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Abstract. It is a classical result of Sobolev spaces that any H1 function has a well-defined
H1/2 trace on the boundary of a sufficient regular domain. We discuss its recent extensions
given in [45] in some heterogeneously localized nonlocal function spaces. The new trace
theorems are stronger and more general than the classical result. They can be established
essentially for all functions having only square integrability away from the boundary or
in any compact subset of interior domain. Yet, the heterogeneous localization offers the
necessary regularity precisely at the boundary to have well-defined traces. A consequence
is that we may study associated Dirichlet type boundary value problems, as well as the
coupling of local and nonlocal equations through co-dimension-1 interfaces.

1. Introduction

To study boundary value problems and interface problems, it is often necessary to study
traces of associated function spaces. For standard second order elliptic problems defined
on a spatial domain Ω, the associated function space is typically given by H1(Ω), the
standard Sobolev space of L2 functions with square integrable derivatives. The following
mathematical result is well-known: on a domain Ω ∈ Rd with boundary ∂Ω, a trace operator
T on a subset Γ of ∂Ω can be extended continuously as a map from H1(Ω) to H1/2(Γ). In
other words, we have the classical trace inequality of Gagliardo [17]:

‖u‖
H

1
2 (∂Ω)

≤ C‖u‖H1(Ω), ∀ u ∈ H1(Ω)

for a positive constant C depending only on Ω. Moreover, it is known that for suitably
smooth domains, H1/2(Γ) functions can have H1(Ω) interior extensions, which is a key
element in the formulation of boundary value problems of second order elliptic operators
with Dirichlet type data. For generic H1/2(Γ) data, the H1(Ω) regularity of the interior
extension is the best possible.

A mathematical question underlying the study in [45] is to characterize some subspaces,
denote by of S(Ω), that are significantly larger than H1(Ω), to have a continuous trace map

into H1/2(Γ) and thus a stronger and more general trace inequality

‖u‖
H

1
2 (∂Ω)

≤ C‖u‖S(Ω) , ∀u ∈ S(Ω) .

In this work, we present the main findings of [45] concerning some recent extensions of
the classical trace theorem in the Sobolev space to some suitably defined nonlocal function
spaces. To provide the background and motivation of such investigations, we first recall
some elements of nonlocal operators with finite range of interactions and their connections
with classical second order elliptic operators. Related works on the associated nonlocal and
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local (classical Sobolev) function spaces are also briefly discussed. Then the key technical
results in [45] are reviewed, finally, we point out some implications on the well-posedness
of boundary value problems associated with nonlocal elliptic operators and the coupling of
local and nonlocal variational problems,

2. Background and motivation

In recent studies of nonlocal mechanical models and nonlocal diffusion, we have become
interested in the study of nonlocal operators of the following form: for a given parameter
δ > 0 and a given density function (radially symmetric kernel) ωδ = ωδ(s) = ωδ(|s|)
compactly defined on Bδ(0) ⊂ Rd the ball of radius δ at the origin),

(1) Lδu (x) = d

ˆ
Bδ(0)

u(x + s)− 2u(x) + u(x− s)
|s|2

ωδ(s)ds ∀u = u(x) : Rd → R.

The operator Lδ is said to be nonlocal since Lδu (x) depends not only on the properties
of u at x but also its δ neighborhood. The positive parameter δ is commonly called the
nonlocal horizon parameter that characterizes the range of nonlocal interactions associated
with Lδ.

The nonlocal operator can be seen as a continuum average of a finite difference operator,
where the weight is specified by the kernel ωδ. Meanwhile, formally by Taylor expansion,
we have

Lδu (x) = ∆u(x)

ˆ
Bδ(0)

ωδ(|s|)ds+O(δ2) ≈ ∆u(x) = L0u(x), as δ → 0,

Thus we may get the local differential operator L0 = ∆ being the local limit. This can be
made rigorous for kernels taking the form ωδ(s) = δ−dω(s/δ).

For a given spatial domain Ω, we may define a nonlocal space S(Ω) that is given by the
completion of C1(Ω) with respect to the nonlocal norm

‖ · ‖S(Ω) = (‖ · ‖2L2(Ω) + | · |2S(Ω))
1/2,(2)

where the associated nonlocal semi-norm | · |S(Ω) is defined by

|u|2S(Ω) =

ˆ
Ω

ˆ
Ω∩Bδ(x)

γ(x,y)
(u(y)− u(x))2

|y − x|2
dydx(3)

for some nonlocal interaction kernel γ(x,y).
For the nonlocal operator and nonlocal considered here with an associated nonlocal hori-

zon parameter δ, a natural and popular choice of the kernel is in fact

γ(x,y) = ωδ(|x− y|) = δ−dω(|x− y|/δ),
for a density ω = ω(|x|), though other forms may prove to also be useful, as shown later.

