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Abstract In this paper, an analysis of the accuracy-enhancement for the discontin-1

uous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic2

conservation laws is carried out. This requires analyzing the divided difference of the3

errors for the DG solution. We therefore first prove that the α-th order (1 ≤ α ≤ k + 1)4

divided difference of the DG error in the L2 norm is of order k + 3
2 − α

2 when upwind5

fluxes are used, under the condition that | f ′(u)| possesses a uniform positive lower6

bound. By the duality argument, we then derive superconvergence results of order7

2k + 3
2 − α

2 in the negative-order norm, demonstrating that it is possible to extend the8

Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to9

obtain at least ( 3
2 k + 1)th order superconvergence for post-processed solutions. As a10

by-product, for variable coefficient hyperbolic equations, we provide an explicit proof11

for optimal convergence results of order k + 1 in the L2 norm for the divided dif-12

ferences of DG errors and thus (2k + 1)th order superconvergence in negative-order13

norm holds. Numerical experiments are given that confirm the theoretical results.14
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1 Introduction16

In this paper, we study the accuracy-enhancement of semi-discrete discontinuous17

Galerkin (DG) methods for solving one-dimensional scalar conservation laws18

ut + f (u)x = 0, (x, t) ∈ (a, b)× (0, T ], (1.1a)19

u(x, 0) = u0(x), x ∈ � = (a, b), (1.1b)20
21

where u0(x) is a given smooth function. We assume that the nonlinear flux function22

f (u) is sufficiently smooth with respect to the variable u and the exact solution is23

also smooth. For the sake of simplicity and ease in presentation, we only consider24

periodic boundary conditions. We show that the α-th order (1 ≤ α ≤ k + 1) divided25

difference of the DG error in the L2 norm achieves (k + 3
2 − α

2 )th order when upwind26

fluxes are used, under the condition that | f ′(u)| possesses a uniform positive lower27

bound. By using a duality argument, we then derive superconvergence results of order28

2k + 3
2 − α

2 in the negative-order norm. This allows us to demonstrate that it is possible29

to extend the post-processing technique to nonlinear conservation laws to obtain at30

least ( 3
2 k + 1)th order of accuracy. In addition, for variable coefficient hyperbolic31

equations that have been discussed in [19], we provide an explicit proof for optimal32

error estimates of order k + 1 in the L2 norm for the divided differences of the DG33

errors and thus 2k + 1 in the negative-order norm.34

Various superconvergence properties of DG methods have been studied in the past35

two decades, which not only provide a deeper understanding about DG solutions but36

are useful for practitioners. According to different measurements of the error, the37

superconvergence of DG methods is mainly divided into three categories. The first38

one is superconvergence of the DG error at Radau points, which is typically measured39

in the discrete L2 norm and is useful to resolve waves. The second one is super-40

convergence of the DG solution towards a particular projection of the exact solution41

(supercloseness) measured in the standard L2 norm, which lays a firm theoretical foun-42

dation for the excellent behaviour of DG methods for long-time simulations as well as43

adaptive computations. The last one is the superconvergence of post-processed solu-44

tion by establishing negative-order norm error estimates, which enables us to obtain45

a higher order approximation by simply post-processing the DG solution with a spe-46

cially designed kernel at the very end of the computation. In what follows, we shall47

review some superconvergence results for the aforementioned three properties and48

restrict ourselves to hyperbolic equations to save space. For superconvergence of DG49

methods for other types of PDEs, we refer to [21].50

Let us briefly mention some superconvergence results related to the Radau points51

and supercloseness of DG methods for hyperbolic equations. Adjerid and Baccouch52

[1–3] studied the superconvergence property as well as the a posteriori error esti-53

mates of the DG methods for one- and two-dimensional linear steady-state hyperbolic54

equations, in which superconvergence of order k + 2 and 2k + 1 are obtained at55

downwind-biased Radau points and downwind points, respectively. Here and below,56

k is the highest polynomial degree of the discontinuous finite element space. For time-57

dependent linear hyperbolic equations, Cheng and Shu [9] investigated supercloseness58
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for linear hyperbolic equations, and they obtained superconvergence of order k + 3
259

towards a particular projection of the exact solution, by virtue of construction and60

analysis of the so-called generalized slopes. Later, by using a duality argument, Yang61

and Shu [24] proved superconvergence results of order k + 2 of the DG error at62

downwind-biased points as well as cell averages, which imply a sharp (k + 2)th order63

supercloseness result. By constructing a special correction function and choosing a64

suitable initial discretization, Cao et al. [7] established a supercloseness result towards65

a newly designed interpolation function. Further, based on this supercloseness result,66

for the DG error they proved the (2k + 1)th order superconvergence at the down-67

wind points as well as domain average, (k + 2)-th order superconvergence at the68

downwind-biased Radau points, and superconvergent rate k + 1 for the derivative at69

interior Radau points. We would like to remark that the work of [7,24] somewhat70

indicates the possible link between supercloseness and superconvergence at Radau71

points. For time-dependent nonlinear hyperbolic equations, Meng et al. [18] proved a72

supercloseness result of order k + 3
2 . For superconvergent posteriori error estimates73

of spatial derivative of DG error for nonlinear hyperbolic equations, see [4].74

Let us now mention in particular some superconvergence results of DG methods75

regarding negative-order norm estimates and post-processing for hyperbolic equations.76

The basic idea of post-processing is to convolve the numerical solution by a local77

averaging operator with the goal of obtaining a better approximation and typically78

of a higher order. Motivated by the work of Bramble and Schatz in the framework of79

continuous Galerkin methods for elliptic equations [5], Cockburn et al. [11] established80

the theory of post-processing techniques for DG methods for hyperbolic equations81

by the aid of negative-order norm estimates. The extension of this post-processing82

technique was later fully studied by Ryan et al. in different aspects of problems, e.g. for83

general boundary condition [20], for nonuniform meshes [13] and for applications in84

improving the visualization of streamlines [22] in which it is labeled as a Smoothness-85

Increasing Accuracy-Conserving (SIAC) filter. For the extension of the SIAC filter to86

linear convection-diffusion equations, see [15].87

By the post-processing theory [5,11], it is well known that negative-order norm88

estimates of divided differences of the DG error are important tools to derive super-89

convergent error estimates of the post-processed solution in the L2 norm. Note that90

for purely linear equations [11,15], once negative-order norm estimates of the DG91

error itself are obtained, they trivially imply negative-order norm estimates for the92

divided differences of the DG error. However, the above framework is no longer93

valid for variable coefficient or nonlinear equations. In this case, in order to derive94

superconvergent estimates about the post-processed solution, both the L2 norm and95

negative-order norm error estimates of divided differences should be established. In96

particular, for variable coefficient hyperbolic equations, although negative-order norm97

error estimates of divided differences are given in [19], the corresponding L2 norm98

estimates are not provided. For nonlinear hyperbolic conservation laws, Ji et al. [16]99

showed negative-order norm estimates for the DG error itself, leaving the estimates100

of divided differences for future work.101

For nonlinear hyperbolic equations under consideration in this paper, it is therefore102

important and interesting to address the above issues by establishing both the L2 norm103

and negative-order norm error estimates for the divided differences. The major part104
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of this paper is to show L2 norm error estimates for divided differences, which are105

helpful for us to obtain a higher order of accuracy in the negative-order norm and106

thus the superconvergence of the post-processed solutions. We remark that it requires107

| f ′(u)| having a uniform positive lower bound due to the technicality of the proof. The108

generalization from purely linear problems [11,15] to nonlinear hyperbolic equations109

in this paper involves several technical difficulties. One of these is how to establish110

important relations between the spatial derivatives and time derivatives of a partic-111

ular projection of divided differences of DG errors. Even if the spatial derivatives112

of the error are switched to their time derivatives, it is still difficult to analyze the113

time derivatives of the error; for more details, see Sect. 3.2 and also the appendix.114

Another important technicality is how to construct a suitable dual problem for the115

divided difference of the nonlinear hyperbolic equations. However, it seems that it is116

not trivial for the two-dimensional extension, especially for establishing the relations117

between spatial derivatives and time derivatives of the errors. The main tool employed118

in deriving L2 norm error estimates for the divided differences is an energy analysis.119

To deal with the nonlinearity of the flux functions, Taylor expansion is used following120

a standard technique in error estimates for nonlinear problems [25]. We would like121

to remark that the superconvergence analysis in this paper indicates a possible link122

between supercloseness and negative-order norm estimates.123

This paper is organized as follows. In Sect. 2, we give the DG scheme for divided124

differences of nonlinear hyperbolic equations, and present some preliminaries about125

the discontinuous finite element space. In Sect. 3, we state and discuss the L2 norm error126

estimates for divided differences of nonlinear hyperbolic equations, and then display127

the main proofs followed by discussion of variable coefficient hyperbolic equations.128

Section 4 is devoted to the accuracy-enhancement superconvergence analysis based129

on negative-order norm error estimates of divided differences. In Sect. 5, numerical130

experiments are shown to demonstrate the theoretical results. Concluding remarks and131

comments on future work are given in Sect. 6. Finally, in the appendix we provide the132

proofs for some of the more technical lemmas.133

2 The DG scheme and some preliminaries134

2.1 The DG scheme135

In this section, we follow [11,12] and present the DG scheme for divided differences136

of the problem (1.1).137

Let a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b be a partition of � = (a, b), and set138

x j = (x j− 1
2
+x j+ 1

2
)/2. Since we are focused on error analysis of both the L2 norm and139

the negative-order norm for divided differences of the DG solution and the problem140

under consideration is assumed to be periodic, we shall introduce two overlapping141

uniform (translation invariant) meshes for�, namely I j = (x j− 1
2
, x j+ 1

2
) and I j+ 1

2
=142

(x j , x j+1)with mesh size h = x j+ 1
2
−x j− 1

2
. Associated with these meshes, we define143

the discontinuous finite element space144
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V α
h =

{
v : v|I j ′ ∈ Pk(I j ′), ∀ j ′ = j + �

2
, � = α mod 2, j = 1, . . . , N

}
,145

where Pk(I j ′) denotes the set of polynomials of degree up to k defined on the cell146

I j ′ := (x j ′− 1
2
, x j ′+ 1

2
). Here and below, α represents the α-th order divided difference147

of a given function, whose definition is given in (2.6a). Clearly, V α
h is a piecewise148

polynomial space on mesh I j ′ = I j for even α (including α = 0) and a piecewise149

polynomial space on mesh I j ′ = I j+ 1
2

for odd α of the DG scheme. For simplicity,150

for even α, we would like to use Vh to denote the standard finite element space of151

degree k defined on the cell I j , if there is no confusion. Since functions in V α
h may152

have discontinuities across element interfaces, we denote by w−
i and w+

i the values153

of w(x) at the discontinuity point xi from the left cell and the right cell, respectively.154

Moreover, we use [[w]] = w+ − w− and {{w}} = 1
2 (w

+ + w−) to represent the jump155

and the mean of w(x) at each element boundary point.156

The α-th order divided difference of the nonlinear hyperbolic conservation law is157

∂αh ut + ∂αh f (u)x = 0, (x, t) ∈ �α × (0, T ], (2.1a)158

∂αh u(x, 0) = ∂αh u0(x), x ∈ �α, (2.1b)159
160

where �α = (a + �
2 h, b + �

2 h) with � = α mod 2. Clearly, (2.1) reduces to (1.1)161

when α = 0. Then the approximation of the semi-discrete DG method for solving162

(2.1) becomes: find the unique function uh = uh(t) ∈ Vh (and thus ∂αh uh ∈ V α
h ) such163

that the weak formulation164

((∂αh uh)t , vh) j ′ = H j ′(∂
α
h f (uh), vh) (2.2)165

holds for all vh ∈ V α
h and all j = 1, . . . , N . Note that, by (2.6a), for any x ∈ I j ′ and166

t , ∂αh uh(x, t) is a linear combination of the values of uh at α+1 equally spaced points167

of length h, namely x − α
2 h, . . . , x + α

2 h. Here and in what follows, (·, ·) j ′ denotes the168

usual inner product in L2(I j ′), and H j ′ (·, ·) is the DG spatial discretization operator169

defined on each cell I j ′ = (x j ′− 1
2
, x j ′+ 1

2
), namely170

H j ′ (w, v) = (w, vx ) j ′ − ŵv−
∣∣∣ j ′+ 1

2
+ ŵv+

∣∣∣
j ′− 1

2

.171

We point out that in order to obtain a useful bound for the L2 norm error estimates172

of divided differences, the numerical flux f̂ j+ 1
2

is chosen to be an upwind flux, for173

example, the well-known Godunov flux. Moreover, the analysis requires a condition174

that | f ′(u)| has a uniform positive lower bound. Without loss of generality, throughout175

the paper, we only consider f ′(u) ≥ δ > 0, and thus ŵ = w−. Therefore,176

H j ′ (w, v) = (w, vx ) j ′ − w−v−| j ′+ 1
2

+ w−v+| j ′− 1
2

(2.3a)177

= − (wx , v) j ′ − ([[w]]v+) j ′− 1
2
. (2.3b)178

179
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For periodic boundary conditions under consideration in this paper, we use H to180

denote the summation of H j ′ with respect to cell I j ′ , that is181

H(w, v) = (w, vx )+
N∑

j=1

(w−[[v]]) j ′+ 1
2

(2.4a)182

= − (wx , v)−
N∑

j=1

([[w]]v+) j ′− 1
2
, (2.4b)183

184

where (w, v) = ∑N
j=1 (w, v) j ′ represents the inner product in L2(�α). Note that we185

have used the summation with respect to j instead of j ′ to distinguish two overlapping186

meshes, since j ′ = j for even α and j ′ = j + 1
2 for odd α.187

2.2 Preliminaries188

We will adopt the following convention for different constants. We denote by C a189

positive constant independent of h but may depend on the exact solution of the Eq. (2.1),190

which could have a different value in each occurrence. To emphasize the nonlinearity191

of the flux f (u), we employ C� to denote a nonnegative constant depending solely on192

the maximum of a high order derivative | f m | (m ≥ 2). We remark that C� = 0 for a193

linear flux function f (u) = cu or a variable coefficient flux function f (u) = a(x)u,194

where c is a constant and a(x) is a given smooth function.195

Prior to analyzing the L2 norm and the negative-order norm error estimates of196

divided differences, let us present some notation, definitions, properties of DG dis-197

cretization operator, and basic properties about SIAC filters. These preliminary results198

will be used later in the proof of superconvergence property.199

2.2.1 Sobolev spaces and norms200

We adopt standard notation for Sobolev spaces. For any integer s ≥ 0, we denote by201

