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APPLICATION OF GENERALIZED GAUSS–RADAU

PROJECTIONS FOR THE LOCAL DISCONTINUOUS GALERKIN

METHOD FOR LINEAR CONVECTION-DIFFUSION

EQUATIONS

YAO CHENG, XIONG MENG, AND QIANG ZHANG

Abstract. In this paper we consider the local discontinuous Galerkin method
based on the generalized alternating numerical fluxes, for solving the linear
convection-diffusion equations in one dimension and two dimensions. As an
application of generalized Gauss–Radau projections, we get rid of the dual
argument and obtain directly the optimal L2-norm error estimate in a uni-
form framework. The sharpness of the theoretical results is demonstrated by
numerical experiments.

1. Introduction

In this paper we continue the work [20] and apply the generalized Gauss–Radau
projection to study the local discontinuous Galerkin (LDG) method based on gen-
eralized alternating numerical fluxes (see, for example, (2.8) and (2.16) below) to
solve linear convection-diffusion problem

(1.1)
∂u

∂t
+

m∑

ℓ=1

∂

∂xℓ

(
cℓu
)
−

m∑

ℓ=1

∂

∂xℓ

(
dℓ

∂u

∂xℓ

)
= f(x1, . . . , xm, t), m = 1, 2,

in domain Ω = (0, 2π)m ⊂ R
m for any time t ∈ (0, T ], where cℓ, dℓ ≥ 0, and f

are the given functions. Here the generalized alternating numerical flux is used to
distinguish with the purely alternating numerical flux. From the view of practice,
the generalized alternating numerical flux is used more widely, since the purely
alternating numerical flux is not easy to define for linear equations with varying-
coefficient, or even nonlinear equations. For simplicity, we assume that cℓ and dℓ
are constants, and mainly consider the periodic boundary condition in this paper.
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The LDG method to solve (1.1) has been introduced firstly by Cockburn and Shu
[13], which is motivated by the work of Bassi and Rebay [1] for computing Navier–
Stokes problems. As a special class of discontinuous Galerkin (DG) method, the
main technique of the LDG method is to rewrite (1.1) into an equivalent system con-
taining only first-order derivatives, which can further be discretized by the standard
DG method [21, 11]. An important ingredient in the design of the LDG method
is the choice of numerical flux, which should ensure the stability and high order
accuracy feature of the scheme. Since discontinuous finite element spaces do not
require any continuity at interface boundaries, the method has enough flexibility
to deal with complex domain and adaptive computation. For a fairly complete set
of references about the method and its implementation, please refer to the review
papers [14, 23] and recent books [3, 15, 18].

The a priori estimate of the LDG method to solve (1.1) has been studied for a
long period, in which different numerical fluxes are considered. From the point of
view of numerical experiments, this method often displays the optimal error esti-
mate in the L2-norm. However, it is rather difficult to derive optimal convergence
results theoretically for general cases, with difficulties arising from different choice
of numerical fluxes and different triangulations. To express this clearly, let us recall
some important results available in the current literature for the linear convection-
diffusion problems on the Cartesian mesh. In [13], the authors have considered the
generalized alternating numerical fluxes, and only obtained the suboptimal error
estimate of order k in the L2-norm by virtue of the local L2-projection. Here and
in what follows, k is the degree of piecewise polynomials in the discontinuous fi-
nite element space. The optimal convergence results of order k + 1 is lost because
the projection error at all element boundaries cannot be treated in a nice way. In
light of this point, the optimal error estimate is obtained [4] for the special case
in which the purely alternating numerical flux is used, by using the definition and
approximation properties of the so-called local Gauss–Radau projections. Thanks
to exact collocation of the local Gauss–Radau projections at one of end points of
each element in one-dimensional case, the projection error at element boundary is
successfully eliminated. Similar results for two-dimensional case can also be estab-
lished by observing the super-convergence property of DG discretization on each
element. However, when the generalized, not purely, alternating numerical fluxes
are used, the local Gauss–Radau projection does not work well. Hence, to ob-
tain the optimal error estimate, we have to construct and analyze some suitable
projections.

It is therefore important and interesting to fill up the above gap by establish-
ing the optimal convergence results of the LDG method with generalized numerical
fluxes for convection-diffusion equations. This paper is the continued work of Meng,
Shu and Wu [20], in which optimal error estimates are obtained for the DG method
based on upwind-biased numerical fluxes for linear hyperbolic problems, in one-
and two-dimensional Cartesian meshes. The main technical difficulty is the con-
struction and analysis of some suitable projections tailored to the very choice of
the numerical fluxes. Instead of the standard local Gauss–Radau projections, the
resulting projections in [20] and in the current paper are globally coupled, which
will definitely increase the difficulty in the analysis of the newly designed general-

ized Gauss–Radau projections, even for the existence of the projections. The idea of
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constructing such global projections is motivated by earlier work of Cheng and Shu
in [7], and the recent work of Bona et al. [2] for solving generalized KdV equations.

The objective of this paper is to take advantage of the generalized Gauss–Radau
projections, and to derive the optimal error estimate in the L2-norm for the LDG
method with generalized alternating fluxes. To be specific, we want to prove the
(k + 1)-th order convergence rate in one-dimensional space and multidimensional
space on Cartesian meshes with piecewise tensor product polynomials of degree at
most k ≥ 0. By virtue of this kind of projection, the proof line in this paper has
an important feature that the dual argument is abandoned and we do not worry
about the regularity of dual problem, as the usual treatment in the finite element
analysis for the elliptic problem and parabolic problem.

To clearly display the main idea of this technique, we start in this paper by
assuming that the parameters involved in the numerical fluxes for the prime variable
with respect to the convection part and the diffusion part are taken to be the
same; see (2.8) and (2.16). Different to the DG method for hyperbolic equations,
we have to overcome the difficulties coming from the auxiliary variables. To this
end, we would like to construct new projections similar to the generalized Gauss–
Radau projection in [20] to deal with the projection errors about auxiliary variables.
Under the weaker assumption on the regularity of solutions, we establish again the
optimal approximation properties for the corresponding projections. Besides, as
that for the purely alternating numerical flux, there are some minor differences in
the error estimate for the one- and multi-dimensional problems, in which the latter
case requires making use of the superconvergence property of the projection. In the
superconvergence analysis of the projection, we get a slight improvement that the
regularity assumption [20] on the exact solution can be weakened a lot; see Lemma
3.6 in section 3.3.

After that, we will consider in section 4 the general numerical flux, i.e., the
parameters involved in the numerical fluxes for the prime variable regarding the
convection part and the diffusion part are independently chosen. It is an interesting
problem to design a nice projection and analysis line to derive the optimal error
estimate. The similar issue has been discussed in [8], where the purely alternating
numerical flux is considered. The authors used the local Gauss–Radau projections
to the prime variable and the nice combination of the prime variable and auxiliary
variable, respectively, in order to completely eliminate those projection errors at
element boundary points. In this paper, we will adopt a new projection based on
the generalized Gauss–Radau projection, to achieve the same goal for the general
cases.

The paper is organized as follows. In section 2, we present the LDG scheme using
the generalized alternating numerical fluxes for one- and two-dimensional space.
The stability and a priori error estimates in the L2-norm are also stated in Theorem
2.3 and Theorem 2.4, respectively. Section 3 is devoted to proving Theorem 2.4.
Specifically, we start in subsection 3.1 by showing the definitions of the generalized
Gauss–Radau projections and presenting their optimal approximation properties.
We proceed to prove Theorem 2.4 for the one-dimensional space in subsection 3.2
and for the two-dimensional space in subsection 3.3. We then move on to the
discussion of issues related to these projections in subsection 3.4. In section 4,
we extend the above work to the more general numerical fluxes and obtain the
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satisfactory error estimates along the similar line by virtue of the generalized Gauss–
Radau projection and its nice extensions. In section 5, we present some numerical
experiments that confirm the sharpness of our theoretical results. Some concluding
remarks are given in section 6. Finally, in the Appendix we provide the proof for a
more technical identity about the projection.

2. The LDG scheme and main results

In this section, we follow [13] to present the detailed LDG schemes in one- and
two-dimensional space, respectively.

2.1. One-dimensional case. In one-dimensional space, (1.1) can be expressed
explicitly in the form

(2.1)
∂u

∂t
+ c

∂u

∂x
− d

∂2u

∂x2
= f(x, t),

with the periodic boundary condition and the initial condition u(x, 0) = u0(x),
where c ≥ 0 is assumed for simplicity. As the usual treatment, we would like to
introduce the auxiliary variable p =

√
d∂u
∂x , and consider the equivalent first-order

system

∂u

∂t
+

∂hu

∂x
= f, p+

∂hp

∂x
= 0,(2.2)

where (hu, hp) = (cu −
√
dp,−

√
du) is the physical flux, and u is called the prime

variable.
The so-called LDG method is to seek the approximation solutions of u and p

for any time, in the discontinuous finite element space. Let Ωh = {Ii}Ni=1 be the
partition of Ω = (0, 2π), where the element Ii = (xi−1/2, xi+1/2) has the length
hi = xi+1/2−xi−1/2 for i = 1, ..., N , and h = max1≤i≤N hi. Note that x1/2 = 0 and
xN+1/2 = 2π. We assume Ωh is quasi-uniform mesh in this paper, namely, there
exists a fixed positive constant ν independent of h, such that νh ≤ hi ≤ h for any
i = 1, . . . , N , as h goes to zero. The associated finite element space is defined as

(2.3) Vh ≡ V
(1)
h ≡ {v ∈ L2(Ω): v|Ii ∈ P k(Ii), ∀Ii ∈ Ωh},

where P k(Ii) denotes the space of polynomials in Ii of degree at most k ≥ 0.
Note that the functions in Vh are allowed to have discontinuities across the element
interfaces. As usual, at each element boundary point xi+1/2 the jump is denoted
by

(2.4) [[v]]i+ 1
2
= v+

i+ 1
2

− v−
i+ 1

2

,

and the weighted average is denoted by

v
(θ)

i+ 1
2

= θv−
i+ 1

2

+ θ̃v+
i+ 1

2

, with θ̃ = 1− θ,(2.5)

where v−i+1/2 and v+i+1/2 are the traces from the left and right direction, respectively,

and θ is the given parameter.
For the initial condition, we can take uh(0) as any suitable approximation of

u0(x). In this paper, we simply take uh(0) = π
(1d)
h u0, where π

(1d)
h ≡ πh is the

one-dimensional L2-projection into Vh. To be specific, for any function u ∈ L2(Ω),
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the projection π
(1d)
h u is defined as the unique function in Vh such that for any

1 ≤ i ≤ N ,

(2.6)

∫

Ii

[
π
(1d)
h u(x)− u(x)

]
vh(x)dx = 0, vh ∈ P k(Ii).

Then, for any time t ∈ (0, T ], we seek the approximation solutions uh and ph both
in the finite element space Vh, such that

∫

Ii

∂uh

∂t
vhdx−

∫

Ii

hu
∂vh
∂x

dx+ (ĥuv
−
h )i+ 1

2
− (ĥuv

+
h )i− 1

2
=

∫

Ii

fvhdx,(2.7a)

∫

Ii

phrhdx−
∫

Ii

hp
∂rh
∂x

dx+ (ĥpr
−
h )i+ 1

2
− (ĥpr

+
h )i− 1

2
= 0,(2.7b)

hold for any i = 1, 2, . . . , N and for any test function (vh, rh) ∈ Vh × Vh. Here

(ĥu, ĥp) is the so-called numerical flux. Instead of using the purely alternating
numerical fluxes, the novelty of this paper is to use the generalized alternating

numerical fluxes related to an arbitrary parameter θ in a form

(2.8) (ĥu, ĥp) = (cu
(θ)
h −

√
dp

(θ̃)
h ,−

√
du

(θ)
h )

at each element boundary point, where we have dropped the subscript i + 1/2 for
convenience and θ ≥ 1

2 , since c ≥ 0. The numerical flux defined in (2.8) is different
from that appears in the literature [4, 6, 8], where θ = 1, namely purely alternating
numerical fluxes are used.

