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In this paper, we investigate the accuracy-enhancemenltéadiscontinuous Galerkin (DG) method for
solving one-dimensional nonlinear symmetric systems @iehlyolic conservation laws. For nonlinear
equations, the divided difference estimate is an import@witthat allows for superconvergence of the
post-processed solutions in the lot&Inorm. Therefore, we first prove that thé norm of thea-th or-
der(1< a <k+ 1) divided difference of the DG error with upwind fluxes is of eréd + % — . provided
that the flux Jacobian matrixX,(u), is symmetric positive definite. Furthermore, using thelibpargu-
ment, we are able to derive superconvergence estimatedef % — § for the negative-order norm,
indicating that some particular compact kernels can be tesegtract at Ieas(t%k+ 1)th order supercon-
vergence for nonlinear systems of conservation laws. Nigalezxperiments are shown to demonstrate

the theoretical results.

Keywords discontinuous Galerkin method; nonlinear symmetric eayst of hyperbolic conservation
laws; negative-order norm estimates; post-processingjeti difference.

1. Introduction

Smoothness-Increasing Accuracy-Conserving (SIAC) filteallows for extracting a higher-order accu-
rate solution from the discontinuous Galerkin (DG) appneeiion, which can aid in reducing approx-
imation errors.The motivation for this study is thahe accuracy enhancing capabilities of the SIAC
filter (Ryanet al, 2005; Mirzaeeet al., 2011) for the DG method requires establishing convergence
characteristics for the divided difference of the erreee Theorem 2.1 beloun Meng & Ryan (2017),

this was done for nonlinear scalar hyperbolic conservdtars. However, extending these estimates
to nonlinear hyperbolic systems is more challenging. A ma&ar system of hyperbolic conservation
laws is a more general model arising from fluid dynamics. Qrod snodel is the Euler equations in gas
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dynamics. In this paper we concentrate on the theoretichcamputational aspects of the accuracy-
enhancement of DG methods for solving one-dimensionalineat systems of conservation laws of
the form

uw+ f(u), =0, (x,t) € (a,b) x (0,T], (1.1a)
u(x,0) = up(x), xe Q = (a,b), (1.1b)

whereu(x) is a given smooth initial function. Hene= (uy,...,um)" is the unknown vector-valued
solution, andf (u) = (fy(u),..., fm(u))T with fi(u) = fi(uy,...,um) (i = 1,...,m) is the given flux
function. The nonlinear flux functiori(u) is assumed to be sufficiently smooth with respect to the
the exact solutiom, andu is a smooth function ox. In this paper, periodic boundary conditions are
assumed, which, however, is not essential. We show thdttherm of thea-th order(1 < a < k+ 1)
divided difference of the DG error achievdst % — 9)th order using upwind fluxes, provided that the
flux Jacobian matrixf’(u) := df /du is positive definite. By a duality argument, a superconvetrge
negative-order norm estimate of ordd«{% — § is further obtained. This allows for extracting the
hidden accuracy of at Iea@k—l— 1)th order for nonlinear systems of conservation laws, irtttigathat

it is possible to use a more compact kernel with fewer B-gslin

The DG method has an inherent superconvergence properish s attracted the attention of
many researchers for solving the first-order hyperboliatigus (see, e.g., Adjerit al, 2002; Adjerid
& Massey, 2006; Adjerid & Weinhart, 2009, 2011; Cabal,, 2014; Cheng & Shu, 2010; Cockburn
et al, 2003; Guoet al, 2013; Ryaret al., 2005; Stefferet al, 2008; Yang & Shu, 2012), high order
equations (see, e.g., Celiker & Cockburn, 2007etJal., 2012; Hufford & Xing, 2014; Menget al.,
2012b) and elliptic problems (see, e.g., Adjerid & Baccquabil2; Cockburret al, 2009). One of
the superconvergence properties that allows for supeergance extraction through SIAC filtering is
the negative-order norm estimates. The post-processihgitgue makes use of information contained
in the negative-order norm entailing that a special coriafukernel can be constructed to extract the
hidden accuracy. This is performed only at the very end oftimeputation. Some superconvergent post-
processing results of DG methods for hyperbolic equatioas@ailable in the literature. Motivated by
the work of Bramble and Schatz for elliptic equations in Boden& Schatz (1977), Cockburet al.
(2003) established the post-processing theory for DG nastifar hyperbolic equations that expresses
the post-processed solutions in thé norm in terms of the divided difference error estimates @ th
negative-order norm. Later, Ryan et al. investigated mifieaspects of the SIAC filters (see, e.g., Ryan
& Shu, 2003; Curtiet al,, 2007; Stefferet al,, 2008).

From the post-processing theory in Bramble & Schatz (197Ad)@ockburret al. (2003), it is ev-
ident that negative-order norm error estimates of the dividifferences are essential tools that allow
for extracting superconvergent estimates of the postgased solutions in the? norm. We note that,
unlike purely linear equations (Cockbuenal, 2003; Jiet al, 2012), superconvergent estimates about
the post-processed solution for quasi-linear/nonlingaatons require establishing both th&norm
and negative-order norm estimates of divided differen€dsDG error. For example, for linear hyper-
bolic equations with variable coefficient, negative-ondem error estimates of the divided differences
are shown in Mirzaeet al. (2011), and the correspondihg norm estimates are provided in Meng &
Ryan (2017).

Let us now mention a particular work that investigates amcyenhancement and divided difference
error estimates of DG methods for scalar nonlinear hypérbohservation laws (Meng & Ryan, 2017).
Specifically, the analysis starts from a superconvergesgdtrof the DG solution towards a particular
projection of the exact solution (supercloseness). Thgeshablishing important relations between the
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spatial derivatives and time derivatives of a particulajgction of divided differences of DG errors and
further by analyzind.2 estimates of the time derivatives of the error, we were abléerive a useful
L2 norm error estimates for the divided difference. Next, sopevergent negative-order norm error
estimates for the divided difference are obtained whicheddppn a suitable construction of the dual
problem for the divided difference of the nonlinear scalgvdrbolic conservation laws.

To set a solid theoretical foundation of the post-procesnhnique for more general problems that
are useful in computational fluid dynamics, it is therefoeegssary to study the accuracy enhancement
of DG methods for nonlinear (symmetric) systems of hypecdmmnservation laws. The generalization
from the scalar nonlinear case to systems of nonlinear ceatsen laws in this paper involves both
similarities and further difficulties and thus some new tegbes are needed. As for the similarities, we
would like to mention that an energy analysis is used andofadpansion is employed to deal with the
nonlinearity of the flux function. Another similarity is théne superconvergence analyses both indicate
a possible link between supercloseness and negativetwdarestimates; see the detailed proof below
and also in Meng & Ryan (2017).

As indicated in Meng & Ryan (2017), the first main difficultysing fromL? norm estimates of the
divided difference of the particular projection of the DGagrcan be handled by establishing impor-
tant relations between the spatial derivatives and timevalares of a particular projection of divided
differences of DG errors. However, another essential difffan this paper is treating estimates of the
divided difference of the projection error as the projetfior the nonlinear systems is no longer linear.
Note that the projection for the system case is construcisddon the local characteristic decomposi-
tion, and therefore, by Leibniz rule, the main difficulty isitched to estimating the divided difference
of R, whose columns are the right eigenvectors of the flux Jaodtia) linearized at the center of each
cell. To this end, we propose to analyze the eigenstructfré§u) and find thaiR can be expressed
in terms of the components df (u) as well as its eigenvalues. Further, noting that the entieR
are compositions of some smooth functions, and using thia chie for divided differences (see, e.g.,
Floater & Lyche, 2007) as well as the chain rule for derivediyFaa di Bruno’s Formula), we conclude
that the leading term of the divided differenceR®fs a constant matrix. This finding together with the
fact that the divided difference of the projection error tod tharacteristic variable is in possession of
optimal approximation error estimate leads to the desksdlts in Corollary 2.2 and Corollary 3.1.