W s,p(D) the Sobolev space on subdomain D ⊂ � equipped with the norm ‖·‖s,p,D .202

In particular, if p = 2, we set W s,p(D) = Hs(D), and ‖·‖s,p,D = ‖·‖s,D , and203

further if s = 0, we set ‖·‖s,D = ‖·‖D . Throughout the paper, when D = �, we204

will omit the index D for convenience. Furthermore, the norms of the broken Sobolev205

spaces W s,p(�h) := {u ∈ L2(�) : u|D ∈ W s,p(D), ∀D ⊂ �} with �h being206

the union of all cells can be defined analogously. The Bochner space can also be207

easily defined. For example, the space L1([0, T ]; Hs(D)) is equipped with the norm208

‖·‖L1([0,T ];Hs (D)) = ∫ T
0 ‖·‖s,Ddt .209

Additionally, we denote by ‖·‖�h the standard L2 norm on the cell interfaces of210

the mesh I j ′ . Specifically, for the one-dimensional case under consideration in this211

paper, ‖v‖2
�h

= ∑N
j=1‖v‖2

∂ I j ′ with ‖v‖∂ I j ′ = ((v+
j ′−1/2)

2 + (v−
j ′+1/2)

2)
1
2 . To simplify212

notation in our later analysis, following [23], we would like to introduce the so-called213

jump seminorm |[v]| = (
∑N

j=1[[v]]2
j ′− 1

2
)

1
2 for v ∈ H1(�h).214
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In the post-processing framework, it is useful to consider the negative-order norm,215

defined as: Given � > 0 and domain �,216

‖v‖−�,� = sup
	∈C∞

0 (�)

(v,	)

‖	‖�
. (2.5)217

2.2.2 Properties for divided differences218

For any function w and integer γ , the following standard notation of central divided219

difference is used220

∂
γ

h w(x) = 1

hγ

γ∑
i=0

(−1)i
(
γ

i

)
w

(
x +

(γ
2

− i
)

h
)
. (2.6a)221

Note that the above notation is still valid even ifw is a piecewise function with possible222

discontinuities at cell interfaces. In later analysis, we will repeatedly use the properties223

about divided differences, which are given as follows. For any functions w and v224

∂
γ

h (w(x)v(x)) =
γ∑

i=0

(
γ

i

)
∂ i

hw

(
x + γ − i

2
h

)
∂
γ−i
h v

(
x − i

2
h

)
, (2.6b)225

which is the so-called Leibniz rule for the divided difference. Moreover, for sufficiently226

smooth functionsw(x), by using Taylor expansion with integral form of the remainder,227

we can easily verify that ∂γh w is a second order approximation to ∂γx w, namely228

∂
γ

h w(x) = ∂
γ
x w(x)+ Cγ h2ψγ (x), (2.6c)229

where Cγ is a positive constant and ψγ is a smooth function; for example, Cγ =230

1/8, 1, 3/32 for γ = 1, 2, 3, and231

ψγ (x) = 1

(γ + 1)!
∫ 1

0

(
∂
γ+2
x w

(
x + γ

2
hs

)
+ ∂

γ+2
x w

(
x − γ

2
hs

))
(1 − s)γ+1 ds.232

Here and below, ∂γx (·) denotes the γ -th order partial derivative of a function with233

respect to the variable x ; likewise for ∂γt (·). The last identity is the so-called summation234

by parts, namely235

(
∂
γ

h w(x), v(x)
) = (−1)γ

(
w(x), ∂γh v(x)

)
. (2.6d)236

In addition to the properties of divided differences for a single function w(x),237

the properties of divided differences for a composition of two or more functions are238

also needed. However, we would like to emphasize that properties (2.6a), (2.6b),239

(2.6d) are always valid whether w is a single function or w is a composition of two240
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or more functions. As an extension from the single function case in (2.6c) to the241

composite function case, the following property (2.6e) is subtle, it requires a more242

delicate argument for composite functions. Without loss of generality, if w is the243

composition of two smooth functions r and u, i.e.,w(x) := r(u(x)), we can prove the244

following identity245

∂
γ

h r(u(x)) = ∂
γ
x r(u(x))+ Cγ h�γ (x), (2.6e)246

where Cγ is a positive constant and �γ is a smooth function. We can see that, unlike247

(2.6c), the divided difference of a composite function is a first order approximation248

to its derivative of the same order. This finding, however, is sufficient in our analysis;249

see Corollary 1.250

It is worth pointing out that in (2.6e), ∂γx r(u(x)) and ∂γh r(u(x)) should be under-251

stood in the sense of the chain rule for high order derivatives and divided differences252

of composite functions, respectively. In what follows, we use f [x0, . . . , xγ ] to denote253

the standard γ -th order Newton divided difference, that is254

f [xν] := f (xν), 0 ≤ ν ≤ γ,255

f [xν, . . . , xν+μ] := f [xν+1, . . . , xν+μ] − f [xν, . . . , xν+μ−1]
xν+μ − xν

,256

0 ≤ ν ≤ γ − μ, 1 ≤ μ ≤ γ.257
258

It is easy to verify that259

∂
γ

h r(u(x)) = γ ! r [x0, . . . , xγ ], (2.7)260

where xi = x + 2i−γ
2 h (0 ≤ i ≤ γ ).261

For completeness, we shall list the chain rule for the derivatives (the well-known262

Faà di Bruno’s Formula) and also for the divided differences [14]; it reads263

∂
γ
x r(u(x)) =

∑ γ !
b1! · · · bγ !r

(�)(u(x))

(
∂x u(x)

1!
)b1

· · ·
(
∂
γ
x u(x)

γ !
)bγ

,264

r [x0, . . . , xγ ] =
γ∑
�=1

r [u0, . . . , u�] A�,γ u,265

266

where ui = u(xi ), and the sum is over all � = 1, . . . , γ and non-negative integer267

solutions b1, . . . , bγ to268

b1 + 2b2 + · · · + γ bγ = γ, b1 + · · · + bγ = �,269

and270

A�,γ u =
∑

�=α0≤α1≤···≤α�=γ

�−1∏
β=0

u[xβ, xαβ , . . . , xαβ+1 ]271

with the sum being over integers α1, . . . , α�−1 such that � ≤ α1 ≤ · · · ≤ α�−1 ≤ γ .272

123

Journal: 211 Article No.: 0833 TYPESET DISK LE CP Disp.:2016/8/5 Pages: 47 Layout: Small-X



R
ev

is
ed

Pr
oo

f

DG Divided Difference estimates for nonlinear conservation laws

It follows from the mean value theorem for divided differences that273

lim
h→0

r [x0, . . . , xγ ] = ∂
γ
x r(u(x))

γ ! .274

Consequently, by (2.7),275

lim
h→0

∂
γ

h r(u(x)) = ∂
γ
x r(u(x)).276

We are now ready to prove (2.6e) for the relation between the divided difference277

and the derivative of composite functions. Using a similar argument as that in the proof278

of (2.6c) for A�,γ u and the relation that279

r [u0, . . . , uγ ] =
r (γ )(u γ

2
)

γ ! + Cγ h ψ(u0, u1, . . . , uγ ),280

due to the smoothness of ui and the fact that ui may not necessarily be equally spaced,281

with u γ
2

= u(x) and ψ(u0, u1, . . . , uγ ) being smooth functions, we can obtain the282

relation (2.6e).283

2.2.3 The inverse and projection properties284

Now we list some inverse properties of the finite element space V α
h . For any p ∈ V α

h ,285

there exists a positive constant C independent of p and h, such that286

(i) ‖∂x p‖ ≤ Ch−1‖p‖; (ii) ‖p‖�h ≤ Ch−1/2‖p‖; (iii) ‖p‖∞ ≤ Ch−1/2‖p‖.287

Next, we introduce the standard L2 projection of a function q ∈ L2(�) into the288

finite element space V k
h , denoted by Pkq, which is a unique function in V k

h satisfying289

(q − Pkq, vh) = 0, ∀vh ∈ V k
h . (2.8)290

Note that the proof of accuracy-enhancement of DG solutions for linear equations291

relies only on an L2 projection of the initial condition [11,15]. However, for variable292

coefficient and nonlinear hyperbolic equations, a suitable choice of the initial condition293

and a superconvergence relation between the spatial derivative and time derivative of294

a particular projection of the error should be established, since both the L2 norm and295

negative-order norm error estimates of divided differences need to be analyzed. In296

what follows, we recall two kinds of Gauss–Radau projections P±
h into Vh following297

a standard technique in DG analysis [8,25]. For any given function q ∈ H1(�h) and298

an arbitrary element I j ′ = (x j ′− 1
2
, x j ′+ 1

2
), the special Gauss–Radau projection of q,299

denoted by P±
h q, is the unique function in V k

h satisfying, for each j ′,300

(q − P+
h q, vh) j ′ = 0, ∀vh ∈ Pk−1(I j ′), (q − P+

h q)+
j ′− 1

2
= 0; (2.9a)301
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(q − P−
h q, vh) j ′ = 0, ∀vh ∈ Pk−1(I j ′), (q − P−

h q)−
j ′+ 1

2
= 0. (2.9b)302

303

We would like to remark that the exact collocation at one of the end points on each cell304

plus the orthogonality property for polynomials of degree up to k − 1 of the Gauss–305

Radau projections P±
h play an important role and are used repeatedly in the proof.306

We denote by η = q(x) − Qhq(x) (Qh = Pk or P±
h ) the projection error, then by a307

standard scaling argument [6,10], it is easy to obtain, for smooth enough q(x), that,308

‖η‖ + h‖ηx‖ + h1/2‖η‖�h ≤ Chk+1‖q‖k+1. (2.10a)309

Moreover,310

‖η‖∞ ≤ Chk+1‖q‖k+1,∞. (2.10b)311

2.2.4 The properties of the DG spatial discretization312

To perform the L2 error estimates of divided differences, several properties of the DG313

operator H are helpful, which are used repeatedly in our proof; see Sect. 3.314

Lemma 1 Suppose that r(u(x, t)) (r = f ′(u), ∂t f ′(u) etc) is smooth with respect to315

each variable. Then, for any w, v ∈ V α
h , there holds the following inequality316

H(rw, v) ≤ C�
(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖, (2.11a)317

and in particular, if r = f ′(u) ≥ δ > 0, there holds318

H(rw,w) ≤ C�‖w‖2 − δ

2
|[w]|2. (2.11b)319

Proof Let us first prove (2.11b), which is a straightforward consequence of the defi-320

nition of H, since, after a simple integration by parts321

H(rw,w) = −1

2
(∂xr , w2)+

N∑
j=1

(r(w− − {{w}})[[w]]) j ′− 1
2

322

= −1

2
(∂xr , w2)− 1

2

N∑
j=1

(r [[w]]2) j ′− 1
2

323

≤ C�‖w‖2 − δ

2
|[w]|2.324

325

We would like to emphasize that (2.11b) is still valid even if the smooth function r326

and w ∈ V α
h depend on different x , e.g. x, x + h

2 etc, as only integration by parts as327

well as the boundedness of r is used here.328

To prove (2.11a), we consider the equivalent strong form of H (2.4b). An application329

of Cauchy–Schwarz inequality and inverse inequality (ii) leads to330
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H(rw, v) = − (rxw, v)− (rwx , v)−
N∑

j=1

(r [[w]]v+) j ′− 1
2

331

≤ C�(‖w‖ + ‖wx‖)‖v‖ + C |[w]|‖v‖�h332

≤ C�
(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖.333
334

This completes the proof of Lemma 1. ��335

Corollary 1 Under the same conditions as in Lemma 1, we have, for small enough h,336

H((∂αh r)w, v) ≤ C�
(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖, ∀α ≥ 0. (2.12)337

Proof The case α = 0 has been proved in Lemma 1. For general α ≥ 1, let us start338

by using the relation (2.6e) for ∂αh r to obtain339

H((∂αh r)w, v) = H((∂αx r)w, v)+ ChH(�αw, v)340

with C a positive constant and�α a smooth function. Next, applying (2.11a) in Lemma341

1 to H((∂αx r)w, v) and H(�αw, v), we have for small enough h342

H((∂αh r)w, v) ≤ C�(1 + Ch)
(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖343

≤ C�
(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖.344
345

This finishes the proof of Corollary 1. ��346

Lemma 2 Suppose that r(u(x, t)) is smooth with respect to each variable. Then, for347

any w ∈ Hk+1(�h) and v ∈ V α
h , there holds348

H(r(w − P−
h w), v) ≤ C�h

k+1‖v‖. (2.13)349

Proof Using the definition of the projection P−
h (2.9a), we have that (w−P−

h w)
−
j ′+ 1

2
=350

0, and thus351

H(r(w − P−
h w), v) = (r(w − P−

h w), vx ).352

Next, on each cell I j ′ , we rewrite r(u(x, t)) as r(u) = r(u j ′) + (
r(u)− r(u j ′)

