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In this paper, we investigate the accuracy-enhancement forthe discontinuous Galerkin (DG) method for
solving one-dimensional nonlinear symmetric systems of hyperbolic conservation laws. For nonlinear
equations, the divided difference estimate is an importanttool that allows for superconvergence of the
post-processed solutions in the localLLL2 norm. Therefore, we first prove that theLLL2 norm of theα-th or-
der(16α 6 k+1) divided difference of the DG error with upwind fluxes is of orderk+ 3

2 − α
2 , provided

that the flux Jacobian matrix,fff ′(uuu), is symmetric positive definite. Furthermore, using the duality argu-
ment, we are able to derive superconvergence estimates of order 2k+ 3

2 − α
2 for the negative-order norm,

indicating that some particular compact kernels can be usedto extract at least( 3
2k+1)th order supercon-

vergence for nonlinear systems of conservation laws. Numerical experiments are shown to demonstrate
the theoretical results.

Keywords: discontinuous Galerkin method; nonlinear symmetric systems of hyperbolic conservation
laws; negative-order norm estimates; post-processing; divided difference.

1. Introduction

Smoothness-Increasing Accuracy-Conserving (SIAC) filtering allows for extracting a higher-order accu-
rate solution from the discontinuous Galerkin (DG) approximation, which can aid in reducing approx-
imation errors.The motivation for this study is thatthe accuracy enhancing capabilities of the SIAC
filter (Ryanet al., 2005; Mirzaeeet al., 2011) for the DG method requires establishing convergence
characteristics for the divided difference of the errors;see Theorem 2.1 below. In Meng & Ryan (2017),
this was done for nonlinear scalar hyperbolic conservationlaws. However, extending these estimates
to nonlinear hyperbolic systems is more challenging. A nonlinear system of hyperbolic conservation
laws is a more general model arising from fluid dynamics. One such model is the Euler equations in gas
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dynamics. In this paper we concentrate on the theoretical and computational aspects of the accuracy-
enhancement of DG methods for solving one-dimensional nonlinear systems of conservation laws of
the form

uuut + fff (uuu)x = 0, (x, t) ∈ (a,b)× (0,T], (1.1a)

uuu(x,0) = uuu0(x), x∈ Ω = (a,b), (1.1b)

whereuuu0(x) is a given smooth initial function. Hereuuu = (u1, . . . ,um)
T is the unknown vector-valued

solution, andfff (uuu) = ( f1(uuu), . . . , fm(uuu))T with fi(uuu) = fi(u1, . . . ,um) (i = 1, . . . ,m) is the given flux
function. The nonlinear flux functionfff (uuu) is assumed to be sufficiently smooth with respect to the
the exact solutionuuu, anduuu is a smooth function ofx. In this paper, periodic boundary conditions are
assumed, which, however, is not essential. We show that theLLL2 norm of theα-th order(16 α 6 k+1)
divided difference of the DG error achieves(k+ 3

2 − α
2 )th order using upwind fluxes, provided that the

flux Jacobian matrixfff ′(uuu) := ∂ fff /∂uuu is positive definite. By a duality argument, a superconvergent
negative-order norm estimate of order 2k+ 3

2 − α
2 is further obtained. This allows for extracting the

hidden accuracy of at least(3
2k+1)th order for nonlinear systems of conservation laws, indicating that

it is possible to use a more compact kernel with fewer B-splines.
The DG method has an inherent superconvergence property, which has attracted the attention of

many researchers for solving the first-order hyperbolic equations (see, e.g., Adjeridet al., 2002; Adjerid
& Massey, 2006; Adjerid & Weinhart, 2009, 2011; Caoet al., 2014; Cheng & Shu, 2010; Cockburn
et al., 2003; Guoet al., 2013; Ryanet al., 2005; Steffenet al., 2008; Yang & Shu, 2012), high order
equations (see, e.g., Celiker & Cockburn, 2007; Jiet al., 2012; Hufford & Xing, 2014; Menget al.,
2012b) and elliptic problems (see, e.g., Adjerid & Baccouch, 2012; Cockburnet al., 2009). One of
the superconvergence properties that allows for superconvergence extraction through SIAC filtering is
the negative-order norm estimates. The post-processing technique makes use of information contained
in the negative-order norm entailing that a special convolution kernel can be constructed to extract the
hidden accuracy. This is performed only at the very end of thecomputation. Some superconvergentpost-
processing results of DG methods for hyperbolic equations are available in the literature. Motivated by
the work of Bramble and Schatz for elliptic equations in Bramble & Schatz (1977), Cockburnet al.
(2003) established the post-processing theory for DG methods for hyperbolic equations that expresses
the post-processed solutions in theLLL2 norm in terms of the divided difference error estimates in the
negative-order norm. Later, Ryan et al. investigated different aspects of the SIAC filters (see, e.g., Ryan
& Shu, 2003; Curtiset al., 2007; Steffenet al., 2008).

