
i=1

A(uh(x̃i))[ph]i

= −
Nx∑
i=1

∫ x
i− 1

2

x̃i−1

A(uh)(ph)xdx−
Nx∑
i=1

∫ x̃i

x
i− 1

2

A(uh)(ph)xdx−
Nx∑
i=1

A(uh(x̃i))[ph]i

=

Nx∑
i=1

∫ x
i− 1

2

x̃i−1

a(uh)(uh)xphdx+

Nx∑
i=1

∫ x̃i

x
i− 1

2

a(uh)(uh)xphdx+

Nx∑
i=1

[A(uh)]i− 1
2
ph(xi− 1

2
)

=

Nx∑
i=1

∫
Ii

a(uh)(uh)xphdx+

Nx∑
i=1

[A(uh)]i− 1
2
ph(xi− 1

2
). (2.12)

Taking v = uh in (2.7), we obtain

Hu(uh, ph, uh) =−
Nx∑
i=1

∫
Ii

a(uh)ph(uh)xdx

−
Nx∑
i=1

[A(uh)]i− 1
2

[uh]i− 1
2

(
ph(xi− 1

2
) +

αi− 1
2

△x̃i− 1
2

[uh]i− 1
2

)
[uh]i− 1

2
. (2.13)

Summing (2.12) and (2.13), we have (2.11).

By the definition of A(u) in (2.2), we can easily check
[A(uh)]i+1

2
[uh]j+1

2

≥ 0, which further leads to the

L2 stability of the LDG method on overlapping meshes. The proof is straightforward, so we omit

it and only demonstrate the result as the following theorem.

Theorem 2.1. The LDG method introduced in (2.3) and (2.4) is stable and

1

2

d

dt
∥uh∥2 + ∥ph∥2 ≤ 0.

Remark 2.2. For stability issue, we can take the penalty parameter αi− 1
2
= 0 for all i = 1, 2, · · · , Nx.

However, numerical experiments demonstrate that, this may lead to accuracy degeneration in some

special cases.

2.5 Error estimates

In this section, we proceed to the error estimates. For simplicity, we consider linear equations only,

e.g. a(u) = 1 (A(u)=u), then (2.3) and (2.4) become∫
Ii

(uh)tvdx = −
∫
Ii

phvxdx+ p̂i+ 1
2
v−
i+ 1

2

− p̂i− 1
2
v+
i− 1

2

, (2.14)∫
P
i− 1

2

phwdx =−
∫
P
i− 1

2

uhwxdx+ uh(x̃i)w
−
i − uh(x̃i−1)w

+
i−1. (2.15)

7

Moreover, Hu in (2.7) can also be written as

Hu(uh, ph, v) = −
Nx∑
i=1

∫
Ii

phvxdx−
Nx∑
i=1

p̂i− 1
2
[v]i− 1

2
. (2.16)

We denote the error as eu = u− uh and ep = p− ph, then the error equations are∫
Ii

(eu)tvdx = −
∫
Ii

epvxdx+ êpi+ 1
2
v−
i+ 1

2

− êpi− 1
2
v+
i− 1

2

, (2.17)∫
P
i− 1

2

epwdx =−
∫
P
i− 1

2

euwxdx+ eu(x̃i)w
−
i − eu(x̃i−1)w

+
i−1. (2.18)

We first study some basic properties of the finite element space. Let us start with the classical

inverse properties.

Lemma 2.2. Assuming u ∈ Vh, then there exists a constant C > 0 independent of ∆x and u such

that for α ≥ 1

∥∂α
xu∥Ii ≤ C∆x−α

i ∥u∥Ii , ∥u∥Γi ≤ C∆x
−1/2
i ∥u∥Ii .

Similarly, for any u ∈ Ph, there exists a constant C > 0 independent of ∆x and u such that for

α ≥ 1

∥∂α
xu∥Pi+1

2

≤ C∆x̃−α
i+ 1

2

∥u∥P
i+1

2

∥u∥Γ
i+1

2

≤ C∆x̃
−1/2

i+ 1
2

∥u∥P
i+1

2

.

We also introduce the standard L2 projection P 1
k into Vh and P 2

k into Ph by:∫
Ii

P 1
kuv dx =

∫
Ii

uv dx , ∀v ∈ P k(Ii), and

∫
P
i+1

2

P 2
kuv dx =

∫
P
i+1

2

uv dx , ∀v ∈ P k(Pi+ 1
2
),

respectively. By the scaling argument, we obtain the following lemma [4].

Lemma 2.3. Suppose the function u(x) ∈ Ck+1(Ii), then there exists a positive constant C inde-

pendent of ∆x and u, such that

∥u− P 1
ku∥Ii +∆xi∥(u− P 1

ku)x∥Ii +∆x
1
2
i ∥u− P 1

ku∥∞,Ii ≤ C∆xk+1
i ∥u∥k+1,Ii .

Moreover, if u(x) ∈ Ck+1(Pi+ 1
2
), then there exists a positive constant C independent of ∆x and u,

such that

∥u− P 2
ku∥Pi+1

2

+∆x̃i+ 1
2
∥(u− P 2

ku)x∥Pi+1
2

+∆x̃
1
2

i+ 1
2

∥u− P 2
ku∥∞,P

i+1
2

≤ C∆x̃k+1
i+ 1

2

∥u∥k+1,P
i+1

2

,

where ∥u∥k+1,I is the standard Hk+1-norm over the interval I.

As the general treatment of the DG methods, we write the errors as

eu = ηu − ξu ep = ηp − ξp,

where

ηu = u− P 1
ku, ξu = uh − P 1

ku, ηp = p− P 2
k p, ξp = ph − P 2

k p.

8

With the above notations, we can rewrite the error equations (2.17) and (2.18) as∫
Ii

(ξu)tvdx =

∫
Ii

epvxdx− êpi+ 1
2
v−
i+ 1

2

+ êpi− 1
2
v+
i− 1

2

, (2.19)∫
P
i+1

2

ξpwdx =

∫
P
i+1

2

euwxdx− eu(x̃i+1)w
−
i+1 + eu(x̃i)w

+
i . (2.20)

Now, we can state the main theorem.

Theorem 2.2. Suppose the exact solution u ∈ Ck+2(Ω) and the finite element space is made up

of piecewise polynomial of degree k in each cell. The numerical solutions satisfy (2.14) and (2.15).