)
353

with u j ′ = u(x j ′ , t). Clearly, on each element I j ′ , |r(u) − r(u j ′)| ≤ C�h due to the354

smoothness of r and u. Using the orthogonality property of P−
h again (2.9b), we arrive355

at356

H(r(w − P−
h w), v) = (

(r(u)− r(u j ′))(w − P−
h w), vx

) ≤ C�h
k+1‖v‖,357

where we have used Cauchy–Schwarz inequality, inverse inequality (i) and the approx-358

imation property (2.10a) consecutively. ��359
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Corollary 2 Suppose that r(u(x, t)) is smooth with respect to each variable. Then,360

for any w ∈ Hk+1(�h), v ∈ V α
h , there holds361

H(∂αh (r(w − P−
h w)), v) ≤ C�h

k+1‖v‖, ∀α ≥ 0. (2.14)362

Proof The case α = 0 has been proved in Lemma 2. For α ≥ 1, by the Leibniz rule363

(2.6b) and taking into account the fact that both the divided difference operator ∂h and364

the projection operator P−
h are linear, we rewrite ∂αh (r(w − P−

h w)) as365

∂αh (r(w − P−
h w)) =

α∑
�=0

(
α

�

)
∂�hr

(
x + α − �

2
h

)
∂α−�

h (w − P−
h w)

(
x − �

2
h

)
366

�
α∑
�=0

(
α

�

)
ř
(
w̌ − P−

h w̌
)

367

368

with369

ř = ∂�hr

(
x + α − �

2
h

)
, w̌ = ∂α−�

h w

(
x − �

2
h

)
.370

Thus,371

H(∂αh (r(w − P−
h w)), v) =

α∑
�=0

(
α

�

)
H(ř (

w̌ − P−
h w̌

)
, v). (2.15)372

Clearly, by (2.6e), ř is also a smooth function with respect to each variable with leading373

term ∂�xr
(
x + α−�

2 h
)
. To complete the proof, we need only apply the same procedure374

as that in the proof of Lemma 2 to each H term on the right side of (2.15). ��375

2.2.5 Regularity for the variable coefficient hyperbolic equations376

Since the dual problem for the nonlinear hyperbolic equation is a variable coefficient377

equation, we need to recall a regularity result.378

Lemma 3 [16] Consider the variable coefficient hyperbolic equation with a periodic379

boundary condition for all t ∈ [0, T ]380

ϕt (x, t)+ a(x, t)ϕx (x, t) = 0, (2.16a)381

ϕ(x, 0) = ϕ0(x), (2.16b)382
383

where a(x, t) is a given smooth periodic function. For any � ≥ 0, fix time t and384

a(x, t) ∈ L∞([0, T ]; W 2�+1,∞(�)), then the solution of (2.16) satisfies the following385

regularity property386

‖ϕ(x, t)‖� ≤ C‖ϕ(x, 0)‖�,387

where C is a constant depending on ‖a‖L∞([0,T ];W 2�+1,∞(�)).388
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2.2.6 SIAC filters389

The SIAC filters are used to extract the hidden accuracy of DG methods, by means of390

a post-processing technique, which enhances the accuracy and reduces oscillations of391

the DG errors. The post-processing is a convolution with a kernel function K ν,k+1
h that392

is of compact support and is a linear combination of B-splines, scaled by the uniform393

mesh size,394

K ν,k+1
h (x) = 1

h

∑
γ∈Z

cν,k+1
γ ψ(k+1)

( x

h
− γ

)
,395

where ψ(k+1) is the B-spline of order k + 1 obtained by convolving the characteristic396

function ψ(1) = χ of the interval (−1/2, 1/2) with itself k times. Additionally, the397

kernel function K ν,k+1
h should reproduce polynomials of degree ν−1 by convolution,398

which is used to determine the weights cν,k+1
γ . For more details, see [11].399

The post-processing theory of SIAC filters is given in the following theorem.400

Theorem 1 (Bramble and Schatz [5]) For 0 < T < T �, where T � is the maximal time401

of existence of the smooth solution, let u ∈ L∞([0, T ]; H ν(�)) be the exact solution402

of (1.1). Let �0 + 2supp(K ν,k+1
h (x)) � � and U be any approximation to u, then403

‖u − K ν,k+1
h �U‖

�0
≤ hν

ν! C1|u|ν + C1C2

∑
α≤k+1

‖∂αh (u − U )‖−(k+1),�,404

where C1 and C2 depend on �0, k, but is independent of h.405

3 L2 norm error estimates for divided differences406

By the post-processing theory [5,11] (also see Theorem 1), it is essential to derive407

negative-order norm error estimates for divided differences, which depend heavily408

on their L2 norm estimates. However, for both variable coefficient equations and409

nonlinear equations, it is highly nontrivial to derive L2 norm error estimates for divided410

differences, and the technique used to prove convergence results for the DG error itself411

needs to be significantly changed.412

3.1 The main results in L2 norm413

Let us begin by denoting e = u − uh to be the error between the exact solution414

and numerical solution. Next, we split it into two parts; one is the projection error,415

denoted by η = u − Qhu, and the other is the projection of the error, denoted by416

ξ = Qhu − uh := Qhe ∈ V α
h . Here the projection Qh is defined at each time level417

t corresponding to the sign variation of f ′(u); specifically, for any t ∈ [0, T ] and418

x ∈ �, if f ′(u(x, t)) > 0 we choose Qh = P−
h , and if f ′(u(x, t)) < 0, we take419

Qh = P+
h .420

We are now ready to state the main theorem for the L2 norm error estimates.421
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Theorem 2 For any 0 ≤ α ≤ k +1, let ∂αh u be the exact solution of Eq. (2.1), which is422

assumed to be sufficiently smooth with bounded derivatives, and assume that | f ′(u)|423

is uniformly lower bounded by a positive constant. Let ∂αh uh be the numerical solution424

of scheme (2.2) with initial condition ∂αh uh(0) = Qh(∂
α
h u0) when the upwind flux is425

used. For a uniform mesh of � = (a, b), if the finite element space V α
h of piecewise426

polynomials with arbitrary degree k ≥ 1 is used, then for small enough h and any427

T > 0 there holds the following error estimate428

‖∂αh ξ(T )‖2 +
∫ T

0
|[∂αh ξ ]|2dt ≤ C�h

2k+3−α, (3.1)429

where the positive constant C� depends on the u, δ, T and f , but is independent of h.430

Corollary 3 Under the same conditions as in Theorem 2, if in addition α ≥ 1 we431

have the following error estimates:432

‖∂αh (u − uh)(T )‖ ≤ C�h
k+ 3

2 − α
2 . (3.2)433

Proof As shown in Corollary 2, we have that ∂αh η = ∂αh u − P−
h (∂

α
h u), and thus434

‖∂αh η‖ ≤ Chk+1‖∂αh u‖k+1 (3.3)435

by the approximation error estimate (2.10a). Now, the error estimate (3.2) follows by436

combining the triangle inequality and (3.1). ��437

Remark 1 Clearly, the L2 error estimates for the divided differences in Theorem 2 and438

Corollary 3 also hold for the variable coefficient equation (2.1) with f (u) = a(x)u439

and |a(x)| ≥ δ > 0. In fact, for variable coefficient equations, we can obtain optimal440

(k + 1)th order in the L2 norm and thus (2k + 1)th order in the negative-order norm;441

see Sect. 3.3.442

Remark 2 The result with α = 0 in Theorem 2 is indeed a superconvergence result443

towards a particular projection of the exact solution (supercloseness) that has been444

established in [18], which is a starting point for proving ‖∂αh ξ‖ with α ≥ 1. For com-445

pleteness, we list the superconvergence result for ξ (zeroth order divided difference)446

as follows447

‖ξ‖2 +
∫ T

0
|[ξ ]|2dt ≤ C�h

2k+3, (3.4a)448

‖ξx‖ ≤ Ch−1‖S‖ ≤ C�(‖ξt‖ + hk+1), (3.4b)449

‖ξt‖2 +
∫ T

0
|[ξt ]|2dt ≤ C�h

2k+2, (3.4c)450

451

where, on each element I j , we have used ξ = r j + S(x)(x − x j )/h j with r j = ξ(x j )452

being a constant and S(x) ∈ Pk−1(I j ). Note that the proof of such superconvergence453

results requires that | f ′(u)| is uniformly lower bounded by a positive constant; for454

more details, see [18].455
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In the proof of Theorem 2, we have also obtained a generalized version about the456

L2 norm estimates of ξ in terms of the divided differences, their time derivatives, and457

spatial derivatives. To simplify notation, for an arbitrary multi-index β = (β1, β2), we458

denote by ∂βM(·) the mixed operator containing divided differences and time derivatives459

of a given function, namely460

∂
β

M(·) = ∂
β1
h ∂

β2
t (·). (3.5)461

462

Corollary 4 Under the same conditions as in Theorem 2, for β0 = 0, 1 and a multi-463

index β = (β1, β2) with |β| = β1 + β2 ≤ k + 1, we have the following unified error464

estimate:465

‖∂β0
x ∂

β

Mξ(T )‖ ≤ C�h
k+ 3

2 − |β′ |
2 ,466

where |β ′| = β0 + |β|.467

3.2 Proof of the main results in the L2 norm468

Similar to the discussion of the DG discretization operator properties in Sect. 2.2.4,469

without loss of generality, we will only consider the case f ′(u(x, t)) ≥ δ > 0 for all470

(x, t) ∈ � × [0, T ]; the case of f ′(u(x, t)) ≤ −δ < 0 is analogous. Therefore, we471

take the upwind numerical flux as f̂ = f (u−
h ) on each cell interface and choose the472

projection as Qh = P−
h on each cell, and the initial condition is chosen as ∂αh uh(0) =473

P−
h (∂

α
h u0). Since the case α = 0 has already been proven in [18] (see (3.4a)), we474

need only to consider 1 ≤ α ≤ k + 1. In order to clearly display the main ideas of475

how to perform the L2 norm error estimates for divided differences, in the following476

two sections we present the detailed proof for Theorem 2 with α = 1 and α = 2,477

respectively; the general cases with 3 ≤ α ≤ k + 1 (k ≥ 2) can be proven by478

induction, which are omitted to save space.479

3.2.1 Analysis for the first order divided difference480

For α = 1, the DG scheme (2.2) becomes481

((∂huh)t , vh) j ′ = H j ′ (∂h f (uh), vh)482

with j ′ = j + 1
2 , which holds for any vh ∈ V α

h and j = 1, . . . , N . By Galerkin483

orthogonality and summing over all j ′, we have the error equation484

(∂het , vh) = H(∂h( f (u)− f (uh)), vh) (3.6)485

for all vh ∈ V α
h . To simplify notation, we would like to denote ∂he := ē = η̄+ ξ̄ with486

η̄ = ∂hη, ξ̄ = ∂hξ . If we now take vh = ξ̄ , we get the following identity487

1

2

d

dt
‖ξ̄‖2 + (

η̄t , ξ̄
) = H(∂h( f (u)− f (uh)), ξ̄ ). (3.7)488
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The estimate for the right side of (3.7) is complicated, since it contains some integral489

terms involving mixed order divided differences of ξ , namely ξ and ξ̄ , which is given490

in the following lemma.491

Lemma 4 Suppose that the conditions in Theorem 2 hold. Then we have492

H(∂h( f (u)− f (uh)), ξ̄ ) ≤ C�‖ξ̄‖2 − δ

2
|[ξ̄ ]|2 + h−1|[ξ ]|2 + Ch2k+2, (3.8)493

where the positive constants C and C� are independent of h and uh .494

Proof Let us start by using the second order Taylor expansion with respect to the495

variable u to write out the nonlinear terms, namely f (u)− f (uh) and f (u)− f (u−
h ),496

as497

f (u)− f (uh) = f ′(u)ξ + f ′(u)η − R1e2, (3.9a)498

f (u)− f (u−
h ) = f ′(u)ξ− + f ′(u)η− − R2(e

−)2, (3.9b)499
500

where R1 = ∫ 1
0 (1−μ) f ′′(u+μ(uh −u))dμ and R2 = ∫ 1

0 (1−ν) f ′′(u+ν(u−
h −u))dν501

are the integral form of the remainders of the second order Taylor expansion. We would502

like to emphasize that the various order spatial derivatives, time derivatives and divided503

differences of R1 are all bounded uniformly due to the smoothness of f and u. Thus,504

H(∂h( f (u)− f (uh)), ξ̄ ) = H(∂h( f ′(u)ξ), ξ̄ )+H(∂h( f ′(u)η), ξ̄ )−H(∂h(R1e2), ξ̄ )505

� J + K − L,506507

which will be estimated separately below.508

To estimate J , we employ the Leibniz rule (2.6b), and rewrite ∂h( f ′(u)ξ) as509

∂h( f ′(u)ξ) = f ′(u(x + h/2))ξ̄ (x)+ (∂h f ′(u(x)))ξ(x − h/2),510

and thus,511

J = H( f ′(u)ξ̄ , ξ̄ )+ H((∂h f ′(u))ξ, ξ̄ ) � J1 + J2,512

where we have omitted the dependence of x for convenience if there is no confusion,513

since the proof of (2.11b) is still valid even if f ′(u) and ξ̄ are evaluated at different x ;514

see proof of (2.11b) in Sect. 2.2.4. A direct application of Lemma 1 together with the515

assumption that f ′(u) ≥ δ > 0, (2.11b), leads to the estimate for J1:516

J1 ≤ C�‖ξ̄‖2 − δ

2
|[ξ̄ ]|2. (3.10a)517

By Corollary 1, we arrive at the estimate for J2:518

J2 ≤ C�
(
‖ξ‖ + ‖ξx‖ + h− 1

2 |[ξ ]|
)