From the post-processing theory in Bramble & Schatz (1977) and Cockburnet al. (2003), it is ev-
ident that negative-order norm error estimates of the divided differences are essential tools that allow
for extracting superconvergent estimates of the post-processed solutions in theLLL2 norm. We note that,
unlike purely linear equations (Cockburnet al., 2003; Jiet al., 2012), superconvergent estimates about
the post-processed solution for quasi-linear/nonlinear equations require establishing both theL2 norm
and negative-order norm estimates of divided differences of the DG error. For example, for linear hyper-
bolic equations with variable coefficient, negative-ordernorm error estimates of the divided differences
are shown in Mirzaeeet al. (2011), and the correspondingL2 norm estimates are provided in Meng &
Ryan (2017).

Let us now mention a particular work that investigates accuracy enhancement and divided difference
error estimates of DG methods for scalar nonlinear hyperbolic conservation laws (Meng & Ryan, 2017).
Specifically, the analysis starts from a superconvergence result of the DG solution towards a particular
projection of the exact solution (supercloseness). Then, by establishing important relations between the
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spatial derivatives and time derivatives of a particular projection of divided differences of DG errors and
further by analyzingL2 estimates of the time derivatives of the error, we were able to derive a useful
L2 norm error estimates for the divided difference. Next, superconvergent negative-order norm error
estimates for the divided difference are obtained which depend on a suitable construction of the dual
problem for the divided difference of the nonlinear scalar hyperbolic conservation laws.

To set a solid theoretical foundation of the post-processing technique for more general problems that
are useful in computational fluid dynamics, it is therefore necessary to study the accuracy enhancement
of DG methods for nonlinear (symmetric) systems of hyperbolic conservation laws. The generalization
from the scalar nonlinear case to systems of nonlinear conservation laws in this paper involves both
similarities and further difficulties and thus some new techniques are needed. As for the similarities, we
would like to mention that an energy analysis is used and Taylor expansion is employed to deal with the
nonlinearity of the flux function. Another similarity is that the superconvergence analyses both indicate
a possible link between supercloseness and negative-ordernorm estimates; see the detailed proof below
and also in Meng & Ryan (2017).

As indicated in Meng & Ryan (2017), the first main difficulty arising fromL2 norm estimates of the
divided difference of the particular projection of the DG error can be handled by establishing impor-
tant relations between the spatial derivatives and time derivatives of a particular projection of divided
differences of DG errors. However, another essential difficulty in this paper is treating estimates of the
divided difference of the projection error as the projection for the nonlinear systems is no longer linear.
Note that the projection for the system case is constructed based on the local characteristic decomposi-
tion, and therefore, by Leibniz rule, the main difficulty is switched to estimating the divided difference
of RRR, whose columns are the right eigenvectors of the flux Jacobian fff ′(uuu) linearized at the center of each
cell. To this end, we propose to analyze the eigenstructuresof fff ′(uuu) and find thatRRR can be expressed
in terms of the components offff ′(uuu) as well as its eigenvalues. Further, noting that the entriesof RRR
are compositions of some smooth functions, and using the chain rule for divided differences (see, e.g.,
Floater & Lyche, 2007) as well as the chain rule for derivatives (Faà di Bruno’s Formula), we conclude
that the leading term of the divided difference ofRRR is a constant matrix. This finding together with the
fact that the divided difference of the projection error of the characteristic variable is in possession of
optimal approximation error estimate leads to the desired results in Corollary 2.2 and Corollary 3.1.

There are some other difficulties in deriving superconvergent error estimates of DG methods for
nonlinear systems of conservation laws. As mentioned before, a supercloseness result about a special
projection of the DG error (denoted byξξξ := Puuu−uuuh = Peee) needs to be established, which is a starting
point in advancingLLL2 norm estimates for high order divided differences. In orderto do this, unlike
Meng & Ryan (2017) or Menget al. (2012a), we express theLLL2 norm of ξξξ t in terms of the jump
seminorm ofξξξ rather than theLLL2 norm of ξξξ ; see Lemma 3.3 below and Lemma 3.7 in Menget al.
(2012a). Additionally, to perform error estimates for a nonlinear system of hyperbolic conservation
laws, the properties of the divided difference for composite functions and clear definitions of the special
Gauss–Radau projection as well as the upwind numerical flux should also be illustrated. Finally, we
would like to point out that it is not trivial for the two-dimensional extension, especially for establishing
the relations between spatial derivatives and time derivatives of the errors that are used to derive a sharp
bound for theLLL2 norm of divided differences of the DG error.