A nonlocal model −Lδuδ=f defines in Rd or Ω with a given data f and the unknown
solution u can be seen as a more general model than differential/difference models or a
bridge connecting them.

In recent years, there has been significant progress towards a systematic (or even ax-
iomatic) development of a rigorous mathematical framework for nonlocal operators and
nonlocal models. In [12], attempts have been made to develop a nonlocal vector calculus as
the basic mathematical building blocks for nonlocal continuum models, mimicking the clas-
sical Newton’s vector calculus for local models in the form of partial differential equations.
A comparison of a few key ingredients and concepts is presented in the Table 1.

For further development and applications of the framework to the analysis of various
nonlocal models such as linear peridynamic bond-based and state-based models, nonlinear
hyperelastic peridynamic models, and nonlocal in time dynamic models, we refer to [11,
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Newton’s vector calculus ⇔ Nonlocal vector calculus

Local balance (PDE) ⇔ Nonlocal balance (PD)

Differential gradient/divergence ⇔ Nonlocal gradient/divergence

−∇ · (K∇u) = f ⇔ −D · (ωδD∗u) = f

Boundary conditions ⇔ Volumetric constraints

Integral identities/integration by parts ⇔ Nonlocal integration by partsˆ
Ω
u∆v − v∆u =

ˆ
∂Ω
u∂nv − v∂nu ⇔

¨
uD(D∗v)− vD(D∗u) = 0

Table 1. Nonlocal vector calculus vesus Newton’s vector calculus

12, 29, 30, 31, 32, 13]. Some of the main distinctions of these series of works include the
theory developed for systems of equations involving vectors and tensor fields, the finite
range of nonlocal interactions and the precise dependence of the mathematical estimates
on the horizon δ, and the minimal regularity assumptions associated with the underlying
function spaces.

Generically, nonlocal equations posed on a domain Ω ⊂ Rd are complemented by nonlocal
boundary conditions, or more precisely, constraints on a some domain with nonzero d-
dimensional volume, hence leading to the so-called constrained value problems [11]. A
pictorial depiction of nonlocal problems with a nonlocal horizon δ > 0 and volumetric
constraints is given in Figure.1, together with its possible differential equation limit in the
form of a standard Dirichlet boundary value problem. We note that some key ingredients
in the development of the well-posedness theory for linear nonlocal models are the nonlocal
Kohn’s inequality and nonlocal Poincare inequalities, which serve as the nonlocal analog of
their classical, local counterparts for linear PDEs.

Ω
Ωδ-Lδuδ= b

uδ=0

Well-posed with← →
a unique solution

← Nonlocal volumetric constraint

Local boundary condition →

Ω
∂Ω-L0u0= b

u0= 0

Figure 1. A nonlocal constrained value problem and a local boundary value problem.

In general, nonlocal models may allow more singular solutions in a function space Sδ
larger than H1. The ability to produce more singular solutions is a major motivation for
studyingf nonlocal models in subjects such as fracture mechanics and anomalous diffusion.
For more studies on nonlocal spaces and associated nonlocal operators, we refer to [3, 5,
6, 11, 12, 16, 18, 24, 28, 31, 33, 37, 42] and references cited therein on related applications
and mathematical analysis. Moreover, developing nonsmooth calculus [20] has also been an
active subject of mathematical research with strong connections to geometry [15].

To avoid the use of such nonlocal constraints, the corresponding nonlocal operators need
to be properly modified near the boundary, which is often the case for fractional differential
equations [6]. For a more recent survey on the nonlocal elliptic equations, we refer to [38].

In order to have well-defined nonlocal problems on Ω with Dirichlet type data on part
of its boundary ∂Ω of codimension-1, study of the trace map in S(Ω) becomes natural and
at the same time a necessity. However, it is known that in general S(Ω) contains H1(Ω)
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as a subspace and it is sufficient large so that it may contain more singular functions as
desired by nonlocal models. Meanwhile, we know from localization results that as δ → 0, we
may recover the classical H1 space, that means that in the local limit, the trace property
is attained together with the improvement in regularity homogeneously over the whole
domain. This of course does not bode well with our goal, but it leads to the natural idea of
heterogeneous localization. That is, we desire to define a nonlocal space which maintains
the nonlocality inside the domain (thus allowing more singular functions to be included),
but gets localized at the boundary (giving rise to the well-defined trace map). This is the
path followed in [45].