There are some other difficulties in deriving superconvergeror estimates of DG methods for
nonlinear systems of conservation laws. As mentioned befosupercloseness result about a special
projection of the DG error (denoted ly:= Pu— u, = Pe) needs to be established, which is a starting
point in advancind.? norm estimates for high order divided differences. In otdedo this, unlike
Meng & Ryan (2017) or Mengt al. (2012a), we express tHe? norm of &, in terms of the jump
seminorm of€ rather than thd.? norm of &; see Lemma 3.3 below and Lemma 3.7 in Me=ial.
(2012a). Additionally, to perform error estimates for a logar system of hyperbolic conservation
laws, the properties of the divided difference for compoginctions and clear definitions of the special
Gauss—Radau projection as well as the upwind numerical floxld also be illustrated. Finally, we
would like to point out that it is not trivial for the two-dinnsional extension, especially for establishing
the relations between spatial derivatives and time dévesbf the errors that are used to derive a sharp
bound for theL.? norm of divided differences of the DG error.

This paper is organized as follows. In Section 2, we give teddheme for the divided differences
of nonlinear systems of hyperbolic conservation laws, aredgnt some preliminaries especially for the
properties of divided differences as well as the DG spafpatator. In Section 3, we state and discuss the
L2 norm error estimates for divided differences of nonlingatams of hyperbolic conservation laws,
and then display the main proofs for a supercloseness @sdltivided difference estimates. Further,
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superconvergent negative-order norm error estimatesiaea @1 Section 4. In Section 5, numerical

experiments are shown to demonstrate the theoreticaltses0bncluding remarks and comments on
future work are given in section 6. Finally, in the appendpvovide the proofs for some of the more
technical lemmas.

2. The DG schemeand preliminaries
2.1 The DG scheme

In this section, we follow Cockburet al.(1989), Meng & Ryan (2017) and present the DG scheme for
divided differences of nonlinear system of hyperbolic emation laws (1.1).

The standard notation of the DG method is used here. We useéisba = Xp <Xg <o <
XN4d = bto cover the domai® = (a,b), and sek; = (xjf% +xj+%)/2. To facilitate analysis of divided
difference estimates, we introduce two overlapping unifareshes fof2, denoted by; = (Xj,% ,XH%)
andIH% = (Xj,Xj+1) with mesh sizeh = Xjp1 = X1 Associated with these meshes, the following
discontinuous finite element space are defined

. ! .
Vi = {ve L2(Q%) )y, € P(lp), Vi = j+ 5.0 =amod2j=1...N},

whereL?(Q%) := [L2(Q®)]M with Q% = (a+ 5h,b-+ 5h), PX(1;/) == [PX(1;))]™, andPX(1}/) is the space

of polynomials of degree at moson the celll; := (xj,f%,xj%% ). Here and in what followsy denotes
the a-th order divided difference of a smooth or piecewise funttihat is
= L5 1y (Y w(x+ (Y—i) h) 2.1)
h hy i; i 2 ' ‘

In particular, ifa is even, we sé!/r‘]’”k = V. Noting that functions ir\/rf"'k are allowed to have discon-
tinuities across cell interfaces, we usg andw;" to represent the left and right limits @f(x) at the
discontinuity pointx;. Furthermore, at each element boundary point, the jumptenchean ofv(x) are
denoted byjw] =w' —w~ and{w} = 1(w" +w"), respectively.

Thea-th order divided difference of the nonlinear systems ofsesuation laws (1.1) is

09w + a7 f (u), =0, (xt) € Q9 x (0,T], (2.2a)
A5'u(x,0) = 9% up(x), xe QY. (2.2b)

We are now ready to define the DG scheme for (2.2). That is 4fruh € V,f”k such that the following
weakformulation

((ak?uh)tvvh) il = j{j’ (aﬁ f (uh)avh) (2-3)

is satisfied for aliy, € Vrf”k andj=1,...,N, whereX; (-,-) represents the DG spatial discretization
operator defined on each céli, i.e.,

T

Hjr (W, V) = (W, W) s — ((v*)T\iv)j,Jr% + (V)W) g

As usual,(-,-);; denotes the standard inner producL?ndj/), i.e., (W), = _ﬁj/ w'v dx
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Similar to the scalar nonlinear conservation laws in MengysaR (2017), the numerical fluk. il

is chosen to be an upwind flux. For completeness, in whatfsllee shall present the detailed deﬁnmon
of upwind flux for (2.3). The idea is based on the local chanastic decomposition. Following Cock-
burnet al. (1989) and Zhang & Shu (2006), consider the Jacobian i, 1/5) := f'(u)|u- Uy

The corresponding eigenvalues, left and right eigenveaoe denoted by, 4i,ri (i=1,...,m), nor-
malized so thalmrn = dmn. Further, at each cell boundary pou]t+% the numerical fluxf +1=

f((un): /+1,(uh) : 1) is determined by the following procedure.

1. Transformf (u) to the eigenspace df (Uj11/2), 1.8

vii:&f(uﬁ), i=1 m.

geeey

2. Apply the scalar upwind setting t& in theith characteristic fieldi = 1,...,m), and the numer-
ical flux Vi depends on the sign af, i.e.,

o Ju. ifxzo
T, if A <oO.

12

3. The result is transformed back to the physical field to?qut%, namely

N m

fj,+% ZiZ\A/iri.

Moreover, analysis df2 norm error estimates of divided differences requires theftux Jacobian
matrix f'(u) is positive definite. That is, eigenvaluesﬁ(ujurl/z) are all positive. It follows from the

above procedure thér] 1= f((un);, +1). Consequently,
2

Hir (W, V) = (Vo, W) s — ((v*)Tw*)H% 1 ((v*)Tw*)j_% (2.4a)
— (v, W) — ((vF)T[w]) i1 (2.4b)
For periodic boundary conditions, the removaljboin 7(;; denotes the sum of dl, i.e.,
A T
H(W,V) = (vx,w)+;1([[v]] w )J.,+% (2.5a)
N
= — (V,Wy) — ((v*)T[[w]])j_%, (2.5b)

=1

where(v,w) = zﬂ-\‘:l(v,w)j/ denotes the inner product Lf(Q%). Here and below, in order to distin-
guish two overlapping meshes the summation is calculatédrespect tg rather thanj’.
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2.2 Preliminaries

In this section, we introduce the necessary norms, projestand inequalities that will be useful in our
analysis. We begin by noting th@tis used to denote a generic positive constant which is inukgrg

of h but may depend on the exact solutieras well as its time and spatial derivatives. Moreover, we
denote byC, a nonnegative constant that depends on higher order (askeesnd order) derivatives of
f(u).

2.2.1 Sobolev spaces and normg-or systems of conservation laws discussed in this papexouél
like to use||-||y, to represent the 2-norm (length) of a vector, or the specai of a real matrix,

respectively. Specificallyiv||y, = 1/ 3™,V for any vectow = (vi,Vz,...,vm)T, and||Ally, = \/p(ATA)
for any real matrixA, i.e.,||Al|,, is the square root of the largest eigenvalue of the pos#éraidefinite
matrix ATA. Furthermore, ifA is symmetric, thef{A||,, = p(A). For any matrix-valued functioA and
vector-valued functionw, v, the following Cauchy—Schwarz inequality is helpful in analysis

(WTAV] < [|Ally (Wil [V (2.6)

The Sobolev spaces can be easily defined for the vectord/lunetion space. To be more spe-
cific, for any integers > 0, we uséW>P(D) := [WSP(D)]™ to denote the vector-valued Sobolev space
on subdomaird C Q with the norm|-||s, . In particular, ifp = 2, we seW>P(D) = H%D), and

Illspo = Il-Ilsp @nd further ifs= 0, we set]-|lgp = ||-llp with V|5 = 1/ o [VIl§g dx If p=e0,5=0,
we seWSP(D) = L*(D), and|lls p.p = ||l p With [V, p = €SS SUR-p [[V(X) |- For simplicity, when
D = Q, we will omit the indexD. The norms of matrix-valued Sobolev space can be define@isame
way. Moreover, we us€y, to denote the union of all elements, i.&, = {D}, and the norm obroken
Sobolev space®/SP(Qp) := {ve L?(Q) : v|p € WSP(D), VYD C Qy} can be easily defined, which is
a formal sum of the contribution to each elemént Besides, fov € H1(Qy), the L2 norm at cell
boundaries and themp seminornare defined as follows

N 2 2 % N )
Ivilg, = (j;(nvt1/2||M+||vy+1/2|M)> . M= (gmvﬂ,-/l/ﬂm)

Finally, the negative-order norm is defined as

1
2

V[, o= sup v, ) (2.7)

occe) 19l

Note that the negative-order norms can be used to detecstillations of a function around zero; for
more details, see Cockbuetal.(2003).