This paper is organized as follows. In Section 2, we give the DG scheme for the divided differences
of nonlinear systems of hyperbolic conservation laws, and present some preliminaries especially for the
properties of divided differences as well as the DG spatial operator. In Section 3, we state and discuss the
LLL2 norm error estimates for divided differences of nonlinear systems of hyperbolic conservation laws,
and then display the main proofs for a supercloseness resultand divided difference estimates. Further,
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superconvergent negative-order norm error estimates are given in Section 4. In Section 5, numerical
experiments are shown to demonstrate the theoretical results. Concluding remarks and comments on
future work are given in section 6. Finally, in the appendix we provide the proofs for some of the more
technical lemmas.

2. The DG scheme and preliminaries

2.1 The DG scheme

In this section, we follow Cockburnet al. (1989), Meng & Ryan (2017) and present the DG scheme for
divided differences of nonlinear system of hyperbolic conservation laws (1.1).

The standard notation of the DG method is used here. We use themesha = x1
2
< x3

2
< · · · <

xN+ 1
2
= b to cover the domainΩ = (a,b), and setx j = (x j− 1

2
+x j+ 1

2
)/2. To facilitate analysis of divided

difference estimates, we introduce two overlapping uniform meshes forΩ , denoted byI j = (x j− 1
2
,x j+ 1

2
)

and I j+ 1
2
= (x j ,x j+1) with mesh sizeh = x j+ 1

2
− x j− 1

2
. Associated with these meshes, the following

discontinuous finite element space are defined

VVVα ,k
h = {vvv∈ LLL2(Ωα) : vvv|I j′ ∈PPP

k(I j ′), ∀ j ′ = j +
ℓ

2
, ℓ= α mod 2, j = 1, . . . ,N},

whereLLL2(Ωα) := [L2(Ωα)]m with Ωα = (a+ ℓ
2h,b+ ℓ

2h),PPPk(I j ′) := [Pk(I j ′)]
m, andPk(I j ′) is the space

of polynomials of degree at mostk on the cellI j ′ := (x j ′− 1
2
,x j ′+ 1

2
). Here and in what follows,α denotes

theα-th order divided difference of a smooth or piecewise function, that is

∂ γ
h www(x) =

1
hγ

γ

∑
i=0

(−1)i
(

γ
i

)

www
(

x+
(γ

2
− i
)

h
)

. (2.1)

In particular, ifα is even, we setVVVα ,k
h =VVVk

h . Noting that functions inVVVα ,k
h are allowed to have discon-

tinuities across cell interfaces, we usewww−
i andwww+

i to represent the left and right limits ofwww(x) at the
discontinuity pointxi . Furthermore, at each element boundary point, the jump and the mean ofwww(x) are
denoted by[[www]] = www+−www− and{{www}}= 1

2(www
++www−), respectively.

Theα-th order divided difference of the nonlinear systems of conservation laws (1.1) is

∂ α
h uuut + ∂ α

h fff (uuu)x = 0, (x, t) ∈ Ωα × (0,T], (2.2a)

∂ α
h uuu(x,0) = ∂ α

h uuu0(x), x∈ Ωα . (2.2b)

We are now ready to define the DG scheme for (2.2). That is, find∂ α
h uuuh ∈VVVα ,k

h such that the following
weakformulation

(

(∂ α
h uuuh)t ,vvvh

)

j ′ =H j ′ (∂ α
h fff (uuuh),vvvh) (2.3)

is satisfied for allvvvh ∈ VVVα ,k
h and j = 1, . . . ,N, whereH j ′ (·, ·) represents the DG spatial discretization

operator defined on each cellI j ′ , i.e.,

H j ′ (www,vvv) = (vvvx,www) j ′ −
(

(vvv−)Tŵww
)

j ′+ 1
2
+
(

(vvv+)Tŵww
)

j ′− 1
2
.

As usual,(·, ·) j ′ denotes the standard inner product inLLL2(I j ′), i.e.,(www,vvv) j ′ =
∫

I j′
wwwTvvv dx.
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Similar to the scalar nonlinear conservation laws in Meng & Ryan (2017), the numerical flux̂fff j ′+ 1
2

is chosen to be an upwind flux. For completeness, in what follows we shall present the detailed definition
of upwind flux for (2.3). The idea is based on the local characteristic decomposition. Following Cock-
burnet al. (1989) and Zhang & Shu (2006), consider the Jacobian fluxfff ′(uuuj ′+1/2) := fff ′(uuu)|uuu=uuu j′+1/2

.

The corresponding eigenvalues, left and right eigenvectors are denoted byλi , ℓℓℓi , rrr i (i = 1, . . . ,m), nor-
malized so thatℓℓℓmrrrn = δm,n. Further, at each cell boundary pointx j ′+ 1

2
, the numerical fluxf̂ff j ′+ 1

2
=

f̂ff
(

(uuuh)
−
j ′+ 1

2
,(uuuh)

+
j ′+ 1

2

)

is determined by the following procedure.