3. New trace theorem in heterogeneously localized nonlocal spaces

The main findings of [45] are that the trace map exists and is continuous on a nonlocal
function space S(Ω) if the support of the kernel is heterogeneously localized as x approaches
the boundary of Ω. By considering such a class of kernels, the study departs from many
existing works corresponding to typical translate-invariant kernels (such as the celebrated
work [5]), though in other settings, variable order and variable growth function spaces have
been a popular subject with a rich history and much recent interest, see for instance [8, 34].

In [45], the class of kernels under consideration is given by

(4) γ(x,y) =
1

|δ(x)|d+2
γ̂

(
|y − x|
δ(x)

)
where γ̂ = γ̂(s) is a non-increasing nonnegative function defined for s ∈ (0, 1) with a finite
d + 1 moment. The influence horizon δ = δ(x) is a function defined on Ω that approaches
zero when x approaches the boundary. A simple choice taken in [45] is

(5) δ(x) = σ dist(x,Γ), x ∈ Ω ,

for some σ ∈ (0, 1] and Γ ⊂ ∂Ω. The associated nonlocal neighborhood H(x) is defined by

H(x) := {y ∈ Ω : |y − x| ≤ δ(x)} = Bδ(x)(x) .

A key observation of [45] is that, by allowing heterogeneous localization with vanishing
effective neighborhood H(x) when x approaches the boundary ∂Ω, we expect to have a well

defined continuous trace map from the associated nonlocal space S(Ω) to H1/2(∂Ω). This
leads to the generalized trace theorem of [45] that is stated below.

Theorem 3.1 (General trace theorem). Assume that Ω is a bounded simply connected
Lipschitz domain in Rd (d ≥ 2) and Γ = ∂Ω, then there exists a constant C depending only
on Ω and Γ such that the trace map T for Γ satisfies

(6) ‖Tu‖
H

1
2 (Γ)
≤ C‖u‖S(Ω) , ∀u ∈ S(Ω) .

The following proposition has been established in [45], which is of independent interests
on its own while showing the relation between the classical Sobolev space H1(Ω) and the new
heterogeneously localized nonlocal space S(Ω). The result generalizes a similar conclusion
for nonlocal spaces defined with a constant horizon and translation invariant kernel known
in the literature, see [5].

Proposition 3.2. For δ(x) = σdist(x,Γ) with σ ∈ (0, 1), the space H1(Ω) is continuously
imbedded in S(Ω) and there exists a constant C depending only on σ and Ω such that

‖u‖S(Ω) ≤ C‖u‖H1(Ω) , ∀u ∈ H1(Ω) .(7)

Moreover, C is independent of σ for σ small.
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The proof of (7) can be done for a smooth function u ∈ C1(Ω̄) ∩H1(Ω) first. One key
observation is that

|u|2S(Ω) ≤
ˆ
Rd

ˆ
|h|<δ(x)

1

|δ(x)|d+2
γ̂(
|h|
δ(x)

)|u(x + h)− u(x)|2dhdx

=

ˆ
Rd

ˆ
|h|<1

1

|δ(x)|2
γ̂(h)|u(x + δ(x)h)− u(x)|2dhdx

≤
ˆ
Rd

ˆ
|h|<1

|h|2γ̂(h)

ˆ 1

0
|∇u(x + tδ(x)h)|2dtdhdx .

For y = x + tδ(x)h, by noting that

∂y

∂x
= I + t∇δ(x)⊗ h ,

and its inverse are uniformly bounded everywhere if ‖∇δ‖ = σ < 1, with the bounds
independent of σ if σ is small, we get the existence of a generic constant C > 0 such that

|u|2S(Ω) ≤ C(

ˆ
|h|<1

|h|2γ̂(h)dh)|u|2H1(Rd)

≤ C‖u‖2H1(Ω) .

The constant C may depend on Ω but is independent of σ for σ small. For a complete
proof, we refer to [45].

By the Proposition 3.2, we have

‖Tu‖
H

1
2 (Γ)
≤ C‖u‖S(Ω) ≤ C‖u‖H1(Ω) , ∀u ∈ H1(Ω) ,

so we can see that the trace inequality (6) is indeed a refinement of the classical trace
inequality in the conventional Sobolev space H1(Ω). The latter follows as a simple conse-
quence.

Corollary 3.3 (Sobolev trace theorem). Assume that Ω is a bounded simply connected
Lipschitz domain in Rd (d ≥ 2) and Γ = ∂Ω, then there exists a constant C depending only
on Ω and Γ such that the trace map T for Γ satisfies

(8) ‖Tu‖
H

1
2 (Γ)
≤ C‖u‖H1(Ω) , ∀u ∈ H1(Ω) .