This completes the definition of the LDG scheme in one-dimensional space.

Remark 2.1. The parameters in the numerical flux regarding the convection part
and diffusion part are not necessarily to be taken the same; see section 4. They can
be chosen independently, and can be changed at different element boundary points.
We take it as a constant in this paper just for simplicity.

2.2. Two-dimensional case. In two-dimensional space, (1.1) can be expressed
explicitly in the form

(2.9)
∂u

∂t
+ c1

∂u

∂x
+ c2

∂u

∂y
− d1

∂2u

∂x2
− d2

∂2u

∂y2
= f(x, y, t),

subject to the periodic boundary condition and the initial condition u(x, y, 0) =
u0(x, y). For simplicity, assume c1 ≥ 0 and c2 ≥ 0. As the usual treatment, we
would like to introduce the auxiliary variables

p =
√
d1

∂u

∂x
, q =

√
d2

∂u

∂y
,

and consider the equivalent first-order system

(2.10)
∂u

∂t
+

∂h1u

∂x
+

∂h2u

∂y
= f, p+

∂hp

∂x
= 0, q +

∂hq

∂y
= 0,

where (h1u, hp) = (c1u −
√
d1p,−

√
d1u) and (h2u, hq) = (c2u −

√
d2q,−

√
d2u) are

the physical fluxes.
The so-called LDG method is to seek the approximation solutions of u, p and

q for any time, in the discontinuous finite element space. To do that, we would
like to use some notations for triangulation and finite element space which are

slightly different from the one-dimensional case. Let Ωh = {Kij}j=1,...,Ny

i=1,...,Nx
denote

a tessellation of Ω = (0, 2π)2 with rectangular element Kij ≡ Ii × Jj , where Ii =
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(xi−1/2, xi+1/2) and Jj = (yj−1/2, yj+1/2), with the length hx
i = xi+ 1

2
− xi− 1

2
and

width hy
j = yj+ 1

2
−yj− 1

2
. Let hij = max(hx

i , h
y
j ) and denote h = maxKij∈Ωh

hij . We

also assume Ωh is quasi-uniform in this paper, namely, there exists a fixed positive
constant ν independent of h, such that νh ≤ min{hx

i , h
y
j } ≤ h for any i = 1, . . . , Nx

and j = 1, . . . , Ny, as h goes to zero. The associated finite element space is defined
as

(2.11) Vh ≡ V
(2)
h ≡ {v ∈ L2(Ω) : v|K ∈ Qk(K), ∀K ∈ Ωh},

where Qk(K) denotes the space of polynomials on K of degree at most k ≥ 0 in
each variable. Similar to the one-dimensional case, we use

(2.12) [[v]]i+1/2,y = v+i+1/2,y − v−i+1/2,y, [[v]]x,j+1/2 = v+x,j+1/2 − v−x,j+1/2

to denote the jumps on vertical and horizontal edges, where

v±
i+ 1

2
,y
= lim

x→x
i+1

2

±
v(x, y), v±

x,j+ 1
2

= lim
y→y

j+1
2

±
v(x, y)

are the traces along two different directions. Here and below, we use

(2.13) vθ1,y
i+ 1

2
,y
= θ1v

−

i+ 1
2
,y
+ θ̃1v

+
i+ 1

2
,y
, vx,θ2

x,j+ 1
2

= θ2v
−

x,j+ 1
2

+ θ̃2v
+
x,j+ 1

2

to represent the weighted averages on vertical and horizontal edges with θ̃1 = 1−θ1
and θ̃2 = 1− θ2.

For the initial condition, we can take uh(0) as the suitable approximation of

u0(x, y). In this paper, we simply take uh(0) = π
(2d)
h u0, where π

(2d)
h = πx

h ⊗ πy
h is

the two-dimensional L2-projection into Vh. Here and below the superscripts x and
y indicate that the one-dimensional projections are applied to the spatial variables

x and y, respectively. That is, for any function u ∈ L2(Ω), the projection π
(2d)
h u is

defined as the unique function in Vh such that, in each Kij ∈ Ωh,

(2.14)

∫

Kij

[
π
(2d)
h u(x, y)− u(x, y)

]
vh(x, y)dxdy = 0, vh ∈ Qk(Kij).

Then, for any time t ∈ (0, T ], we seek the approximation solutions uh, ph and qh in
the finite element space Vh, such that, in each Kij ∈ Ωh,

∫

Kij

[∂uh

∂t
vh − h1u

∂vh
∂x

− h2u
∂vh
∂y

]
dxdy

+

∫

Jj

[
(ĥ1uv

−
h )i+ 1

2
,y − (ĥ1uv

+
h )i− 1

2
,y

]
dy(2.15a)

+

∫

Ii

[
(ĥ2uv

−
h )x,j+ 1

2
− (ĥ2uv

+
h )x,j− 1

2

]
dx =

∫

Kij

fvhdxdy,

∫

Kij

[
phrh − hp

∂rh
∂x

]
dxdy +

∫

Jj

[
(ĥpr

−
h )i+ 1

2
,y − (ĥpr

+
h )i− 1

2
,y

]
dy = 0,(2.15b)

∫

Kij

[
qhsh − hq

∂sh
∂y

]
dxdy +

∫

Ii

[
(ĥqs

−
h )x,j+ 1

2
− (ĥqs

+
h )x,j− 1

2

]
dx = 0,(2.15c)
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hold for all test function (vh, rh, sh) ∈ Vh×Vh×Vh. Similar to the one-dimensional

case, the numerical fluxes (ĥ1u, ĥp) and (ĥ2u, ĥq) are defined in a generalized alter-

nating form with respect to each spatial direction, namely

(ĥ1u, ĥp) =
(
c1u

θ1,y
h −

√
dpθ̃1,yh ,−

√
duθ1,y

h

)
,(2.16a)

(ĥ2u, ĥq) =
(
c2u

x,θ2
h −

√
dqx,θ̃2h ,−

√
dux,θ2

h

)
(2.16b)

on the vertical and horizontal edges, respectively, where θ1 ≥ 1/2 and θ2 ≥ 1/2 are
the given parameters, since c1 ≥ 0 and c2 ≥ 0. Note that we have dropped the
subscripts for convenience.

This completes the definition of the LDG scheme in two-dimensional space.

2.3. Main results. In this subsection we would like to present the stability and
optimal error estimates in the L2-norm.

2.3.1. Compact representations. For notational convenience, we would like to rewrite
the above LDG schemes into a compact form, respectively.

For example, adding up two equations in (2.7) and summing them over all ele-
ments, the LDG scheme (2.7) in the one-dimensional space can be written in the
form: find (uh, ph) ∈ Vh × Vh for any time t ∈ (0, T ], such that

(2.17)

∫

Ω

∂uh

∂t
vhdx+Gh(uh, ph; vh, rh) =

∫

Ω

fvhdx

for any test function (vh, rh) ∈ Vh × Vh, where

Gh(uh, ph; vh, rh) =

∫

Ω

phrhdx

+

N∑

i=1

{
−cH

(θ)
i (uh, vh) +

√
dH

(θ̃)
i (ph, vh) +

√
dH

(θ)
i (uh, rh)

}(2.18)

with the locally-defined functional for the given parameter α,

H
(α)
i (w, z) =

∫

Ii

w
∂z

∂x
dx− (w(α)z−)i+ 1

2
+ (w(α)z+)i− 1

2
.

Similarly, the LDG scheme (2.15) in two-dimensional space can be written into
the following compact form: find (uh, ph, qh) ∈ Vh×Vh×Vh for any time t ∈ (0, T ],
such that

(2.19)

∫

Ω

∂uh

∂t
vhdxdy +Gh(uh, ph, qh; vh, rh, sh) =

∫

Ω

fvhdxdy

for any test function (vh, rh, sh) ∈ Vh × Vh × Vh, where

Gh(uh, ph, qh; vh, rh, sh) =

∫

Ω

phrhdxdy +

∫

Ω

qhshdxdy

+

Nx∑

i=1

Ny∑

j=1

{
− c1H

1,θ1
ij (uh, vh) +

√
d1H

1,θ̃1
ij (ph, vh) +

√
d1H

1,θ1
ij (uh, rh)

}

+

Nx∑

i=1

Ny∑

j=1

{
− c2H

2,θ2
ij (uh, vh) +

√
d2H

2,θ̃2
ij (qh, vh) +

√
d2H

2,θ2
ij (uh, sh)

}

(2.20)
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with the locally-defined functionals for the given parameters α1 and α2,

H1,α1

ij (w, z) =

∫

Kij

w
∂z

∂x
dxdy −

∫

Jj

[
(wα1,yz−)i+ 1

2
,y − (wα1,yz+)i− 1

2
,y

]
dy,

H2,α2

ij (w, z) =

∫

Kij

w
∂z

∂y
dxdy −

∫

Ii

[
(wx,α2z−)x,j+ 1

2
− (wx,α2z+)x,j− 1

2

]
dx.

2.3.2. Stability. In the discontinuous finite element method, the information on
the element boundaries is important. To be convenient, we would like to use Γh

to denote all element boundary points in one-dimensional space, and use Γx
h and

Γy
h to denote all vertical edges and all horizontal edges of element boundaries in

two-dimensional space, respectively. Furthermore, we use

‖v‖L2(Γh)
=

(
1

2

N∑

i=1

[
(v+)2i− 1

2

+ (v−)2i+ 1
2

]) 1
2

,(2.21a)

‖v‖L2(Γx
h
) =


1

2

Nx∑

i=1

Ny∑

j=1

∫

Jj

[
(v+)2i− 1

2
,y + (v−)2i+ 1

2
,y

]
dy




1
2

,(2.21b)

‖v‖L2(Γy

h
) =


1

2

Nx∑

i=1

Ny∑

j=1

∫

Ii

[
(v+)2x,j− 1

2

+ (v−)2x,j+ 1
2

]
dx




1
2

,(2.21c)

for any function v defined on element boundaries. If v is single-valued there, we can
define v+ = v− = v. Note that the notations in (2.21) depend on the used mesh.

It is trivial to get the L2-norm stability of the above LDG schemes by noticing
the following identities:

(2.22a) Gh(uh, ph;uh, ph) = ‖ph‖2 + c
(
θ − 1

2

)
‖[[uh]]‖2L2(Γh)

for the one-dimensional space, and

Gh(uh, ph, qh;uh, ph, qh)

= ‖ph‖2 + ‖qh‖2 + c1(θ1 −
1

2
) ‖[[uh]]‖2L2(Γx

h
) + c2(θ2 −

1

2
) ‖[[uh]]‖2L2(Γy

h
)

(2.22b)

for two-dimensional space, where an unmarked norm ‖·‖ is the usual L2-norm
defined on the whole domain Ω. Note that [[uh]] is a single-valued function on
element boundaries. Since the proofs of (2.22) follow from the simple manipulations
or the same arguments as that in [13], we omit the details here.

Remark 2.2. The above two identities show that the jumps of auxiliary variables do
not provide any contributions to the numerical stability. For example, for the one-
dimensional pure heat equation (i.e., c = 0), the corresponding LDG scheme only

has one stability term ‖ph‖2 in (2.22a). This is an important difference between
the LDG method and the interior penalty methods [22] for steady problem.

Theorem 2.3. The one-dimensional LDG scheme (2.7) with θ ≥ 1
2 , and the two-

dimensional LDG scheme (2.15) with θ1, θ2 ≥ 1
2 are both stable in the L2-norm,

namely, the numerical solution satisfies

(2.23) ‖uh(T )‖ ≤ ‖uh(0)‖+
∫ T

0

‖f(t)‖dt.