Then the error between the numerical and exact solutions satisfy

∥eu∥+
∫ T

0
∥ep∥ dt ≤ C∆xk,

where C is independent of ∆x.

Proof. Sum up (2.19) and (2.20) with v = ξu and w = ξp, and then sum up over i to obtain

1

2

d

dt
∥ξu∥2 + ∥ξp∥2 =

Nx∑
i=1

∫
Ii

(ηp − ξp)(ξu)xdx+

Nx∑
i=1

(
ηpi− 1

2
− ξpi− 1

2
+ αi− 1

2

[ηu − ξu]i− 1
2

∆x̃i− 1
2

)
[ξu]i− 1

2

+

Nx∑
i=1

∫
P
i− 1

2

(ηu − ξu)(ξp)xdx+

Nx∑
i=1

(ηu − ξu)(x̃i)[ξp]i

=

Nx∑
i=1

∫
Ii

ηp(ξu)xdx+

Nx∑
i=1

(
ηpi− 1

2
+

αi− 1
2
[ηu]i− 1

2

∆x̃i− 1
2

)
[ξu]i− 1

2

+

Nx∑
i=1

∫
P
i− 1

2

ηu(ξp)xdx+

Nx∑
i=1

ηu(x̃i)[ξp]i −Hu(ξu, ξp, ξu)−Hp(ξp, ξu)

= R1 +R2 +R3, (2.21)

where

R1 =

Nx∑
i=1

∫
Ii

ηp(ξu)xdx+

Nx∑
i=1

∫
P
i− 1

2

ηu(ξp)xdx,

R2 =

Nx∑
i=1

αi− 1
2
[ηu]i− 1

2

∆x̃i− 1
2

[ξu]i− 1
2
−Hu(ξu, ξp, ξu)−Hp(ξp, ξu),

R3 =

Nx∑
i=1

ηpi− 1
2
[ξu]i− 1

2
+

Nx∑
i=1

ηu(x̃i)[ξp]i.

9

Now we estimate Ri i = 1, 2, 3 term by term.

R1 ≤
Nx∑
i=1

(
∥ηp∥Ii∥(ξu)x∥Ii + ∥ηu∥P

i− 1
2

∥(ξp)x∥P
i− 1

2

)
≤

Nx∑
i=1

(
∥ηp∥P

i− 1
2
∪P

i+1
2

∥(ξu)x∥Ii + ∥ηu∥Ii−1∪Ii∥(ξp)x∥Pi− 1
2

)
≤ C∆xk

Nx∑
i=1

((
∥p∥k+1,P

i− 1
2

+ ∥p∥k+1,P
i+1

2

)
∥ξu∥Ii +

(
∥u∥k+1,Ii−1

+ ∥u∥k+1,Ii

)
∥ξp∥P

i− 1
2

)
≤ C∆xk (∥p∥k+1∥ξu∥+ ∥u∥k+1∥ξp∥) . (2.22)

where in the first step, we applied Cauchy-Schwarz inequality, in the second step we used Lemmas

2.2 and 2.3, and the last step follows from Cauchy-Schwarz inequality again. Applying Lemma 2.1,

we obtain the estimate of R2

R2 ≤
Nx∑
i=1

αi− 1
2

∆x̃i− 1
2

(
[ηu]i− 1

2
[ξu]i− 1

2
− [ξu]

2
i− 1

2

)
≤ C

Nx∑
i=1

αi− 1
2

∆x
[ηu]

2
i− 1

2

≤ C

Nx∑
i=1

αi− 1
2
∆x2k

(
∥u∥2Ii−1

+ ∥u∥2Ii
)
,

≤ C∆x2k, (2.23)

where in step 3, we applied Lemma 2.3, steps 2 and 4 follow from direct computation. Finally, we

estimate R3.

R3 ≤
Nx∑
i=1

∥ηp∥∞,P
i− 1

2

(∥ξu∥Γi−1 + ∥ξu∥Γi) +

Nx∑
i=1

∥ηu∥∞,Ii(∥ξp∥Γi− 1
2

+ ∥ξp∥Γ
i+1

2

)

≤ C∆xk
Nx∑
i=1

(
∥p∥k+1,P

i− 1
2

(
∥ξu∥Ii−1 + ∥ξu∥Ii

)
+ ∥u∥k+1,Ii

(
∥ξp∥P

i− 1
2

+ ∥ξp∥P
i+1

2

))
≤ C∆xk (∥p∥k+1∥ξu∥+ ∥u∥k+1∥ξp∥) , (2.24)

where step 1 is straightforward, step 2 follows from Lemmas 2.2 and 2.3, and in the last step we

applied the Cauchy-Schwarz inequality. Substitute (2.22)-(2.24) into (2.21) to obtain

1

2

d

dt
∥ξu∥2 + ∥ξp∥2 ≤ C∆x2k + C∆xk (∥ξu∥+ ∥ξp∥) ,

which further yields
d

dt
∥ξu∥2 + ∥ξp∥2 ≤ C∆x2k + ∥ξu∥2.

Finally, we can apply the Gronwall’s inequality and complete the proof.

10

In Theorem 2.2, we only proved suboptimal convergence rate. Numerical experiments in Section

4 demonstrate that in some cases the order of accuracy is exactly k. To explain this point, we use

uniform meshes and denote ∆x as the mesh size for both the primitive and P-meshes. We consider

the following steady state problem

px = 0, p = ux,

subject to periodic boundary condition. To make the problem well-posed, we need another assump-

tion that
∫
Ω u(x) dx = 0. Then the numerical scheme turns out to be

0 = −
∫
Ii

phvxdx+ p̂i+ 1
2
v−
i+ 1

2

− p̂i− 1
2
v+
i− 1

2

, (2.25)∫
P
i+1

2

phwdx =−
∫
P
i+1

2

uhwxdx+ uh(x̃i+1)w
−
i+1 − uh(x̃i)w

+
i . (2.26)

We take ξ0 = 0 in (2.1), i.e. the dual mesh is constructed by using the midpoint of the primitive

mesh and αi− 1
2
= 0 for all i = 1, 2, · · · , Nx. Moreover, we use P 1 polynomials and assume

uh(x) = u0i + u1iLi(x), x ∈ Ii,

ph(x) = p0
i+ 1

2

+ p1
i+ 1

2

Li+ 1
2
(x), x ∈ Pi+ 1

2
,

where Li(x) and Li+ 1
2
(x) are the scaled Legendre polynomial in cell Ii and Pi+ 1

2
, respectively. Take

v(x) = 1 and v(x) = Li(x) in (2.25), respectively, to obtain

0 = p0
i+ 1

2

− p0
i− 1

2

, 0 = −p0
i− 1

2

− 1

2
p1
i− 1

2

− p0
i+ 1

2

+
1

2
p1
i+ 1

2

+ p0
i+ 1

2

+ p0
i− 1

2

, (2.27)

which further yield

p0
i+ 1

2

= p0
i− 1

2

, p1
i+ 1

2

= p1
i− 1

2

.