4. A special trace theorem as an illustrative example

The full proof of the trace theorem 3.1 is presented in [45]. To help understanding what
the result conveys and how it compares with other relevant works, it is suggestive to consider
a special case. That is, in terms of Ω and Γ , we take a special stripe domain Ω = (0, r)×Rd−1

and a portion of its boundary Γ = {0}×Rd−1 where r is any given positive constant, while
for the kernel, we adopt a special kernel with γ̂ to be the characteristic function χ(0,1) for
|y − x| ∈ (0, 1) with the horizon δ(x) given by the first component of x, that is,

(9) γ(x,y) =
χ(0,1)(|y − x|)
|δ(x)|d+2

, δ(x) = dist(x,Γ) = x1 , for x = (x1, x̃), x̃ ∈ Rd−1.

The geometric set up is depicted in Figure 2.
As shown in [45] , this special case serves as not only a helpful step towards proving the

more general result but also an illustrative example.
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x1

r

Ω = (0, r)× Rd−1Γ = {0} × Rd−1

x̃

Figure 2. Depiction of the stripe geometry.

Let us now take a look at the special form of the nonlocal norms in this case. By
definition, we get

|u|2S(Ω) =

ˆ
Ω

ˆ
Ω∩{|y−x|<|x1|}

(u(y)− u(x))2

|x1|2+d
dydx .

Clearly, the denominator x1 penalizes the spatial variation only at x1 = 0, thus S(Ω)

contains all functions that are in L2(Ω̃) for any domain Ω̃ with its closure being a compact
subset of Ω. Hence, functions in S(Ω) are generally not expected to have regularity better
than L2(Ω′) over the subdomain Ω′, or may be significantly less regular away from the
boundary than H1 functions. Yet, as elucidated in [45], due to the shrinking horizon
towards the boundary, the penalization of spatial variations provides enough regularity for
the functions in S(Ω) to have well-defined traces just on the boundary itself. Intuitively,
this is a natural consequence of the localization of nonlocal interactions on the boundary.

In contrast, we may recall standard norms associated with fractional Sobolev spaces
defined on Ω.

|u|2Hα(Ω) =

ˆ
Ω

ˆ
Ω

(u(y)− u(x))2

|y − x|2α+d
dydx .

The regularity of the functions is effected by the denominator which vanishes at x = y.
We now state the trace theorem in the special form.

Theorem 4.1 (Special trace theorem). For Ω = (0, r) × Rd−1 and Γ = {0} × Rd−1, there
exists a constant C depends only on d such that such that for any u ∈ C1(Ω̄) ∩ S(Ω),

‖u‖L2(Γ) ≤ C
(
r−1/2‖u‖L2(Ω) + r1/2|u|S(Ω)

)
,(10)

and for d ≥ 2,

|u|H1/2(Γ) ≤ C
(
r−1‖u‖L2(Ω) + |u|S(Ω)

)
.(11)

The special form allows us to give more quantitative estimates on the constants appearing
in the trace inequality. Note that we are mainly interested in the small r dependence of
the imbedding coefficients. For large r, the results remain true with uniformly bounded
coefficients, that is, ‖u‖H1/2(Γ) ≤ C‖u‖S(Ω) where C is a constant as r →∞.

In [45], it has also been noted that the need of the L2(Ω) norm in (10) and (11) is similar
to that for standard trace inequalities in Sobolev spaces. The dependence on the L2(Ω)
norm may be removed by considering Lp type norms for the trace with a suitable choice of
p, just like the classical counterpart in Sobolev spaces.
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5. More on the nonlocal spaces and norms

In the process of establishing the trace inequality, there are a number of results presented
in [45] that are of independent interests. For example, a generalization of the classical
Hardy’s inequality has been shown there, with the one dimensional version given below.

Proposition 5.1 (Nonlocal Hardy-type inequality in one-dimension). Let Ω = (0, r) for
some r > 0, Γ = {0}, and a and b satisfy 0 ≤ a < b ≤ 1. Then we have for any u ∈ C1(Ω̄)
with u |Γ= u(0) = 0,

(12)

ˆ
Ω

|u(x)|2

|x|2
dx ≤ Ca,b

ˆ
Ω

ˆ bx

ax

|u(y)− u(x)|2

|x|3
dydx , where Ca,b =

4(2 + b+ a)

(b− a)(2− b− a)2
.

In particular, this implies a Hardy-type inequality: there is a constant C > 0 independent
of Ω such that,

(13)

ˆ
Ω

|u(x)|2

dist(x,Γ)2
dx ≤ C|u|2S(Ω) .