2.2.2 Local focus shifting (linearization). Since the linearization technique is repeatedly used in
analysis for nonlinear problems, we present the followmgguality regarding local focus shifting (lin-
earization) for nonlinear systems. LBbe a matrix-valued function, for examge= f'(u), or & f’(u),
which is assumed to be smooth enough with respeat tbhen their focus shifting (i.e., change of the
vector at which the function is evaluated) satisfies thefaithg Lipschitz continuity

[B(W) = B(V)[[m < CelW—Vly (2.8)
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due to the well-known Wielandt—Hoffman Theorem (Golub & \tavan, 2012), wherw andv are two
local focuses. Note that (2.8) will be useful in our later lgsis, especially for the estimates to the
projection errors.

2.2.3 Properties for the divided differencesAs indicated in Meng & Ryan (2017), one of the most
important tools in derivind-2 and negative-order norm error estimates of the dividededifice for
nonlinear equations is the properties of divided diffeemdNote that it is straightforward to extend the
properties of divided differences from the scalar case ¢éovictor/matrix case. In what follows, we
only list these properties without proof and refer the reade Meng & Ryan (2017) for more details.
Specifically, we would like to list the Leibniz rule and thdation between divided differences and
derivatives.

For any vector-valued functiom andyv, the following Leibniz rule holds

9 (W(X)V(x)) = ii <}’) diw (x+ %h) & v (x— lzh) . (2.9)

Note that (2.9) is still valid even ¥ andv are piecewise functions with possible discontinuitieseadit ¢
interfaces or they are composite functionswlfs the composition of a smooth matrix-valued function
G and a smooth vector-valued functiani.e.,w(x) := G(u(x)), we can prove the following property

3/G(u(x)) = 3YG(u(x)) +C/hW¥y(x), (2.10)

whereC, is a positive constant aridly is a smooth matrix-valued function. This is because theddii
difference of a matrix-valued function is a matrix resuitirom applying the divided difference operator
to its each component, and the scalar/componentwise we§{@.10) has already been proved in Meng
& Ryan (2017). We would like to remark that the property (3.B0very useful in proving Corollary
2.1.

2.2.4 Projections and interpolation properties.Prior to giving the definition of Gauss—Radau pro-
jections for the system case, let us recall two kinds of scatuss—Radau projections ir\lp‘ﬁ”k ={ve
L2(Q%) VPRS Py, Vi'=j+5,0=amod2j=1,..,N}. Thatis, forqe H(Qy), the local
Gauss—Radau projection gfs the unique function iﬂ’k(lj,) such that, for eaclf
(@=Pa,z);, =0, Vane Py, (a=Pa),, 4 =0; (2.11a)
(@-P*a.z), =0, VaeP ), (9-PTq)f ;=0 (2.11b)

A
F=3

To define the projection for the system case, we considerttmbian matrixf’ (uj/) := f/(u)|u:uj,
with uy = u(xj,t). The corresponding eigenvalues, left and right eigenveete denoted by, 4, r
(i=1,...,m), normalized so thafmrn = dmn. Thus, on each cell/, the Gauss—Radau projection of a
vector-valued functiom, denoted byPu, is the unique function iﬂ’k(lj/) determined by the following

procedure.

1. Transformuto the eigenspace df (u;/), i.e.,

vi=4iu i=1....m
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2. Apply the scalar Gauss—Radau projection (2.11) tn theith characteristic fieldi = 1,...,m),
and the projectio®v; depends on the sign af, i.e.,

P~v;, ifA >0,
Pv, = .
PTvi, if Aj <O.

3. The result is transformed back to the physical field tafget

m
Pu= ZLPVi r.
=

Note that the above Gauss—Radau projection has been usedite dptimal convergence results of
the fully-discrete DG scheme for nonlinear systems of comd®n laws, when the upwind flux is
considered; see Luet al. (2015).

In particular, if the flux Jacobian matri (u) is always positive definite far andx, thenPu = RPv
with R= (ry,---,rm) andPv = P~v = (P~vy,...,P vy)". Further, denoting by}, = v— Pv and
n, = u-"Pu, we have than, = Rn,, sinceu = Rv. Note thatR is a constant matrix in each element
l; due to the local Iinearizatiof{(uj/), we conclude, by the definition of scalar Gauss—Radau fiojec
P~ in (2.11a), that for eacly,

(u—Pu,z,); =0, Vz,€P(Ip), (u—Fu), ,=0. (2.12)
2

Moreover, foru € WK1 (Qy,), by a standard scaling argument (Ciarlet, 1978; Brenner@&tS2007),
we have

gl +hll WL+ 020l < SR Ul g, (2.13a)

INylle < CH Ul g oo (2.13b)

whereC is independent offi.
Finally, we list some inverse properties of the finite eletniimalceV,f“k for the one-dimensional

case. For ang e Vh"’k, there exists a positive inverse const@nhdependent off andh, such that
. _ . _1 1
(i) loall < Ch~*fal; (i) [lall; < Ch Z[lal; (i) all., <Ch Z|ql.
2.2.5 Properties of the DG discretization operatorThe following properties of the DG discretization

operator are useful in the proof bf norm divided difference estimates.

LEMMA 2.1 (Meng & Ryan, 2017) Suppose that the matrix-valued fon@(u(x,t)) (G= f'(u), 4 f'(u)

etc) is smooth with respect to each variable. Then, forwnye Vrf”k, there holds the following in-
equality
1
TC(GW.v) < C. (|| + [ wil| + h~2 [wi] ) v, (2.142)

and in particular, ifG = f'(u) is real positive definite (and thu&, > 31 with & > 0 being the smallest
eigenvalue ofc andl the identity matrix), there holds

o
3 (Gw, W) < G |[w]|* — 5 [W]*. (2.14b)



DG METHODS FOR NONLINEAR SYMMETRIC SYSTEMS OF CONSERVATIONAWS 9 of 28

Proof. The proof of (2.14a) follows by considering the equivalstnongform of H, (2.5b). To prove
(2.14b), we apply integration by parts to each diagonal attdiagonal term of the quadratic form
(wy, Gw) to get the following compact form

N
H(Gw,w) = —% (W, GW) + X ([[w]]TG (W — {{w}})) -1
J:
:—}(dew)—}i([[w]]TG[[w]]). 1
2 X 2 i'~3

=1

o
<C.wi2— S W,

where we have also used the Cauchy—Schwarz inequalityi(2tiég last step. O

COROLLARY 2.1 (Meng & Ryan, 2017) Under the same conditions as in Lemrbave have, for
small enougth,

H((@ GIW.v) < C. (W] + [wxl| + ™2 [w] ) v, va > 0. (2.15)

Proof. The proof follows by combining the relation (2.10) and (214 Lemma 2.1. O

LEMMA 2.2 Suppose that the matrix-valued funct®fu(x,t)) (G= f’(u), 4 f'(u) etc) is smooth with
respect to each variable. Then, for any H*"1(Q;) andz ¢ V,f”k there holds

H (G(u—Pu),2) < C,h*?| |, (2.16a)
H (G(u—Pu),2) < C,h | 2. (2.16b)

Proof. We need only to prove (2.16a), since, by inverse inequd)ity4.16b) is a direct consequence.
Using the exact collocation property of the projectibm (2.12), we have

H(G(u—"Pu),z) = (z,G(u—Pu)).