APPLICATION OF GENERALIZED GAUSS–RADAU PROJECTIONS TO LDG METHODS 9

Proof. Let us take the one-dimensional case as an example. Taking the test function
(vh, rh) = (uh, ph) in (2.17), and using (2.22a) and Cauchy–Schwarz inequality, we
can easily get

1

2

d

dt
‖uh‖2 ≤ ‖f‖ ‖uh‖ .(2.24)

The L2-norm stability (2.23) follows immediately by canceling ‖uh‖ on both sides
and integrating the inequality with respect to the time between 0 and T .

Proceeding in a similar way, we can also obtain (2.23) for the two-dimensional
space. This finishes the proof. �

2.3.3. Error estimates. Now we state the optimal a priori error estimates of the
above LDG method based on the generalized alternating numerical fluxes (2.8) and
(2.16), respectively, where the usual Sobolev spaces and Bochner spaces as well as
their norms and notations are used. If the space domain is Ω, and/or the time
interval is [0, T ], we will omit them for convenience.

Theorem 2.4. Assume that the exact solution of (1.1) is sufficiently smooth, i.e.

(2.25) u ∈ L∞(Hk+1) ∩ L2(Hk+2),
∂u

∂t
∈ L2(Hk+1).

If the discontinuous finite element space Vh is made up of piecewise polynomials of

degree k ≥ 0 in each variable, defined on the quasi-uniform Cartesian mesh, then

the numerical solution uh, of either the one-dimensional LDG scheme (2.7) with

θ > 1/2, or of the two-dimensional LDG scheme (2.15) with θ1 > 1/2 and θ2 > 1/2,
satisfies the optimal and uniform error estimate

‖u(T )− uh(T )‖ ≤ C(1 + T )hk+1,(2.26)

where the bounding constant C is independent of mesh size h and the reciprocal of

the diffusion coefficient d.

Before we present the proof of this theorem in the next section, we would like to
give some remarks here.

Remark 2.5. The above optimal error estimate has been established in the literature
for some special θ. For example, the numerical flux (2.8) in the one-dimensional
LDG scheme can be rewritten in the form as [13], namely,

(2.27)

[
ĥu

ĥp

]
=

[
cu

( 1
2
)

h − β00[[uh]]
0

]
+

[
−
√
dp

( 1
2
)

h − β11[[uh]]− β12[[ph]]

−
√
du

( 1
2
)

h + β12[[uh]]

]
,

with β00 = (θ − 1
2 )c, as well as β11 = 0 and β12 = (θ − 1

2 )
√
d. However, only

suboptimal convergence result of order k is obtained for arbitrary parameter θ by
using the local L2-projection πh in [13]. The authors also reported numerically the
optimal convergence rate for the purely alternating numerical fluxes, namely θ = 1,
which is proved in [6] by the aid of the local Gauss–Radau projection.

It is worthy to point out that one cannot derive the optimal L2-norm error
estimate for β11 = 0 and general numerical fluxes, even we use the dual argument
as [5], as well as the local L2-projection or local Gauss–Radau projection. The
restriction β11 = O(h−1) is critically used in [5] to obtain the optimal L2-norm
error estimate, when the LDG method is used to solve the pure elliptic equation.
However, owing to the generalized Gauss–Radau projection, we are able to get rid
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of the dual arguments and prove directly the optimal convergence rate for general
numerical fluxes, as the actual numerical experiments show.

Remark 2.6. Some remarks will be given in section 3.4, when the parameter used
in the numerical flux is equal to one half.

Remark 2.7. The conclusion in Theorem 2.4 can be extended easily to three-
dimensional space. The proof line is almost the same as that in two-dimensional
space, as long as the exact solution is smooth enough to ensure its continuity.

3. Proof of Theorem 2.4

In this section we will prove Theorem 2.4, no matter how small the diffusion
coefficient d is. The main technique is the construction and analysis of some gener-
alized Gauss–Radau projections [20] and their extensions. However, there is a little
difference between the one-dimensional space and multi-dimensional space.

For notational convenience, below we would like to use C to denote a generic
constant independent of h and d−1, which may have a different value in each oc-
currence.

3.1. Generalized Gauss–Radau projections. In what follows we would like to
consider the functions in the broken Sobolev space

(3.1) Hℓ(Ωh) = {z ∈ L2(Ω) : z|K ∈ Hℓ(K), ∀K ∈ Ωh}

equipped with the norm ‖z‖Hℓ(Ωh)
=
(∑

K∈Ωh
‖z‖2Hℓ(K)

)1/2
, for any given integer

ℓ ≥ 0. Moreover, we denote by C(Ω̄h) the space made up of all piecewise continuous
functions. Since the discontinuous finite element space Vh is contained and dense
in the above two spaces, as h goes to zero, those notations in the previous section
can be extended as usual.

3.1.1. Elemental projection in one-dimensional space. Assume θ 6= 1
2 , and we define

the generalized Gauss–Radau projection as [20]. Namely, for any periodic function
z ∈ C(Ω̄h), the projection Pθz ∈ Vh satisfies

∫

Ii

(Pθz)vhdx =

∫

Ii

zvhdx, ∀vh ∈ P k−1(Ii),(3.2a)

(Pθz)
(θ)

i+ 1
2

= (z(θ))i+ 1
2

(3.2b)

for any i = 1, . . . , N . Obviously, this projection degenerates to the local Gauss–
Radau projection if the parameter is taken as 0 or 1. Hence it can be viewed as an
extension of the local Gauss–Radau projections.

Remark 3.1. In particular, for k = 0, the condition (3.2a) is vacuous. Likewise for
other projections in this paper.

The unique existence has been discussed in [20], and the optimal approximation
properties have been obtained for those functions in W k+1,∞(Ωh), in which the
derivatives up to (k+1)-th order are bounded in each element. However, we would
like in this paper to improve regularity assumption to coincide with the traditional
requirement, as [19], by the help of the special construction of a matrix and the
well-known approximation property of local L2-projection.
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Lemma 3.2. Assume z ∈ Hs+1(Ωh) with Ωh ⊂ R
1 and s ≥ 0. For θ 6= 1

2 , the

projection Pθz is well-defined and the projection error η = z − Pθz satisfies

‖η‖L2(Ωh)
+ h

1
2 ‖η‖L2(Γh)

≤ Chmin(k+1,s+1) ‖z‖Hs+1(Ωh)
,(3.3)

where the bounding constant C > 0 is independent of h and z.

Proof. Since z ∈ H1(Ωh), the imbedding theorem implies that the point value is
defined well. Hence the expression in (3.2) is reasonable.

Let E = Pθz − πhz, where πh = π
(1d)
h is the one-dimensional L2-projection

defined in (2.6). Obviously, it satisfies for any i = 1, . . . , N , the following conditions

∫

Ii

Evhdx = 0, ∀vh ∈ P k−1(Ii),(3.4a)

E
(θ)

i+ 1
2

= (z − πhz)
(θ)

i+ 1
2

≡ bi.(3.4b)

It is well-known that πhz exists uniquely and satisfies the approximation property

(3.5) ‖z − πhz‖L2(Ii)
+ h

1
2

i ‖z − πhz‖L∞(Ii)
≤ Ch

min(k+1,s+1)
i ‖z‖Hs+1(Ii)

,

in each element Ii, where the bounding constant C is independent of i and z. To
prove this lemma, we just need to show that E ∈ Vh exists uniquely and satisfies
the following approximation property

(3.6) ‖E‖L2(Ωh)
+ h

1
2 ‖E‖L2(Γh)

≤ Chmin(k+1,s+1) ‖z‖Hs+1(Ωh)
.

These aims can be achieved by direct manipulations. Due to (3.4a) and the
orthogonality of the rescaled Legendre polynomials, it is easy to see that

E(x) = αi,kPi,k(x) = αi,kP̂k(x̂),

in each element Ii, with x̂ = 2(x− xi)/hi. Here and below

Pi,l(x) ≡ P̂l

(2(x− xi)

hi

)
≡ P̂l(x̂),

and P̂l(x̂) is the standard Legendre polynomial of degree l defined on [−1, 1]. Since

P̂k(±1) = (±1)k, it follows from (3.4b) that

θαi,k + θ̃(−1)kαi+1,k = bi, i = 1, · · · , N.(3.7)

Note that αN+1,k = α1,k. In other words, it forms a linear system AN~αN = ~bN to

determine ~αN = (α1,k, α2,k, . . . , αN,k)
⊤, where ~bN = (b1, b2, . . . , bN )⊤. It is easy to

work out that

(3.8) det(AN ) = θN (1 − ζN ), with ζ = (−1)k+1θ̃/θ.

Hence det(AN ) 6= 0 and the matrix AN is invertible provided that θ 6= 1/2. Now
we can conclude that E and thus the projection Pθz is determined uniquely.

A deep manipulation as that in [20] yields the special construction of the inverse
matrix. That is, A−1

N is a circulant matrix with the (i, j)-th entry

(A−1
N )ij =

1

θ(1− ζN )
ζmod(j−i,N).
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It is easy to see [16] that the row-norm and column-norm are equal and satisfy

∥∥A−1
N

∥∥
1
=
∥∥A−1

N

∥∥
∞

≤ 1

|θ||1 − ζN |
|1− |ζ|N |
|1− |ζ|| ≤ 1

|θ||1 − |ζ|| ,

hence the spectral norm satisfies

(3.9)
∥∥A−1

N

∥∥2
2
≤
∥∥A−1

N

∥∥
1

∥∥A−1
N

∥∥
∞

≤ 1

θ2(1− |ζ|)2 .

It is worthy to mention that this inequality holds independently of N . Owing to
the approximation property (3.5), we have

‖~αN‖22 =
∥∥∥A−1

N
~bN

∥∥∥
2

2
≤
∥∥A−1

N

∥∥2
2

∥∥∥~bN
∥∥∥
2

2
≤ C

∥∥∥~bN
∥∥∥
2

2

≤ C ‖z − πhz‖2Γh
≤ Ch2min(k+1,s+1)−1 ‖z‖2Hs+1(Ωh)

,
(3.10)

where the bounding constant C > 0 is independent of h. Finally, noticing the
simple fact

‖E‖2L2(Ωh)
=

N∑

i=1

α2
i,k ‖Pi,k(x)‖2L2(Ii)

=

N∑

i=1

hiα
2
i,k

2k + 1
≤ Ch ‖~αN‖22 ,(3.11a)

‖E‖2L2(Γh)
=

N∑

i=1

α2
i,k = ‖~αN‖22 ,(3.11b)

as well as (3.10), we can obtain (3.6) and finish the proof of this lemma. �

3.1.2. Elemental projection in multi-dimensional space. It is easy to define the gen-
eralized Gauss–Radau projection in multi-dimensional space (m = 2 or m = 3). To
save space, below we would like to present only the projection in two-dimensional
space.

Assume that θ1 6= 1
2 and θ2 6= 1

2 . The projection Pθ1,θ2 can be explained as the
tensor product of the one-dimensional projections P x

θ and P y
θ , in x- and y-direction

respectively, namely,

Pθ1,θ2 = P x
θ1 ⊗ P y

θ2
.(3.12)

To be specific, for any periodic function z ∈ C(Ω̄h), the projection Pθ1,θ2z ∈ Vh

satisfies ∫

Kij

(Pθ1,θ2z)vhdxdy =

∫

Kij

zvhdxdy, ∀vh ∈ Qk−1(Kij),(3.13a)

∫

Jj

(
(Pθ1,θ2z)

θ1,yvh

)
i+ 1

2
,y
dy =

∫

Jj

(
zθ1,yvh

)
i+ 1

2
,y
dy, ∀vh ∈ P k−1(Jj),(3.13b)

∫

Ii

(
(Pθ1,θ2z)

x,θ2vh

)
x,j+ 1

2

dx =

∫

Ii

(
zx,θ2vh

)
x,j+ 1

2

dx, ∀vh ∈ P k−1(Ii),(3.13c)

(
Pθ1,θ2z

)θ1,θ2
i+ 1

2
,j+ 1

2

= zθ1,θ2
i+ 1

2
,j+ 1

2

(3.13d)

for any i = 1, . . . , Nx and j = 1, . . . , Ny. Here and in what follows, we use the
notations defined in (2.13) to represent the weighted average on each edge, and use

zθ1,θ2
i+ 1

2
,j+ 1

2

= θ1θ2z(x
−

i+ 1
2

, y−
j+ 1

2

) + θ1θ̃2z(x
−

i+ 1
2

, y+
j+ 1

2

)

+ θ̃1θ2z(x
+
i+ 1

2

, y−
j+ 1

2

) + θ̃1θ̃2z(x
+
i+ 1

2

, y+
j+ 1

2

)
(3.14)
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to represent the weighted average at the corner point.
Almost the same as the discussion for the one-dimensional projection, we have

the following approximation property.