1. Transformfff (uuu±h ) to the eigenspace offff ′(uuuj ′+1/2), i.e.,

v±i = ℓℓℓi fff (uuu±h ), i = 1, . . . ,m.

2. Apply the scalar upwind setting tov±i in the ith characteristic field(i = 1, . . . ,m), and the numer-
ical flux v̂i depends on the sign ofλi , i.e.,

v̂i =

{

v−i , if λi > 0,

v+i , if λi < 0.

3. The result is transformed back to the physical field to getf̂ff j ′+ 1
2
, namely

f̂ff j ′+ 1
2
=

m

∑
i=1

v̂i rrr i .

Moreover, analysis ofL2 norm error estimates of divided differences requires that the flux Jacobian
matrix fff ′(uuu) is positive definite. That is, eigenvalues offff ′(uuu j ′+1/2) are all positive. It follows from the

above procedure thatf̂ff j ′+ 1
2
= fff

(

(uuuh)
−
j ′+ 1

2

)

. Consequently,

H j ′ (www,vvv) = (vvvx,www) j ′ −
(

(vvv−)Twww−)
j ′+ 1

2
+
(

(vvv+)Twww−)
j ′− 1

2
(2.4a)

=−(vvv,wwwx) j ′ −
(

(vvv+)T[[www]]
)

j ′− 1
2
. (2.4b)

For periodic boundary conditions, the removal ofj ′ in H j ′ denotes the sum of allI j ′ , i.e.,

H(www,vvv) = (vvvx,www)+
N

∑
j=1

(

[[vvv]]Twww−)
j ′+ 1

2
(2.5a)

=−(vvv,wwwx)−
N

∑
j=1

(

(vvv+)T[[www]]
)

j ′− 1
2
, (2.5b)

where(vvv,www) = ∑N
j=1 (vvv,www) j ′ denotes the inner product inLLL2(Ωα). Here and below, in order to distin-

guish two overlapping meshes the summation is calculated with respect toj rather thanj ′.
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2.2 Preliminaries

In this section, we introduce the necessary norms, projections and inequalities that will be useful in our
analysis. We begin by noting thatC is used to denote a generic positive constant which is independent
of h but may depend on the exact solutionuuu as well as its time and spatial derivatives. Moreover, we
denote byC⋆ a nonnegative constant that depends on higher order (at least second order) derivatives of
fff (uuu).

2.2.1 Sobolev spaces and norms.For systems of conservation laws discussed in this paper, wewould
like to use‖·‖M to represent the 2-norm (length) of a vector, or the spectralnorm of a real matrix,

respectively. Specifically,‖vvv‖M =
√

∑m
i=1v2

i for any vectorvvv= (v1,v2, . . . ,vm)
T, and‖AAA‖M =

√

ρ(AAATAAA)

for any real matrixAAA, i.e.,‖AAA‖M is the square root of the largest eigenvalue of the positive-semidefinite
matrixAAATAAA. Furthermore, ifAAA is symmetric, then‖AAA‖M = ρ(AAA). For any matrix-valued functionAAA and
vector-valued functionswww,vvv, the following Cauchy–Schwarz inequality is helpful in ouranalysis

|wwwTAAAvvv|6 ‖AAA‖M‖www‖M‖vvv‖M. (2.6)

The Sobolev spaces can be easily defined for the vector-valued function space. To be more spe-
cific, for any integers> 0, we useWWWs,p(D) := [Ws,p(D)]m to denote the vector-valued Sobolev space
on subdomainD ⊂ Ω with the norm‖·‖s,p,D. In particular, if p = 2, we setWWWs,p(D) = HHHs(D), and

‖·‖s,p,D = ‖·‖s,D, and further ifs= 0, we set‖·‖s,D = ‖·‖D with ‖vvv‖D =
√

∫

D ‖vvv‖2
M dx. If p= ∞,s= 0,

we setWWWs,p(D) = LLL∞(D), and‖·‖s,p,D = ‖·‖∞,D with ‖vvv‖∞,D = esssupx∈D ‖vvv(x)‖M. For simplicity, when
D=Ω , we will omit the indexD. The norms of matrix-valued Sobolev space can be defined in the same
way. Moreover, we useΩh to denote the union of all elements, i.e.,Ωh = {D}, and the norm ofbroken
Sobolev spacesWWWs,p(Ωh) := {vvv∈ LLL2(Ω) : vvv|D ∈ WWWs,p(D), ∀D ⊂ Ωh} can be easily defined, which is
a formal sum of the contribution to each elementD. Besides, forvvv ∈ HHH1(Ωh), the LLL2 norm at cell
boundaries and thejump seminormare defined as follows

‖vvv‖Γh
=

(

N

∑
j=1

(

‖vvv+j ′−1/2‖
2

M
+ ‖vvv−j ′+1/2‖

2

M

)

) 1
2

, |[vvv]|=
(

N

∑
j=1

‖[[vvv]] j ′−1/2‖
2
M

) 1
2

.