Next, on each cell;;, we use the local linearization approach to rewBi@u(x,t)) asG(u) = G(u;y/) +
(G(u) — G(uy)) with uj = u(xj,t). Clearly, on each elemeht, by (2.8), we havéG(u) — G(uy/) |, =
esssup o [|G(u) — G(uy) ||, < C.hdue to the smoothness Gfandu. Using the orthogonality prop-
erty of the projection® andP, (2.12), we arrive at
H(G(u—"Pu),z) = (2, (G(u) — G(uj))(u—Pu))
< [[G(u) = G(uy) [ |2/ u—Pul|
<CHz,

where we have used the Cauchy—Schwarz inequality (2.6 )renagproximation property (2.13a)]

COROLLARY 2.2 Under the same conditions as in Lemma 2.2, we have, fdt enaughh,

H (3% (G(u—Pu)),2) < C,h?Y|z|, va >o0. (2.17)
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Proof. The casex = 0 has been proved in Lemma 2.2. For> 1, by the Leibniz rule (2.9) and
using the fact thatt — Pu = R(v— P~v) with R being the matrix composed of the right eigenvectors
of f’(uj/) and that both the divided difference operator and the ptioje©peratoP~ are linear, we
rewrite g (G(u—Pu)) as

6 (G(u—Pu)) =

2 IMQ
VR
~ Q
~_
=

®
RN
x
+
Q
N
>
~_
=
L
c
|
=
(=
S—
RN
X
|
NI
>
~_

(1>

2(7) ij (") )erw-r o

86 (x+ T3 7n) ReaiR (e T2 n) v gp v ().

with

Note that we have a uniform mesh as these operators don’t céerfior a nonuniform mesh. Note also
thatR s a piecewise constant matrix in edghthat depends ofi’(uj/). Thus,

H (98 (G(u—Pu)),2) = i(j) azj (“ ; Z) 3 (GRW-PY),2). (2.18)
/= y=

Clearly, by (2.10),é is also a smooth matrix-valued function with respect to eatable with the
leading termd.G (x+ “T*”h) Moreover, the properties (2.12) and (2.13a) are stilldvédr v — PV,
since it can be regarded as the projection error of the fon&ti However, obtaining a sharp estimate
to the termar‘]’R involved inR is intractable, which requires a deeper analysis. Otherving directly
using the definition of the divided difference (Z.aX,R would be of ordeh™Y, which would inhibit any
superconvergence results. Indeed, by considering eigenstes of the matrixG and the smoothness
of f/(u), we are able to prove, after careful analysis, that

lim 9YR() = AYR(u(x;)), (2.19)

and thus the leading term & is a constant matrix, which is of ord&f. To clearly display the proof
of (2.19), let us consider thex22 (m= 2) matrixG = f’(u), whose entriegp q = Z—Lz are also smooth
scalar functions due to the smoothnesd oft follows from the construction of the projectidhthatR
is the matrix whose columns are the right eigenvectorfs’(lij/), which can be expressed in terms of
gpq(Uj) and the corresponding eigenvalues. Specifically,
R— { O12  A2—022
A1—011 Q21 |’

1 2 .
whereA; , = &ZM) with

AV =g11+g22,

A2 = \/ (011+022)% — 4(91,192,2 — 91,202,1)-
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Therefore, in order to analyz{R, it is sufficient to considedgp g andd’ A1 ». By (2.10), we have that

'L@Oag/gp,q(uj’) = a)zlgpﬂ(uj/)? p.gq= 17 27 (220a)
r|1imOahVA W (uj) = 0Y(gr1+gz2) (uy). (2.20b)
—

It remains to consided)'A ) if the term inside the square root #f? is always positive. Otherwise,
A2 = LG Note thatA (2 can be expressed in terms of the composition of three smowittibns,

na{mely,)\ (2) = z(w(u(x))) with z(w) = /W (W > 0), w(u) = (g1.1(u) + g2.2(U))? — 4(g1.1(U)gz 2(U) —
01,2(U)g2,1(u)) andu = u(x). Thus, by (2.10),

r|]iLnOahV)\ @ (uy) = ayz(w(u(x;))). (2.20c)

The property (2.19) follows by collecting the results in2@a)—(2.20c). Finally, to complete the proof
of this Corollary, we need only to apply the same procedut@aisin the proof of Lemma 2.2 to each
H term on the right side of (2.18). O

2.2.6  Smoothness-Increasing Accuracy-Conserving (SIAC)HilteBIAC filters represent a family of
filters designed to at least conserve the order of accurattyeddG solution. Itis a post-processing pro-
cedure. For the symmetric SIAC filter, the post-processioggdure for scalar equations was given, for
example, in Cockburst al. (2003); Mirzaeeet al. (2012); Meng & Ryan (2017). Here, we concentrate
on the symmetric filterTo apply the SIAC filter to systems of conservation laws, wechenly to apply
the filter corresponding to the scalar case to each compoh#émnt approximation vector.

The following theorem shows the relation between negatiger norm error estimates for divided
differences andL? norm of the post-processed error.

THEOREM 2.1 (Bramble & Schatz, 1977) For@ T < T*, whereT* is the maximal time of ex-

istence of the smooth solution, late L*([0,T|;HY(Q)) be the exact solution of (1.1). Le&®o+
Zsumer‘]”k“(x)) € Q andU is any approximation ta, then

K hY
u(T) =K *HUHQO < WC1|UIV +GiC& Z 197 (U=U)[l_i1).05
- a1

whereC; andC, depend oy, k, but is independent df.

As we can see from the above theorem, in order to have theyatuiliextract a superconvergent
approximation using the B-spline convolution filter, we ihioe able to demonstrate that higher order
convergence exists in the negative-order norm for not dmysplution, but the divided differences as
well. Since the duality argument is an important tool in dieig superconvergent negative-order norm
estimates and the dual problem for nonlinear systems isiablarcoefficient problem, in what follows
we recall a regularity result.

LEMMA 2.3 (Hormander, 1997; éit al., 2013) Consider the variable coefficient system of congienva
laws with a periodic boundary condition for alk [0, T]

&.06t) +AX )P, (xt) =0, (2.21a)
¢(X70) = ¢O(X)7 (221b)
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whereA(x,t) is a given smooth matrix-valued periodic function. For &ny0, fixed timet andA(x,t) €
L*=([0, T];W?+1°(Q)), then the solution of (2.21) satisfies the following regiiyaproperty

19D, <Cll¢(x.0)]l,,

whereC is a constant depending qM||Lm([0‘T];sz;+1,w(Q)).

3. L2 norm estimates for divided differences

In this section, we provide an analysis to f&norm estimates for the divided differences of the DG
error, which is useful to derive superconvergent negatigker norm estimates.

3.1 The main results in thednorm

As usual, we split the DG err@ = u— u, into two parts, namelg = n + & with n = u—Pu being
the projection error and = Pu—u;, :=Pec Vﬁ’k. Here the projectior is defined on each celj,
corresponding to the sign variation of the eigenvaluef a); specifically, for any € [0, T] andx € Q,
assuming thaf’(u) is positive definite, then on each elemépt we choosePu = RP~v, and thus

n = Rny with n, =v—P-vandv=R *(u;)u.
We are now ready to state the main theorem forlthaorm error estimates.
THEOREM3.1 Forany O< a < k+1, letd¢u be the exact solution of equation (2.2), which is assumed

to be sufficiently smooth with bounded derivatives, and mesthatf’ (u) is positive definite. Let\%uy,
be the numerical solution of scheme (2.3) with initial cdiwai 67 u,(0) = P(d¢ ug) when the upwind

flux is used. For a uniform mesh & = (a,b), if the finite element spa@.&lﬁ-no”k of piecewise polynomials
with arbitrary degred > 1 is used, then for small enoughand anyT > O there holds the following
error estimate

T
108 ET) P+ [ o5 €)7o <cpre, (3.1)

where the positive consta@t depends om, T and f, but is independent df.

COROLLARY 3.1 Under the same conditions as in Theorem 3.1, if in additic> 1 we have the
following error estimates:

138 (u—un)(T)]| < CHF 2% (3.2)

Proof. Using similar argument in Corollary 2.2, we have that

a )\ .
oen —/;<€>R(\VI— P~V)
whereV = 37 ~‘v (x— 5h) andR = 9/R (x+ 9%5h), and thus
198 01l < CREH|9F ully.4 (3.3)
by the interpolation error estimate (2.13a) and the fadt tie leading term oR is a constant matrix

(2.19), due to the smoothnessfifu). To complete the proof, we need only to combine (3.1) and (3.3
and use the triangle inequality. O
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REMARK 3.1 We would like to point out that if we combine the error estiesafrom this paper with
the typical divided differences for unstructured meshes aiccuracy enhancement can also be obtained
for unstructured meshes. Indeed, for linear equationski@ioo et al. (2003) suggests that the divided
difference estimate for unstructured meshes is of orttef 2+ m— a with m= (2k+1)/(3k+ 2).
Moreover, numerical tests for linear hyperbolic equatiand unstructured meshes were carried out in
Mirzaeeet al. (2013).