Lemma 3.3. Assume z ∈ Hs+1(Ωh) ∩ H2(Ωh) with Ωh ⊂ R
2 and s ≥ 0. For

θ1 6= 1
2 and θ2 6= 1

2 , the projection Pθ1,θ2z is well-defined and the projection error

η = z − Pθ1,θ2z satisfies

(3.15) ‖η‖L2(Ωh)
+ h

1
2 ‖η‖L2(Γh)

≤ Chmin(k+1,s+1) ‖z‖Hs+1(Ωh)
,

where ‖η‖2L2(Γh)
= ‖η‖2L2(Γx

h
) + ‖η‖2L2(Γy

h
), and the bounding constant C > 0 is

independent of h and z.

Proof. Since z ∈ H2(Ωh), the imbedding theorem implies that the point value is
defined well. Hence the expression in (3.13) is reasonable.

The proof idea is almost the same as that for the one-dimensional case. However,

the procedure is a little long and complex. Let E = Pθ1,θ2z−πhz, where πh = π
(2d)
h

is the two-dimensional L2-projection defined in (2.14). Obviously, E ∈ Vh satisfies
the following identities

∫

Ki,j

Evhdxdy = 0, ∀vh ∈ Qk−1(Kij),(3.16a)

∫

Jj

(
Eθ1,yvh

)
i+ 1

2
,y
dy =

∫

Jj

(
gθ1,yvh

)
i+ 1

2
,y
dy, ∀vh ∈ P k−1(Jj),(3.16b)

∫

Ii

(
Ex,θ2vh

)
x,j+ 1

2

dx =

∫

Ii

(
gx,θ2vh

)
x,j+ 1

2

dx, ∀vh ∈ P k−1(Ii),(3.16c)

Eθ1,θ2
i+ 1

2
,j+ 1

2

= gθ1,θ2
i+ 1

2
,j+ 1

2

,(3.16d)

for any i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny, where g = z−π
(2d)
h z is already known

and satisfies

(3.17) ‖g‖L2(Kij)
+ hij ‖g‖L∞(Kij)

≤ Ch
min(k+1,s+1)
ij ‖z‖Hs+1(Kij)

,

in each element Kij . Here the bounding constant C is independent of i, j and z. To
prove this lemma, we just need to show that E ∈ Vh exists uniquely and satisfies
the following approximation property

(3.18) ‖E‖L2(Ωh)
+ h

1
2 ‖E‖L2(Γh)

≤ Chmin(k+1,s+1) ‖z‖Hs+1(Ωh)
.

These aims can be achieved by direct manipulations. Due to (3.16a) and the
orthogonality of the rescaled Legendre polynomials in each rectangle, it is easy to
see that E = Ex + Ey + Exy, with the following expressions

Ex =

k−1∑

l2=0

αi,j,k,l2Pi,k(x)Pj,l2 (y) =

k−1∑

l2=0

αi,j,k,l2 P̂k(x̂)P̂l2(ŷ),(3.19a)

Ey =

k−1∑

l1=0

αi,j,l1,kPi,l1(x)Pj,k(y) =

k−1∑

l1=0

αi,j,l1,kP̂l1(x̂)P̂k(ŷ),(3.19b)

Exy = αi,j,k,kPi,k(x)Pj,k(y) = αi,j,k,kP̂k(x̂)P̂k(ŷ),(3.19c)

in each element Kij . Here x̂ = 2(x − xi)/h
x
i and ŷ = 2(y − yj)/h

y
j , with (xi, yj)

being the central point of Kij .
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The unique existence and approximation properties about Ex, Ey and Exy will
be shown by a similar procedure. For example, along the analogous line as that in
Lemma 3.2, we can solve out Ex by the following linear system

(3.20) θ1αi,j,k,l2 + (−1)kθ̃1αi+1,j,k,l2 = bi,j,k,l2 , i = 1, . . . , Nx,

for any j = 1, · · · , Ny and any l2 = 0, · · · , k − 1, where

bi,j,k,l2 ≡ 1

‖Pj,l2‖2L2(Jj)

∫

Jj

(
gθ1,yPj,l2(y)

)
i+ 1

2
,y
dy

≤

∥∥∥gθ1,yi+ 1
2
,y

∥∥∥
L2(Jj)

‖Pj,l2‖L2(Jj)

=

√
2l2 + 1

hy
j

∥∥∥gθ1,y
i+ 1

2
,y

∥∥∥
L2(Jj)

≤ C
∥∥∥gθ1,yi+ 1

2
,y

∥∥∥
L∞(Jj)

≤ C ‖g‖L∞(Kij∪Ki+1,j)
.

(3.21)

The associated matrix is nothing but ANx
, which is invertible if θ1 6= 1/2. Hence,

we can conclude that αi,j,k,l2 exists uniquely for any i = 1, . . . , Nx, and there holds

(3.22)

Nx∑

i=1

α2
i,j,k,l2 ≤ C

Nx∑

i=1

b2i,j,k,l2 ,

for any j = 1, . . . , Ny and any l2 = 0, . . . , k − 1. Then it follows from (3.21) and
(3.22) that

Σx ≡
Ny∑

j=1

k−1∑

l2=0

Nx∑

i=1

α2
i,j,k,l2 ≤ C

Ny∑

j=1

Nx∑

i=1

‖g‖2L∞(Kij∪Ki+1,j)

≤ C

Ny∑

j=1

Nx∑

i=1

h
2min(s,k)
ij ‖z‖2Hs+1(Kij)

≤ Ch2min(s,k) ‖z‖2Hs+1(Ωh)
,

(3.23)

where we have used (3.17). Repeating this process for another spatial direction, we
can determine uniquely Ey and obtain a similar conclusion

(3.24) Σy ≡
Nx∑

i=1

k−1∑

l1=0

Ny∑

j=1

α2
i,j,l1,k ≤ Ch2min(s,k) ‖z‖2Hs+1(Ωh)

,

by help of the matrix ANy
.

The undetermined coefficients αi,j,k,k in the last component Exy can be solved
out from the linear system in which the matrix ANx

⊗ANy
is invertible if θ1 6= 1/2

and θ2 6= 1/2, and the component in the right-hand vector is

bi,j,k,k = (g − Ex − Ey)
θ1,θ2
i+ 1

2
,j+ 1

2

, i = 1, . . . , Nx, j = 1, . . . , Ny.
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Since
∥∥(ANx

⊗ ANy
)−1
∥∥
2
≤
∥∥A−1

Nx

∥∥
2

∥∥∥A−1
Ny

∥∥∥
2
≤ C and P̂k(±1) = (±1)k, we have

Σxy ≡
Nx∑

i=1

Ny∑

j=1

α2
i,j,k,k ≤ C

Nx∑

i=1

Ny∑

j=1

b2i,j,k,k

≤ C

Nx∑

i=1

Ny∑

j=1

‖g‖2L∞(Kij)
+ C

Ny∑

j=1

k−1∑

l2=0

Nx∑

i=1

α2
i,j,k,l2 +

Nx∑

i=1

k−1∑

l1=0

Ny∑

j=1

α2
i,j,l1,k

≤ Ch2min(s,k) ‖z‖2Hs+1(Ωh)
,

(3.25)

where the approximation properties (3.17), (3.23) and (3.24) are used.
Finally, we can obtain the approximation property by noticing the simple facts

of Legendre polynomials. For example,

‖Pi,l1(x)Pj,l2 (y)‖2L2(Ki,j)
=

1

(2l1 + 1)(2l2 + 1)
hx
i h

y
j ≤ Ch2, ∀i, j, l1, l2,

implies

‖E‖2L2(Ωh)
≤ Ch2(Σx +Σy +Σxy) ≤ Ch2min(s+1,k+1) ‖z‖2Hs+1(Ωh)

.(3.26)

This completes the proof of this lemma. �

3.1.3. Extension to the special parameter. When the included parameters in the
above projections are equal to one-half, the unique existence and approximation
property become a little bit complicated. For more details, see [20, Remark 2.4].

Alternatively, we would like in this paper to define P1/2 ≡ πh = π
(1d)
h as one-

dimensional L2-projection rather than the global projection as in (3.2) with θ = 1/2,
and still define Pθ1,θ2 as the tensor product of one-dimensional projections, like
(3.12). Namely, P1/2,1/2 = πx

h ⊗ πy
h is the two-dimensional L2-projection, and

Pθ, 1
2
≡ P x

θ ⊗ πy
h, P 1

2
,θ ≡ πx

h ⊗ P y
θ ,(3.27)

for θ 6= 1/2. Here the superscript is used to show the spatial direction of one-
dimensional projection. To be more specific, for the function z ∈ H1(Ωh), the
projection Pθ,1/2z ∈ Vh satisfies

∫

Kij

(Pθ, 1
2
z)vhdxdy =

∫

Kij

zvhdxdy, ∀vh ∈ P k−1(Ii)⊗ P k(Jj),(3.28a)

∫

Jj

(
(Pθ, 1

2
z)θ,yvh

)
i+ 1

2
,y
dy =

∫

Jj

(
zθ,yvh

)
i+ 1

2
,y
dy, ∀vh ∈ P k(Jj),(3.28b)

for any i = 1, . . . , Nx and j = 1, . . . , Ny. Almost the same as above, the projection
P1/2,θz ∈ Vh satisfies

∫

Kij

(P 1
2
,θz)vhdxdy =

∫

Kij

zvhdxdy, ∀vh ∈ P k(Ii)⊗ P k−1(Jj),(3.29a)

∫

Ii

(
(P 1

2
,θz)

x,θvh

)
x,j+ 1

2

dx =

∫

Ii

(
zx,θvh

)
x,j+ 1

2

dx, ∀vh ∈ P k(Ii)(3.29b)

for any i = 1, . . . , Nx and j = 1, . . . , Ny. This kind of global projection will be used
to deal with auxiliary variables.
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Lemma 3.4. Assume z ∈ Hs+1(Ωh) with Ωh ⊂ R
2 and s ≥ 0. For either θ1 = 1/2

or θ2 = 1/2, the projection Pθ1,θ2z is well-defined and the projection error η =
z − Pθ1,θ2z satisfies (3.15).

Proof. Along the same line as in Lemma 3.3, we can prove this lemma, since the
circulant matrices involved in the analysis of existence are only coupled in one
direction, namely in x direction for Pθ1,1/2 and in y direction for P1/2,θ2 , which is
straightforward to analyze. Once existence of projections is proved, the optimal
approximation properties can be easily obtained. The detailed process is omitted
in this paper. �

Remark 3.5. Recalling the proofs of the above lemmas, the quasi-uniform assump-
tion is not necessary.

3.2. Proof for the one-dimensional case. As usual in the finite element analy-
sis, we denote the error by eu = u−uh and ep = p−ph, respectively, and decompose
them into two parts, namely

eu = u− uh = (u− Pθu)− (uh − Pθu) ≡ ηu − ξu,(3.30a)

ep = p− ph = (p− Pθ̃p)− (ph − Pθ̃p) ≡ ηp − ξp,(3.30b)

where the generalized Gauss–Radau projections Pθ and Pθ̃ have been defined in
(3.2).