Finally, the negative-order norm is defined as

‖vvv‖−ℓ,Ω = sup
Φ∈C∞

0 (Ω)

(vvv,Φ)

‖Φ‖ℓ
. (2.7)

Note that the negative-order norms can be used to detect the oscillations of a function around zero; for
more details, see Cockburnet al. (2003).

2.2.2 Local focus shifting (linearization). Since the linearization technique is repeatedly used in
analysis for nonlinear problems, we present the following inequality regarding local focus shifting (lin-
earization) for nonlinear systems. LetBBB be a matrix-valued function, for exampleBBB= fff ′(uuu), or ∂t fff ′(uuu),
which is assumed to be smooth enough with respect touuu. Then their focus shifting (i.e., change of the
vector at which the function is evaluated) satisfies the following Lipschitz continuity

‖BBB(www)−BBB(vvv)‖M 6C⋆‖www− vvv‖M (2.8)
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due to the well-known Wielandt–Hoffman Theorem (Golub & VanLoan, 2012), wherewww andvvv are two
local focuses. Note that (2.8) will be useful in our later analysis, especially for the estimates to the
projection errors.

2.2.3 Properties for the divided differences.As indicated in Meng & Ryan (2017), one of the most
important tools in derivingL2 and negative-order norm error estimates of the divided difference for
nonlinear equations is the properties of divided differences. Note that it is straightforward to extend the
properties of divided differences from the scalar case to the vector/matrix case. In what follows, we
only list these properties without proof and refer the readers to Meng & Ryan (2017) for more details.
Specifically, we would like to list the Leibniz rule and the relation between divided differences and
derivatives.

For any vector-valued functionswww andvvv, the following Leibniz rule holds

∂ γ
h (www(x)vvv(x)) =

γ

∑
i=0

(

γ
i

)

∂ i
hwww

(

x+
γ − i

2
h

)

∂ γ−i
h vvv

(

x− i
2

h

)

. (2.9)

Note that (2.9) is still valid even ifwww andvvv are piecewise functions with possible discontinuities at cell
interfaces or they are composite functions. Ifwww is the composition of a smooth matrix-valued function
GGG and a smooth vector-valued functionuuu, i.e.,www(x) := GGG(uuu(x)), we can prove the following property

∂ γ
h GGG(uuu(x)) = ∂ γ

x GGG(uuu(x))+Cγ hΨγ(x), (2.10)

whereCγ is a positive constant andΨ γ is a smooth matrix-valued function. This is because the divided
difference of a matrix-valued function is a matrix resulting from applying the divided difference operator
to its each component, and the scalar/componentwise version of (2.10) has already been proved in Meng
& Ryan (2017). We would like to remark that the property (2.10) is very useful in proving Corollary
2.1.

2.2.4 Projections and interpolation properties.Prior to giving the definition of Gauss–Radau pro-
jections for the system case, let us recall two kinds of scalar Gauss–Radau projections intoVα ,k

h = {v∈
L2(Ωα) : v|I j′ ∈ Pk(I j ′), ∀ j ′ = j + ℓ

2, ℓ = α mod 2, j = 1, . . . ,N}. That is, forq ∈ H1(Ωh), the local

Gauss–Radau projection ofq is the unique function inPk(I j ′) such that, for eachj ′

(

q−P
−q,zh

)

j ′ = 0, ∀zh ∈ P
k−1(I j ′), (q−P

−q)−
j ′+ 1

2
= 0; (2.11a)

(

q−P
+q,zh

)

j ′ = 0, ∀zh ∈ P
k−1(I j ′), (q−P

+q)+
j ′− 1

2
= 0. (2.11b)

To define the projection for the system case, we consider the Jacobian matrixfff ′(uuu j ′) := fff ′(uuu)|uuu=uuuj′

with uuu j ′ = uuu(x j ′ , t). The corresponding eigenvalues, left and right eigenvectors are denoted byλi , ℓℓℓi , rrr i

(i = 1, . . . ,m), normalized so thatℓℓℓmrrrn = δm,n. Thus, on each cellI j ′ , the Gauss–Radau projection of a
vector-valued functionuuu, denoted byPuuu, is the unique function inPPPk(I j ′) determined by the following
procedure.

1. Transformuuu to the eigenspace offff ′(uuuj ′), i.e.,

vi = ℓℓℓi uuu, i = 1, . . . ,m.