To prove high order divided difference estimates in TheoBiny we need first to establish a su-
percloseness result with = 0. The superconvergence result fzeroth order divided difference) is
given in the following proposition, which generalizes thupsrcloseness result from the scalar nonlinear
conservation laws in Menet al. (2012a) to the system case.

PrROPOSITION3.2 Letu be the exact solution of the system (1.1), which is assumée sufficiently
smooth with bounded derivatives, and assume fhat) is positive definite. Leuy, be the numerical
solution of scheme (2.3 = 0) with initial conditionuy,(0) = Pup when the upwind flux is used. For a
quasi-uniform mesh a2 = (a,b), if the finite element spaoqﬁ‘ of piecewise polynomials with arbitrary
degreek > 1 is used, then for small enougtand anyt € (0, T] there holds the following error estimates

||z|+</ 1E(D)] dr) <Chkd (3.4a)
||«fx|| <C([| &)+, (3.4b)

||£t|+</ It dr) <Chk+1+gh</| ) dr>l, (3.4¢)

whereC andC, depend ony, t and f, but is independent df.

The proof of this proposition is given in Section 3.3.

3.2 The proof of Theorem 3.1

As mentioned in the introduction, the main difficulties cofmam estimates of/d¢&|| and ||9Sn||.
Using an energy analysis together with the properties oDiGediscretization operator established in
Section 2.2.5, we can see that the proof of Theorem 3.1 fosyheem case mainly follows along the
same line as that for the scalar nonlinear case in Meng & Rg8h7). Therefore, we omit detailed
proofs and only point out the following two main differences

1. Estimate of|d%n||. For scalar nonlinear equations, the estimatg{a@ff || is trivial, as both
the divided difference operateok and the projection operat® are linear and thus commute
with each other. However, for the system case, the projeétidoes not commute with,. As
discussed in Corollary 2.2, this difficulty can be addredsg@dnalyzing the eigenstructures of
f’(u) and by using the property of the divided difference for cosifgofunctions in (2.10).

2. Taylor expansionkor nonlinear systems of conservation laws, in order toengiit the nonlinear
terms, namelyf (u) — f(u,) andf (u) — f(u, ), we need to use the following second order Taylor
expansion

f(u)—f(uy) = f'(u)&+f'(uyn —e'He, (3.5a)
fuy—fu)=f (W& +fun —(e) Ae. (3.5b)
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Here and belone"He := (e"H; e,...,e"Hye)T with H; being the Hessian matrix in the integral
form of the remainders of the second order Taylor expansind,the(p, g)-th entry ofH; given
by (Hi)p.q = /o ‘f,fjpif;;? (1—s)dswith uS = u+s(u, — u). Likewise for(e™) He . We would like

to emphasize that the various order spatial derivative® tlerivatives and divided differences
of each components df andH are all bounded uniformly due to the smoothnesd @indu.
Without loss of generality, we take the first order divideffiedence estimatédn & || for example.

In order to obtain optimalk+ 1)th order, we need only to choosg= d,& in the error equation
involving the first order divided differences and use prdipsrof the DG discretization operator
in Section 2.2.5 in combination with the superconvergenc® estimates in Proposition 3.2.

3.3 The proof of Proposition 3.2

The original DG scheme witlr =0 is
((Un)g; V) = 3 (F(Un), Vi), (3.6)

which holds for allv,, € V,f andj =1,...,N. For periodic boundary conditions under consideration in
this paper, by Galerkin orthogonality and summing oveij alie get the error equation

(&,vn) =3 (f(u)— f(un),vh) (3.7)

forall v, € VA‘. Lettingvy, = & = Pu— uy, we arrive at the following identity

LHS=RHS (3.8)
where

LHS= (&, &), (3.9a)

RHS=H (f(u) — f(uy),&). (3.9b)
Clearly,

LHS= 287+ (n,.8). (310a)

If we now denote b){f = ijf,j & dx the cell average of on each elemeri§, and further define piece-
wise constant polynomid® whose restriction oty is Ef, then we can easily obtain a bound fay;, §),

|(’7ta‘f)|:|(nta‘f—fc)|<Chk+2|‘fx||a (3.10b)

since, by (2.12)n and thusn, are orthogonal to piecewise constant functions, wheredndht step
we have also used the approximation error estimates (2di8h)he Poincaré—Wirtinger inequality

1€ — &5l < Chl[&]l.

In what follows, we shall estimat@H S which is given in the following lemma.

LEMMA 3.1 Suppose that the interpolation property (2.13a) isfsati. Then we have
o
RHS< (C(e)+C.h3[lelf2) (| €]1* - 5|[E]|2+C*hk+2||«fxll +Cps (3.10c)

with C(e) = C+C,h 1| €||,,, whereC andC, are independent df andup,.
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Proof. Using the second order Taylor expansion (3.5)
f(u)— f(uy) = f'(W&E+f'(un—e'He2 8, + 65+ 03, (3.11a)
fuy—f(u)=FfWé +f(un —(e) Ae 26, +86, +63, (3.11b)

we rewriteRH Sas
RHS=01+0,+03

with ©; given by
N
@i ::H:(ela Exael Z [[f]]Te +1a (I :11213)1

which will be estimated one by one below.
By the same argument as that in the proof of (2.14b) in Lemrhax have that

o
01 <C.[1€[° 5 [1&]" (3.12a)
A direct application of (2.16a) in Lemma 2.2 leads to a bowordr,
@2 <CH2|IE, . (3.12b)

It follows from the Cauchy—Schwarz inequality, the invepseperties (i) as well as (ii), and the approx-
imation error estimate (2.13a), that

O3 < C.lell., (el € + lell 1€l ; )

_ 1
<C.h lHeHm(HEII+||'7H+h2HnHm)HEII
<ChY e[| €)1+ Ch¥ €]l || €]l
< (Ch7Ye], +Ch3e2) €7 +Crts, (3.12¢)

where Young's inequality is used in the last step. To finish gihoof of Lemma 3.1, we need only to
combine (3.12a)—(3.12c). O
We now insert the estimates (3.10a)—(3.10c) into (3.8) to ge

28I+ 2E) < (Cle) + 22|81 + CZE, . (39)

To deal with the nonlinearity of (u) we make an a priori assumption that, for small enoligh
[Pu—up| < h2. (3.14)

This a priori assumption can be verified by using the samenaggtias that in Mengt al. (2012a) for
piecewise polynomials of degré&e> 1, and is useful to derive a crude bound &rwhich is necessary
in the proof of€; in Lemma 3.2.

COROLLARY 3.2 Suppose that the interpolation property (2.13b) isBat, then the a priori assump-
tion (3.14) implies that
le, <Ch? and |&], <Ch?. (3.15)
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Proof. This follows from the inverse property (iii), the interpttan property (2.13b) and triangle
inequality. O

COROLLARY 3.3 Under the same conditions as in Lemma 3.1, if the a présumption (3.14) holds,
we have the following error estimates

lel| <Ch*l and | & <ChL (3.16)

Proof. We first apply inverse inequality (i) to (3.10b) and (3.12bybtain| (0, &) |+ @, < C,hk+1||&|.
Then, noting (3.13), the results in Corollary 3.3 follow ksing (3.15) implied by the a priori assumption
(3.14) and a simple application of Gronwall’'s inequalitgéther with the fact thaf (-,0) = 0 due to
the special choice of the initial condition. O

From (3.13), one can see that the supercloseness regldfladepends heavily on the estimate of
€|l and further|&, ||, which are given in the following two lemmas.

LeEMMA 3.2 Under the same conditions as in Proposition 3.2, if, iditaxh, the a priori assumption
(3.14) holds, we have
1€l < CUIEll+h*), (3.17)

for anyt € [0,T], whereC is independent df anduy,.
The proof of this lemma is postponed to Appendix A.1.