Take w(x) = 1 and w(x) = Li+ 1
2
(x) in (2.26), respectively to obtain

∆xp0
i+ 1

2

= u0i+1 − u0i ,
∆x

3
p1
i+ 1

2

= −1

2
u1i +

1

2
u1i+1. (2.28)

Clearly, (2.27) and (2.28) are not uniquely solvable, one nontrivial solution could be uh(x) = Li(x)

in Ii and ph = 0. It is easy to check that
∫
Ω uh dx = 0. Therefore, it is impossible to construct the

elliptic projection to prove the optimal convergence rate. Numerical experiments demonstrate that

each of the following case would result in optimal convergence rates.

1. Use even order polynomials, i.e. k = 0, 2, · · · ;

2. Take ξ0 = 0 with α ̸= 0;

3. Take ξ0 ̸= 0;

Besides the above, for convection-diffusion equations, we can always obtain optimal rates of con-

vergence even though we take ξ0 = α = 0.

11

3 Numerical scheme for two-dimensional case

In this section, we will construct the LDG scheme on overlapping meshes in two space dimensions

and study the following PDE over the domain Ω = [0, 1]× [0, 1],
ut = (a(u)p)x + (b(u)q)y,
p = A(u)x,
q = B(u)y

(3.1)

subject to periodic boundary conditions, where A(u) =
∫ u

a(t)dt and B(u) =
∫ u

b(t)dt.

We first define the primitive mesh for the primary variable u which is a regular rectangular

decomposition of Ω. Let 0 = x 1
2
< x 3

2
< · · · < xNx+

1
2
= 1 and 0 = y 1

2
< y 3

2
< · · · < yNy+

1
2
= 1 be

the grid points in x and y directions, respectively, and denote the i, j-th cell as

Iij = Ii × Jj , i = 1, · · · , Nx, j = 1, · · · , Ny.

where Ii = [xi− 1
2
, xi+ 1

2
] and Jj = [yj− 1

2
, yj+ 1

2
]. Moreover, we denote

∆xi = xi+ 1
2
− xi− 1

2
, xi =

xi− 1
2
+ xi+ 1

2

2
, ∆yj = yj+ 1

2
− yj− 1

2
, yj =

yj− 1
2
+ yj+ 1

2

2
.

and

∆x = max
i

∆xi, ∆y = max
j

∆yj , h = max{∆x,∆y}

We also move each cell horizontally to obtain the P-mesh: Pi+ 1
2
,j = [x̃i, x̃i+1]× [yj− 1

2
, yj+ 1

2
], where

x̃i = xi +
∆xi
2

ξ0, ξ0 ∈ [−1, 1], i = 1, 2, · · · , Nx, (3.2)

with x̃0 = x̃Nx − 1. Similarly, we can define the Q-mesh: Qi,j+ 1
2
= [xi− 1

2
, xi+ 1

2
]× [ỹj , ỹj+1], where

ỹj = yj +
∆yj
2

η0, η0 ∈ [−1, 1], j = 1, 2, · · · , Ny, (3.3)

with ỹ0 = ỹNy − 1. The P-mesh and Q-mesh are used to solve the auxiliary variables p and q,

respectively. Similar to the problem in one space dimension, we can also define P 1
2
,j = ([0, x̃1] ∪

[x̃Nx , 1])× Jj and Qj, 1
2
= Ii × ([0, ỹ1] ∪ [ỹNy , 1]).

We define the finite element spaces to be

Vh := {uh : uh|Iij ∈ P k(Iij), i = 1, · · · , Nx, j = 1, · · · , Ny},

Ph := {ph : ph|P
i+1

2 ,j
∈ P k(Pi+ 1

2
,j), i = 1, · · · , Nx, j = 1, · · · , Ny},

Qh := {qh : qh|Q
i,j+1

2

∈ P k(Qi,j+ 1
2
), i = 1, · · · , Nx, j = 1, · · · , Ny}.

Given u ∈ Vh, we denote u+
i− 1

2
,j
, u−

i+ 1
2
,j
, u+

i,j− 1
2

, u−
i,j+ 1

2

to be the traces of u on the four edges of Iij ,

respectively. Likewise for the traces of Pi+ 1
2
,j along the vertical edges and those of Qi,j+ 1

2
along the

horizontal edges. Moreover, we use [u] = u+ − u− and {u} = 1
2(u

+ + u−) as the jump and average

of u at the cell interfaces, respectively.

12

Now, we can introduce the LDG method on overlapping meshes: find (uh, ph, qh) ∈ Vh×Ph×Qh,

such that for any test functions (v, w, z) ∈ Vh × Ph ×Qh, we have∫
Iij

(uh)tvdxdy =−
∫
Iij

a(uh)phvxdxdy +

∫
Jj

âi+ 1
2
,j p̂i+ 1

2
,jv

−
i+ 1

2
,j
dy −

∫
Jj

âi− 1
2
,j p̂i− 1

2
,jv

+
i− 1

2
,j
dy,

−
∫
Iij

b(uh)qhvydxdy +

∫
Ii

b̂i,j+ 1
2
q̂i,j+ 1

2
v−
i,j+ 1

2

dx−
∫
Ii

b̂i,j− 1
2
q̂i,j− 1

2
v+
i,j− 1

2

dx,

(3.4)∫
P
i+1

2 ,j

phwdxdy =−
∫
P
i+1

2 ,j

A(uh)wxdxdy +

∫
Jj

A(uh(x̃i+1))w
−
i+1dy −

∫
Jj

A(uh(x̃i))w
+
i dy, (3.5)∫

Q
i,j+1

2

phzdxdy =−
∫
Q

i,j+1
2

B(uh)zydxdy +

∫
Ii

B(uh(ỹj+1))z
−
j+1dx−

∫
Ii

B(uh(ỹj))z
+
j dx. (3.6)