‖ξ̄‖. (3.10b)519
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Substituting (3.4a)–(3.4c) into (3.10b), and combining with (3.10a), we have, after a520

straightforward application of Young’s inequality, that521

J ≤ C�‖ξ̄‖2 − δ

2
|[ξ̄ ]|2 + h−1|[ξ ]|2 + Ch2k+2. (3.11)522

Let us now move on to the estimate of K. By Corollary 2, we have523

K ≤ C�h
k+1‖ξ̄‖. (3.12)524

To estimate L, let us first employ the identity (2.6b) and rewrite ∂h(R1e2) as525

∂h(R1e2) = R1(u(x + h/2))∂he2 + ∂h R1(u(x))e
2(x − h/2)526

= R1(u(x + h/2))ē(x)(e(x + h/2)+ e(x − h/2))527

+ ∂h R1(u(x))e
2(x − h/2)528

� D1 + D2.529
530

Consequently,531

L = H(D1, ξ̄ )+ H(D2, ξ̄ ).532

It is easy to show, for the high order nonlinear term H(D1, ξ̄ ), that533

H(D1, ξ̄ ) ≤ C�‖e‖∞
(‖ē‖‖ξ̄x‖ + ‖ē‖�h ‖ξ̄‖�h

)
534

≤ C�h
−1‖e‖∞

(
‖ξ̄‖ + ‖η̄‖ + h

1
2 ‖η̄‖�h

)
‖ξ̄‖535

≤ C�h
−1‖e‖∞

(
‖ξ̄‖ + hk+1

)
‖ξ̄‖, (3.13)536

537

where in the first step we have used the Cauchy–Schwarz inequality, in the second step538

we have used the inverse properties (i) and (ii), and in the last step we have employed539

the interpolation properties (3.3). We see that in order to deal with the nonlinearity of540

f we still need to have a bound for ‖e‖∞. Due to the superconvergence result (3.4a),541

we conclude, by combining inverse inequality (iii) and the approximation property542

(2.10b), that543

‖e‖∞ ≤ Chk+1. (3.14)544

Therefore, for small enough h, we have545

H(D1, ξ̄ ) ≤ C�‖ξ̄‖2 + C�h
k+1‖ξ̄‖. (3.15a)546

By using analysis similar to that in the proof of (3.13), we have, for H(D2, ξ̄ ), that547

H(D2, ξ̄ ) ≤ C�h
−1‖e‖∞

(
‖ξ‖ + hk+1

)
‖ξ̄‖.548
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As a consequence, by (3.14) and (3.4a)549

H(D2, ξ̄ ) ≤ C�h
k+1‖ξ̄‖. (3.15b)550

A combination of (3.15a) and (3.15b) produces a bound for L:551

L ≤ C�‖ξ̄‖2 + C�h
k+1‖ξ̄‖. (3.16)552

To complete the proof of Lemma 4, we need only combine (3.11), (3.12), (3.16) and553

use Young’s inequality. ��554

We are now ready to derive the L2 norm estimate for ξ̄ . To do this, let us begin by555

inserting the estimate (3.8) into (3.7) and taking into account the bound for η̄ in (3.3)556

and thus η̄t to get, after an application of Cauchy–Schwarz inequality and Young’s557

inequality, that558

1

2

d

dt
‖ξ̄‖2 + δ

2
|[ξ̄ ]|2 ≤ C�‖ξ̄‖2 + h−1|[ξ ]|2 + Ch2k+2.559

Next, we integrate the above inequality with respect to time between 0 and T and note560

the fact that ξ̄ (0) = 0 due to ξ(0) = 0 to obtain561

1

2
‖ξ̄‖2 + δ

2

∫ T

0
|[ξ̄ ]|2dt ≤ C�

∫ T

0
‖ξ̄‖2dt + h−1

∫ T

0
|[ξ ]|2dt + Ch2k+2

562

≤ C�

∫ T

0
‖ξ̄‖2dt + Ch2k+2,563

564

where we have used the superconvergence result (3.4a). An application of Gronwall’s565

inequality leads to the desired result566

‖ξ̄‖2 +
∫ T

0
|[ξ̄ ]|2dt ≤ C�h

2k+2. (3.17)567

This finishes the proof of Theorem 2 for α = 1.568

Remark 3 We can see that the estimates (3.17) for the L2 norm and the jump seminorm569

of ξ̄ are based on the corresponding results for ξ in Remark 2, which are half an570

order lower than that of ξ . This is mainly due to the hybrid of different order divided571

differences of ξ , namely ξ and ξ̄ , and thus the application of inverse property (ii). It572

is natural that the proof for the high order divided difference of ξ , say ∂2
h ξ , should be573

based on the corresponding lower order divided difference results of ξ (ξ and ξ̄ ) that574

have already been established; see Sect. 3.2.2 below.575
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3.2.2 Analysis for the second order divided difference576

For α = 2, the DG scheme (2.2) becomes577

(
(∂2

h uh)t , vh

)
j ′

= H j ′
(
∂2

h f (uh), vh

)
578

with j ′ = j , which holds for any vh ∈ V α
h and j = 1, . . . , N . By Galerkin orthogo-579

nality and summing over all j , we have the error equation580

(
∂2

h et , vh

)
= H(∂2

h ( f (u)− f (uh)), vh) (3.18)581

for all vh ∈ V α
h . To simplify notation, we would like to denote ∂2

h e := ẽ = η̃+ ξ̃ with582

η̃ = ∂2
hη, ξ̃ = ∂2

h ξ . If we now take vh = ξ̃ , we get the following identity583

1

2

d

dt
‖ξ̃‖2 +

(
η̃t , ξ̃

)
= H(∂2

h ( f (u)− f (uh)), ξ̃ ). (3.19)584

The estimate for right side of (3.19) is rather complicated, since it contains some585

integral terms involving mixed order divided differences of ξ , namely ξ , ξ̄ and ξ̃ ,586

which is given in the following Proposition.587

Proposition 1 Suppose that the conditions in Theorem 2 hold. Then we have588

H(∂2
h ( f (u)− f (uh)), ξ̃ ) ≤ C�‖ξ̃‖2 − δ

2
|[ξ̃ ]|2 +h−1(|[ξ ]|2 +|[ξ̄ ]|2)+Ch2k+1, (3.20)589

where the positive constants C and C� are independent of h and uh .590

Proof By the second order Taylor expansion (3.9), we have591

H(∂2
h ( f (u)− f (uh)), ξ̃ ) = H(∂2

h ( f ′(u)ξ), ξ̃ )+ H(∂2
h ( f ′(u)η), ξ̃ )592

− H(∂2
h (R1e2), ξ̃ )593

� P + Q − S, (3.21)594
595

which will be estimated one by one below.596

To estimate P , we use the Leibniz rule (2.6b), to rewrite ∂2
h ( f ′(u)ξ) as597

∂2
h ( f ′(u)ξ) = f ′(u(x + h))ξ̃ (x)+ 2∂h f ′(u(x + h/2))ξ̄ (x − h/2)598

+ ∂2
h f ′(u(x))ξ(x − h),599

and thus,600

P = H( f ′(u)ξ̃ , ξ̃ )+ 2H((∂h f ′(u))ξ̄ , ξ̃ )+ H((∂2
h f ′(u))ξ, ξ̃ ) � P1 + P2 + P3,601
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where we have omitted the dependence of x for convenience if there is no confusion.602

A direct application of Lemma 1 together with the assumption that f ′(u) ≥ δ > 0,603

(2.11b), produces the estimate for P1:604

P1 ≤ C�‖ξ̃‖2 − δ

2
|[ξ̃ ]|2. (3.22a)605

By Corollary 1, we arrive at the estimates for P2 and P3:606

P2 ≤ C�
(
‖ξ̄‖ + ‖ξ̄x‖ + h− 1

2 |[ξ̄ ]|
)

‖ξ̃‖, (3.22b)607

P3 ≤ C�
(
‖ξ‖ + ‖ξx‖ + h− 1

2 |[ξ ]|
)

‖ξ̃‖. (3.22c)608
609

Substituting (3.4a)–(3.4c), (3.17) into (3.22b), (3.22c), and combining with (3.22a),610

we have, after a straightforward application of Young’s inequality, that611

P ≤ C�‖ξ̃‖2 − δ

2
|[ξ̃ ]|2 + h−1

(
|[ξ ]|2 + |[ξ̄ ]|2

)
+ ‖ξ̄x‖2 + Ch2k+2. (3.23)612

For terms on the right side of (3.23), although we have information about |[ξ ]|2 and613

|[ξ̄ ]|2 as shown in (3.4a) and (3.17), we still need a suitable bound for ‖ξ̄x‖, which is614

given in the following lemma.615

Lemma 5 Suppose that the conditions in Theorem 2 hold. Then we have616

‖ξ̄x‖ ≤ C�(‖ξ̄t‖ + hk+1), (3.24)617

where C� depends on u and δ but is independent of h and uh.618

The proof of this lemma is given in the appendix. Up to now, we see that we still need619

to have a bound for ‖ξ̄t‖. In fact, the proof for ‖ξ̄t‖ would require additional bounds620

for ‖(ξt )x‖ and ‖ξt t‖, whose results are shown in Lemmas 6 and 7.621

Lemma 6 Suppose that the conditions in Theorem 2 hold. Then we have622

‖(ξt )x‖ ≤ C�(‖ξt t‖ + hk+1). (3.25)623

The proof of Lemma 6 follows along a similar argument as that in the proof of Lemma624

5, so we omit the details here.625

Lemma 7 Suppose that the conditions in Theorem 2 hold. Then we have626

‖ξt t‖2 +
∫ T

0
|[ξt t ]|2dt ≤ C�h

2k+1. (3.26)627

The proof of this lemma is deferred to the appendix. Based on the above two lemmas,628

we are able to prove the bound for ‖ξ̄t‖ in Lemma 8, whose proof is deferred to the629

appendix.630
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Lemma 8 Suppose that the conditions in Theorem 2 hold. Then we have631

‖ξ̄t‖2 +
∫ T

0
|[ξ̄t ]|2dt ≤ C�h

2k+1, (3.27)632

where C� depends on u and δ but is independent of h and uh.633

We now collect the estimates in Lemmas 5 and 8 into (3.23) to get634

P ≤ C�‖ξ̃‖2 − δ

2
|[ξ̃ ]|2 + h−1

(
|[ξ ]|2 + |[ξ̄ ]|2

)
+ Ch2k+1. (3.28)635

Let us now move on to the estimate of Q. By Corollary 2, we have636

Q ≤ C�h
k+1‖ξ̃‖. (3.29)637

To estimate S, let us first employ the identity (2.6b) and rewrite ∂2
h (R1e2) as638

∂2
h (R1e2) = R1(u(x + h))∂2

h e2 + 2∂h R1(u(x + h/2))∂he2(x − h/2)639

+ ∂2
h R1(u(x))e

2(x − h)640

� E1 + E2 + E3,641
642

where643

E1 = R1(u(x + h)) (e(x + h)ẽ(x)+ 2ē(x + h/2)ē(x − h/2)+ ẽ(x)e(x − h)) ,644

E2 = 2∂h R1(u(x + h/2))ē(x − h/2) (e(x)+ e(x − h)) ,645

E3 = ∂2
h R1(u(x))e

2(x − h).646
647

Thus,648

S = H(E1, ξ̃ )+ H(E2, ξ̃ )+ H(E3, ξ̃ ) � S1 + S2 + S3.649

By using analysis similar to that in the proof of (3.13), we get650

S1 ≤ C�h
−1(‖e‖∞ + ‖ē‖∞)

(
‖ξ̃‖ + ‖ξ̄‖ + hk+1

)
‖ξ̃‖651

≤ C
(
‖ξ̃‖ + ‖ξ̄‖ + hk+1

)
‖ξ̃‖,652

S2 ≤ C�h
−1‖e‖∞

(
‖ξ̄‖ + hk+1

)
‖ξ̃‖ ≤ C

(
‖ξ̄‖ + hk+1

)
‖ξ̃‖,653

S3 ≤ C�h
−1‖e‖∞

(
‖ξ‖ + hk+1

)
‖ξ̃‖ ≤ C

(
‖ξ‖ + hk+1

)
‖ξ̃‖,654

655

where we have used the fact that for k ≥ 1 and small enough h, C�h−1(‖e‖∞ +656

‖ē‖∞) ≤ C ; for more details, see the appendix. Consequently657

S ≤ C
(
‖ξ̃‖ + ‖ξ̄‖ + ‖ξ‖ + hk+1

)
‖ξ̃‖. (3.30)658
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Collecting the estimates (3.28)–(3.30) into (3.21) and taking into account (3.4a) and659

(3.17), we get660

H(∂2
h ( f (u)− f (uh)), ξ̃ ) ≤ C�‖ξ̃‖2 − δ

2
|[ξ̃ ]|2 + h−1

(
|[ξ ]|2 + |[ξ̄ ]|2

)
+ Ch2k+1.661

This finishes the proof of Proposition 1. ��662

We are now ready to derive the L2 norm estimate for ξ̃ . To do this, we begin by663

combining (3.19) and (3.20) to get664

1

2

d

dt
‖ξ̃‖2 + δ

2
|[ξ̃ ]|2 ≤ C�‖ξ̃‖2 + h−1

(
|[ξ ]|2 + |[ξ̄ ]|2

)
+ Ch2k+1.665

Next, integrate the above inequality with respect to time between 0 and T and use666