LEMMA 3.3 Under the same conditions as in Proposition 3.2, if, iditaah, the a priori assumption
(3.14) holds, we have

|£t|+(/ & dr) <Chk+l+Qh(/| V] dr)l, (3.18)

for anyt € [0,T], whereC andC, are independent df anduy,.

The proof of this lemma is deferred to Appendix A.2. It is wopbinting out that, unlike the scalar
case||&;| is bounded by(&]| instead of||£|| in Menget al. (2012a). This enables us to fully make use
of properties of the DG operator established in Sectiorb2@ deal with the mixed integral terid;
(see Appendix A.2), which simplifies the proof a lot, and thehinique based on integration by parts
with respect to time as that in Memg al. (2012a) is no longer needed.

Collecting the estimates (3.17) and (3.18) into (3.13) asidgi(3.15), we have

SIEI%+ 281 <CulglP e [ 1E(m)Pdr o (3.19)

whereC;,C, andCg are positive constants independentioNote that there holds the following identity

o [ lgkar =g
Then, (3.19) becomes

(uz I+ [ & |dr)<co(|z NP+ [ & |dr)+c:h2k+3 (3.20)

whereCy = max(2Cy,2C,/d), C = 2C3 are positive constants independenhof
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An application of Gronwall’s inequality together with thact thaté (-,0) = O gives us the desired
result (3.4a), namely

j€1+ ([ 1eiar)” <, @21)

To complete the proof of Proposition 3.2, we need only to comhemma 3.2 and Lemma 3.3.

4. Superconvergent error estimates

Although a superconvergent result about the negativerorden estimates for the DG error itself to
the scalar nonlinear conservation laws has been given @t dl. (2013), this paper goes further in
that it addresses nonlinear systems and treats the estifioateoth the equation itself and the divided
differences of the equation. It is worth emphasizing thahpared to Jiet al. (2013) the following

superconvergent estimate about the negative-order notireadivided differences of the DG error is
more complicated and technical, as it not only needs to usaltfality argument but also requires
establishing the correspondihg norm error estimates of the divided difference as shown atiGe 3.

THEOREM 4.1 For any 1< a < k+1, let %u be the exact solution of the problem (2.2), which is
assumed to be sufficiently smooth with bounded derivatired,assume thdt (u) is positive definite.
Let 9% un be the numerical solution of the scheme (2.3) with initiaidition 6% u,(0) = (95 ug) when
the upwind flux is used. For a uniform mesh®f= (a,b), if the finite element spadéna’k of piecewise
polynomials with arbitrary degrde> 1 is used, then for small enougtand anyT > 0 there holds the
following error estimate

£
198 (U= un) (T 1) 0 < CHP272, (4.1)

where the positive consta@tdepends om, é andT, but is independent df.

The above negative-order norm error estimate togetheritigdorem 2.1 leads to a superconvergent
result for the post-processed solution.

COROLLARY 4.1 Under the same conditions as in Theorem 4.1, if in addm@ﬁ’k“ is a convolu-

tion kernel consisting of = 2k+ 1+ w (w > [—‘—;]) B-splines of ordek+ 1 such that it reproduces
polynomials of degree — 1, then we have

lu— K cun | < Ch<H, (4.2)

4.1 Proof of the main results in the negative-order norm

As mentioned before, the negative-order norm estimatethiodivided differences of the DG error
depend on both the correspondingnorm estimates and the duality argument. On the one hand, it
is highly nontrivial to derivelL? norm error estimates of the divided differences from thedsadL?
error estimates (see, e.g., Zhang & Shu, 2010;¢ted, 2015) and some delicate supercloseness results
needs to be established; see Section 3. On the other haretfoorp the duality analysis, we follow the
same line as that for the scalar case iatAl.(2013) and Meng & Ryan (2017). First, by (2.7), we need
to concentrate on the estimate of

(95 (u—un)(T), @) (4.3)
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for @ € C3(Q). Then, define the dual problem as: find a functfosuch tha# (-,t) is periodic for all
te[0,T] and

09, +F(U)de, =0,  (xt)€Qx[0T), (4.4a)
d(xT)=D(x), xecQ. (4.4b)

A combination of (2.2a) and (4.4a) gives us

o (9u.6)+5(w ) =0, @5)
whereF(u; ¢) = (—1)% (f'(uyu— f(u),5%9,) . Thus,
(370.8)(T) = (95u.9)(0) [ F(ug)a (4.6)

Consequently, for ang € Vrf”k, we deduce that
(Oh' (U= un)(T), ®) = G1+ G2 + G,
where
G1= (0 (u—un),9)(0),
Go=— [ (37w 6~ ) 905 F().6 1)t

.
Ga= —/0 [ (05 un, @) + I (95 f(un), ) + T (u. )] dt

The estimates té1, G, Gz can be obtained essentially following the same argumeritsose for
the scalar case in Meng & Ryan (2017). Thus, we will only pnésiee results here and omit detailed
proofs.

LEmMMA 4.1 (Projection estimate) There exists a positive con§aimdependent offi, such that
|Gl < CPP |98 Uollyc, 110 (0) 1. (4.7)
LEMMA 4.2 (Residual) There exists a positive cons@nndependent ofi, such that
3

|G2| SCh2k+2*%||¢||L1([O!T];Hk+1), (4.8)

LEMMA 4.3 (Consistency) There exists a positive constambdependent off, such that
_a
|G3| §Ch2k+3 2—||¢HL1([0,T];HK+1)' (49)

Collecting the estimates in Lemmas 4.1-4.3 and using theagty result in Lemma 2.3, namely
[l 1 < Cll @1, we get a bound fofd¢ (u—uy)(T), @)

(85 (u=un)(T), @) < CHP4 22 || .
Thus, by (2.7), we have the bound for the negative-order norm

108 (U= ) (T)]|_ 1) < CHP 35,

This finishes the proof of Theorem 4.1.
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5. Numerical examples

The superconvergent result in Corollary 4.1 suggests thadr@ compact kernel with fewer B-splines
can achieve the theoretical superconvergence order, arsiahdard full kernel (a kernel function com-
posed of a linear combination ok2- 1 B-splines of ordek+ 1) is no longer necessary. Therefore, in
this section, we show the effect of using different total tn@mof B-splines (denoted by= 2k + 1+ w
with w > (—'5‘1) of the kernel in our numerical experiments. To reduce timers, we consider the
third-order Runge—Kutta time discretization and choosenallstime step. The numerical errors and
convergence orders usiij andP® polynomials are given, and a specific valuewf= —2 is chosen to
match the superconvergence order. It is worth pointing loait & quadruple precision package is used
for the post-processing procedure B polynomials in Example 5.1 and Example 5.2, which helps us
to get rid of the effect of round off errors in our calculatomhe numerical results are only shown for
the density to save space.

ExamMpPLE 5.1 Consider the one-dimensional Euler equations of cossfisle gas dynamics

w+ f(u),=0 (5.1a)
with
P pv
u=| pv |, fuy=| p¥*+p |, (5.1b)
E V(E+p)

whereE = yTpl + %pv2 andy = 1.4 with periodic boundary conditions and the following ialtcondi-
tions: p(x,0) = 1+ 0.5sinx),v(x,0) = 1, p(x,0) = 1, x € [0, 27].

The numerical errors and ordersTat= 1 are given in Table 5.1. From the table, we can see that
the standard full kernek§ = 0) could yield at least2k + 1)th order superconvergence, which is similar
to the results for linear hyperbolic systems in Cockbatral. (2003). For the compact kernel with
w = —2, superconvergence of ordek @an be observed. The pointwise errors are plotted in Figdre 5
which show that the post-processed filter with the standatideomore compact kernel can both remove
oscillations in the errors.

Table 5.1.L2- andL® errors for Example 5.1 (Euler equation with smooth sol)tidBefore post-processing (left), after post-
processing (middle) and post-processing with the more eatrigernel (right).T = 1.