The numerical flux â along the edge x = xi+ 1
2
is taken as

âi+ 1
2
,j =

[A(uh)]i+ 1
2
,j

[uh]i+ 1
2
,j

Similarly, the numerical flux b̂ along the edge y = yj+ 1
2
is taken as

b̂i,j+ 1
2
=

[B(uh)]i,j+ 1
2

[uh]i,j+ 1
2

,

where [s]i+ 1
2
,j := s+

i+ 1
2
,j
−s−

i+ 1
2
,j
denotes the jump of a function s across the cell boundary {xi+ 1

2
}×

Jj . Likewise for [s]i,j+ 1
2
. Moreover, we choose

p̂i+ 1
2
,j = ph(xi+ 1

2
, y) +

αi+ 1
2
,j

∆x̃i+ 1
2
,j

[uh]i+ 1
2
,j , q̂i,j+ 1

2
= qh(x, yj+ 1

2
) +

αi,j+ 1
2

∆x̃i,j+ 1
2

[uh]i,j+ 1
2

Following the same analyses for problems in one space dimension, we can obtain the stability

analysis and error estimates. Therefore, we will skip the proof and only demonstrate the results in

the following two theorems.

Theorem 3.1. The LDG methods introduced in (3.4)-(3.6) is stable and

1

2

d

dt
∥uh∥2 + ∥ph∥2 + ∥qh∥2 ≤ 0.

Theorem 3.2. Suppose the exact solution for linear parabolic equation (3.1) with a(u) = b(u) = 1

satisfies u ∈ Ck+1(Ω) and the finite element space is made up of piecewise polynomial of degree k

in each cell. The numerical solutions satisfy (3.4)-(3.6). Then the error between the numerical and

exact solutions satisfy

∥u− uh∥+
∫ T

0
∥p− ph∥+ ∥q − qh∥ dt ≤ Chk,

where C is independent of h.

13

4 Numerical examples

In this section, we will use numerical experiments to demonstrate the stability and the accuracy of

the new LDG method on overlapping meshes. In all the numerical experiments, we use piecewise

polynomials of degree k = 1, 2, 3, 4. If not otherwise stated we consider third-order SSP Runge-

Kutta time discretization [14] with ∆t = 0.1∆x2 if k = 1, 2 and ∆t = 0.01∆x2 if k = 3, 4 to

reduce the time error, and take the final time T = 1. Moreover, the random mesh is generated by

randomly and independently perturbing each node in a uniform mesh by up to 20%.

Example 4.1. We solve the following heat equation in one space dimension{
ut = uxx,
u(x, 0) = sin(x),

x ∈ [0, 2π]. (4.1)

Clearly, the exact solution is

u(x, t) = e−t sin(x).

We consider uniform mesh and take ξ0 = 0 in (2.1), i.e. the dual mesh is generated by using the

midpoint of the primitive mesh. We compute the error between the numerical and exact solutions

and the results under the L2- and L∞-norms are given in Table 4.1. From the table, we can only

Table 4.1: Example 4.1: midpoint, uniform mesh.

k number of no penalty α = 0.2
cells L2 norm order L∞ norm order L2 norm order L∞ norm order
10 3.36E-02 – 7.43E-02 – 8.05E-03 – 1.76E-02 –
20 1.68E-02 1.00 3.73E-02 0.99 1.45E-03 2.47 2.84E-03 2.63

1 40 8.42E-03 1.00 1.87E-02 1.00 3.00E-04 2.27 5.46E-04 2.38
80 4.21E-03 1.00 9.34E-03 1.00 7.02E-05 2.10 1.40E-04 1.96
160 2.10E-03 1.00 4.67E-03 1.00 1.72E-05 2.03 3.54E-05 1.99
10 3.05E-04 – 8.61E-04 – 2.56E-04 – 6.86E-04 –
20 3.85E-05 2.99 1.11E-04 2.95 3.21E-05 3.00 8.99E-05 2.93

2 40 4.83E-06 3.00 1.40E-05 2.99 4.02E-06 3.00 1.14E-05 2.98
80 6.04E-07 3.00 1.75E-06 3.00 5.03E-07 3.00 1.43E-06 3.00
160 7.55E-08 3.00 2.19E-07 3.00 6.28E-08 3.00 1.79E-07 3.00
10 8.53E-06 – 1.50E-05 – 8.61E-06 – 1.42E-05 –
20 5.69E-07 3.91 1.12E-06 3.75 5.29E-07 4.02 8.80E-07 4.01

3 40 4.30E-08 3.72 9.91E-08 3.49 3.29E-08 4.01 5.51E-08 4.00
80 4.05E-09 3.41 1.08E-08 3.20 2.06E-09 4.00 3.45E-09 4.00
160 4.55E-10 3.15 1.29E-09 3.06 1.28E-10 4.00 2.15E-10 4.00
10 6.55E-07 – 1.84E-06 – 2.28E-07 – 5.80E-07 –
20 1.84E-08 5.16 5.19E-08 5.15 7.04E-09 5.02 1.95E-08 4.90

4 40 5.60E-10 5.04 1.58E-09 5.03 2.19E-10 5.01 6.20E-10 4.97
80 1.74E-11 5.01 4.92E-11 5.01 6.82E-12 5.00 1.95E-11 4.99
160 5.43E-13 5.00 1.54E-12 5.00 2.13E-13 5.00 6.12E-13 4.99

observe suboptimal accuracy if k is an odd number and the penalty parameter α = 0. To obtain

optimal convergence rates, we can choose α ̸= 0 or use even order polynomials. We repeat the

14

Table 4.2: midpoint, random mesh (20%) .

k number of no penalty α = 0.2
cells L2 norm order L∞ norm order L2 norm order L∞ norm order
10 3.99E-02 – 1.19E-01 – 8.30E-03 – 2.22E-02 –
20 1.82E-02 1.19 4.56E-02 1.45 1.51E-03 2.61 3.33E-03 2.90

1 40 9.13E-03 1.02 2.52E-02 0.88 3.50E-04 2.56 1.06E-03 2.00
80 4.55E-03 1.08 1.50E-02 0.80 7.93E-05 1.95 2.49E-04 1.90
160 2.28E-03 0.98 7.55E-03 0.98 1.95E-05 2.21 6.04E-05 2.23
10 3.25E-04 – 1.34E-03 – 3.27E-04 — 1.05E-03 –
20 4.66E-05 2.60 1.69E-04 2.77 3.74E-05 2.99 1.51E-04 2.66