Due to the Sobolev embedding theory and the smooth assumption (2.25), the
exact solutions u and p are continuous at every element boundary points, since
k ≥ 0. Hence, the consistence of the numerical fluxes will yield

(3.31)

∫

Ω

∂u

∂t
vhdx+Gh(u, p; vh, rh) = 0, ∀vh, rh ∈ Vh,

for any time t > 0. Subtracting (2.17) from (3.31) gives us the error equation

(3.32)

∫

Ω

∂eu
∂t

vhdx+Gh(eu, ep; vh, rh) = 0, ∀vh, rh ∈ Vh.

Noticing the error decomposition (3.30), we have the energy identity
∫

Ω

∂ξu
∂t

ξudx+Gh(ξu, ξp; ξu, ξp) =

∫

Ω

∂ηu
∂t

ξudx+Gh(ηu, ηp; ξu, ξp),(3.33)

by taking vh = ξu and rh = ξp in (3.32).
Employing the definitions of Pθ for u and Pθ̃ for p, it is easy to see that

(3.34)

∫

Ii

ηu
∂vh
∂x

dx = 0, and

∫

Ii

ηp
∂vh
∂x

dx = 0,

for any vh ∈ Vh in each element Ii, and η
(θ)
u = 0 and η

(θ̃)
p = 0 at each element

boundary point. Hence,

H
(θ)
i (ηu, vh) = 0, H

(θ̃)
i (ηp, vh) = 0, ∀vh ∈ Vh, ∀Ii ∈ Ωh.(3.35)

Then, using the stability result (2.22a) we can get from (3.33) that

LHS ≡ 1

2

d

dt
‖ξu‖2 + ‖ξp‖2 + c

(
θ − 1

2

) N∑

i=1

[[ξu]]
2
i+ 1

2

=

∫

Ω

∂ηu
∂t

ξudx+

∫

Ω

ηpξpdx ≡ RHS.

(3.36)
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Next we estimate each term in RHS. It follows from Lemma 3.2 that∥∥∥∥
∂ηu
∂t

∥∥∥∥ ≤ Chk+1

∥∥∥∥
∂u

∂t

∥∥∥∥
Hk+1

, ‖ηp‖ ≤ Chk+1 ‖p‖Hk+1 ,

since the projection is linear and independent of t. Applying Cauchy–Schwarz
inequality and Young’s inequality, we have

RHS ≤ Chk+1

∥∥∥∥
∂u

∂t

∥∥∥∥
Hk+1

‖ξu‖+ Chk+1 ‖p‖Hk+1 ‖ξp‖

≤ Ch2k+2

[
T

∥∥∥∥
∂u

∂t

∥∥∥∥
2

Hk+1

+ ‖p‖2Hk+1

]
+ T−1 ‖ξu‖2 +

1

2
‖ξp‖2 .

(3.37)

Collecting the estimates (3.36) and (3.37), and applying Gronwall’s inequality, we
have

‖ξu(T )‖2 ≤ C ‖ξu(0)‖2 + Ch2k+2

[
T

∥∥∥∥
∂u

∂t

∥∥∥∥
2

L2(Hk+1)

+ ‖p‖2L2(Hk+1)

]
.(3.38)

By the setting of the initial solution, we have

‖ξu(0)‖ ≤ ‖πhu0 − u0‖+ ‖u0 − Pθu0‖ ≤ C ‖u‖L∞(Hk+1) h
k+1,

where we have used (3.5) and Lemma 3.2 for z = u0. Finally, by using the triangle
inequality and Lemma 3.2 again, we can complete the proof for the one-dimensional
space.

3.3. Proof for the two-dimensional case. Along the similar line, we can prove
Theorem 2.4 for the two-dimensional space. However, the proof will be much more
complicated than that for the one-dimensional cases, because we have to take ad-
vantage of the superconvergence result of the generalized Gauss–Radau projection
on the Cartesian meshes, and establish the following lemma.

Lemma 3.6. Let θ1 6= 1
2 and θ2 6= 1

2 . Assume u ∈ Hk+2(Ωh), then there exists a

bounding constant C independent of u, such that
∣∣∣∣∣∣

Nx∑

i=1

Ny∑

j=1

H l,θl
ij

(
u− Pθ1,θ2u, vh

)
∣∣∣∣∣∣
≤ Chk+1 ‖u‖Hk+2(Ωh)

‖vh‖ ,(3.39)

holds on the quasi-uniform Cartesian mesh for any vh ∈ Vh. Here H l,θl
ij has been

defined in subsection 2.3.1, with l = 1, 2.

Proof. Similar result has been discussed in [20]. However, there is a little bit
improvement on the regularity requirement of the solution in current proof, so
we would like to present them in details.

Since the analysis lines for different l are the same, we only give the proof for
the case l = 1 below. The first step is to show the superconvergence result, which
is almost the same as that in [20]. To be specific, it reads

H1,θ1
ij

(
z − Pθ1,θ2z, vh

)
= 0, ∀vh ∈ Qk(Kij),(3.40)

for any function z ∈ P k+1(Ωh). Here P
k+1(Ωh) is the space made up of all piecewise

polynomials of degree at most k + 1 on each element.
This conclusion extends the discussion for the local Gauss–Radau projection in

[10]. However, please keep in mind that the generalized Gauss–Radau projection
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is defined globally, in general. That is to say, Pθ1,θ2z may be nonzero everywhere
in the whole domain, even though z is compactly supported. Thus we have to deal
carefully with the influence outside of the considered element. Detailed proof can
be established by the function splitting and the deep investigation on this global
projection; see Appendix.

The second step is to set up the rough boundedness. In fact, using the inverse
inequality [3] on the quasi-uniform Cartesian mesh for any vh ∈ Qk(Kij),

(3.41)

∥∥∥∥
∂vh
∂x

∥∥∥∥
L2(Ωh)

≤ Ch−1 ‖vh‖L2(Ωh)
, ‖vh‖L2(Γh)

≤ Ch− 1
2 ‖vh‖L2(Ωh)

,

together with Cauchy–Schwarz inequality and Lemma 3.3, we arrive at

LHS ≡

∣∣∣∣∣∣

Nx∑

i=1

Ny∑

j=1

H1,θ1
ij

(
u− Pθ1,θ2u, vh

)
∣∣∣∣∣∣

≤
Nx∑

i=1

Ny∑

j=1

‖u− Pθ1,θ2u‖L2(Kij)

∥∥∥∥
∂vh
∂x

∥∥∥∥
L2(Kij)

+

Nx∑

i=1

Ny∑

j=1

∥∥∥(u − Pθ1,θ2u)
θ1,y

i+ 1
2
,y

∥∥∥
L2(Jj)

∥∥∥[[vh]]i+ 1
2
,y

∥∥∥
L2(Jj)

≤ C
[
h−1 ‖u− Pθ1,θ2u‖+ h− 1

2 ‖u− Pθ1,θ2u‖L2(Γh)

]
‖vh‖

≤ C ‖u‖H1(Ωh)
‖vh‖ .

(3.42)

Noticing (3.40), we will have

(3.43) LHS ≤ C inf
χ∈Pk+1(Ωh)

‖u− χ‖H1(Ωh)
‖vh‖ ≤ Chk+1 ‖u‖Hk+2(Ωh)

‖vh‖ ,

which completes the proof of this lemma. �

Remark 3.7. Compared with the result and analysis in [20], the main difference in
this paper is that the result (3.39) is shown in the global form and the regularity
assumption of u is weakened from W 2k+3,∞(Ωh) to Hk+2(Ωh). This coincides with
the superconvergence result (see [10, Lemma 3.6]) when the generalized Gauss–
Radau projection degenerates to the local Gauss–Radau projection.

Now we are ready to establish the optimal error estimate in two-dimensional
space, following the same line as before. Due to the smoothness assumption, the
exact solution is continuous at every element boundary. Thus we can easily set up
the error equation

∫

Ω

∂eu
∂t

vhdxdy +Gh(eu, ep, eq; vh, rh, sh) = 0, t > 0,(3.44)

holding for any test function (vh, rh, sh) ∈ Vh × Vh × Vh, where eu, ep and eq are
the errors with the decompositions

eu = u− uh = (u− Pθ1,θ2u)− (uh − Pθ1,θ2u) ≡ ηu − ξu,(3.45a)

ep = p− ph = (p− Pθ̃1,
1
2

p)− (ph − Pθ̃1,
1
2

p) ≡ ηp − ξp,(3.45b)

eq = q − qh = (q − P 1
2
,θ̃2

q)− (qh − P 1
2
,θ̃2

q) ≡ ηq − ξq.(3.45c)
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Here Pθ1,θ2 , Pθ̃1,1/2
and P1/2,θ̃2

are the generalized Gauss–Radau projections defined

in (3.13), (3.28) and (3.29), respectively.
Taking the test function vh = ξu, rh = ξp and sh = ξq in (3.44), and noticing the

decompositions (3.45), we can arrive at the energy identity
∫

Ω

∂ξu
∂t

ξudxdy +Gh(ξu, ξp, ξq; ξu, ξp, ξq)

=

∫

Ω

∂ηu
∂t

ξudxdy +Gh(ηu, ηp, ηq; ξu, ξp, ξq).

(3.46)

Noticing the stability result (2.22b) and the expression of Gh, we have

(3.47)
1

2

d

dt
‖ξu‖2 + ‖ξp‖2 + ‖ξq‖2 ≤ S1 + S2 + S3,

since θ1 > 1/2 and θ2 > 1/2, where

S1 =

∫

Ω

∂ηu
∂t

ξudxdy +

∫

Ω

ηpξpdxdy +

∫

Ω

ηqξqdxdy,

S2 =

Nx∑

i=1

Ny∑

j=1

{
− c1H

1,θ1
ij (ηu, ξu) +

√
d1H

1,θ1
ij (ηu, ξp) +

√
d1H

1,θ̃1
ij (ηp, ξu)

}
,

S3 =

Nx∑

i=1

Ny∑

j=1

{
− c2H

2,θ2
ij (ηu, ξu) +

√
d2H

2,θ2
ij (ηu, ξq) +

√
d2H

2,θ̃2
ij (ηq, ξu)

}
.

In what follows, we shall estimate them one by one.
Applying Lemmas 3.3 and 3.4, as well as Young’s inequality, we obtain that

S1 ≤ T−1 ‖ξu‖2 +
1

4
‖ξp‖2 +

1

4
‖ξq‖2

+ Ch2k+2

[
T

∥∥∥∥
∂u

∂t

∥∥∥∥
2

Hk+1

+ ‖p‖2Hk+1 + ‖q‖2Hk+1

]
.

(3.48)

The next two terms can be estimated in a similar way, so we would like to estimate
S2 as an example. By the definition of the projection Pθ̃1,1/2

(see (3.28)), it is easy

to get that

H1,θ̃1
ij (ηp, ξu) = 0.

Let vh be either ξu or ξp, both belonging to Vh. Using Lemma 3.6 we get

∣∣∣
Nx∑

i=1

Ny∑

j=1

H1,θ1
ij (ηu, vh)

∣∣∣ ≤ Chk+1 ‖u‖Hk+2 ‖vh‖ .(3.49)

Hence, together with Cauchy–Schwarz inequality and Young’s inequality, we obtain

S2 ≤ Chk+1 ‖u‖Hk+2

(
c1 ‖ξu‖+

√
d1 ‖ξp‖

)

≤ T−1 ‖ξu‖2 +
1

4
‖ξp‖2 + C(c2T + d)h2k+2 ‖u‖2Hk+2 ,

(3.50)

where c = max(c1, c2) and d = max(d1, d2). Analogously, we have

(3.51) S3 ≤ T−1 ‖ξu‖2 +
1

4
‖ξq‖2 + C(c2T + d)h2k+2 ‖u‖2Hk+2 .
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Finally, inserting (3.48), (3.50) and (3.51) into (3.47), and applying Gronwall’s
inequality, we arrive at

‖ξu(T )‖2 ≤ C ‖ξu(0)‖2 + C(1 + T )h2k+2
[
‖u‖2L2(Hk+2) + ‖ut‖2L2(Hk+1)

]
.