Before post-processing Post-processedy= 0) Post-processedy= —2)

Mesh L? error Order L™ error Order L error Order L™ error Order L error Order L™ error Order

20 5.35E-05 - 1.83E-04 - 1.28E-06 - 1.82E-06 - 6.58E-05 - BED -
p2 40 6.69E-06 3.00 2.31E-05 2.99 2.24E-08 5.83 3.19E-08 5.83 .14E406 3.99 5.86E-06 3.99
80 8.36E-07 3.00 2.89E-06 3.00 4.24E-10 5.73 6.02E-10 5.73 .59E207 4.00 3.67E-07 4.00
160 1.04E-07 3.00 3.61E-07 3.00 8.91E-12 5.57 1.26E-11 5.57 1.62E-08 4.00 2.29E-08 4.00

20 1.03E-06 - 2.74E-06 - 4.94E-08 - 6.98E-08 - 1.82E-06 - B0 -
p3 40 6.52E-08 3.99 1.93E-07 3.82 2.54E-10 7.60 3.60E-10 7.60 .88E208 5.98 4.07E-08 5.98
80 4.03E-09 4.01 1.19E-08 4.02 1.45E-12 7.45 2.06E-12 7.45 .50E410 6.00 6.37E-10 6.00
160 2.52E-10 4.00 7.43E-10 4.00 9.25E-15 7.30 1.31E-14 7.30 7.04E-12 6.00 9.95E-12 6.00

ExamMPLE 5.2 Consider the Euler equation with a source term

-+ f(u), =a(xt)
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FIG. 5.1. The errors in absolute value and in logarithmic saal®? (top) andP® (bottom) polynomials withN = 20,40,80 and
160 elements for Example 5.1 (Euler equation with smootht&wl). Before post-processing (left), after post-preass (middle)
and post-processing with the more compact kernel (right: 1.
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with periodic boundary conditions and the following initt@ndition: p(x,0) = 2+ 0.5sin(x), v(x,0) =
1-0.1cogXx), p(x,0) =1. Hereuand f (u) has been given in (5.1b), agdx, t) is suitably chosen such
that the exact solution jg(x,t) = 2+ 0.5sin(x+1),v(x,t) = 1—0.1cogx+t), p(x,t) = 1.

The numerical errors and ordersTat= 1 are given in Table 5.2. From the table, we can see that the
orders of convergence for the standard kerneH0) and the more compact kerned & —2) are X+ 1
and X, respectively. The pointwise errors are plotted in Figuge which show that the post-processed
errors with both kernels are less oscillatory and much @nall magnitude, and that the errors of our
more compact kernel are less oscillatory than that for thedsrd kernel. This example demonstrates
that the SIAC filter is also effective for nonlinear systemfisanservation laws with source terms.

Table 5.2. L2- and L® errors for Example 5.2 (Euler equation with source termsgfoRe post-processing (left), after post-
processing (middle) and post-processing with the more eairigernel (right).T = 1.

Before post-processing Post-processedd= 0) Post-processedd= —2)
Mesh L= error Order L™ error Order L= error Order L™ error Order L= error Order L™ error Order
20 5.37E-05 - 1.79E-04 - 1.16E-06 - 1.80E-06 - 6.56E-05 - BB -
p2 40 6.71E-06 3.00 2.40E-05 2.90 1.92E-08 5.92 3.29E-08 5.78 .14E406 3.99 5.85E-06 3.99
80 8.34E-07 3.01 3.16E-06 2.93 3.35E-10 5.84 5.69E-10 5.85 .59E207 4.00 3.66E-07 4.00
160 1.04E-07 3.00 3.87E-07 3.03 6.63E-12 5.66 1.26E-11 5.50 1.62E-08 4.00 2.29E-08 4.00
20 1.10E-06 - 3.90E-06 - 9.16E-08 - 1.41E-07 - 1.80E-06 - B0 -
p3 40 6.56E-08 4.07 2.30E-07 4.08 6.79E-10 7.08 1.06E-09 7.05 .86E208 5.98 4.06E-08 5.98
80 4.03E-09 4.03 1.31E-08 4.13 5.24E-12 7.02 8.41E-12 6.98 [49E410 5.99 6.37E-10 6.00
160 2.52E-10 4.00 8.05E-10 4.03 4.10E-14 7.00 6.63E-14 6.99 7.03E-12 6.00 9.95E-12 6.00
DG Error Post-processedy= 0) Post-processedy= —2)
——N=20---N=40——N=80- - N=160 ——N=20- - -N=40——N=80- - N=160 ——N=20- - -N=40——N=80 - - N=160
2 -2
10 10
10* 10*
10° 10°
== 10° == 10°
1 _ | - Y
5 10 10) 5 10 10| ¥ ;
10574 1042
10*14 10*14
16| 16
10 10
1 2 3 4 5 6 1 2 3 4 5 6
X X
_, ——N=20---N=40——N=80"-"-"N=160 S ——N=20- - -N=40—N=80-- N=160
10 10
10" 10*
10° 10°
== 10° = 10°
1 _ | _
5 10 10) 5 10 10|
10*12 10*12 N
_ P o e _ i i
1074 . o amy 104
d
~16] 1) 1 \ -16|
10 10
1 2 3 4 5 6 1 2 3 4 5 6
X X

FiG. 5.2. The errors in absolute value and in logarithmic saalé®? (top) andP? (bottom) polynomials witiN = 20,40,80 and

160 elements for Example 5.2 (Euler equation with souraesgr Before post-processing (left), after post-procesgmiddle)
and post-processing with the more compact kernel (right: 1.
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EXAMPLE 5.3 In this example we consider the Sod problem, namely tstesy(5.1) with the following
initial condition: p(x,0) = 1,v(x,0) = 0, p(x,0) = 1 for x < 0 andp(x,0) = 0.125v(x,0) = 0, p(x,0) =
0.1forx>0,x € [-5,5].

We test the Example 5.3 @t = 2, when the solution contains shock and rarefaction. We ureas
the errors on the smooth regiop;5,—2.6] U [4,5]. The orders of convergence with different kernels
are listed in Table 5.3 and pointwise errors are plotted gufé 5.3. We can see that the post-processed
errors are smaller in magnitude for most of elements. Thisrgte demonstrates that the accuracy en-
hancement technique is also useful for nonlinear systermgmerbolic conservation laws with complex
discontinuous solutions.

Table 5.3.L2- andL® errors in smooth regions for Example 5.3 (Sod problem witingiex discontinuous solution). Before
post-processing (left), after post-processing (middfe) post-processing with the more compact kernel (right) 2.

Before post-processing

Post-processedy= 0)

Post-processedy= —2)

Mesh L error Order L* error Order L error Order L* error Order L error Order L* error Order
50 1.12E-03 - 8.75E-03 - 9.06E-04 - 6.84E-03 - 8.59E-04 - BB -

p2 100 3.13E-04 1.84 3.29E-03 1.41 2.35E-04 1.95 1.90E-03 1.85 1.89E-04 219 1.52E-03 211
200 3.91E-05 3.00 3.60E-04 3.19 2.50E-05 3.23 2.41E-04 2.98 1.97E-05 3.26 1.94E-04 2.96
400 1.28E-06 4.93 2.70E-05 3.74 9.89E-07 4.66 1.61E-05 391 8.01E-07 4.62 1.27E-05 3.93
50 6.14E-04 - 3.47E-03 - 2.56E-04 - 2.16E-03 - 2.66E-04 - E208 -

p3 100 1.32E-04 222 1.44E-03 1.27 1.84E-05 3.80 1.58E-04 3.78 1.08E-05 4.62 1.59E-04 3.95
200 1.47E-05 3.16 2.37E-04 2.60 6.81E-07 4.76 1.17E-05 3.75 5.84E-07 4.21 9.57E-06 4.05
400 3.32E-07 5.47 5.43E-06 5.45 1.25E-08 5.77 2.64E-07 5.47 1.18E-08 5.63 2.54E-07 5.23

DG Error Post-processedy= 0) Post-processedy= —2)

——N=50- - -N=100——N=200---N=400

——N=50- - -N=100——N=200---N=400

0o N=50- - -N=100——N=200 - - N=400

o N=50- - -N=100——N=200- - N=400

0o N=50- - -N=100——N=200 - --N=400

o N=50- - -N=100——N=200 - --N=400

FiG. 5.3. The errors in absolute value and in logarithmic scalé>® (top) andP® (bottom) polynomials wittN = 50,100,200
and 400 elements for Example 5.3 (Sod problem with discoatis solution). Before post-processing (left), after gmetessing

(middle) and post-processing with the more compact kengdt). T = 2.
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6. Concluding remarks

In this paper, we investigate divided difference estimated accuracy enhancement of DG methods
for nonlinear symmetric systems of hyperbolic conservataws. These estimates are essential for
theoretically proving that it is possible to draw out extreers of accuracy using a SIAC filter. The main
technical difficulties come from the estimates to the dididéference of the projection error as well as
the supercloseness property. By using properties of the iB¢alization operator and properties of the
divided differences, we are able to prove thatltReorm of thea-th order divided difference of the DG
error achievesgk + % — 9)th order when upwind fluxes are used, under the conditiorfiilmatiacobian
matrix f'(u) is positive definite. Thd.2 norm estimates together with a duality argument produce
superconvergentnegative-order norm estimates of otder%’Z— 2 allowing for that the post-processed
solution to be of at Ieas{t%k—l— 1)th order superconvergent to the exact solution inlth@orm. Thus,
some computationally efficient more compact kernels carsbd to match the proved superconvergence
order in practice. A series of numerical experiments arergighowing that oscillations can be removed
a lot using our more compact kernels and that the accura@neeiment holds true for general nonlinear
systems of conservation laws with different initial comatis and complex structure of solutions.