2 40 5.64E-06 3.01 2.33E-05 2.82 5.04E-06 3.14 2.25E-05 2.99
80 7.37E-07 3.00 3.20E-06 2.93 6.02E-07 3.22 2.24E-06 3.49
160 9.50E-08 3.23 4.17E-07 3.21 7.92E-08 2.96 3.55E-07 2.69
10 1.44E-05 – 5.43E-05 – 1.70E-05 – 4.17E-05 –
20 1.22E-06 3.83 4.64E-06 3.81 7.59E-07 3.96 1.95E-06 3.90

3 40 1.05E-07 3.41 4.22E-07 3.34 5.58E-08 4.23 1.65E-07 4.01
80 1.40E-08 2.97 6.75E-08 2.70 3.08E-09 4.22 1.07E-08 3.98
160 1.57E-09 3.38 7.61E-09 3.37 1.93E-10 4.06 7.56E-10 3.89
10 1.04E-06 – 3.75E-06 – 3.00E-07 — 1.20E-06 –
20 3.67E-08 5.41 2.30E-07 4.52 1.23E-08 5.20 5.41E-08 5.05

4 40 1.12E-09 5.53 8.64E-09 5.21 3.24E-10 5.40 1.33E-09 5.49
80 3.84E-11 5.01 2.99E-10 4.99 1.01E-11 4.84 6.59E-11 4.20
160 1.16E-12 4.68 6.21E-12 5.18 3.30E-13 5.07 2.09E-12 5.10

same example with random meshes with results given in Table 4.2, we can observe exactly the

same convergence rates discussed above.

Another possible way to recover optimal convergence rates would be taking ξ0 ̸= 0. In Tables

4.3 and 4.4, we take α = 0, and choose ξ0 = 0.05 which is close to 0 and ξ0 =
√
3/3 which is away

from 0. We can clearly observe optimal convergence rates. Moreover, the errors for ξ0 =
√
3/3 is

less than those for ξ0 = 0.05.

Example 4.2. We solve the following convection-diffusion equation{
ut + ux = uxx,
u(x, 0) = sin(x),

x ∈ [0, 2π]. (4.2)

Clearly, the exact solution is

u(x, t) = e−t sin(x− t).

We consider randommeshes only and use upwind fluxes for the convection term. We take ξ0 = α = 0

to test the accuracy and the results are given in Table 4.5. From the table, we can observe optimal

convergence rates.

Example 4.3. We solve the heat equation in two space dimensions:{
ut = uxx + uyy,
u(x, 0) = sin(x) cos(y),

(x, y) ∈ [0, 2π]× [0, 2π]. (4.3)

15

Table 4.3: ξ0 = 0.05 and ξ0 =
√
3/3, uniform mesh.

k number of ξ0 = 0.05 ξ0 =
√
3/3

cells L2 norm order L∞ norm order L2 norm order L∞ norm order
10 3.13E-02 – 7.06E-02 – 3.82E-03 – 9.09E-03 –
20 1.29E-02 1.28 2.96E-02 1.25 9.56E-04 2.00 2.21E-03 2.04

1 40 3.75E-03 1.78 8.72E-03 1.77 2.39E-04 2.00 5.53E-04 2.00
80 8.46E-04 2.15 2.00E-03 2.12 5.98E-05 2.00 1.38E-04 2.00
160 1.98E-04 2.10 4.72E-04 2.08 1.49E-05 2.00 3.46E-05 2.00
10 3.08E-04 – 9.12E-04 – 3.09E-04 – 1.03E-03 –
20 3.88E-05 2.99 1.17E-04 2.96 3.76E-05 3.04 1.26E-04 3.03

2 40 4.85E-06 3.00 1.47E-05 2.99 4.67E-06 3.01 1.57E-05 3.01
80 6.07E-07 3.00 1.84E-06 3.00 5.83E-07 3.00 1.96E-06 3.00
160 7.59E-08 3.00 2.30E-07 3.00 7.28E-08 3.00 2.44E-07 3.00
10 2.12E-05 – 7.02E-05 – 6.01E-05 – 2.02E-04 –
20 3.36E-06 2.66 1.06E-05 2.72 3.85E-06 3.97 1.33E-05 3.93

3 40 2.73E-07 3.62 8.54E-07 3.64 2.21E-07 4.12 7.73E-07 4.10
80 1.74E-08 3.98 5.42E-08 3.98 1.33E-08 4.06 4.66E-08 4.05
160 1.09E-09 3.99 3.40E-09 3.99 8.20E-10 4.02 2.88E-09 4.02
10 6.71E-07 – 1.96E-06 – 4.75E-07 – 1.45E-06 –
20 1.87E-08 5.17 5.48E-08 5.16 1.48E-08 5.00 4.71E-08 4.94

4 40 5.69E-10 5.04 1.67E-09 5.04 4.63E-20 5.00 1.49E-09 4.99
80 1.77E-11 5.01 5.19E-11 5.01 1.45E-12 5.00 4.65E-11 5.00
160 5.51E-13 5.00 1.62E-12 5.00 4.53E-13 5.00 1.46E-12 5.00

Table 4.4: ξ0 = 0.05 and ξ0 =
√
3/3, random mesh (20%).

k number of ξ0 = 0.05 ξ0 =
√
3/3

cells L2 norm order L∞ norm order L2 norm order L∞ norm order
10 3.82E-02 – 1.06E-01 – 4.24E-03 – 1.41E-02 –
20 1.38E-02 1.43 3.72E-02 1.47 1.08E-03 2.23 3.85E-03 2.11

1 40 3.97E-03 1.80 1.15E-02 1.69 2.81E-04 2.23 1.30E-03 1.80
80 9.28E-04 2.21 2.75E-03 2.18 7.05E-05 1.92 2.66E-04 2.20
160 2.20E-04 2.12 7.76E-04 1.86 1.71E-05 2.12 7.70E-05 1.86
10 4.91E-04 – 1.61E-03 – 4.37E-04 – 2.05E-03 –
20 5.71E-05 3.26 2.67E-04 2.72 5.29E-05 2.79 2.62E-04 2.72