8 of 28 X. MENG AND J. K. RYAN

2. Apply the scalar Gauss–Radau projection (2.11) tovi in the ith characteristic field(i = 1, . . . ,m),
and the projectionPvi depends on the sign ofλi, i.e.,

Pvi =

{

P
−vi , if λi > 0,

P
+vi , if λi < 0.

3. The result is transformed back to the physical field to getPuuu:

Puuu=
m

∑
i=1

Pvi rrr i .

Note that the above Gauss–Radau projection has been used to derive optimal convergence results of
the fully-discrete DG scheme for nonlinear systems of conservation laws, when the upwind flux is
considered; see Luoet al. (2015).

In particular, if the flux Jacobian matrixfff ′(uuu) is always positive definite foruuu andx, thenPuuu= RRRPvvv
with RRR= (rrr1, · · · , rrrm) andPvvv = P

−vvv = (P−v1, . . . ,P
−vm)

T. Further, denoting byηηηvvv = vvv−Pvvv and
ηηηuuu = uuu−Puuu, we have thatηηηuuu = RRRηηηvvv, sinceuuu= RRRvvv. Note thatRRR is a constant matrix in each element
I j ′ due to the local linearizationfff ′(uuu j ′), we conclude, by the definition of scalar Gauss–Radau projection
P
− in (2.11a), that for eachj ′,

(uuu−Puuu,zzzh) j ′ = 0, ∀zzzh ∈PPP
k−1(I j ′), (uuu−Puuu)−

j ′+ 1
2
= 0. (2.12)

Moreover, foruuu∈WWWk+1,∞(Ωh), by a standard scaling argument (Ciarlet, 1978; Brenner & Scott, 2007),
we have

‖ηηηuuu‖+h‖(ηηηuuu)x‖+h1/2‖ηηηuuu‖Γh
6Chk+1‖uuu‖k+1, (2.13a)

‖ηηηuuu‖∞ 6Chk+1‖uuu‖k+1,∞, (2.13b)

whereC is independent ofh.
Finally, we list some inverse properties of the finite element spaceVVVα ,k

h for the one-dimensional

case. For anyqqq∈VVVα ,k
h , there exists a positive inverse constantC independent ofqqq andh, such that

(i) ‖∂xqqq‖6Ch−1‖qqq‖; (ii) ‖qqq‖Γh
6Ch−

1
2‖qqq‖; (iii) ‖qqq‖∞ 6Ch−

1
2‖qqq‖.

2.2.5 Properties of the DG discretization operator.The following properties of the DG discretization
operator are useful in the proof ofLLL2 norm divided difference estimates.

LEMMA 2.1 (Meng & Ryan, 2017) Suppose that the matrix-valued functionGGG(uuu(x, t)) (GGG= fff ′(uuu),∂t fff ′(uuu)
etc) is smooth with respect to each variable. Then, for anywww,vvv ∈ VVVα ,k

h , there holds the following in-
equality

H(GGGwww,vvv)6C⋆

(

‖www‖+ ‖wwwx‖+h−
1
2 |[www]|

)

‖vvv‖, (2.14a)

and in particular, ifGGG= fff ′(uuu) is real positive definite (and thus,GGG> δ III with δ > 0 being the smallest
eigenvalue ofGGG andIII the identity matrix), there holds

H(GGGwww,www)6C⋆‖www‖2− δ
2
|[www]|2. (2.14b)
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Proof. The proof of (2.14a) follows by considering the equivalentstrongform of H, (2.5b). To prove
(2.14b), we apply integration by parts to each diagonal and non-diagonal term of the quadratic form
(wwwx,GGGwww) to get the following compact form

H(GGGwww,www) =−1
2
(www,∂xGGGwww)+

N

∑
j=1

(

[[www]]TGGG(www−−{{www}})
)

j ′− 1
2

=−1
2
(www,∂xGGGwww)− 1

2

N

∑
j=1

(

[[www]]TGGG[[www]]
)

j ′− 1
2

6C⋆‖www‖2− δ
2
|[www]|2,

where we have also used the Cauchy–Schwarz inequality (2.6)in the last step. �

COROLLARY 2.1 (Meng & Ryan, 2017) Under the same conditions as in Lemma 2.1, we have, for
small enoughh,

H((∂ α
h GGG)www,vvv)6C⋆

(

‖www‖+ ‖wwwx‖+h−
1
2 |[www]|

)

‖vvv‖, ∀α > 0. (2.15)

Proof. The proof follows by combining the relation (2.10) and (2.14a) in Lemma 2.1. �

LEMMA 2.2 Suppose that the matrix-valued functionGGG(uuu(x, t)) (GGG= fff ′(uuu),∂t fff ′(uuu) etc) is smooth with
respect to each variable. Then, for anyuuu∈ HHHk+1(Ωh) andzzz∈VVVα ,k

h there holds

H(GGG(uuu−Puuu),zzz)6C⋆h
k+2‖zzzx‖, (2.16a)

H(GGG(uuu−Puuu),zzz)6C⋆h
k+1‖zzz‖. (2.16b)

Proof. We need only to prove (2.16a), since, by inverse inequality (i), (2.16b) is a direct consequence.
Using the exact collocation property of the projectionP in (2.12), we have

H(GGG(uuu−Puuu),zzz) = (zzzx,GGG(uuu−Puuu)) .