Future work consists of the study of accuracy enhancemeheddG method for nonlinear scalar
and systems of conservation laws in multi-dimensionalsasestructured as well as unstructured mesh-
es.Investigation of some suitable numerical examples wotdd bk carried out.
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A. Appendix: Proof of several lemmas

In this appendix, we give the proofs for some of the more texditemmas.

A.1 The proof of Lemma 3.2

Let us prove the relation betweéli,|| and||&;|| in Lemma 3.2. Consider the error equation (3.7),
namely

(&,Vn) = 3 (f(u)— f(un),vh) (A1)

which holds for allv, € Vrif- To deal with the nonlinearity of the flux functiof(u), we use the second
order Taylor expansion (3.11a) and (3.11b) to rewrite (Ad)

(&,Vh) =01+ 02+ 03 (A.2)

with ©; given by
N . .
O; :f}f(ei,vh) Vh X,6| Zl [[Vh]] 6 J+%’ (i :1,273)7

which will be estimated one by one below.
First conside®;. We begin by using thstrongform of 3, (2.5b), to get

01 = 0 (F(WE W) = — (v (T % WTHWIED),

Next, letLy be the standard Legendre polynomial of degkée [—1,1], soLy(—1) = (—1)%, andLy
is orthogonal to any polynomials of degree at miost1. If we now letv, = &, — dLy(s) with d =

(—1)"(EX) bemg a constant vector aisg= X—XJ) € [-1,1], we obtain
01 = — (Vi T (WE) — (&, — dLi(9), T (U)E,) 2 ~W—Z, (A.3)

smce(vh)J+ = 0. On each element, by the linearizatiorf’ (u) = f'(u;) + (f'(u) — f'(u;)) and noting

1
2
(dLy, f’(uJ)EX) .= 0, we arrive at an equivalent form &f

Z=121+125, (A.4)
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where

Zl - (Exa f/(uj)fx) 3
Zp = (&x—dL, (f'(u) — /() &,) .

By the inverse property (ii), it is easy to show, fgr= &, — dLy(s), that
[IVnll < Cl|&xll-

Inserting the above results into (A.2) and using the assiompiat f'(u) is positive definite (and thus
f'(u) > 31), we obtain

S|E°<Z1=024+03—-W—-Z,— (&,&, —dLy). (A.5)

We will estimate the terms on the right side of (A.5) one by bakow.
A direct application of (2.16b) in Lemma 2.2 leads to a bowrdd,

@2 < C.HHE, . (A.6a)

By an analysis similar to that in the proof of (3.12c), we get

@3] <C.h el ([1€]1+H) 1€, (A.6b)

where we have also used the approximation error estimat84p.By the Cauchy—Schwarz inequality,
we have

WI<CI&1l11&xl- (A.6¢)

Using the Cauchy—Schwarz inequality as well as the inverspanty (i), and taking into account the
fact that|| f'(u) — f'(u;)|],, < C.h on each elemeri}, we obtain

|Za] < C.[I &[] &x]l- (A.6d)

The triangle inequality and the approximation error esten{2.13a) yield

| (&, V) | < C(| &l +hIE . (A.6e)

Finally, the error estimate (3.17) follows by collectingthstimates (A.6a)—(A.6e) into (A.5) and by
using the estimates (3.15) and (3.16) in Corollary 3.2 anbloy 3.3, respectively. This finishes the
proof of Lemma 3.2.

A.2 The proof of Lemma 3.3

Let us first prove the initial error estimate fb€, (0)||. We start by noting that the error equation (3.7)
still holds att = 0 for anyvy, € V,f. Since& (-,0) = 0, the nonlinear terms in (3.11a) and (3.11b) on the
right-hand side of (3.7) reduce to

f(u)—f(u,)=f'(uyn—n"Hn, (A.73)
f(u) - f(u,)=f'(wn —(n") An". (A.7b)
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By an analysis similar to that in the proof of Lemma 3.1, we eanily get a bound for the right-hand
side of (3.7) at = 0, denoted byRHS; it reads

RHS < C (W + 0[N (-,0)|.o) Vi, (A.8)
which holds for anyn € Vi¥. If we now letv,, = &,(-,0) in (3.7) as well as in (A.8), we get that

1€ 0)| < [Im (-, 0)|| +Cu(h" 00 (-, 0)]].,) < CH, (A.9)

by the interpolation properties (2.13a) and (2.13b).
We then move on to the estimate|d; (-,t)|| for t > 0. To do that, we proceed as follows. We take
the time derivative of the error equation (3.7) anddet= &, to get

(@, &) = F((F(u) — F(Un))e, &) - (A.10)

To estimate the right-hand side of (A.10), we use the Taylpaasion (3.11) to split the nonlinear terms
as follows

(f(w) — f(up) = af' W&+ f'(WE +af' (wn+f'(un,—eaHe—2e"Hage
2p 4 tpg, (A.11a)
(f(u)—fu))x=af' W& + (W +af(un-
+f(un; —(e) afe —2(e) Aae
£pr+-+pPg. (A.11b)

sinceH andH are symmetric matrices. Therefore, the right-hand sid&dfq), denoted by, can be

formulated as
Y=Ki+---+Kg (A.12)

with Ki = H(p;, &;) (i=1,...,6). Consequently, (A.10) can be represented by

1d
5 g€ <Y+ Inell€ < Y+CHOY g, (A13)

by the interpolation error estimate (2.13a).
We estimate the terr; first. A simple application of (2.14a) in Lemma 2.1 gives usoaitd for
K1; it reads

Ka <C. (1€ + 11 &0 +h2[€]) 1€

<C. (& 1+t n2€]) &,
<Gl &% +h €7 e, (A.14a)

where we have used (3.16) and (3.17) in the second step amdy’sanequality in the last step. Next, a
direct application of (2.14b) in Lemma 2.1 leads to a boumdfp

0
Kz < Cul[&* ~ 511&0% (A.14b)
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where we have used the assumption tffét) is positive definite with the smallest eigenvaldie To
estimateKz andK,4, we need only to employ the property (2.16b) in Lemma 2.2,ciwhs given as
follows

Ks+Kgq <CHHLE,, (A.14c)

where we have also used the fact thas a linear operator with respectttonamely(Pu); = P(w), and
thus || (u—Pu); || < Ch*1||w ||, , by the approximation error estimate (2.13a). It is easy twslfor
high order term#s andKg, that

Ks < Coh?lefl (1 €] +h )& < Ch &, (A.14d)
Ko < Chleoo (I €]l +h )1 €| < Cu[ & I1° + CH &, (A.14e)

where we have also employed (3.15) and (3.16) in Coroll@ya8d Corollary 3.3 in the last inequality.
Therefore, by collecting the estimates (A.14a)—(A.14&) {A.12) and (A.13), we get, after a simple
application of Young's inequality, that

e T A N A R e (A.15)

whereC andC, are positive constants independenthof Finally, a direct application of Gronwall’s
inequality together with the initial error estimate (A.8@als to the desired result

e+ ([ ierer)” et e ( [gwpior)

This completes the proof of Lemma 3.3.