ξ(0) = 0 (and thus ξ̃ (0) = ∂2
h ξ(0) = 0) to obtain667

1

2
‖ξ̃‖2 + δ

2

∫ T

0
|[ξ̃ ]|2dt ≤ C�

∫ T

0
‖ξ̃‖2dt + h−1

∫ T

0

(
|[ξ ]|2 + |[ξ̄ ]|2

)
dt + Ch2k+1

668

≤ C�

∫ T

0
‖ξ̃‖2dt + Ch2k+1

669

670

by the estimates (3.4a) and (3.17). An application of Gronwall’s inequality leads to671

the desired result672

‖ξ̃‖2 +
∫ T

0
|[ξ̃ ]|2dt ≤ C�h

2k+1. (3.31)673

This completes the proof of Theorem 2 with α = 2.674

Remark 4 Through the proof of Theorem 2 with α = 2, ‖ξ̃‖, we can see that apart675

from the bounds for ‖ξ‖, ‖ξx‖, ‖ξt‖ that have already been obtained for proving ‖ξ̄‖,676

we require additional bounds for ‖ξ̄x‖, ‖ξ̄t‖, ‖(ξt )x‖, and ‖ξt t‖, as shown in Lemmas677

5–8. The proof for the L2 norm estimates for higher order divided differences are more678

technical and complicated, and it would require bounds regarding lower order divided679

differences as well as its corresponding spatial and time derivatives. For example, when680

α = 3, in addition to the abounds aforementioned, we need to establish the bounds for681

‖ξ̃x‖, ‖ξ̃t‖, ‖(ξ̄t )x‖, ‖ξ̄t t‖, ‖(ξt t )x‖ and ‖ξt t t‖. Thus, Theorem 2 can be proven along682

the same lines for general α ≤ k + 1. Finally, we would like to point out that the683

corresponding results on the jump seminorm for various order divided differences and684

time derivatives of ξ are useful, which play an important role in deriving Theorem 2.685

3.3 Variable coefficient case686

3.3.1 The main results687

In this section we consider the L2 error estimates for divided differences for the variable688

coefficient equation (1.1) with f (u) = a(x)u. Similar to the nonlinear hyperbolic case,689

to obtain a suitable bound for the L2 norm the numerical flux should be chosen as690
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an upwind flux. Moreover, the analysis requires a condition that |a(x)| is uniformly691

lower bounded by a positive constant. Without loss of generality, we only consider692

a(x) ≥ δ > 0, and thus the DG scheme is693

(
(∂αh uh)t , vh

) = H(∂αh (auh), vh) (3.32)694

for vh ∈ V α
h . We will use the same notation as before.695

For nonlinear hyperbolic equations, the loss of order in Theorem 2 is mainly due696

to the lack of control for the interface jump terms arising from (2.11a) in the super-697

convergence relation, for example, (3.4b), (3.24) and (3.25). Fortunately, for variable698

coefficient hyperbolic equations, we can establish a stronger superconvergence rela-699

tion between the spatial derivative as well as interface jumps of the various order700

divided difference of ξ and its time derivatives; see (3.37b) below. Thus, optimal L2
701

error estimates of order k + 1 are obtained.702

Prior to stating our main theorem, we would like to present convergence results703

for time derivatives of ξ , which is slightly different to those for nonlinear hyperbolic704

equations.705

Lemma 9 Let u be the exact solution of the variable coefficient hyperbolic Eq. (1.1)706

with f (u) = a(x)u, which is assumed to be sufficiently smooth with bounded deriva-707

tives. Let uh be the numerical solution of scheme (3.32) (α = 0) with initial condition708

uh(0) = Qhu0, (Qh = P±
h ) when the upwind flux is used. For regular triangulations709

of � = (a, b), if the finite element space V α
h of piecewise polynomials with arbitrary710

degree k ≥ 0 is used, then for any m ≥ 0 and any T > 0 there holds the following711

error estimate712

‖∂m
t ξ(T )‖ ≤ Chk+1, (3.33)713

where the positive constant C depends on u, T and a, but is independent of h.714

The proof of this lemma is postponed to the appendix.715

We are now ready to state our main theorem.716

Theorem 3 For any α ≥ 1, let ∂αh u be the exact solution of the problem (2.1) with717

f (u) = a(x)u, which is assumed to be sufficiently smooth with bounded derivatives,718

and assume that |a(x)| is uniformly lower bounded by a positive constant. Let ∂αh uh be719

the numerical solution of scheme (3.32) with initial condition ∂αh uh(0) = Qh(∂
α
h u0)720

when the upwind flux is used. For a uniform mesh of � = (a, b), if the finite element721

space V α
h of piecewise polynomials with arbitrary degree k ≥ 0 is used, then for any722

T > 0 there holds the following error estimate723

‖∂αh ξ(T )‖ ≤ Chk+1, (3.34)724

where the positive constant C depends on u, δ, T and a, but is independent of h.725

Remark 5 Based on the optimal error estimates for ‖∂αh ξ‖ together with approximation726

error estimates (3.3) and using the duality argument in [19], we can obtain the negative-727

order norm estimates728

‖∂αh (u − uh)(T )‖−(k+1),� ≤ Ch2k+1, (3.35)729
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and thus730

‖u − K ν,k+1
h � uh‖ ≤ Ch2k+1. (3.36)731

For more details, see [5,19] and also Sect. 4 below.732

3.3.2 Proof of main results733

We shall prove Theorem 3 for general α ≥ 1. First we claim that if we can prove the734

following three inequalities735

‖∂m
h ξ‖ ≤ Chk+1, ∀ 0 ≤ m ≤ α − 1, (3.37a)736

‖(∂βMξ)x‖ + h− 1
2 |[∂βMξ ]| ≤ C

(
‖∂β1

h ∂
β2+1
t ξ‖ + hk+1

)
, ∀ |β| = β1 + β2 ≤ α − 1,

(3.37b)

737

‖∂γMξ‖ ≤ Chk+1, ∀ |γ | ≤ α and γ = (α, 0), (3.37c)738
739

where ∂βMξ = ∂
β1
h ∂

β2
t ξ represents the mixed operator containing divided differences740

and time derivatives of ξ that has already been defined in (3.5), then ‖∂αh ξ‖ ≤ Chk+1.741

In what follows, we sketch the verification of this claim. To do that, we start by taking742

vh = ∂αh ξ in the following error equation743

(
∂αh et , vh

) = H(∂αh (aξ), vh)+ H(∂αh (aη), vh),744

which is745

1

2

d

dt
‖∂αh ξ‖2 + (

∂αh ηt , ∂
α
h ξ

) = H(∂αh (aξ), ∂αh ξ)+ H(∂αh (aη), ∂αh ξ). (3.38)746

Next, consider the term H(∂αh (aξ), ∂αh ξ). Use Leibniz rule (2.6b) to rewrite ∂αh (aξ)747

and employ (2.11a), (2.11b) in Lemma 1 to get the bound748

H(∂αh (aξ), ∂αh ξ) ≤ C‖∂αh ξ‖2 + Chk+1‖∂αh ξ‖,749

where we have also used the relations (3.37a)–(3.37c). For the estimate of750

H(∂αh (aη), ∂αh ξ), we need only use Corollary 2 to get751

H(∂αh (aη), ∂αh ξ) ≤ Chk+1‖∂αh ξ‖.752

Collecting above two estimates into (3.38) and using Cauchy–Schwarz inequality as753

well as Gronwall’s inequality, we finally get754

‖∂αh ξ‖ ≤ Chk+1.755

The claim is thus verified.756

In what follows, we will prove (3.37) by induction.757
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Step 1 For α = 1, ‖ξ‖ ≤ Chk+1 is well known, and thus (3.37a) is valid for α = 1.758

Moreover, (3.37c), namely ‖ξt‖ ≤ Chk+1 has been given in (3.4c); see [18]. To759

complete the proof for α = 1, we need only to establish the following relation760

‖ξx‖ + h− 1
2 |[ξ ]| ≤ C

(
‖ξt‖ + hk+1

)
. (3.39)761

Proof Noting the relation (3.4b), we need only to prove762

h− 1
2 |[ξ ]| ≤ C

(
‖ξt‖ + hk+1

)
. (3.40)763

To do that, we consider the cell error equation764

(et , vh) j = H j (ae, vh) = H j (aξ, vh)+ H j (aη, vh) ,765

which holds for any vh ∈ V α
h and j = 1, . . . , N . If we now take vh = 1 in the above766

identity and use the strong form (2.3b) for H j (aξ, vh), we get767

(et , 1) j = − ((aξ)x , 1) j − (a[[ξ ]]) j− 1
2

+ H j (aη, 1) � −W1 − W2 + W3.768

It follows from the assumption |a(x)| ≥ δ > 0 that769

δ|[[ξ ]] j− 1
2
| ≤ |W2| ≤ |W1| + |W3| + | (et , 1) j |. (3.41)770

By Cauchy–Schwarz inequality, we have771

|W1| + | (et , 1) j | ≤ Ch
1
2 (‖ξ‖I j + ‖ξx‖I j + ‖ξt‖I j + ‖ηt‖I j ).772

By the definition of the projection P−
h , (2.9b)773

|W3| = 0.774

Inserting the above two estimates into (3.41), we arrive at775

|[[ξ ]] j− 1
2
| ≤ Ch

1
2 (‖ξ‖I j + ‖ξx‖I j + ‖ξt‖I j + ‖ηt‖I j ),776

which is777

|[ξ ]|2 ≤ Ch
(
‖ξ‖2 + ‖ξx‖2 + ‖ξt‖2 + ‖ηt‖2

)
778

≤ Ch
(
‖ξt‖2 + h2k+2

)
,779

780

where we have used the bound for ‖ξ‖, the relation (3.4b) and approximation error781

estimates (2.10a), and thus (3.40) follows. Therefore, (3.37) is valid for α = 1. ��782
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Step 2 Suppose that (3.37) is true for α = �. That is783

‖∂m
h ξ‖ ≤ Chk+1, ∀ 0 ≤ m ≤ �− 1, (3.42a)784

‖(∂βMξ)x‖ + h− 1
2 |[∂βMξ ]| ≤ C(‖∂β1

h ∂
β2+1
t ξ‖ + hk+1), ∀ |β| = β1 + β2 ≤ �− 1,

(3.42b)
785

‖∂γMξ‖ ≤ Chk+1, ∀ |γ | ≤ � and γ = (�, 0), (3.42c)786
787

let us prove that it also holds for α = �+ 1.788

First, as shown in our claim, (3.42) implies that789

‖∂�hξ(T )‖ ≤ Chk+1.790

The above estimate together with (3.42a) produces791

‖∂m
h ξ‖ ≤ Chk+1, ∀ 0 ≤ m ≤ �. (3.43)792

Therefore, (3.37a) is valid for α = �+ 1.793

Next, by assumption (3.42b), we can see that to show (3.37b) for α = � + 1, we794

need only to show795

‖(∂βMξ)x‖ + h− 1
2 |[∂βMξ ]| ≤ C

(
‖∂β1

h ∂
β2+1
t ξ‖ + hk+1

)
, ∀ |β| = �.796

Without loss of generality, let us take β = (�, 0) for example. To this end, we consider797

the following error equation798

(
∂�het , vh

)
= H(∂�h(aξ), vh)+ H(∂�h(aη), vh),799

which holds for any vh ∈ V α
h . We use Leibniz rule (2.6b) to write out ∂�h(aξ) as800

∂�h (aξ) =
�∑

i=0

(
�

i

)
∂ i

ha

(
x + �− i

2
h

)
∂�−i

h ξ

(
x − i

2
h

)
�

�∑
i=0

zi .801

Therefore, the error equation becomes802

(
∂�het , vh

)
=

�∑
i=0

Zi + H(∂�h(aη), vh), (3.44)803

where Zi = H(zi , vh) for i = 0, . . . , �. Let us now work on Z0. By the strong form804

of H, (2.4b), we have805

Z0 = H(a∂�hξ, vh) = −
(
(a∂�hξ)x , vh

)
−

N∑
j=1

(
a[[∂�hξ ]]v+

h

)
j ′− 1

2

.806
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Denote Lk the standard Legendre polynomials of degree k in [−1, 1]. If we now807

let vh = (∂�hξ)x − d Lk(s) with d = (−1)k
(
(∂�hξ)x

)+
j ′− 1

2
being a constant and s =808

2(x−x j ′ )
h , we get809

Z0 = −
(

a(x j ′)(∂
�
hξ)x , vh

)
−

(
(a(x)− a(x j ′))(∂

�
hξ)x , vh

)
−

(
ax∂

�
hξ, vh

)
810

� −Z0,0 − Z0,1 − Z0,2,811
812

since (vh)
+
j ′− 1

2
= 0. Substituting above expression into (3.44) and taking into account813

the assumption that a(x) ≥ δ > 0, we have814

δ‖(∂�hξ)x‖2 ≤ Z0,0 =
�∑

i=1

Zi + H(∂�h(aη), vh)− Z0,1 − Z0,2 −
(
∂�het , vh

)
. (3.45)815

It is easy to show by Corollary 1 that816

∣∣∣∣∣
�∑

i=1

Zi

∣∣∣∣∣ ≤ C
�∑

i=1

(
‖∂�−i

h ξ‖ + ‖(∂�−i
h ξ)x‖ + h

1
2 |[∂�−i

h ξ ]|
)

‖vh‖ ≤ Chk+1‖vh‖,817

(3.46a)818

where we have used (3.42a)–(3.42c), since �− i ≤ �− 1 for i ≥ 1. By Corollary 2,819

we have820

H(∂�h(aη), vh) ≤ Chk+1‖vh‖. (3.46b)821

By (3.43) and inverse property (i), we arrive at a bound for Z0,1 and Z0,2822

|Z0,1| + |Z0,2| ≤ C‖∂�hξ‖‖vh‖ ≤ Chk+1‖vh‖. (3.46c)823

The triangle inequality and the approximation error estimate (3.3) yield824

∣∣∣(∂�het , vh

)∣∣∣ ≤ C
(
‖∂�h∂tξ‖ + hk+1

)
‖vh‖. (3.46d)825

Collecting the estimates (3.46a)–(3.46d) into (3.45) and using the fact that ‖vh‖ ≤826