By the setting of the initial solution and the triangle inequality, we can complete
the proof of this theorem for the two-dimensional space.

3.4. Error estimates when the special parameters are used. At the end
of this section we give a supplement remark, when the parameter in the numer-
ical fluxes (2.8) or (2.16) is taken to be 1/2. This setting is acceptable in the
semi-discrete LDG method, although it is not a good choice in the fully discrete
LDG method, for example, the explicit time-marching when solving the convection-
dominated diffusion equations. It is well known for this situation that the optimal
convergence order is also observed numerically in the uniform mesh when the degree
of polynomials k is even, no matter the element number in one direction is even or
odd. How to prove this numerical behavior in theory is an interesting issue.

Let us start from the one-dimensional case. At this moment, we will encounter
some trouble by using the original definition of generalized Gauss-Radau projec-
tion, namely letting θ = 1/2 in (3.2). For even k, the unique existence of this
projection holds only for odd N ; see (3.8). Furthermore, we can obtain the opti-
mal approximation property by virtue of the super-convergence resulting from the
uniform mesh for sufficiently smooth functions. The detailed analysis is complex
and lengthy. For more details, we refer the readers to [20, Remark 2.4], and [2,
Proposition 3.2].

However, the proof can be simplified by using the the local L2-projection π
(1d)
h ,

which is defined in this paper as P1/2 for the uniform of notations; see subsection
3.1.3 for details. To show that, let us give a sketch of the proof. Repeating the
process as in subsection 3.2, we will find out that (3.35) is not true, since the
errors at element boundaries cannot be eliminated completely, when the local L2-
projection, (2.6), is used. As a result, the right-hand side in (3.36) is changed
to

RHS = −c

N∑

i=1

(ηu)
( 1
2
)

i+ 1
2

[[ξu]]i+ 1
2
+
√
d

N∑

i=1

(ηp)
( 1
2
)

i+ 1
2

[[ξu]]i+ 1
2
+
√
d

N∑

i=1

(ηu)
( 1
2
)

i+ 1
2

[[ξp]]i+ 1
2
,

where ηz = z − π
(1d)
h z for z = u, p. It is well known that, for general k and quasi-

uniform mesh, only suboptimal convergence result of order k can be proved, due to
the application of inverse inequality. However, if k is even and the mesh is uniform,
there holds the superconvergence property [13, Lemma 2.5]

|(ηz)(
1
2
)

i+ 1
2

| ≤ Chk+ 3
2 ‖z‖Hk+2(Ii∪Ii+1)

, i = 1, · · · , N.(3.52)

Taking into account the inverse property and the Young’s inequality, we will obtain

(3.53)
1

2

d

dt
‖ξu‖2 +

1

2
‖ξp‖2 ≤ C

[
‖ξu‖2 + h2k+2

]
.

Application of Gronwall’s inequality leads to the optimal error estimate in the L2

norm.
Discussion for the two-dimensional case is similar when k is even and the Carte-

sian mesh is uniform in the direction in which the corresponding parameter is equal
to 1/2. In whatever case, we can obtain the optimal error estimate along the same
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line as before, by using the projection Pθ1,θ2 , as we have mentioned in subsection
3.1.3, and establishing the approximation property (Lemma 3.4) and the super-
convergence property similar to Lemma 3.6. The process is almost the same and
lengthy, so we omit them to save space.

4. Different parameters for convection and diffusion parts

In this section we are going to extend the previous analysis to the LDG method
with more general numerical fluxes in which the parameters about the prime vari-
able uh emerging from the convection part and the diffusion part are independently
chosen. For example, we can consider

(4.1) (ĥu, ĥp) = (cu
(θ)
h −

√
dp

(γ̃)
h ,−

√
du

(γ)
h )

for one-dimensional space, and

(ĥ1u, ĥp) =
(
c1u

θ1,y
h −

√
dpγ̃1,y

h ,−
√
duγ1,y

h

)
,(4.2a)

(ĥ2u, ĥq) =
(
c2u

x,θ2
h −

√
dqx,γ̃2

h ,−
√
dux,γ2

h

)
,(4.2b)

for two-dimensional space. Note that the identities in (2.22) also hold for the LDG
methods when the general numerical fluxes are used. Hence the stability results
stated in Theorem 2.3 also hold.

Below we will focus our attention on the error estimates in L2-norm. To save
space, we would like to take the one-dimensional case as an example. However,
we will point out the main differences for two-dimensional case at the end of this
section; see Remark 4.1.

Assume θ 6= 1
2 and γ 6= 1

2 for simplicity. Let us recall the proof in subsection 3.2,
and keep in mind that the error equation (3.33) still holds, with the main term

Gh(ηu, ηp; ξu, ξp) =

∫

Ω

ηpξpdx

+

N∑

i=1

{
−cH

(θ)
i (ηu, ξu) +

√
dH

(γ̃)
i (ηp, ξu) +

√
dH

(γ)
i (ηu, ξp)

}
,

(4.3)

where ξu, ξp, ηu and ηp may be in different definition in each occurrence depending
on the choice of projections.

4.1. Direct applications. In general, we cannot obtain the optimal error esti-
mate, if γ 6= θ, by directly using the current approach, because we are no longer
able to introduce a specific generalized Gauss–Radau projection to eliminate simul-
taneously those errors on the element boundaries and in particular for the prime
variable u emerging from the convection part and the diffusion part.

For example, if we want to eliminate completely the boundary errors coming
from the diffusion part, we can define

(4.4) ηu = u− Pγu and ηp = p− Pγ̃p,

where Pγ and Pγ̃ have already been constructed before. It is easy to see that (3.34)

holds for any vh ∈ Vh in each element, and that η
(γ)
u = 0 and η

(γ̃)
p = 0 hold at each

element boundary point. However, in general

η(θ)u = η(γ)u + (γ − θ)[[ηu]] = (γ − θ)[[ηu]] 6= 0,
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if γ 6= θ. Therefore, some boundary terms about the projection error are left, so
that a new term

∑n
i=1 c(θ − γ)([[ηu]][[ξu]])i+ 1

2
is supplemented on the right-hand

side of (3.36). Using Young’s inequality, we can bound this term by the numerical
stability (the boundary term in (3.36)) and the approximation property in Lemma
3.2. Along the same line as before, we can obtain the error estimate

(4.5) ‖u(T )− uh(T )‖ ≤ C(1 + T )
[
hk+1 +

√
c|γ − θ|hk+ 1

2

]
,

under the same regularity assumption as that in Theorem 2.4, and d ≥ 0.
On the other hand, if we want to eliminate completely the boundary errors

coming from the convection part, we can define

ηu = u− Pθu and ηp = p− Pθ̃p.

Along the same analysis as before, we can easily see that a new term
∑N

i=1

√
d(γ−

θ)([[ηp]][[ξu]] − [[ηu]][[ξp]])i+ 1
2
is added to the right-hand side of (3.36), which can be

bounded by the numerical stability and the approximation property, with the help
of Young’s inequality and the inverse inequality on the quasi-uniform mesh

N∑

i=1

[[ξp]]
2
i+ 1

2

≤ Ch−1 ‖ξp‖2 .

Next, an application of Cauchy–Schwarz inequality and Gronwall’s inequality yields
the error estimate

(4.6) ‖u(T )− uh(T )‖ ≤ C(1 + T )
[
hk+1 +

√
d|γ − θ|hk

]
,

under the same regularity assumption as that in Theorem 2.4, and d ≥ 0.

4.2. A new projection. It is well-known that the optimal convergence order is
often observed in numerical experiments if d > 0. To prove this in theory, we have
to find a new approach to completely eliminate the projection errors on element
boundaries.

Slightly motivated by [8], in which the projection is adopted to be a suitable
combination of the prime variable and the auxiliary variable, we would like to define
for any vector-valued function z = (zu, zp) ∈ C(Ω̄h)× C(Ω̄h) a new projection

(4.7) Πh(zu, zp) = (Pγzu, P
⋆
γ̃ zp),

in which Pγzu ∈ Vh is defined as that in (3.2), and P ⋆
γ̃ zp ∈ Vh depends on both zp

and zu, such that
∫

Ii

(P ⋆
γ̃ zp)vhdx =

∫

Ii

zpvhdx, ∀vh ∈ P k−1(Ii),(4.8a)

(P ⋆
γ̃ zp)

(γ̃)

i+ 1
2

= (z(γ̃)p )i+ 1
2
− c√

d
(γ − θ)[[zu − Pγzu]]i+ 1

2
,(4.8b)

for any i = 1, . . . , N . Note that P ⋆
γ̃ zp = Pγ̃zp if γ = θ. It is easy to see that

Pγzu = zu and P ⋆
γ̃ zp = zp, if zu and zp both belong to Vh. Hence Πh is indeed a

projection.
By using an analysis similar to that in [20] and in Lemma 3.2, we can derive the

unique existence of this projection and the approximation property

∥∥zp − P ⋆
γ̃ zp
∥∥ ≤ Chk+1

(
‖zp‖Hk+1(Ωh)

+
c√
d
|γ − θ| · ‖zu‖Hk+1(Ωh)

)
,(4.9)
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since zu − Pγzu is already known to be of order hk+1, due to Lemma 3.2.
To derive the error estimate, let us revisit the energy identity (3.33), with

(4.10) ηu = u− Pγu, ηp = p− P ⋆
γ̃ p,

By using the definition of projection Πh, we can also obtain (3.34) for any vh ∈ Vh

in each element, and find out

(4.11) η(γ)u = 0, η(γ̃)p =
c√
d
(γ − θ)[[ηu]]

at every element boundary point. Hence we can have that H
(γ)
i (ηu, vh) = 0 holds

for any vh ∈ Vh and

N∑

i=1

(
−cH

(θ)
i (ηu, ξu) +

√
dH

(γ̃)
i (ηp, ξu)

)

=

N∑

i=1

(
−cη(θ)u +

√
dη(γ̃)p

)
i+ 1

2

[[ξu]]i+ 1
2
= 0,

(4.12)

due to the simple fact that η
(θ)
u = (γ − θ)[[ηu]]. One is excited to see that all the

projection errors at the element boundaries are completely eliminated. Hence

Gh(ηu, ηp; ξu, ξp) =

∫

Ω

ηpξpdx,

and the inequality (3.36) also holds. Repeating the similar arguments as before, we
can use Gronwall’s inequality to obtain the optimal error estimate

‖u(T )− uh(T )‖ ≤ C(1 + T )

(
1 +

c√
d
|γ − θ|

)
hk+1,(4.13)

under the same regularity assumption as that in Theorem 2.4.

4.3. A unified estimate. Finally, we collect the above three estimates, i.e. (4.5),
(4.6) and (4.13) to get the following unified result

(4.14) ‖u(T )− uh(T )‖ ≤ C(1 + T )
[
hk+1 +

√
cmin

(√ch√
d
,

√
d√
ch

, 1
)
|γ − θ|hk+ 1

2

]
,

where the bounding constant C is independent of h and d−1. This result holds
robustly for whatever the problem is convection-dominated or not.

Obviously, the result (4.14) coincides with Theorem 2.4 when θ = γ. Otherwise,
if γ 6= θ, the mesh Péclet number ch/d will play an important role. Namely,

‖u(T )− uh(T )‖ =

{
O(hk+1), d/(ch) ≥ O(h−1) or d/(ch) ≤ O(h),
O(hk+1/2), d/(ch) ≈ O(1).