2 40 6.14E-06 3.19 3.05E-05 3.10 6.00E-06 3.97 3.53E-05 3.65
80 7.45E-07 2.86 3.15E-06 3.08 8.31E-07 2.98 5.55E-06 2.78
160 9.47E-08 3.03 4.89E-07 2.74 1.14E-07 2.62 9.08E-07 2.38
10 2.40E-05 – 9.34E-05 – 7.52E-05 – 3.19E-04 –
20 5.36E-06 2.39 2.84E-05 1.89 4.67E-06 4.10 1.58E-05 4.43

3 40 3.57E-07 3.93 1.76E-06 4.04 2.78E-07 4.56 1.11E-06 4.29
80 2.79E-08 4.02 1.79E-07 3.60 1.82E-08 4.00 8.01E-08 3.86
160 1.74E-09 3.90 1.32E-08 3.67 1.14E-09 4.07 6.02E-09 3.80
10 9.42E-07 – 3.06E-06 – 9.23E-07 – 4.27E-06 –
20 4.14E-08 5.72 2.59E-07 4.52 3.26E-08 5.60 2.26E-07 4.92

4 40 1.17E-09 5.37 9.91E-09 4.92 7.79E-10 5.19 5.85E-09 5.09
80 3.47E-11 5.22 2.72E-10 5.34 2.58E-11 5.08 1.54E-10 5.42
160 1.39E-12 4.59 9.81E-12 4.73 1.10E-12 4.73 6.05E-12 4.84

16

Table 4.5: Example 4.2: ξ0 = α = 0. random mesh.

number of cells L2 norm order L∞ norm order L2 norm order L∞ norm order
P 1 P 2

10 8.00E-03 – 1.71E-02 – 2.78E-04 – 8.53E-04 –
20 2.08E-03 1.92 5.19E-03 1.70 4.25E-05 2.94 1.45E-04 2.78
40 5.46E-04 1.78 1.38E-03 1.76 5.73E-06 3.22 2.60E-05 2.77
80 1.39E-04 2.20 3.60E-04 2.16 7.29E-07 2.96 3.72E-06 2.79
160 3.52E-05 1.93 9.10E-05 1.93 9.65E-08 2.84 4.82E-07 2.87

P 3 P 4

10 1.49E-05 – 5.33E-05 – 2.67E-07 – 9.82E-07 –
20 9.62E-07 4.51 3.95E-06 4.29 1.35E-08 5.15 7.46E-08 4.45
40 6.47E-08 3.89 2.43E-07 4.02 6.08E-10 4.50 3.23E-09 4.56
80 3.77E-09 4.10 1.56E-08 3.96 2.14E-11 4.67 1.43E-10 4.34
160 2.36E-10 4.04 1.06E-09 3.92 9.57E-13 5.01 5.05E-12 5.40

Clearly, the exact solution is

u(x, t) = e−2t sin(x) cos(y).

We first test the example with ξ0 = 0 in (3.2), η0 = 0 in (3.3) and α = β = 0. The results are given

in Table 4.6. From the table, we can only observe (k + 1)-th order convergence rates for k = 3.

To recover the optimal convergence rates, we choose other penalty parameters and the results are

Table 4.6: Example 4.3: ξ0 = η0 = α = β = 0, different meshes.

k number of uniform mesh random mesh
cells L2 norm order L∞ norm order L2 norm order L∞ norm order
10 2.20E-02 – 5.08E-02 – 2.25E-02 – 6.25E-02 –
20 1.10E-02 1.01 2.46E-02 1.05 1.13E-02 0.99 3.44E-02 0.86

1 40 5.48E-03 1.00 1.22E-02 1.01 5.67E-03 1.00 1.75E-02 0.98
80 2.74E-03 1.00 6.09E-03 1.00 2.83E-03 1.00 9.42E-03 0.89
160 1.37E-03 1.00 3.04E-03 1.00 1.41E-03 1.00 4.72E-03 1.00
10 4.18E-03 – 2.01E-02 – 4.25E-03 – 2.44E-02 –
20 1.07E-03 1.97 5.24E-03 1.94 1.10E-03 1.96 7.27E-03 1.75

2 40 2.69E-04 1.99 1.32E-03 1.98 2.78E-04 1.98 1.96E-03 1.89
80 6.74E-05 2.00 3.32E-04 2.00 6.94E-05 2.00 6.56E-04 1.58
160 1.69E-05 2.00 8.31E-05 2.00 1.73E-05 2.00 1.54E-04 2.09
10 6.50E-05 – 3.59E-04 – 8.32E-05 – 7.01E-04 –
20 3.95E-06 4.04 2.25E-05 3.99 5.27E-06 3.98 5.45E-05 3.69

3 40 2.46E-07 4.01 1.42E-06 3.98 3.31E-07 3.99 3.67E-06 3.89
80 1.54E-08 4.00 8.93E-08 4.00 2.05E-08 4.01 2.13E-07 4.11
160 9.81E-10 3.97 5.62E-09 3.99 1.39E-09 3.89 1.53E-08 3.79
10 1.47E-05 – 1.08E-04 – 1.63E-05 – 1.71E-04 –
20 9.29E-07 3.98 7.11E-06 3.93 1.05E-06 3.96 1.26E-05 3.76

4 40 5.82E-08 4.00 4.46E-07 3.99 6.16E-08 4.09 7.57E-07 4.06
80 3.64E-09 4.00 2.79E-08 4.00 3.15E-09 4.29 5.71E-08 3.73
160 2.27E-10 4.00 1.75E-09 4.00 1.05E-10 4.90 1.75E-09 5.03

listed in Table 4.7. We use random meshes only and can observe that if both penalty parameters

17

are nonzero, we can obtain optimal rates of convergence. However, if only one of the penalty

parameters is nonzero, we still have the accuracy degeneration if piecewise odd order polynomials

are applied. Moreover, following Example 4.1, we also choose random meshes and take different

Table 4.7: Example 4.3: ξ0 = η0 = 0, different α and β, random mesh.

k number of α = 0, β = 0.2 α = 0.2, β = 0.2
cells L2 norm order L∞ norm order L2 norm order L∞ norm order
10 1.86E-02 – 6.48E-02 – 1.07E-02 – 3.95E-02 –
20 8.78E-03 1.08 3.09E-02 1.07 2.32E-03 2.21 9.68E-03 2.03