Next, on each cellI j ′ , we use the local linearization approach to rewriteGGG(uuu(x, t)) asGGG(uuu) = GGG(uuuj ′)+
(

GGG(uuu)−GGG(uuuj ′)
)

with uuu j ′ = uuu(x j ′ , t). Clearly, on each elementI j ′ , by (2.8), we have‖GGG(uuu)−GGG(uuuj ′)‖∞ =
esssupx∈Ω ‖GGG(uuu)−GGG(uuu j ′)‖M 6C⋆h due to the smoothness ofGGG anduuu. Using the orthogonality prop-
erty of the projectionsP andP, (2.12), we arrive at

H(GGG(uuu−Puuu),zzz) =
(

zzzx,(GGG(uuu)−GGG(uuu j ′))(uuu−Puuu)
)

6 ‖GGG(uuu)−GGG(uuuj ′)‖∞‖zzzx‖‖uuu−Puuu‖
6C⋆h

k+2‖zzzx‖,

where we have used the Cauchy–Schwarz inequality (2.6) and the approximation property (2.13a).�

COROLLARY 2.2 Under the same conditions as in Lemma 2.2, we have, for small enoughh,

H(∂ α
h (GGG(uuu−Puuu)),zzz)6C⋆h

k+1‖zzz‖, ∀α > 0. (2.17)
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Proof. The caseα = 0 has been proved in Lemma 2.2. Forα > 1, by the Leibniz rule (2.9) and
using the fact thatuuu−Puuu= RRR(vvv−P

−vvv) with RRR being the matrix composed of the right eigenvectors
of fff ′(uuu j ′) and that both the divided difference operator and the projection operatorP− are linear, we
rewrite∂ α

h (GGG(uuu−Puuu)) as

∂ α
h (GGG(uuu−Puuu)) =

α

∑
ℓ=0

(

α
ℓ

)

∂ ℓ
hGGG

(

x+
α − ℓ

2
h

)

∂ α−ℓ
h (uuu−Puuu)

(

x− ℓ

2
h

)

,
α

∑
ℓ=0

(

α
ℓ

)α−ℓ

∑
γ=0

(

α − ℓ

γ

)

ǦGGŘRR(v̌vv−P
−v̌vv)

with

ǦGG= ∂ ℓ
hGGG

(

x+
α − ℓ

2
h

)

, ŘRR= ∂ γ
h RRR

(

x+
α −2ℓ− γ

2
h

)

, v̌vv= ∂ α−ℓ−γ
h vvv

(

x− ℓ+ γ
2

h

)

.

Note that we have a uniform mesh as these operators don’t commute for a nonuniform mesh. Note also
thatRRR is a piecewise constant matrix in eachI j ′ that depends onfff ′(uuuj ′). Thus,

H(∂ α
h (GGG(uuu−Puuu)),zzz) =

α

∑
ℓ=0

(

α
ℓ

)α−ℓ

∑
γ=0

(

α − ℓ

γ

)

H

(

ǦGGŘRR(v̌vv−Pv̌vv),zzz
)

. (2.18)

Clearly, by (2.10),ǦGG is also a smooth matrix-valued function with respect to eachvariable with the
leading term∂ ℓ

xGGG
(

x+ α−ℓ
2 h
)

. Moreover, the properties (2.12) and (2.13a) are still valid for v̌vv−P
−v̌vv,

since it can be regarded as the projection error of the function v̌vv. However, obtaining a sharp estimate
to the term∂ γ

h RRR involved in ŘRR is intractable, which requires a deeper analysis. Otherwise, by directly
using the definition of the divided difference (2.1),∂ γ

h RRRwould be of orderh−γ , which would inhibit any
superconvergence results. Indeed, by considering eigenstructures of the matrixGGG and the smoothness
of fff ′(uuu), we are able to prove, after careful analysis, that

lim
h→0

∂ γ
h RRR(x) = ∂ γ

x RRR(uuu(x j ′)), (2.19)

and thus the leading term ofŘRR is a constant matrix, which is of orderh0. To clearly display the proof

of (2.19), let us consider the 2×2 (m= 2) matrixGGG= fff ′(uuu), whose entriesgp,q =
∂ fp
∂uq

are also smooth

scalar functions due to the smoothness offff . It follows from the construction of the projectionP thatRRR
is the matrix whose columns are the right eigenvectors offff ′(uuu j ′), which can be expressed in terms of
gp,q(uuuj ′) and the corresponding eigenvalues. Specifically,