We recall the classical Hardy’s inequality is of the form:

(14)

ˆ r

0

|u(x)|2

dist(x,Γ)2
dx ≤ C

ˆ r

0
|u′(x)|2dx .

Obviously, in the above classiical Hardy’s inequality, the requirement of u′ ∈ L2 is redun-
dant away from x = 0 since a simple observation shows that the singular weight on the left
hand side of (14) only becomes effective right on the boundary x = 0. Thus, we need that
though widely useful, the inequality itself is not sharp. On the other hand, the singular
weight for the L2 norm is in perfect synchrony with the effects of similar singular weight
used in the nonlocal norm. In this sense, the nonlocal Hardy’s inequality is in fact much
more natural.

One can expect a higher dimensional nonlocal Hardy’s inequality as well, which is also
given in [45] and stated below.

Proposition 5.2 (Nonlocal Hardy’s inequality). Given a bounded Lipshitz domain Ω, there
exists a constant C > 0 such that if Tu = 0 on ∂Ω, then

(15)

ˆ
Ω

|u(x)|2

(dist(x, ∂Ω))2
dx ≤ C|u|2S(Ω) .

The one-dimensional version of the nonlocal Hardy’s inequality (13) can be proved via
elementary means, but the proof for the more general multidimensional case is somewhat
more involved and it is shown with the help of another estimate on the variations of u along
the normal direction. discussed later. Such an estimate requires careful studies. Hence,
in the same spirit of norms of directional derivatives in classical, local function spaces, the
following definition is introduced in [45] as a nonlocal analog that refines our understanding
of how the nonlocal norm ‖ · ‖S(Ω) provides control on the function variation in different
directions. This not only helps proving the nonlocal Hardy’s inequality, but also plays
important roles in proving the new trace theorems.

Definition 5.3. On the domain Ω = (0, r)×Rd−1, we define in the following two directional
nonlocal semi-norms | · |n and | · |t, standing for normal and tangential directions respectively
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with reference to the boundary segment Γ = {0} × Rd−1,

|u|2n =

ˆ
Rd−1

ˆ r

0

 bx1

ax1

|u(y1, x̄)− u(x1, x̄)|2

|x1|2
dy1dx1dx̄(16)

|u|2t =

ˆ
Rd−1

ˆ r

0

 
Bcx1 (x̄)

|u(x1, ȳ)− u(x1, x̄)|2

|x1|2
dȳdx1dx̄(17)

where 0 ≤ a < b ≤ 1 and 0 < c < 1 are constants, and
ffl

represents the integral average
over a domain, that is, the integral over the domain divided by the domain volume.

Some heuristic comments are provided in [45] to offer insight into the above definitions.
For a smooth function u = u(x), we may approximately have, in an informal manner, that
t | · |n and | · |t mimic norms of directional directives, and they are thus named nonlocal
normal and tangential directional semi-norms. In comparison, we may also informally see
that | · |2S(Ω) involves nonlocal variations in all directions like a total gradient semi-norm.

While the norms of classical (local) directional derivatives are obviously bounded by that
of the total gradient, a challenging step in [45] is to establish a nonlocal analog, stated in
the the following lemma, that shows that | · |n and | · |t are indeed controlled by the original
semi-norm | · |S(Ω).

Lemma 5.4. Let Ω = (0, r) × Rd−1 for some r > 0, a, b and c satisfy 0 ≤ a < b ≤ 1,
0 < c < 1 and (a− 1)2 + c2 ≤ 1. Then there exists a constant C depending only on a, b and
c such that for any u ∈ S(Ω),

|u|n ≤ C|u|S(Ω) ,(18)

|u|t ≤ C|u|S(Ω) .(19)

The above inequalities are established as consequences of the following inequalities

|u|2n ≤ c1|u|2t + C|u|2S(Ω)(20)

|u|2t ≤ c2|u|2n + C|u|2S(Ω)(21)

where c1c2 < 1.

(x1, x̄)
(y1, x̄)

(y1, ȳ) (x1, ȳ)

{x1}×Bcy1(x̄)

{y1}×Bcy1(x̄)

(ax1, bx1)

{0} × Rd−1

Figure 3. Depiction of geometry used in the proof of Lemma 5.4 in [45].

The Figure 3 can help explaining how the above is achieved with the suitable choices of
a, b and c. Geometrically, the three constants determines the geometric picture in Figure
3. The cyan horizontal dotted line shows the range of (y1, x̄), the blue vertical dotted line
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for (y1, ȳ), and the red vertical dashed line for (x1, ȳ). The key to choose these positions is
to make sure that (y1, ȳ) stays in the effective neighborhood of (x1, x̄), which is bounded
by the black dashed circle. This essentially becomes the issue of how to pick the constants
a, b and c.