C‖(∂�hξ)x‖, we arrive at827

‖(∂�hξ)x‖ ≤ C(‖∂�h∂tξ‖ + hk+1). (3.47)828

If we take vh = 1 in the cell error equation and use an analysis similar to that in the829

proof of (3.40), we will get the following relation830

h− 1
2 |[∂�hξ ]| ≤ C(‖∂�h∂tξ‖ + hk+1). (3.48)831

123

Journal: 211 Article No.: 0833 TYPESET DISK LE CP Disp.:2016/8/5 Pages: 47 Layout: Small-X



R
ev

is
ed

Pr
oo

f

X. Meng, J. K. Ryan

A combination of (3.47) and (3.48) gives us832

‖(∂�hξ)x‖ + h− 1
2 |[∂�hξ ]| ≤ C(‖∂�h∂tξ‖ + hk+1).833

Therefore, (3.37b) still holds for α = �+ 1.834

Finally, let us verify that (3.37c) is valid for α = � + 1. Noting the assumption835

(3.42c), we need only consider |γ | = � + 1 and γ = (� + 1, 0). To do that, we start836

from the estimate for ‖∂γMξ‖ with γ = (0, �+ 1) that has already been established in837

(3.33). By an analysis similar to that in the proof of Lemma 8 and taking into account838

relations (3.37a) and (3.37b) for α = � + 1, we conclude that (3.37c) is valid for839

γ = (1, �). Repeating the above procedure, we can easily verify that (3.37c) is also840

valid for γ = (2, �− 1), . . . , (�, 1). Therefore, (3.37c) holds true for α = �+ 1, and841

thus (3.34) in Theorem 3 is valid for general α ≥ 1.842

4 Superconvergent error estimates843

For nonlinear hyperbolic equations, the negative-order norm estimate of the DG844

error itself has been established in [16]. However, by post-processing theory [5,11],845

negative-order norm estimates of divided differences of the DG error are also needed846

to obtain superconvergent error estimates for the post-processed solution in the L2
847

norm. Using a duality argument together with L2 norm estimates established in Sect.848

3, we show that for a given time T , the α-th order divided difference of the DG error849

in the negative-order norm achieves
(
2k + 3

2 − α
2

)
th order superconvergence. As a850

consequence, the DG solution uh(T ), converges with at least
( 3

2 k + 1
)
th order in the851

L2 norm when convolved with a particularly designed kernel.852

We are now ready to state our main theorem about the negative-order norm estimates853

of divided differences of the DG error.854

Theorem 4 For any 1 ≤ α ≤ k +1, let ∂αh u be the exact solution of the problem (2.1),855

which is assumed to be sufficiently smooth with bounded derivatives, and assume that856

| f ′(u)| is uniformly lower bounded by a positive constant. Let ∂αh uh be the numerical857

solution of scheme (2.2) with initial condition ∂αh uh(0) = Qh(∂
α
h u0) when the upwind858

flux is used. For a uniform mesh of � = (a, b), if the finite element space V α
h of859

piecewise polynomials with arbitrary degree k ≥ 1 is used, then for small enough h860

and any T > 0 there holds the following error estimate861

‖∂αh (u − uh)(T )‖−(k+1),� ≤ Ch2k+ 3
2 − α

2 , (4.1)862

where the positive constant C depends on u, δ, T and f , but is independent of h.863

Combining Theorems 4 and 1, we have864

Corollary 5 Under the same conditions as in Theorem 4, if in addition K ν,k+1
h is a865

convolution kernel consisting of ν = 2k +1+ω (ω ≥ �− k
2�) B-splines of order k +1866

such that it reproduces polynomials of degree ν − 1, then we have867
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‖u − u�h‖ ≤ Ch
3
2 k+1, (4.2)868

where u�h = K ν,k+1
h � uh.869

Remark 6 The ( 3
2 k + 1)th order superconvergence is shown for the negative k + 1870

norm, and thus is valid for B-splines of order k + 1 (by Theorem 1). For general order871

of B-splines � and α ≤ �, using similar argument for the proof of the negative k + 1872

norm estimates (see Sect. 4.1), we can prove the following superconvergent error873

estimate874

‖∂αh (u − uh)(T )‖−�,� ≤ Chk+ 3
2 − α

2 +�−1 ≤ Chk+ �+1
2 .875

Therefore, from the theoretical point of view, a higher order of B-splines �may lead to876

a superconvergence result of higher order, for example � = k + 1 and thus ( 3
2 k + 1)th877

order in Corollary 5. However, from the practical point of view, changing the order of878

B-splines does not affect the order of superconvergence; see Sect. 5 below and also879

[17].880

4.1 Proof of the main results in the negative-order norm881

Similar to the proof for the L2 norm estimates of the divided differences in Sect. 3.2,882

we will only consider the case f ′(u(x, t)) ≥ δ > 0 for all (x, t) ∈ � × [0, T ]. To883

perform the analysis for the negative-order norm, by (2.5), we need to concentrate on884

the estimate of885 (
∂αh (u − uh)(T ),	

)
(4.3)886

for 	 ∈ C∞
0 (�). To do that, we use the duality argument, following [16,19]. For the887

nonlinear hyperbolic Eq. (2.1), we choose the dual equation as: Find a function ϕ such888

that ϕ(·, t) is periodic for all t ∈ [0, T ] and889

∂αh ϕt + f ′(u)∂αh ϕx = 0, (x, t) ∈ �× [0, T ), (4.4a)890

ϕ(x, T ) = 	(x), x ∈ �. (4.4b)891
892

Unlike the purely linear case [11,15] or the variable coefficient case [19], the dual893

equations for nonlinear problems will no longer preserve the inner product of original894

solution ∂αh u and its dual solution ϕ, namely d
dt

(
∂αh u, ϕ

) = 0. In fact, if we multiply895

(2.1a) by ϕ and (4.4a) by (−1)αu and integrate over�, we get, after using integration896

by parts and summation by parts (2.6d), that897

d

dt

(
∂αh u, ϕ

) + F(u;ϕ) = 0, (4.5)898

where899

F(u;ϕ) = (−1)α
(

f ′(u)u − f (u), ∂αh ϕx
)
.900

Note that F(u;ϕ) is the same as that in [16] when α = 0. We now integrate (4.5) with901

respect to time between 0 and T to obtain a relation
(
∂αh u, ϕ

)
in different time level902
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(
∂αh u, ϕ

)
(T ) = (

∂αh u, ϕ
)
(0)−

∫ T

0
F(u;ϕ)dt . (4.6)903

In what follows, we work on the estimate of (4.3). To do that, let us begin by using904

the relation (4.6) to get an equivalent form of (4.3). It reads, for any χ ∈ V α
h905

(
∂αh (u − uh)(T ),	

)
906

= (
∂αh (u − uh)(T ), ϕ(T )

)
907

= (
∂αh u, ϕ

)
(0)−

∫ T

0
F(u;ϕ)dt − (

∂αh uh, ϕ
)
(0)−

∫ T

0

d

dt

(
∂αh uh, ϕ

)
dt908

= (
∂αh (u − uh), ϕ

)
(0)−

∫ T

0

((
(∂αh uh)t , ϕ

) + (
∂αh uh, ϕt

))
dt −

∫ T

0
F(u;ϕ)dt909

= G1 + G2 + G3,910
911

where912

G1 = (
∂αh (u − uh), ϕ

)
(0),913

G2 = −
∫ T

0

((
∂αh uht , ϕ − χ

) − H(∂αh f (uh), ϕ − χ)
)
dt,914

G3 = −
∫ T

0

((
∂αh uh, ϕt

) + H(∂αh f (uh), ϕ)+ F(u, ϕ))dt915

916

will be estimated one by one below.917

Note that in our analysis for ‖∂αh (u − uh)(T )‖ in Theorem 2, we need to choose918

a particular initial condition, namely ∂αh uh(0) = P−
h (∂

α
h u0) instead of ∂αh uh(0) =919

Pk(∂
α
h u0) for purely linear equations [11,15]. Thus, we arrive at a slightly different920

bound for G1, as shown in the following lemma. We note that using the L2 projection921

in the numerical examples is still sufficient to obtain superconvergence.922

Lemma 10 (Projection estimate) There exists a positive constant C, independent of923

h, such that924

|G1| ≤ Ch2k+1‖∂αh u0‖k+1‖ϕ(0)‖k+1. (4.7)925

Proof Since ∂αh uh(0) = P−
h (∂

α
h u0), we have the following identity926

G1 = (
∂αh (u − uh), ϕ

)
(0) = (

∂αh u0 − P−
h (∂

α
h u0), ϕ(0)− Pk−1ϕ(0)

)
,927

where Pk−1 is the L2 projection into V k−1
h . A combination of Cauchy–Schwarz928

inequality and approximation error estimates (2.10a) leads to the desired result (4.7).929

��930

The bound for G2 is given in the following lemma.931

Lemma 11 (Residual) There exists a positive constant C, independent of h, such that932

|G2| ≤ Ch2k+ 3
2 − α

2 ‖ϕ‖L1([0,T ];Hk+1). (4.8)933
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Proof Denoting by G the term inside the time integral of G2, we get, by taking934

χ = Pkϕ, the following expression for G,935

G = −H(∂αh f (uh), ϕ − Pkϕ),936

which is equivalent to937

G = − (
∂αh ( f (uh)− f (u)), (ϕ − Pkϕ)x

) + (
∂αh f (u)x , ϕ − Pkϕ

)
938

+
N∑

j=1

(
∂αh ( f (u)− f (u−

h ))[[ϕ − Pkϕ]]) j ′− 1
2

939

� G1 + G2 + G3,940
941

where we have added and subtracted the term
(
∂αh f (u), (ϕ − Pkϕ)x

)
and used inte-942

gration by parts.943

Let us now consider the estimates of G1,G2,G3. For G1, by using the second order944

Taylor expansion for f (u)− f (uh), (3.9), we get945

G1 =
(
∂αh

(
f ′(u)e − R1e2

)
, (ϕ − Pkϕ)x

)
946

= (
∂αh ( f ′(u)e), (ϕ − Pkϕ)x

) −
(
∂αh (R1e2), (ϕ − Pkϕ)x

)
947

� G lin
1 − Gnlr

1 ,948
949

where G lin
1 and Gnlr

1 , respectively, represent the linear part and the nonlinear part of G1.950

It is easy to show, by using the Leibniz rule (2.6b) and Cauchy–Schwarz inequality,951

that952

|G lin
1 | ≤ C

α∑
�=0

‖∂α−�
h e‖‖(ϕ − Pkϕ)x‖953

≤ C�h
2k+ 3

2 − α
2 ‖ϕ‖k+1, (4.9a)954

955

where we have used the estimate for ‖∂α−�
h e‖ in Corollary 3 and the approximation956

error estimate (2.10a). Analogously, for high order nonlinear term Gnlr
1 , we have957

|Gnlr
1 | ≤ C

α∑
�=0

‖∂α−�
h e2‖‖(ϕ − Pkϕ)x‖958

≤ C
α∑

m=0

‖∂m
h e‖∞‖∂α−m

h e‖‖(ϕ − Pkϕ)x‖959

≤ C�h
3k+ 5

2 − α
2 ‖ϕ‖k+1, (4.9b)960

961
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where we have used the (2.6b) twice, the inverse property (iii), the L2 norm estimate962

(3.2), and the approximation error estimate (2.10a). A combination of above two963

estimates yields964

|G1| ≤ C�h
2k+ 3

2 − α
2 ‖ϕ‖k+1. (4.10)965

To estimate G2, we use an analysis similar to that in the proof of G1 in Lemma 10966

and make use of the orthogonal property of the L2 projection Pk to get967

G2 = (
∂αh f (u)x − Pk(∂

α
h f (u)x ), ϕ − Pkϕ

) ≤ Ch2k+2‖∂αh f (u)x‖k+1‖ϕ‖k+1,

(4.11)968

where we have used the approximation error estimate (2.10a).969

We proceed to estimate G3. It follows from the Taylor expansion (3.9), the Leibniz970

rule (2.6b), the Cauchy–Schwarz inequality and the inverse properties (ii), (iii) that971

|G3| ≤ C
α∑
�=0

‖∂�he‖�h ‖ϕ − Pkϕ‖�h + C�

α∑
m=0

‖∂m
h e‖∞‖∂α−m

h e‖�h ‖ϕ − Pkϕ‖�h972

≤ Ch2k+ 3
2 − α

2 ‖ϕ‖k+1 + C�h
3k+ 5

2 − α
2 ‖ϕ‖k+1973

≤ Ch2k+ 3
2 − α

2 ‖ϕ‖k+1, (4.12)974
975

where we have also used (3.2) and (2.10a). Collecting the estimates (4.10)–(4.12), we976

get977

|G| ≤ Ch2k+ 3
2 − α

2 ‖ϕ‖k+1. (4.13)978

Consequently, the estimate for G2 follows by integrating the above inequality with979

respect to time. ��980

We move on to the estimate of G3, which is given in the following lemma.981

Lemma 12 (Consistency) There exists a positive constant C, independent of h, such982

that983

|G3| ≤ Ch2k+3− α
2 ‖ϕ‖L1([0,T ];Hk+1). (4.14)984

Proof To do that, let us denote by G4 the term inside the integral G3 and take into985

account (2.6d) to obtain an equivalent form of G4986

G4 = (−1)α
(
uh, ∂

α
h ϕt

) + (−1)α
(

f (uh), ∂
α
h ϕx

) + (−1)α
(

f ′(u)u − f (u), ∂αh ϕx
)

987

+
N∑

j=1

(
∂αh f (u−

h )[[ϕ]]) j ′+ 1
2

988

= (−1)α
(

f (uh)− f (u)− f ′(u)(uh − u), ∂αh ϕx
)
,989

990

where we have used the dual problem (4.4) and the fact that [[ϕ]] = 0 due to the991

smoothness of ϕ. Next, by using the second order the Taylor expansion (3.9) and992