There is a little reduction on the error order in the case d ≈ ch. Hence, we suggest
using the same parameters in the numerical fluxes to get the best robustness in the
accuracy.

Remark 4.1. The above analysis can be easily extended to multi-dimensional cases.
For example, assuming γ1 6= 1/2 and γ2 6= 1/2 for two-dimensional case, we define
for any vector-valued function z = (zu, zp, zq) ∈ C(Ω̄h) × C(Ω̄h) × C(Ω̄h) a new
projection

(4.15) Π
(2d)
h (zu, zp, zq) = (Pγ1,γ2

zu, P
⋆
γ̃1,

1
2

zp, P
⋆
1
2
,γ̃2

zq),
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in which Pγ1,γ2
zu ∈ Vh is defined as that in (3.13), and P ⋆

γ̃1,1/2
zp is defined as the

unique element in Vh such that

∫

Kij

(zp − P ⋆
γ̃1,

1
2

zp)vhdxdy = 0, ∀vh ∈ P k−1(Ii)⊗ P k(Jj),

(4.16a)

∫

Jj

(
(zp − P ⋆

γ̃1,
1
2

zp)
γ̃1,yvh

)
i+ 1

2
,y
dy

(4.16b)

=
c1√
d1

(γ1 − θ1)

∫

Jj

(
[[zu − Pγ1,γ2

zu]]vh

)
i+ 1

2
,y
dy, ∀vh ∈ P k(Jj),

hold for any i = 1, . . . , Nx and j = 1, . . . , Ny. Note that P ⋆
1/2,γ̃2

zq can be defined

in a similar way, so omitted here. Obviously, Π
(2d)
h is indeed a projection.

Using the above new projection and defining

ηu = u− Pγ1,γ2
u, ηp = p− P ⋆

γ̃1,
1
2

p, ηq = q − P ⋆
1
2
,γ̃2

q,

we can repeat the above analysis to obtain the optimal error estimate, since the
super-convergence property stated in Lemma 3.6 still holds. We will, however, omit
the details to save space.

5. Numerical experiments

The purpose of this section is to numerically validate the optimal a priori error
estimates of the LDG method using generalized alternating numerical fluxes for the
linear convection-diffusion equation.

5.1. Example 1. Consider (1.1) in the domain (0, 2π)m × [0, T ] with the periodic
boundary condition. Let the exact solution be

(5.1) u(x1, . . . , xm, t) = exp

(
−

m∑

ℓ=1

dℓt

)
sin

(
m∑

ℓ=1

xℓ −
m∑

ℓ=1

cℓt

)
, m = 1, 2,

where the parameters are listed as follows

(5.2)

c d T c1 c2 d1 d2 T

Test A: 1 10−5 1 1 1 10−5 10−5 0.1

Test B: 1 1 1 1 1 1 1 0.1

Test C: 0 1 1 0 0 1 1 0.1

The initial solution and the source term f can be determined by this solution.
We will carry out the LDG method with the piecewise polynomials of degree at

most k in each variable. For all the cases, we use the strong stability preserving
(SSP) ninth-order time discretization [17] with small time step, such that the overall
error is dominated by the spatial error. Moreover, we divide the space into Nm-
elements to form the uniform mesh, and then randomly perturb the coordinates of
horizontal lines and vertical line by 10% to construct the nonuniform mesh. The
convergence order in this paper is computed by

orderN =
[
log(errorN/2)− log(errorN )

]
/ log 2,
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where errorN represents the L2-norm error at the final time T when the total
number of used mesh is equal to Nm.

We firstly investigate the one-dimensional LDG scheme with the numerical flux
(2.8), where θ is 0.75, 1.0 and 2.0, respectively. Tables 5.1 and 5.2 show the optimal
convergence orders for both the uniform and nonuniform meshes, when the param-
eters for the primal variable on the convection and diffusion parts in the numerical
fluxes are the same. This coincides with Theorem 2.4 and shows the sharpness of
theoretical results.

For the two-dimensional LDG scheme with the numerical flux (2.16), with dif-
ferent combinations of θ1 and θ2, we also investigate the numerical performance.
Figures 5.1–5.3 show the convergence orders for three examples, where the loga-
rithm of L2 errors are plotted for refining meshes, with the total number of elements
being 102, 202, 402 and 802, respectively. In each figure, both the uniform mesh and
nonuniform mesh, as well as different combinations of θ1 and θ2 are considered.
The optimal convergence orders in these figures show that the result in Theorem
2.4 is sharp.

5.2. Example 2. Let us continue to consider the same problem in Example 1,
and investigate the numerical behaviors when the including parameters are not the
same.

To this end, we take θ = 0.75 and let γ be valued 1.0, 1.5 and 2.0, respectively,
in the one-dimensional LDG scheme with the numerical flux (4.1). We can see from
table 5.3 that, there are only little difference for the errors no matter two parameters
are equal to or not, or the mesh is uniform or not. The optimal convergence orders
are also observed numerically, which coincides with theoretical results obtained in
section 4.

As for the two-dimensional problem, similar numerical results can be observed.
We omit them to save space.

5.3. Example 3. To investigate the optimality of the smoothness on the exact
solution given by Theorem 2.4, let us consider (1.1) in one-dimensional space with
c = d = 1, together with the exact solution

(5.3) u(x, t) = [sin(x− t)]2.6.

We implement the LDG method with θ = 0.75 in (2.8) on the uniform mesh
and nonuniform mesh, respectively, till T = 1. The numerical errors and con-
vergence orders are listed in Table 5.4. Since the function in (5.3) does not belong
to L∞(H3)∩L2(H4), the optimal convergence order is not observed for P 2 and P 3

finite elements, as Theorem 2.4 predicts. It shows that the smoothness assumptions
on the exact solution (2.25) are reasonable.

6. Concluding remarks

In this paper, we obtain the optimal L2-norm error estimates for the LDG
method by using generalized alternating numerical fluxes, when solving the lin-
ear convection-diffusion problems. The main technique is the construction and
analysis of the generalized Gauss–Radau projections and its extensions, which is
successful in getting rid of the dual argument.

In the further work, we will consider other kinds of boundary conditions, the
variable-coefficient linear equations and even the degenerate diffusion problems.
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θ = 0.75 θ = 1.0 θ = 2.0

N error order error order error order

20 2.10E-01 - 3.02E-01 - 6.79E-01 -

40 1.06E-01 0.99 1.56E-01 0.95 3.80E-01 0.84

P 0 80 5.30E-02 0.99 7.92E-02 0.98 2.01E-01 0.92

160 2.66E-02 1.00 3.99E-02 0.99 1.03E-01 0.96

20 1.69E-02 - 1.06E-02 - 7.24E-03 -

40 4.45E-03 1.93 2.67E-03 1.99 1.80E-03 2.01

A P 1 80 1.13E-03 1.98 6.69E-04 2.00 4.49E-04 2.00

160 2.83E-04 2.00 1.67E-04 2.00 1.12E-04 2.00

20 2.09E-04 - 2.74E-04 - 5.74E-04 -

40 2.59E-05 3.01 3.42E-05 3.00 7.85E-05 2.87

P 2 80 3.23E-06 3.00 4.28E-06 3.00 1.00E-05 2.96

160 4.04E-07 3.00 5.35E-07 3.00 1.26E-06 2.99

20 8.44E-06 - 5.42E-06 - 3.94E-06 -

40 5.46E-07 3.95 3.43E-07 3.98 2.49E-07 3.99

P 3 80 3.44E-08 3.99 2.12E-08 4.01 1.52E-08 4.03

160 2.15E-09 4.00 1.33E-09 4.00 9.53E-10 3.99

20 6.84E-02 - 1.07E-01 - 3.17E-01 -

40 3.63E-02 0.91 5.63E-02 0.93 1.63E-01 0.96

P 0 80 1.88E-02 0.95 2.89E-02 0.96 8.06E-02 1.02

160 9.60E-03 0.97 1.46E-02 0.98 3.98E-02 1.02

20 6.43E-03 - 3.95E-03 - 2.67E-03 -

40 1.65E-03 1.96 9.86E-04 2.00 6.62E-04 2.01

B P 1 80 4.16E-04 1.99 2.46E-04 2.00 1.65E-04 2.00

160 1.04E-04 2.00 6.16E-05 2.00 4.12E-05 2.00

20 7.68E-05 - 1.01E-04 - 2.14E-04 -

40 9.53E-06 3.01 1.26E-05 3.00 2.89E-05 2.89

P 2 80 1.19E-06 3.00 1.57E-06 3.00 3.69E-06 2.97

160 1.49E-07 3.00 1.97E-07 3.00 4.64E-07 2.99

20 3.12E-06 - 2.00E-06 - 1.45E-06 -

40 2.01E-07 3.96 1.25E-07 4.00 9.00E-08 4.01

P 3 80 1.27E-08 3.99 7.82E-09 4.00 5.61E-09 4.00

160 7.93E-10 4.00 4.89E-10 4.00 3.51E-10 4.00

20 6.17E-02 - 5.94E-02 - 1.25E-01 -

40 2.99E-02 1.04 2.97E-02 1.00 4.21E-02 1.57

P 0 80 1.49E-02 1.01 1.48E-02 1.00 1.67E-02 1.34

160 7.42E-03 1.00 7.41E-03 1.00 7.66E-03 1.12

20 6.38E-03 - 3.95E-03 - 2.67E-03 -

40 1.65E-03 1.95 9.86E-04 2.00 6.62E-04 2.01

C P 1 80 4.15E-04 1.99 2.46E-04 2.00 1.65E-04 2.00

160 1.04E-04 2.00 6.16E-05 2.00 4.12E-05 2.00

20 7.68E-05 - 1.01E-04 - 2.13E-04 -

40 9.54E-06 3.01 1.26E-05 3.00 2.89E-05 2.88

P 2 80 1.19E-06 3.00 1.57E-06 3.00 3.69E-06 2.97

160 1.49E-07 3.00 1.97E-07 3.00 4.64E-07 2.99

20 3.12E-06 - 2.00E-06 - 1.45E-06 -

40 2.01E-07 3.96 1.25E-07 4.00 9.00E-08 4.01

P 3 80 1.27E-08 3.99 7.82E-09 4.00 5.61E-09 4.00

160 7.93E-10 4.00 4.89E-10 4.00 3.51E-10 4.00

Table 5.1. L
2-norm errors and convergence orders on one-dimensional

uniform meshes.
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θ = 0.75 θ = 1.0 θ = 2.0