1 40 4.43E-03 0.99 1.89E-02 0.71 5.40E-04 2.10 2.85E-03 1.77
80 2.22E-03 0.99 9.76E-03 0.95 1.31E-04 2.05 7.09E-04 2.01
160 1.11E-03 1.00 4.47E-03 1.13 3.25E-05 2.01 1.89E-04 1.91
10 1.79E-03 – 1.07E-02 – 1.21E-03 – 7.55E-03 –
20 1.62E-04 3.47 1.10E-03 3.28 1.23E-04 3.29 9.67E-04 2.96

2 40 1.62E-05 3.32 1.23E-04 3.15 1.41E-05 3.13 1.13E-04 3.10
80 1.78E-06 3.19 1.45E-05 3.09 1.69E-06 3.07 1.38E-05 3.03
160 2.14E-07 3.05 1.82E-06 3.00 2.09E-07 3.02 1.74E-06 2.99
10 8.02E-05 – 6.45E-04 – 7.36E-05 – 5.64E-04 –
20 5.72E-06 3.81 5.76E-05 3.49 4.70E-06 3.97 4.92E-05 3.52

3 40 4.92E-07 3.54 3.76E-06 3.94 2.95E-07 4.00 3.22E-06 3.94
80 4.91E-08 3.33 3.32E-07 3.50 1.79E-08 4.04 1.76E-07 4.19
160 5.85E-09 3.07 3.81E-08 3.12 1.11E-09 4.01 1.32E-08 3.74
10 5.38E-06 – 4.54E-05 – 4.66E-06 – 3.82E-05 –
20 1.67E-07 5.01 1.96E-06 4.53 1.56E-07 4.90 1.76E-06 4.44

4 40 5.14E-09 5.02 6.15E-08 4.99 4.94E-09 4.99 5.59E-08 4.98
80 1.52E-10 5.08 1.87E-09 5.04 1.48E-10 5.06 1.73E-09 5.01
160 4.73E-12 5.01 5.99E-11 4.96 4.60E-12 5.01 5.61E-11 4.95

values of ξ0 and η0. The results are provided in Table 4.8. We can observe that, if both of them

are nonzero, the optimal convergence rates can be recovered. However, if one of them is zero, (e.g.

ξ0 = 0), the optimal rates cannot be obtained for k = 1.

Example 4.4. We solve the convection-diffusion equation in two space dimensions{
ut + ux + uy = uxx + uyy,
u(x, y, 0) = sin(x) cos(y),

(x, y) ∈ [0, 2π]× [0, 2π]. (4.4)

Clearly, the exact solution is

u(x, y, t) = e−2t sin(x− t) cos(y − t).

We consider random meshes only and use upwind fluxes for the convection term. We take ξ0 =

η0 = α = β = 0 to test the accuracy and the results are given in Table 4.9. From the table, we can

observe optimal convergence rates.

5 Conclusion

In this paper, we have introduced a new LDG method on overlapping meshes. The scheme is stable

but the order of accuracy may not be optimal. We demonstrated a potential reason for the accuracy

18

Table 4.8: Example 4.3: different ξ0 and η0, α = β = 0, random mesh.

k number of ξ0 = 0, η0 = 0.05 ξ0 = 0.05, η0 = 0.05
cells L2 norm order L∞ norm order L2 norm order L∞ norm order
10 2.21E-02 – 6.73E-02 – 2.18E-02 – 6.63E-02 –
20 1.07E-02 1.04 3.46E-02 0.96 1.01E-02 1.11 3.76E-02 0.82

1 40 4.78E-03 1.17 1.84E-02 0.91 3.74E-03 1.43 1.71E-02 1.14
80 2.11E-03 1.18 9.03E-03 1.02 9.24E-04 2.02 4.99E-03 1.78
160 1.01E-03 1.06 4.31E-03 1.07 2.15E-04 2.10 1.26E-03 1.98
10 4.06E-03 – 2.48E-02 – 3.95E-03 – 2.46E-02 –
20 9.46E-04 2.10 6.57E-03 1.92 8.18E-04 2.27 5.76E-03 2.09

2 40 1.59E-04 2.57 1.20E-03 2.45 1.12E-04 2.87 8.30E-04 2.80
80 1.76E-05 3.17 1.60E-04 2.91 1.12E-05 3.32 9.04E-05 3.20
160 1.79E-06 3.30 1.68E-05 3.25 1.21E-06 3.22 1.00E-05 3.17
10 8.45E-05 – 7.48E-04 – 8.50E-05 – 7.06E-04 –
20 5.70E-06 3.89 5.64E-05 3.73 6.02E-06 3.82 5.96E-05 3.57

3 40 4.25E-07 3.75 3.81E-06 3.89 4.88E-07 3.62 4.53E-06 3.72
80 2.59E-08 4.03 2.27E-07 4.07 3.11E-08 3.97 2.90E-07 3.97
160 1.65E-09 3.98 1.59E-08 3.84 1.93E-09 4.01 2.03E-08 3.84
10 1.54E-05 – 1.71E-04 – 1.49E-05 – 1.66E-04 –
20 8.58E-07 4.17 1.08E-05 3.99 7.10E-07 4.39 8.90E-06 4.22

4 40 3.05E-08 4.81 4.25E-07 4.67 2.11E-08 5.07 2.81E-07 4.99
80 7.83E-10 5.28 1.30E-08 5.03 5.34E-10 5.30 7.31E-09 5.26
160 2.06E-11 5.25 3.46E-10 5.23 1.50E-11 5.16 2.08E-10 5.13

Table 4.9: Example 4.4: ξ0 = η0 = α = β = 0. random mesh.

number of cells L2 norm order L∞ norm order L2 norm order L∞ norm order
P 1 P 2

10 1.01E-02 – 4.10E-02 – 1.04E-03 – 6.67E-03 –
20 2.69E-03 1.90 1.21E-02 1.76 1.43E-04 2.86 1.01E-03 2.73
40 6.86E-04 1.97 3.23E-03 1.90 1.87E-05 2.94 1.31E-04 2.94
80 1.72E-04 2.00 7.54E-04 2.10 2.38E-06 2.98 1.70E-05 2.95
160 4.30E-05 2.00 1.98E-04 1.93 3.00E-07 2.99 2.18E-06 2.96

P 3 P 4

10 7.36E-05 – 6.30E-04 – 4.66E-06 – 4.77E-05 –
20 4.85E-06 3.92 4.98E-05 3.66 1.65E-07 4.82 1.88E-06 4.67
40 3.10E-07 3.97 3.72E-06 3.74 5.35E-09 4.94 6.86E-08 4.78
80 1.90E-08 4.02 2.25E-07 4.05 1.64E-10 5.03 2.05E-09 5.06
160 1.20E-09 3.99 1.42E-08 3.98 5.15E-12 4.99 6.98E-11 4.88

19

degeneration and provided several alternatives to recover the optimal convergence rates.