(2.6d) again, we arrive at993

G4 =
(
∂αh (R1e2), ϕx

)
.994
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If we now use (2.6b) twice for ∂αh (R1e2) and the Cauchy–Schwarz inequality together995

with the error estimate (3.2), we get996

|G4| ≤ C
α∑
�=0

�∑
m=0

‖∂m
h e‖‖∂�−m

h e‖‖ϕx‖∞997

≤ C�h
2k+3− α

2 ‖ϕ‖k+1, (4.15)998
999

where we have also used the Sobolev inequality ‖ϕx‖∞ ≤ C‖ϕ‖k+1, under the con-1000

dition that k > 1/2. The bound for G3 follows immediately by integrating the above1001

inequality with respect to time. ��1002

We are now ready to obtain the final negative-order norm error estimates for the1003

divided differences. By collecting the results in Lemmas 10–12 and taking into account1004

the regularity result in Lemma 3, namely ‖ϕ‖k+1 ≤ C‖	‖k+1, we get a bound for1005 (
∂αh (u − uh)(T ),	

)
1006

(
∂αh (u − uh)(T ),	

) ≤ Ch2k+ 3
2 − α

2 ‖	‖k+1.1007

Thus, by (2.5), we have the bound for the negative-order norm1008

‖∂αh (u − uh)(T )‖−(k+1),� ≤ Ch2k+ 3
2 − α

2 .1009

This finishes the proof of Theorem 4.1010

5 Numerical examples1011

For nonlinear hyperbolic equations, we proved L2 norm superconvergence results of1012

order 3
2 k + 1 for post-processed errors, as shown in Corollary 5. The superconvergence1013

results together with the post-processing theory by Bramble and Schatz in Theorem1014

1 entail us to design a more compact kernel to achieve the desired superconvergence1015

order. We note that superconvergence of post-processed errors using the standard1016

kernel (a kernel function composed of a linear combination of 2k + 1 B-splines of1017

order k + 1) for nonlinear hyperbolic equations has been numerically studied in [11,1018

16]. Note that the order of B-splines does not have significant effect on the rate of1019

convergence numerically and that it is the number of B-splines that has greater effect1020

to the convergence order theoretically [11], we will only focus on the effect of different1021

total numbers (denoted by ν = 2k + 1 +ω with ω ≥ �− k
2�) of B-splines of the kernel1022

in our numerical experiments. For more numerical results using different orders of1023

B-splines, we refer the readers to [17].1024

We consider the DG method combined with the third-order Runge–Kutta method1025

in time. We take a small enough time step such that the spatial errors dominate. We1026

present the results for P2 and P3 polynomials only to save space, in which a specific1027

value of ω is chosen to match the orders given in Corollary 5. For the numerical1028

initial condition, we take the standard L2 projection of the initial condition and we1029
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Fig. 1 The errors in absolute value and in logarithmic scale for P2 (top) and P3 (bottom) polynomials
with N = 20, 40, 80 and 160 elements for Example 1 where f (u) = u2/2. Before post-processing (left),
after post-processing (middle) and post-processing with the more compact kernel (right). T = 0.3

have observed little difference if the Qh projection is used instead. Uniform meshes1030

are used in all experiments. Only one-dimensional scalar equations are tested, whose1031

theoretical results are covered in our main theorems.1032

Example 1 We consider the Burgers quation on the domain � = (0, 2π)1033

{
ut +

(
u2

2

)
x

= 0,

u(x, 0) = sin(x)
(5.1)1034

with periodic boundary conditions.1035

Noting that f ′(u) changes its sign in the computational domain, we use the Godunov1036

flux, which is an upwind flux. The errors at T = 0.3, when the solution is still1037

smooth, are given in Table 1. From the table, we can see that one can improve the1038

order of convergence from k + 1 to at least 2k + 1, which is similar to the results for1039

Burgers equations in [11]. Moreover, superconvergence of order 2k can be observed1040

for the compact kernel with ω = −2, as, in general, a symmetric kernel could yield1041

one additional order. This is why instead of ω = �− k
2� = −1, ω = −2 is chosen1042

in our kernel. The pointwise errors are plotted in Fig. 1, which show that the post-1043

processed errors are less oscillatory and much smaller in magnitude for a large number1044

of elements as observed in [11], and that the errors of our more compact kernel with1045

ω = −2 are less oscillatory than that for the standard kernel with ω = 0, although the1046

magnitude of the errors increase. This example demonstrates that the superconvergence1047

result also holds for conservation laws with a general flux function.1048
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Fig. 2 The errors in absolute value and in logarithmic scale for P2 (top) and P3 (bottom) polynomials
with N = 20, 40, 80 and 160 elements for Example 2 where f (u) = eu . Before post-processing (left),
after post-processing (middle) and post-processing with the more compact kernel (right). T = 0.1

Example 2 In this example we consider the conservation laws with more general flux1049

functions on the domain � = (0, 2π)1050

{
ut + (eu)x = 0,

u(x, 0) = sin(x)
(5.2)1051

with periodic boundary conditions.1052

We test the Example 2 at T = 0.1 before the shock is developed. The orders1053

of convergence with different kernels are listed in Table 2 and pointwise errors are1054

plotted in Fig. 2. We can see that the post-processed errors are less oscillatory and1055

much smaller in magnitude for most of elements as observed in [16], and that the1056

errors of our more compact kernel with ω = −2 are slightly less oscillatory than1057

that for the standard kernel with ω = 0. This example demonstrates that the accuracy-1058

enhancement technique also holds true for conservation laws with a strong nonlinearity1059

that is not a polynomial of u.1060

6 Concluding remarks1061

In this paper, the accuracy-enhancement of the DG method for nonlinear hyperbolic1062

conservation laws is studied. We first prove that the α-th order divided difference of the1063

DG error in the L2 norm is of order k + 3
2 − α

2 when piecewise polynomials of degree1064

k and upwind fluxes are used, provided that | f ′(u)| is uniformly lower bounded by a1065

positive constant. Then, by a duality argument, the corresponding negative-order norm1066

estimates of order 2k + 3
2 − α

2 are obtained, ensuring that the SIAC filter will achieve1067

at least ( 3
2 k + 1)th order superconvergence. As a by-product, we show, for variable1068
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coefficient hyperbolic equations with f (u) = a(x)u, the optimal error estimates of1069

order k + 1 for the L2 norm of divided differences of the DG error, provided that1070

|a(x)| is uniformly lower bounded by a positive constant. Consequently, the super-1071

convergence result of order 2k + 1 is obtained for the negative-order norm. Numerical1072

experiments are given which show that using more compact kernels are less oscillatory1073

and that the superconvergence property holds true for nonlinear conservation laws with1074

general flux functions, indicating that the restriction on f (u) is artificial. Based on our1075

numerical results we can see that these estimates are not sharp. However, they indicate1076

that a more compact kernel can be used in obtaining superconvergence results.1077

Future work includes the study of accuracy-enhancement of the DG method for1078

one-dimensional nonlinear symmetric/symmetrizable systems and scalar nonlinear1079

conservation laws in multi-dimensional cases on structured as well as unstructured1080

meshes. Analysis of the superconvergence property of the local DG (LDG) method1081

for nonlinear diffusion equations is also on-going work.1082

1083

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-1084

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,1085

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the1086

source, provide a link to the Creative Commons license, and indicate if changes were made.1087

7 Appendix1088

7.1 The proof of Lemma 51089

Let us prove the relation (3.24) in Lemma 5. Use the Taylor expansion (3.9) and the1090

identity (2.6b) to rewrite ∂h( f (u)− f (uh)) as1091

∂h( f (u)− f (uh)) = ∂h( f ′(u)ξ)+ ∂h( f ′(u)η)− ∂h(R1e2)1092

= f ′(u(x + h/2))ξ̄ + (∂h f ′(u))ξ(x − h/2)+ ∂h( f ′(u)η)1093

− R1(u(x + h/2))(∂he2)− (∂h R1)e
2(x − h/2)1094

� θ1 + · · · + θ5.1095
1096

This allows the error Eq. (3.6) to be written as1097

(ēt , vh) = �1 + · · · +�5, (7.1)1098

with �i = H(θi , vh) (i = 1, . . . , 5). In what follows, we will estimate each term1099

above separately.1100

First consider �1. Begin by using the strong form of H, (2.4b), to get1101

�1 = H( f ′(u)ξ̄ , vh) = − (
( f ′(u)ξ̄ )x , vh

) −
N∑

j=1

(
f ′(u)[[ξ̄ ]]v+

h

)
j .1102
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Next, let Lk be the standard Legendre polynomial of degree k in [−1, 1], so Lk(−1) =1103

(−1)k , and Lk is orthogonal to any polynomials of degree at most k − 1. If we now1104

let vh = ξ̄x − bLk(s) with b = (−1)k(ξ̄x )
+
j being a constant and s = 2(x−x j+1/2)

h ∈1105

[−1, 1], we arrive at1106

�1 = − (
∂x f ′(u)ξ̄ , vh

) − (
f ′(u)ξ̄x , ξ̄x − bLk(s)

)
� −X − Y, (7.2)1107

since (vh)
+
j = 0. On each element I j ′ = I j+ 1

2
= (x j , x j+1), by the lineariza-1108

tion f ′(u) = f ′(u j+ 1
2
) + ( f ′(u) − f ′(u j+ 1

2
)) with u j+ 1

2
= u(x j+ 1

2
, t) and noting1109 (

ξ̄x , Lk
)

j+ 1
2

= 0, we arrive at an equivalent form of Y1110

Y = Y1 + Y2, (7.3)1111

where1112

Y1 =
N∑

j=1

f ′(u j+ 1
2
)‖ξ̄x‖2

I
j+ 1

2

,1113

Y2 =
(
( f ′(u)− f ′(u j+ 1

2
))ξ̄x , ξ̄x − bLk

)
.1114

1115

By the inverse property (ii), it is easy to show, for vh = ξ̄x − bLk(s), that1116

‖vh‖ ≤ C‖ξ̄x‖.1117

Plugging above results into (7.1) and using the assumption that f ′(u(x, t)) ≥ δ > 0,1118

we get1119

δ‖ξ̄x‖2 ≤ Y1 =
5∑

i=2

�i − X − Y2 − (
ēt , ξ̄x − bLk

)
. (7.4)1120

We shall estimate the terms on the right side of (7.4) one by one below.1121

For �2, by the strong form of H, (2.4b), we have1122

�2 = − (
(∂h f ′(u)ξ)x , vh

) −
N∑

j=1

(
∂h f ′(u)[[ξ ]]v+

h

)
j = − (

(∂h f ′(u)ξ)x , vh
)
,1123

since (vh)
+
j = 0. Thus, by Cauchy–Schwarz inequality, we arrive at a bound for �21124

|�2| ≤ C�(‖ξ‖ + ‖ξx‖)‖ξ̄x‖. (7.5a)1125

A direct application of Corollary 2 leads to a bound for �31126

|�3| ≤ C�h
k+1‖ξ̄x‖. (7.5b)1127
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By using analysis similar to that in the proof of (3.13), we get1128

|�4| ≤ C�h
−1‖e‖∞(‖ξ̄‖ + hk+1)‖ξ̄x‖, (7.5c)1129

|�5| ≤ C�h
−1‖e‖∞(‖ξ‖ + hk+1)‖ξ̄x‖. (7.5d)1130

1131

By the Cauchy–Schwarz inequality, we have1132

|X | ≤ C�‖ξ̄‖‖ξ̄x‖. (7.5e)1133

Using the Cauchy–Schwarz inequality again together with the inverse property (i), and1134

taking into account the fact that | f ′(u)− f ′(u j+ 1
2
)| ≤ C�h on each element I j+ 1

2
, we1135

obtain1136

|Y2| ≤ C�‖ξ̄‖‖ξ̄x‖. (7.5f)1137

The triangle inequality and the approximation error estimate (3.3) yield that1138

| (ēt , vh) | ≤ C(‖ξ̄t‖ + hk+1)‖ξ̄x‖. (7.5g)1139

Finally, the error estimate (3.24) follows by collecting the estimates (7.5a)–(7.5g) into1140

(7.4) and by using the estimates (3.4a)–(3.4c), (3.17) and (3.14). This finishes the1141

proof of Lemma 5.1142

7.2 The proof of Lemma 71143

To prove the error estimate (3.26), it is necessary to get a bound for the initial error1144

‖ξt t (0)‖. To do that, we start by noting that ξ(0) = 0, and that ‖ξt (0)‖ ≤ Chk+1,1145

which have already been proved in [18, Appendix A.2]. Next, note also that the first1146

order time derivative of the original error equation1147

(ett , vh) = H(∂t ( f (u)− f (uh)), vh)1148

still holds at t = 0 for any vh ∈ V α
h . If we now let vh = ξt t (0) and use a similar1149

argument for the proof of ‖ξt (0)‖ in [18], we arrive at a bound for ‖ξt t (0)‖1150

‖ξt t (0)‖ ≤ Chk+1. (7.6)1151

We then move on to the estimate of ‖ξt t (T )‖ for T > 0. To this end, we take the1152

second order derivative of the original error equation with respect to t and let vh = ξt t1153

to get1154

(ettt , ξt t ) = H(∂t t ( f (u)− f (uh)), ξt t ),1155

which is1156

1

2

d

dt
‖ξt t‖2 + (ηt t t , ξt t ) = H(∂t t ( f (u)− f (uh)), ξt t ). (7.7)1157
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To estimate the right-hand side of (7.7), we use the Taylor expansion (3.9) and the1158