6. More about the proof of theorem 4.1 on the stripe domain

For showing the bound on the H1/2 semi-norm in the inequality (11), we essentially need
to prove the following inequality

(22)

ˆ
Rd−1

ˆ
Br/2(x̄)

|u(0, ȳ)− u(0, x̄)|2

|ȳ − x̄|d
dȳdx̄ ≤ C|u|2S(Ω) .

(0, x̄)

(0, ȳ)

|h̄|

β|x̄− ȳ|

α|x̄− ȳ| (y1, ȳ)

(x1, x̄)

{0} × Rd−1

Figure 4. Depiction of geometry used in the proof of Theorem 4.1.

The idea is to make the interior extension using

|u(0, ȳ)− u(0, x̄)| ≤ |u(0, ȳ)− u(y1, ȳ)|+ |u(y1, ȳ)− u(x1, x̄)|+ |u(x1, x̄)− u(0, x̄)|
and to control all the terms associated with the right hand side by the nonlocal norm.
The blue and red solid horizontal line segments in Figure 4 show the possible positions
of (x1, x̄) and (y1, ȳ) respectively. The key is to determine the end points of these line
segments so that any (y1, ȳ) on the red solid line should remain in the effective neighborhood
(shown as balls bounded by dotted and dashed spheres, with the dotted ones giving the
smallest neighborhoods) of any (x1, x̄) on the other blue solid line and vice versa. The term
associated with |u(y1, ȳ) − u(x1, x̄)| is most similar to the nonlocal norm, while the other
two terms involves essentially variations in the normal direction that can be estimated with
the help of Lemma 5.4.

Concerning the process of interior extension, it is worthy noting that the problem of relat-
ing boundary estimates and interior estimates appears often in the study of PDE boundary
value problems, such as in Kellogg’s theorem for deriving Cα regularity estimates up to the
boundary with prescribed Cα data [23], and in deriving interior regularity estimates from
the coincidence set for free boundary problems [26].

Indeed, the idea of relating boundary points to interior points in order to get an estimate
of boundary from those in the interior leads to a popular approach to establish the classical
trace theorem, see for example, [25, chapter 15]. However, a new challenge in our work here
in the nonlocal case, unlike the straightforward constructions in the classical case, is that
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the interior points need to be carefully chosen to make the nonlocal norm ‖u‖S(Ω) coming
into play. The lemma 5.4 provides us analogies of estimates on tangential and normal
derivatives that are important for the derivation. The details are very involved and can be
found in [45].

7. Generalizations

7.1. More general kernels. Although much of our discussion so far is focused on the
choice that γ̂ takes on a constant value over its support, the new nonlocal trace theorem
is valid for more general nonlocal interactions. The special choice of γ̂ not only avoids
technical complication but also corresponds to some of the weakest nonlocal norms among
those associated with popular kernels used in the literature. For example, for a typical
fractional power law kernel γ̂(s) = 1/sλ [2, 9], we have the rescaled fractional type kernel

(23) γλ(x,y) =
cλ

|δ(x)|d+2−λ ·
1

|y − x|λ
for y ∈ H(x), λ ∈ [0, d+ 2) .

For such kernels, it is easy to make the following comparison of norms.

Lemma 7.1. For γλ defined in (23) with λ ∈ (0, d + 2), there is a constant C > 0 such
that the following inequality holds for any function u,ˆ

Ω

ˆ
Ω∩H(x)

γ0(x,y)(u(y)− u(x))2dydx ≤ C
ˆ

Ω

ˆ
Ω∩H(x)

γλ(x,y)(u(y)− u(x))2dydx .

The lemma shows that the nonlocal norm defined with the constant kernel associated
with λ = 0 indeed gives the weakest norm among ones corresponding to a large class of
kernels either associated with (23) or are bounded below and above by such kernels when
x and y are close by.

7.2. More general choices of horizon. To generalize the choices of the variable horizon,
we may consider, for example, the case δ(x) = σdist(x,Γ) where σ ∈ (0, σ0] for σ0 > 0. On
this matter, we define some notations first.

|u|2δ(x),r =

ˆ
Ωr

ˆ
Ωr∩H(x)

1

|δ(x)|d+2
γ̂(
|y − x|
δ(x)

)(u(y)− u(x))2dydx .

where Ωr = (0, r) × Rd−1. The next lemma shows that the smaller σ is, the larger the
nonlocal norm we can get.