N error order error order error order

20 2.13E-01 - 3.07E-01 - 6.75E-01 -

40 1.08E-01 0.97 1.58E-01 0.96 3.80E-01 0.83

P 0 80 5.45E-02 0.99 7.98E-02 0.98 2.01E-01 0.92

160 2.74E-02 0.99 4.03E-02 0.99 1.04E-01 0.96

20 1.78E-02 - 1.07E-02 - 7.65E-03 -

40 4.48E-03 1.99 2.75E-03 1.96 1.98E-03 1.95

A P 1 80 1.15E-03 1.96 6.97E-04 1.98 4.80E-04 2.04

160 2.87E-04 2.00 1.72E-04 2.02 1.23E-04 1.97

20 2.31E-04 - 3.00E-04 - 5.92E-04 -

40 3.05E-05 2.92 3.73E-05 3.01 8.21E-05 2.85

P 2 80 3.71E-06 3.04 4.55E-06 3.04 1.03E-05 3.00

160 4.54E-07 3.03 5.74E-07 2.98 1.30E-06 2.98

20 9.41E-06 - 5.95E-06 - 4.46E-06 -

40 5.81E-07 4.02 3.75E-07 3.99 3.51E-07 3.67

P 3 80 3.66E-08 3.99 2.45E-08 3.94 1.95E-08 4.17

160 2.28E-09 4.00 1.47E-09 4.06 1.35E-09 3.85

20 7.09E-02 - 1.10E-01 - 3.21E-01 -

40 3.70E-02 0.94 5.68E-02 0.95 1.63E-01 0.98

P 0 80 1.92E-02 0.95 2.91E-02 0.97 8.06E-02 1.02

160 9.80E-03 0.97 1.47E-02 0.98 3.98E-02 1.02

20 6.55E-03 - 4.08E-03 - 2.90E-03 -

40 1.69E-03 1.96 1.03E-03 1.99 7.27E-04 2.00

B P 1 80 4.21E-04 2.00 2.53E-04 2.02 1.79E-04 2.02

160 1.05E-04 2.00 6.31E-05 2.00 4.47E-05 2.00

20 8.69E-05 - 1.07E-04 - 2.26E-04 -

40 1.04E-05 3.06 1.32E-05 3.02 2.97E-05 2.92

P 2 80 1.33E-06 2.98 1.67E-06 2.98 3.77E-06 2.98

160 1.65E-07 3.00 2.09E-07 3.00 4.74E-07 2.99

20 3.18E-06 - 2.14E-06 - 1.81E-06 -

40 2.13E-07 3.90 1.38E-07 3.96 1.12E-07 4.01

P 3 80 1.35E-08 3.98 8.68E-09 3.99 7.10E-09 3.97

160 8.42E-10 4.00 5.39E-10 4.01 4.40E-10 4.01

20 6.23E-02 - 6.20E-02 - 1.27E-01 -

40 3.07E-02 1.02 3.02E-02 1.04 4.28E-02 1.57

P 0 80 1.53E-02 1.00 1.51E-02 1.00 1.69E-02 1.34

160 7.59E-03 1.01 7.55E-03 1.00 7.80E-03 1.11

20 6.55E-03 - 4.08E-03 - 2.90E-03 -

40 1.70E-03 1.96 1.03E-03 1.99 7.27E-04 2.00

C P 1 80 4.21E-04 2.00 2.53E-04 2.02 1.79E-04 2.02

160 1.05E-04 2.00 6.31E-05 2.00 4.47E-05 2.00

20 8.82E-05 - 1.10E-04 - 2.26E-04 -

40 1.08E-05 3.02 1.35E-05 3.02 2.97E-05 2.92

P 2 80 1.31E-06 3.04 1.66E-06 3.03 3.77E-06 2.98

160 1.64E-07 3.00 2.07E-07 3.00 4.74E-07 2.99

20 3.18E-06 - 2.14E-06 - 1.81E-06 -

40 2.13E-07 3.90 1.38E-07 3.96 1.12E-07 4.01

P 3 80 1.35E-08 3.98 8.68E-09 3.99 7.10E-09 3.97

160 8.42E-010 4.00 5.39E-010 4.01 4.40E-010 4.01

Table 5.2. L
2-norm errors and convergence orders on one-dimensional

nonuniform meshes.
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Figure 5.1. L
2-norm convergence orders for Test A on two-

dimensional uniform mesh (left column) and nonuniform mesh (right
column).
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Figure 5.2. L
2-norm convergence orders for Test B on two-

dimensional uniform mesh (left column) and nonuniform mesh (right
column).
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Figure 5.3. L
2-norm convergence orders for Test C on two-

dimensional uniform mesh (left column) and nonuniform mesh (right
column).
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(a) uniform meshes

γ = 1.0 γ = 1.5 γ = 2.0

N error order error order error order

20 1.69E-02 - 1.69E-02 - 1.69E-02 -

40 4.45E-03 1.93 4.44E-03 1.93 4.43E-03 1.93

A P 1 80 1.13E-03 1.98 1.12E-03 1.98 1.12E-03 1.99

160 2.82E-04 2.00 2.81E-04 2.00 2.77E-04 2.01

20 2.09E-04 - 2.09E-04 - 2.09E-04 -

40 2.59E-05 3.01 2.59E-05 3.01 2.60E-05 3.01

P 2 80 3.24E-06 3.00 3.24E-06 3.00 3.25E-06 3.00

160 4.04E-07 3.00 4.05E-07 3.00 4.07E-07 3.00

20 4.01E-03 - 2.93E-03 - 2.68E-03 -

40 9.94E-04 2.01 7.24E-04 2.02 6.62E-04 2.01

B P 1 80 2.47E-04 2.00 1.80E-04 2.00 1.65E-04 2.00

160 6.17E-05 2.00 4.51E-05 2.00 4.13E-05 2.00

20 1.02E-04 - 1.65E-04 - 2.27E-04 -

40 1.27E-05 3.01 2.09E-05 2.98 2.99E-05 2.92

P 2 80 1.58E-06 3.00 2.61E-06 3.00 3.76E-06 2.99

160 1.97E-07 3.00 3.26E-07 3.00 4.68E-07 3.00

20 3.95E-03 - 2.91E-03 - 2.67E-03 -

40 9.86E-04 2.00 7.22E-04 2.02 6.62E-04 2.01

C P 1 80 2.46E-04 2.00 1.80E-04 2.00 1.65E-04 2.00

160 6.16E-05 2.00 4.50E-05 2.00 4.12E-05 2.00

20 1.01E-04 - 1.59E-04 - 2.13E-04 -

40 1.26E-05 3.00 2.05E-05 2.95 2.89E-05 2.88

P 2 80 1.57E-06 3.00 2.59E-06 2.99 3.69E-06 2.97

160 1.97E-07 3.00 3.24E-07 3.00 4.64E-07 2.99

(b) nonuniform meshes

γ = 1.0 γ = 1.5 γ = 2.0

N error order error order error order

20 1.72E-02 - 1.71E-02 - 1.71E-02 -

40 4.56E-03 1.91 4.55E-03 1.91 4.54E-03 1.91

A P 1 80 1.14E-03 2.00 1.14E-03 2.00 1.13E-03 2.00

160 2.86E-04 2.00 2.84E-04 2.00 2.81E-04 2.01

20 2.36E-04 - 2.36E-04 - 2.36E-04 -

40 2.85E-05 3.05 2.85E-05 3.05 2.85E-05 3.05

P 2 80 3.61E-06 2.98 3.61E-06 2.98 3.61E-06 2.98

160 4.50E-07 3.00 4.51E-07 3.00 4.51E-07 3.00

20 4.14E-03 - 3.11E-03 - 2.93E-03 -

40 1.04E-03 2.00 7.80E-04 2.00 7.30E-04 2.01

B P 1 80 2.54E-04 2.03 1.91E-04 2.03 1.80E-04 2.02

160 6.32E-05 2.01 4.75E-05 2.00 4.47E-05 2.01

20 1.08E-04 - 1.70E-04 - 2.31E-04 -

40 1.32E-05 3.03 2.14E-05 2.99 3.03E-05 2.93

P 2 80 1.67E-06 2.98 2.70E-06 2.98 3.85E-06 2.98

160 2.09E-07 3.00 3.37E-07 3.00 4.81E-07 3.00

20 3.98E-03 - 3.04E-03 - 2.87E-03 -

40 1.01E-03 1.98 7.60E-04 2.02 7.12E-04 2.01

C P 1 80 2.54E-04 2.00 1.91E-04 1.99 1.79E-04 1.99

160 6.34E-05 2.00 4.76E-05 2.00 4.47E-05 2.00

20 1.10E-04 - 1.69E-04 - 2.26E-04 -

40 1.35E-05 3.02 2.13E-05 2.99 2.97E-05 2.92

P 2 80 1.66E-06 3.03 2.66E-06 3.00 3.77E-06 2.98

160 2.07E-07 3.00 3.33E-07 3.00 4.74E-07 2.99

Table 5.3. L
2-norm errors and convergence orders for LDG method

with different parameter combinations in one-dimensional space. θ =

0.75.
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uniform mesh nonuniform mesh

N error order error order

20 1.86E-01 - 1.96E-01 -

40 8.86E-02 1.07 9.05E-02 1.11

P 0 80 4.46E-02 0.99 4.60E-02 0.98

160 2.26E-02 0.98 2.32E-02 0.99

20 3.05E-02 - 3.29E-02 -

40 9.03E-03 1.75 9.28E-03 1.83

P 1 80 2.42E-03 1.90 2.45E-03 1.92

160 6.17E-04 1.97 6.28E-04 1.96

20 1.51E-03 - 1.49E-03 -

40 2.05E-04 2.88 1.89E-04 2.98

P 2 80 3.39E-05 3.10 2.63E-05 2.85

160 3.91E-06 2.61 3.73E-06 2.82

20 2.61E-04 - 3.49E-04 -

40 4.56E-05 2.52 3.57E-05 3.29

P 3 80 7.58E-06 2.59 1.13E-05 1.66

160 2.30E-06 1.72 2.54E-06 2.15

Table 5.4. L
2-norm errors and convergence orders on uniform and

nonuniform meshes. Exact solution [sin(x− t)]2.6 and c = d = 1.

We will also want to extend the work of [9] and consider the local estimate when
the problem is convection-dominated and equipped with the Dirichlet boundary
condition such that the boundary layer exists. Moreover, the fully-discrete LDG
method with suitable time-marching algorithms will be considered.

Appendix A. Proof of the identity (3.40)

Now we supplement the proof of (3.40), by noticing the following simple property:
if the considered function depends solely on one single variable, the two-dimensional
generalized Gauss–Radau projection Pθ1,θ2 reduces to one-dimensional generalized
Gauss–Radau projection, at a certain direction.

For example, assume zK(x, y) = zK(x) be any function depending solely on x.
Then it follows from (3.13) that (Pθ1,θ2zK)(x, y) = P x

θ1
zK(x) and thus there holds

∫

Ii

ηzKvhdx = 0, ∀vh ∈ P k−1(Ii); (ηzK )
(θ1)

i+ 1
2

= 0,

for any i = 1, 2, . . . , N , where ηzK = zK − Pθ1,θ2zK depends solely on x. This will
lead directly to

H1,θ1
ij (ηzK , vh) =

∫

Ii

[
ηzK

∫

Jj

∂vh
∂x

dy
]
dx− (ηzK )

(θ1)

i+ 1
2

∫

Jj

(v−h )i+ 1
2
,ydy

+ (ηzK )
(θ1)

i− 1
2

∫

Jj

(v+h )i− 1
2
,ydy = 0,

(A.1)

where we have used the simple fact that
∫
Jj

∂vh
∂x dy ∈ P k−1(Ii).

On the other hand, assume zK(x, y) = zK(y) be any function depending solely
on y. Then we have (Pθ1,θ2zK)(x, y) = P y

θ2
zK(y) and ηzK = zK −Pθ1,θ2zK depends
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solely on y. Hence we have

∂ηzK
∂x

= 0, [[ηzK ]]i± 1
2
,y = 0.

A simple integration by parts yields

H1,θ1
ij (ηzK , vh) = −

∫

Kij

∂ηzK
∂x

vhdxdy − θ̃1

∫

Jj

(
[[ηzK ]]v−h

)
i+ 1

2
,y
dy

− θ1

∫

Jj

(
[[ηzK ]]v+h

)
i− 1

2
,y
dy = 0.

(A.2)

Now we come back to prove (3.40). For any z ∈ P k+1(Ωh), define

(A.3) zK = z · 1K ,

where 1K is the characteristic function, which is equal to one on the element K and

zero otherwise. This implies the decomposition z =
∑

K∈Ωh
zK . Since H1,θ1

ij (·, ·) is
a bilinear functional, we just need to prove for any K ∈ Ωh that

H1,θ1
ij

(
ηzK , vh

)
= 0, ∀vh ∈ Qk(Kij).(A.4)

Noticing the definition of generalized Gauss–Radau projection Pθ1,θ2 , it is easy to
see that (A.4) holds for any zK ∈ Qk(K). Thus we only need to verify (A.4) for
both zK(x, y) = xk+1

1K and zK(x, y) = yk+1
1K . Since both can be looked upon

as the single-variable function, (A.4) holds obviously, due to (A.1) and (A.2). Now
the proof is finished. �
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