Leibniz rule for partial derivatives to rewrite ∂t t ( f (u)− f (uh)) as1159

∂t t ( f (u)− f (uh)) = ∂t t ( f ′(u)ξ)+ ∂t t ( f ′(u)η)− ∂t t (R1e2)1160

= (∂t t f ′(u))ξ + 2(∂t f ′(u))ξt + f ′(u)ξt t + (∂t t f ′(u))η1161

+ 2(∂t f ′(u))ηt + f ′(u)ηt t − (∂t t R1)e
2

1162

− 2(∂t R1)∂t e
2 − R1(∂t t e

2)1163

� λ1 + · · · + λ9.1164
1165

Therefore, the right side of (7.7) can be written as1166

H(∂t t ( f (u)− f (uh)), ξt t ) = �1 + · · · +�9 (7.8)1167

with �i = H(λi , ξt t ) (i = 1, . . . , 9), which will be estimated one by one below.1168

By (2.11a) in Lemma 1, it is easy to show for �1 that1169

|�1| ≤ C�
(
‖ξ‖ + ‖ξx‖ + h− 1

2 |[ξ ]|
)

‖ξt t‖1170

≤ C�
(

hk+1 + h− 1
2 |[ξ ]|

)
‖ξt t‖1171

≤ C�
(
‖ξt t‖2 + h−1|[ξ ]|2 + h2k+2

)
, (7.9a)1172

1173

where we have used the estimates (3.4a)–(3.4c) and also Young’s inequality. Analo-1174

gously,1175

|�2| ≤ C�
(
‖ξt‖ + ‖(ξt )x‖ + h− 1

2 |[ξt ]|
)

‖ξt t‖1176

≤ C�
(

hk+1 + ‖ξt t‖ + h− 1
2 |[ξt ]|

)
‖ξt t‖1177

≤ C�
(
‖ξt t‖2 + h−1|[ξt ]|2 + h2k+2

)
, (7.9b)1178

1179

where we have also used the estimate (3.4c) and the relation (3.25). A direct application1180

of (2.11b) in Lemma 1 together with the assumption that f ′(u) ≥ δ > 0 leads to the1181

estimate for �3:1182

|�3| ≤ C�‖ξt t‖2 − δ

2
|[ξt t ]|2. (7.9c)1183

Noting that ηt = ut − P−
h (ut ) and ηt t = utt − P−

h (utt ), we have, by Lemma 21184

|�4| + |�5| + |�6| ≤ C�h
k+1‖ξt t‖. (7.9d)1185

By an analysis similar to that in the proof of (3.13), we get1186

|�7| ≤ C�h
−1‖e‖∞(‖ξ‖ + hk+1)‖ξt t‖,1187
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|�8| ≤ C�h
−1‖e‖∞(‖ξt‖ + hk+1)‖ξt t‖,1188

|�9| ≤ C�h
−1(‖e‖∞ + ‖et‖∞)(‖ξt‖ + ‖ξt t‖ + hk+1)‖ξt t‖.1189

1190

Note that the result of Lemma 7 is used to prove the convergence result for the second1191

order divided difference of the DG error, which implies that k ≥ 1. Therefore, by1192

using the inverse property (iii), the superconvergence result (3.4a), (3.4c), and the1193

approximation error estimate (2.10b), we have for small enough h1194

C�h
−1‖e‖∞ ≤ C�h

−1(‖ξ‖∞ + ‖η‖∞) ≤ C�h
k ≤ C,1195

C�h
−1‖et‖∞ ≤ C�h

−1(‖ξt‖∞ + ‖ηt‖∞) ≤ C�h
k− 1

2 ≤ C,1196

where C is a positive constant independent of h. Consequently,1197

|�7| ≤ C(‖ξ‖ + hk+1)‖ξt t‖, (7.9e)1198

|�8| ≤ C(‖ξt‖ + hk+1)‖ξt t‖, (7.9f)1199

|�9| ≤ C(‖ξt‖ + ‖ξt t‖ + hk+1)‖ξt t‖. (7.9g)1200
1201

Collecting the estimates (7.9a)–(7.9g) into (7.7) and (7.8), we get, after a straight-1202

forward application of Cauchy–Schwarz inequality and Young’s inequality, that1203

1

2

d

dt
‖ξt t‖2 + δ

2
|[ξt t ]|2 ≤ C�

(
‖ξ‖2 + ‖ξt‖2 + ‖ξt t‖2 + h−1|[ξ ]|2 + h−1|[ξt ]|2 + h2k+2

)
1204

≤ C�
(
‖ξt t‖2 + h−1|[ξ ]|2 + h−1|[ξt ]|2 + h2k+2

)
,12051206

where we have used the estimates (3.4a) and (3.4c) for the last step. Now, we integrate1207

the above inequality with respect to time between 0 and T and combine with the initial1208

error estimate (7.6) to obtain1209

1

2
‖ξt t‖2 + δ

2

∫ T

0
|[ξt t ]|2dt ≤ C�

∫ T

0
‖ξt t‖2dt + C�h

−1
∫ T

0

(
|[ξ ]|2 + |[ξt ]|2

)
dt1210

+ Ch2k+2.1211

By the estimates (3.4a) and (3.4c) again, we arrive at1212

1

2
‖ξt t‖2 + δ

2

∫ T

0
|[ξt t ]|2dt ≤ C�

∫ T

0
‖ξt t‖2dt + Ch2k+1. (7.10)1213

Finally, using Gronwall’s inequality gives us1214

‖ξt t‖2 +
∫ T

0
|[ξt t ]|2dt ≤ C�h

2k+1, (7.11)1215

which completes the proof of Lemma 7.1216

123

Journal: 211 Article No.: 0833 TYPESET DISK LE CP Disp.:2016/8/5 Pages: 47 Layout: Small-X



R
ev

is
ed

Pr
oo

f

DG Divided Difference estimates for nonlinear conservation laws

7.3 The proof of Lemma 81217

To prove the error estimate (3.27), it is necessary to get a bound for the initial error1218

‖ξ̄t (0)‖. To do that, we start by noting that ξ(0) = 0, and thus ξ̄ (0) = 0, due to the1219

choice of the initial data. Next, note also that the error equation (3.6) still holds at1220

t = 0 for any vh ∈ V α
h . If we now let vh = ξ̄t (0) and use a similar argument for the1221

proof of ‖ξt (0)‖ in [18], we arrive at a bound for ‖ξ̄t (0)‖1222

‖ξ̄t (0)‖ ≤ Chk+1. (7.12)1223

We then move on to the estimate of ‖ξ̄t (T )‖ for T > 0. To obtain this, take the time1224

derivative of the error Eq. (3.6) and let vh = ξ̄t to get1225

(
ēt t , ξ̄t

) = H(∂t∂h( f (u)− f (uh)), ξ̄t ),1226

which is1227

1

2

d

dt
‖ξ̄t‖2 + (

η̄t t , ξ̄t
) = H(∂t∂h( f (u)− f (uh)), ξ̄t ). (7.13)1228

To estimate the right-hand side of (7.13), we use the Taylor expansion (3.9) and the1229

Leibniz rule (2.6b) to rewrite ∂t∂h( f (u)− f (uh)) as1230

∂t∂h( f (u)− f (uh))1231

= ∂h∂t ( f ′(u)ξ)+ ∂h∂t ( f ′(u)η)− ∂h∂t (R1e2)1232

= ∂h(∂t f ′(u)ξ)+ ∂h( f ′(u)ξt )+ ∂h(∂t f ′(u)η)+ ∂h( f ′(u)ηt )1233

− ∂h(R1∂t e
2)− ∂h(∂t R1e2)1234

= ∂t f ′(u(x + h/2))ξ̄ (x)+ ∂h(∂t f ′(u))ξ(x − h/2)+ f ′(u(x + h/2))ξ̄t (x)1235

+ ∂h f ′(u)ξt (x − h/2)+ ∂h(∂t f ′(u)η)+ ∂h( f ′(u)ηt )− R1(u(x + h/2))∂h(∂t e
2)1236

− ∂h R1∂t e
2(x − h/2)− ∂t R1(u(x + h/2))∂he2 − ∂h(∂t R1)e

2(x − h/2)1237

� π1 + · · · + π10.1238
1239

This allows the right side of (7.13) to be written as1240

H(∂t∂h( f (u)− f (uh)), ξ̄t ) = �1 + · · · +�10 (7.14)1241

with �i = H(πi , ξ̄t ) for i = 1, . . . , 10, which is estimated separately below.1242

By (2.11a) in Lemma 1, it is easy to show for �1 that1243

|�1| ≤ C�
(
‖ξ̄‖ + ‖ξ̄x‖ + h− 1

2 |[ξ̄ ]|
)

‖ξ̄t‖1244

≤ C�
(

hk+1 + ‖ξ̄t‖ + h− 1
2 |[ξ̄ ]|

)
‖ξ̄t‖1245

≤ C�
(
‖ξ̄t‖2 + h−1|[ξ̄ ]|2 + h2k+2

)
, (7.15a)1246

1247
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where we have used the estimate (3.17), the relation (3.24), and also the Young’s1248

inequality. Analogously, for �2 and �4, we apply Corollary 1 to get1249

|�2| ≤ C�
(
‖ξ̄t‖2 + h−1|[ξ ]|2 + h2k+2

)
, (7.15b)1250

|�4| ≤ C�
(
‖ξ̄t‖2 + ‖ξt t‖2 + h−1|[ξt ]|2 + h2k+2

)
, (7.15c)1251

1252

where we have also used the estimates (3.4a)–(3.4c), and the relation (3.25). A direct1253

application of (2.11b) in Lemma 1 together with the assumption that f ′(u) ≥ δ > 01254

leads to the estimate for �3:1255

|�3| ≤ C�‖ξ̄t‖2 − δ

2
|[ξ̄t ]|2. (7.15d)1256

Noting that ηt = ut − P−
h (ut ), we have, by Corollary 21257

|�5| + |�6| ≤ C�h
k+1‖ξ̄t‖. (7.15e)1258

By an analysis similar to that in the proof of (3.13), we get1259

|�7| ≤ C(‖ξt‖ + ‖ξ̄t‖ + hk+1)‖ξ̄t‖, (7.15f)1260

|�8| ≤ C(‖ξt‖ + hk+1)‖ξ̄t‖, (7.15g)1261

|�9| ≤ C(‖ξ̄‖ + hk+1)‖ξ̄t‖, (7.15h)1262

|�10| ≤ C(‖ξ‖ + hk+1)‖ξ̄t‖. (7.15i)1263
1264

Collecting the estimates (7.15a)–(7.15i) into (7.13) and (7.14), we get, after a1265

straightforward application of Cauchy–Schwarz inequality and Young’s inequality,1266

that1267

1

2

d

dt
‖ξ̄t‖2 + δ

2
|[ξ̄t ]|2 ≤ C�

(
‖ξ̄t‖2 + ‖ξ‖2 + ‖ξt‖2 + ‖ξt t‖2 + ‖ξ̄‖2

1268

+ h−1|[ξ ]|2 + h−1|[ξt ]|2 + h−1|[ξ̄ ]|2 + h2k+2
)

1269

≤ C�
(
‖ξ̄t‖2 + h−1|[ξ ]|2 + h−1|[ξt ]|2 + h−1|[ξ̄ ]|2 + h2k+1

)
,1270

1271

where we have used the estimates (3.4a), (3.4c), (3.17) and (3.26) in the last step. Now,1272

we integrate the above inequality with respect to time between 0 and T and combine1273

with the initial error estimate (7.12) to obtain1274

1

2
‖ξ̄t‖2 + δ

2

∫ T

0
|[ξ̄t ]|2dt ≤ C�

∫ T

0
‖ξ̄t‖2dt + C�h

−1
∫ T

0

(
|[ξ ]|2 + |[ξt ]|2 + |[ξ̄ ]|2

)
dt1275

+ Ch2k+1.1276
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By the estimates (3.4a), (3.4c) and (3.17) again, we arrive at1277

1

2
‖ξ̄t‖2 + δ

2

∫ T

0
|[ξ̄t ]|2dt ≤ C�

∫ T

0
‖ξ̄t‖2dt + Ch2k+1.1278

Finally, Gronwall’s inequality gives1279

‖ξ̄t‖2 +
∫ T

0
|[ξ̄t ]|2dt ≤ C�h

2k+1. (7.16)1280

This completes the proof of Lemma 8.1281

7.4 The proof of Lemma 91282

We will only give the proof for |a(x)| ≥ 0, for example a(x) > 0; the general case1283

follows by using linear linearization of a(x) at x j in each cell I j and the fact that1284

|a(x) − a(x j )| ≤ Ch. For a(x) > 0, by Galerkin orthogonality, we have the error1285

equation1286

(et , vh) = H(a e, vh),1287

which holds for any vh ∈ V α
h . If we now take m-th order time derivative of the above1288

equation and let vh = ∂m
t ξ with ξ = P−

h u − uh , we arrive at1289

1

2

d

dt
‖∂m

t ξ‖2 +
(
∂m+1

t η, ∂m
t ξ

)
= H(a ∂m

t ξ, ∂
m
t ξ)+ H(a ∂m

t η, ∂
m
t ξ). (7.17)1290

By (2.11b) and the assumption that a(x) > 0, we get1291

H(a∂m
t ξ, ∂

m
t ξ) ≤ C‖∂m

t ξ‖2 − δ

2
|[∂m

t ξ ]|2.1292

It follows from Lemma 2 that1293

H(a∂m
t η, ∂

m
t ξ) ≤ Chk+1‖∂m

t ξ‖.1294

Inserting above two estimates into (7.17), we have1295

1

2

d

dt
‖∂m

t ξ‖2 ≤ C‖∂m
t ξ‖2 + Ch2k+2,1296

where we have used the approximation error estimates (2.10a) and Young’s inequality.1297

For the initial error estimate, we use an analysis similar to that in the proof of (7.6) to1298

get1299

‖∂m
t ξ(0)‖ ≤ Chk+1.1300

To complete the proof of Lemma 9, we need only to combine above two estimates and1301

use Gronwall’s inequality.1302
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