Lemma 7.2. Let δ(x) = σdist(x,Γ), where σ ∈ [1
2 , 1) and Γ = {0}×Rd−1, then there exists

a constant C depending only on d such that the following inequality holds for any r > 0 and
α ∈ (0, 1],

(24) |u|2δ(x),r/2 ≤ C
(1 + σ

1− σ

)d+2
|u|2αδ(x),r .

Using this lemma, we may have the extension to more general horizons given by δ(x) =
σdist(x,Γ).

Proposition 7.3. The results of Theorem 3.1 and Theorem 4.1 remain valid for influence
horizon of the form δ(x) = σdist(x,Γ) where σ ∈ (0, σ0] for some σ0 > 0. Moreover, the
embedding constant C depends only on Ω, Γ and σ0.

A horizon proportional to the distance to the boundary is a specific choice that can be
further generalized. One instance is that δ(x) is proportional to dist(x,Γ) for x only on a
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boundary layer of finite positive width but remains constant elsewhere. A possible form of
such a δ(x) could be

δ(x) = min{σdist(x,Γ), η},
for some η > 0 to be specified. Another possibility is to have δ(x) vanishes in other nonlinear
ways as x approaches the boundary. Similar results can be shown in these cases and they
follow naturally from the fact that it is the nonlocal interaction in the boundary layer,

rather than the interior of the domain, that provides the essential control on the H
1
2 trace.

The discussion on the general form of δ(x) is meaningful since it is important in many
applications to note that the imbedding constant in (7) does not depend on σ, just like the
constants appearing in the new nonlocal trace inequalities. For example, for the coupled
PDE and nonlocal model depicted in Fig. 6, we may recover a coupled PDE models in the
local limit as σ → 0. This again implies that the nonlocal trace theorems are refinement
and improvement of the classical trace theorems in H1(Ω).

7.3. More general domains and trace theorems on portions of the domain bound-
ary. Concerning extending the trace theorem from the special stripe domain to more general
Liphshitz domain, one can establish theorem 3.1 using partition of unity techniques.

As for generalization of the trace theorem to portions of the domain boundary. we note
that the classical, local trace inequality on ∂Ω automatically implies the same result for
the trace on a subset Γ of ∂Ω. This is not, however, as straightforward for the nonlocal
space whose definition involves the Γ dependent horizon, and thus the Γ dependent nonlocal
kernel.

To demonstrate that similar results remain valid, a possible route is pointed out in [45].
That is, one can consider first a special domain in the form of a (rectangular) section of the
stripe domain, for instance, Ω = (0, r) × (a, b) × Rd−2 and Γ = {0} × (a, b) × Rd−2. By a
suitable extension in the second variable from the interval (a, b) to the whole real line, the
result in Theorem 4.1 can be utilized for the whole stripe domain to get the desired result
on its subsection. One may then employ similar partition of unity techniques and domain
transformations to more general domains and more general subset of their boundary.

7.4. Other generalizations. In terms of further generalizations of the trace theorems, we
note that although the results of this paper are only shown for the L2 or the Hilbert space
setting, it is not surprising that they can be generalized to the Lp and other more general
Banach spaces. With the choices of more general kernels, one may also consider nonlocal
extensions of trace results in fractional W s,p type spaces. Extensions of the notion of trace
may also go beyond co-dimensional one manifolds to other more general subdomains or
sets. Furthermore, the position-dependent and heterogeneous feature in the nonlocal norms
may be related for the study of more general Morrey, Campanato, Besov and Lizorkin-
Triebel spaces, possibly of variable order and growth conditions, to obtain new type of
spaces and the associated trace maps [22, 35]. In addition, connections with the study
of Sobolev and other function spaces on metric measure spaces may also be explored [20,
21]. Mathematically, one may also ask questions concerning optimal constants in the trace
inequality, as in the classical case [14]. Moreover, while it is known that the H1 space

gives the smallest Sobolev space with continuous H1/2 boundary trace map, we now see
much larger spaces can also preserve the same property, even in spaces like what we define
here whose functions may only be in L2 over any compact subset away from the boundary.
Thus, the issue of how large such a space can be, as communicated to us by Luis Caffarelli,
becomes very interesting to study.

Another direction, motivated naturally by interests in nonlocal mechanics, is to consider
analogous results for spaces of vector fields such as those studied in [30, 31]. Likewise,
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one may investigate high order extensions as well, following the discussions of high order
nonlocal spaces likes ones in [44], which were relevant to the studies of beams and shells.