References

[1] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the

numerical solution of the compressible Navier-Stokes equations, Journal of Computational

Physics, 131 (1997), 267-279.

[2] Z. Chen, H. Huang and J. Yan, Third order Maximum-principle-satisfying direct discontinuous

Galerkin methods for time dependent convection diffusion equations on unstructured triangular

meshes, Journal of Computational Physics, 308 (2016), 198-217.

[3] E. Chung and C.S. Lee A staggered discontinuous Galerkin method for the convection–diffusion

equation, Journal of Numerical Mathematics, 20 (2012), 1-31.

[4] P.G. Ciarlet. Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

[5] B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws IV: the multidimensional case, Mathematics of

Computation, 54 (1990), 545-581.

[6] B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws III: one-dimensional systems, Journal

of Computational Physics, 84 (1989), 90-113.

[7] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite

element method for conservation laws II: general framework, Mathematics of Computation, 52

(1989), 411-435.

[8] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation

laws V: multidimensional systems, Journal of Computational Physics, 141 (1998), 199-224.

[9] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time dependent

convection-diffusion systems, SIAM Journal on Numerical Analysis, 35 (1998), 2440-2463.

[10] J. Douglas, Jr., R.E. Ewing and M.F. Wheeler, A time-discretization procedure for a mixed

finite element approximation of miscible displacement in porous media, R.A.I.R.O. Analyse

numérique, 17 (1983), 249-256.

[11] J. Douglas, Jr., R.E. Ewing and M.F. Wheeler, The approximation of the pressure by a mixed

method in the simulation of miscible displacement, R.A.I.R.O. Analyse numérique, 17 (1983),

17-33.

[12] J. Du and Y. Yang, Maximum-principle-preserving third-order LDG method for convection-

diffusion equations on overlapping meshes, submitted.

20

[13] I.M. Gelfand, Some questions of analysis and differential equations, American Mathematical

Society Translations, 26 (1963), 201-219.

[14] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretiza-

tion methods, SIAM Review, 43 (2001), 89-112.

[15] H. Guo, F. Yu and Y. Yang, Local discontinuous Galerkin method for incompressible miscible

displacement problem in porous media, Journal of Scientific Computing, 71 (2017), 615-633.

[16] H. Guo and Y. Yang, Bound-preserving discontinuous Galerkin method for compressible misci-

ble displacement problem in porous media, SIAM Journal on Scientific Computing, 39 (2017),

A1969-A1990.

[17] L. Guo and Y. Yang, Positivity-preserving high-order local discontinuous Galerkin method

for parabolic equations with blow-up solutions, Journal of Computational Physics, 289 (2015),

181-195.

[18] A.E. Hurd and D.H. Sattinger, Questions of existence and uniqueness for hyperbolic equa-

tions with discontinuous coefficients, Transactions of the American Mathematical Society, 132

(1968), 159-174.

[19] E. F. Keller and L. A. Segel, Initiation on slime mold aggregation viewed as instability, Journal

of Theoretical Biology, 26 (1970), 399-415.

[20] X. Li, C.-W. Shu and Y. Yang, Local discontinuous Galerkin method for the Keller-Segel

chemotaxis model, Journal of Scientific Computing, 73 (2017), 943-967.

[21] Y. Liu, C.-W. Shu, E. Tadmor and M. Zhang, Central local discontinuous Galerkin methods

on overlapping cells for diffusion equations, ESAIM: Mathematical Modelling and Numerical

Analysis (M2AN), 45 (2011), 1009-1032.

[22] C. Patlak, Random walk with persistence and external bias, The bulletin of mathematical

biophysics, 15 (1953), 311338.

[23] T. Qin, C.-W. Shu and Y. Yang, Bound-preserving discontinuous Galerkin methods for rela-

tivistic hydrodynamics, Journal of Computational Physics, 315 (2016), 323-347.

[24] W.H. Reed and T.R. Hill, Triangular mesh methods for the Neutron transport equation, Los

Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM, 1973.

[25] H. Wang, C.-W. Shu, and Q. Zhang, Stability and error estimates of local discontinuous

Galerkin methods with implicit-explicit time-marching for advection-diffusion problems, SIAM

Journal on Numerical Analysis, 53 (2015), 206-227.

21

[26] H. Wang, C.-W. Shu and Q. Zhang, Stability analysis and error estimates of local discontin-

uous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion

problems, Applied Mathematics and Computation, 272 (2016), 237-258.

[27] H. Wang, S. Wang, Q. Zhang and C.-W. Shu, Local discontinuous Galerkin methods with

implicit-explicit time marching for multi-dimensional convectiondiffusion problems, ESAIM:

M2AN, 50 (2016), 1083-1105.

[28] T. Xiong, J.-M. Qiu and Z. Xu, High order maximum-principle-preserving discontinuous

Galerkin method for convection-diffusion equations, SIAM Journal on Scientific Computing,

37 (2015), A583-A608.

[29] Y. Yang, D. Wei and C.-W. Shu, Discontinuous Galerkin method for Krause’s consensus models

and pressureless Euler equations, Journal of Computational Physics, 252 (2013), 109-127.

[30] F. Yu, H. Guo, N. Chuenjarern and Y. Yang, Conservative local discontinuous Galerkin method

for compressible miscible displacements in porous media, Journal of Scientific Computing, 73

(2017), 1249-1275.

[31] X. Zhang and C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar

conservation laws, Journal of Computational Physics, 229 (2010), 3091-3120.

[32] X. Zhang and C.-W. Shu, On positivity preserving high order discontinuous Galerkin schemes

for compressible Euler equations on rectangular meshes, Journal of Computational Physics,

229 (2010), 8918-8934.

[33] Y. Zhang, X. Zhang and C.-W. Shu, Maximum-principle-satisfying second order discontin-

uous Galerkin schemes for convection-diffusion equations on triangular meshes, Journal of

Computational Physics, 234 (2013), 295-316.

[34] X. Zhao, Y. Yang and C. Seyler, A positivity-preserving semi-implicit discontinuous Galerkin

scheme for solving extended magnetohydrodynamics equations, Journal of Computational

Physics, 278 (2014), 400-415.

22