In closing, the main results presented here are indicative of the conceptually simple ob-
servation on the improved regularity of functions in nonlocal spaces associated with a van-
ishing nonlocal horizon, either uniformly across the domain of interest, or when approaching
a codimension-1 surface. In the former case we recover the limit of nonlocal spaces being
the classical Sobolev space, as in [5, 37], while in the latter case we obtain the analogue and
extension of the classical trace theorem. One may further investigate regularity estimates,
multiscale analysis and homogenization issues associated with nonlocal problems having a
heterogeneous choice of variable horizon and nonlocal interaction kernels.

8. Variational problems associated with heterogeneously localized
nonlocal operators

8.1. Boundary value problems for heterogeneously localized nonlocal models.
Generically, as alluded earlier, nonlocal equations posed on a domain Ω ⊂ Rd are comple-
mented by nonlocal boundary conditions. More precisely, constraints on a some domain
with nonzero d-dimensional volume, hence leading to so-called constrained value problems
[11], as illustrated in Figure 1. To avoid the use of such nonlocal constraints, the nonlocal
operators need to be properly modified near the boundary, which is often the case for frac-
tional differential equations [6]. For a more recent survey on the nonlocal elliptic equations,
we refer to [38].

With heterogeneous localization of the nonlocal interactions, we can have well-posed
boundary value problem with Dirichlet data on the boundary only, thanks to the trace
theorem and nonlocal Poincare’s inequality. This is depicted in Figure 5.

Ω
Ωδ-Lδuδ= b

uδ=g

Well-posed with← →
a unique solution

← Volumetric constraint

Boundary condition →

Ω
∂Ω-Lδ(x)uδ= b

uδ= g

Figure 5. Nonlocal problems with either volumetric constraints or local
boundary conditions.

One may further establish the convergence of numerical methods, for example, conforming
finite element methods as long as the finite element spaces are dense subspaces of the
nonlocal energy space. The latter is assured if we have the density in the classical Sobolev
space H1, a result that is reminiscent and consistent to the findings on asymptotically
compatible schemes for the numerical solution of nonlocal problems involving a constant
horizon [43].

8.2. Coupled local and nonlocal models. Another consequence of a well-defined trace
map with the trace belonging to a space similar to that for standard Sobolev spaces would
allow a seamless coupling between a classical, local PDE (for instance the Poisson equation
−∆u = f) on one side Ω− of a codimension-1 interface Γ with a nonlocal equation (say the
variational equation −Lu = f associated with the nonlocal energy) on the other side Ω+ of
Γ, see Fig. 6 for an illustration (the circular domains depict domains of nonlocal interactions
associated with a heterogeneously defined horizon parameter). The study on transmission
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conditions and the well-posedness of the coupled local and nonlocal models can be readily
obtained from a variational formulation

min
u−=u+ on Γ

Elocal(u−) + Enonlocal(u+) = |∇u−|2L2(Ω−) + |u|2S(Ω+) .

Furthermore, having varying horizon allows one to harvest the flexibility in working with
nonlocal interactions on a wide range of scales so that more effective numerical simulations
can be carried out, along the lines of asymptotically compatible schemes [43].

−∆u = f

u ∈ H1(Ω−)

Γ

−Lu = f

u ∈ S(Ω+)

Figure 6. A PDE model (in Ω−) is coupled with a nonlocal model (in Ω+)
using suitably defined boundary trace and transmission condition on Γ.

9. Conclusion

Nonlocality is intrinsic and ubiquitous in nature. In theory and modeling, it is also a
generic feature of multiscale analysis and model reduction as it has often been (knowingly
or implicitly) encoded in many earlier works (by the names of Mori-Zwanzig formalism,
Dyson formula, Duhamel principle, ...). Nonlocal continuum models are arguably more
general than local continuum models and discrete models and can also serve as a bridge
connecting different models. Meanwhile, developing a systematic/axiomatic mathematical
framework for nonlocal models is challenging and important in many important applications
(that often involve defects/anomalies). Moreover, the study of nonlocal continuum models
can be linked to many other concepts in mathematics, data and computational sciences as
well as applications, like the combinatorial hodge theory, graph Laplacian, diffusion map,
Levy flights, SPH, RKPM, etc [4, 19, 27, 36, 41, 48]. Hence, there are many good reasons
to get better mathematical understanding of nonlocal models and nonlocality.

The main focus of the work presented here (based on [45]) is the heterogeneous localiza-
tion of nonlocal models. This study leads to interesting mathematical extensions of classical
results in functional analysis, and it could also be of practical significance for developing
coupled local and nonlocal models that can retain nonlocal features wherever necessary and
utilize effective local models wherever feasible, hence achieving effectiveness while main-
taining generality. As a guidance for practical mathematical modeling, our findings can be
summarized into a simple slogan, that is, think nonlocal, act local.
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