RRR=

[

g1,2 λ2−g2,2

λ1−g1,1 g2,1

]

,

whereλ1,2 =
λ (1)±λ (2)

2 with

λ (1) = g1,1+g2,2,

λ (2) =
√

(g1,1+g2,2)2−4(g1,1g2,2−g1,2g2,1).
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Therefore, in order to analyze∂ γ
h RRR, it is sufficient to consider∂ γ

h gp,q and∂ γ
h λ1,2. By (2.10), we have that

lim
h→0

∂ γ
h gp,q(uuu j ′) = ∂ γ

x gp,q(uuuj ′), p,q= 1,2, (2.20a)

lim
h→0

∂ γ
h λ (1)(uuu j ′) = ∂ γ

x (g1,1+g2,2)(uuu j ′). (2.20b)

It remains to consider∂ γ
h λ (2) if the term inside the square root ofλ (2) is always positive. Otherwise,

λ1,2 = λ (1)

2 . Note thatλ (2) can be expressed in terms of the composition of three smooth functions,
namely,λ (2) = z(w(uuu(x))) with z(w) =

√
w (w> 0), w(uuu) = (g1,1(uuu)+g2,2(uuu))2−4(g1,1(uuu)g2,2(uuu)−

g1,2(uuu)g2,1(uuu)) anduuu= uuu(x). Thus, by (2.10),

lim
h→0

∂ γ
h λ (2)(uuuj ′) = ∂ γ

x z(w(uuu(x j ′))). (2.20c)

The property (2.19) follows by collecting the results in (2.20a)–(2.20c). Finally, to complete the proof
of this Corollary, we need only to apply the same procedure asthat in the proof of Lemma 2.2 to each
H term on the right side of (2.18). �

2.2.6 Smoothness-Increasing Accuracy-Conserving (SIAC) filters. SIAC filters represent a family of
filters designed to at least conserve the order of accuracy ofthe DG solution. It is a post-processing pro-
cedure. For the symmetric SIAC filter, the post-processing procedure for scalar equations was given, for
example, in Cockburnet al. (2003); Mirzaeeet al. (2012); Meng & Ryan (2017). Here, we concentrate
on the symmetric filter.To apply the SIAC filter to systems of conservation laws, we need only to apply
the filter corresponding to the scalar case to each componentof the approximation vector.

The following theorem shows the relation between negative-order norm error estimates for divided
differences andLLL2 norm of the post-processed error.

THEOREM 2.1 (Bramble & Schatz, 1977) For 0< T < T⋆, whereT⋆ is the maximal time of ex-
istence of the smooth solution, letuuu ∈ L∞([0,T];HHHν(Ω)) be the exact solution of (1.1). LetΩ0 +

2supp(Kν,k+1
h (x))⋐ Ω andUUU is any approximation touuu, then

‖uuu(T)−Kν,k+1
h ⋆UUU‖Ω0

6
hν

ν!
C1|uuu|ν +C1C2 ∑

α6k+1

‖∂ α
h (uuu−UUU)‖−(k+1),Ω ,

whereC1 andC2 depend onΩ0,k, but is independent ofh.

As we can see from the above theorem, in order to have the ability to extract a superconvergent
approximation using the B-spline convolution filter, we must be able to demonstrate that higher order
convergence exists in the negative-order norm for not only the solution, but the divided differences as
well. Since the duality argument is an important tool in deriving superconvergent negative-order norm
estimates and the dual problem for nonlinear systems is a variable coefficient problem, in what follows
we recall a regularity result.

LEMMA 2.3 (Hörmander, 1997; Jiet al., 2013) Consider the variable coefficient system of conservation
laws with a periodic boundary condition for allt ∈ [0,T]

ϕϕϕt(x, t)+AAA(x, t)ϕϕϕx(x, t) = 0, (2.21a)

ϕϕϕ(x,0) = ϕϕϕ0(x), (2.21b)
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whereAAA(x, t) is a given smooth matrix-valued periodic function. For anyℓ> 0, fixed timet andAAA(x, t)∈
L∞([0,T];WWW2ℓ+1,∞(Ω)), then the solution of (2.21) satisfies the following regularity property

‖ϕϕϕ(x, t)‖ℓ 6C‖ϕϕϕ(x,0)‖ℓ,

whereC is a constant depending on‖AAA‖L∞([0,T];WWW2ℓ+1,∞(Ω)).

3. LLL2 norm estimates for divided differences

In this section, we provide an analysis to theLLL2 norm estimates for the divided differences of the DG
error, which is useful to derive superconvergent negative-order norm estimates.

3.1 The main results in the LLL2 norm

As usual, we split the DG erroreee= uuu−uuuh into two parts, namelyeee= ηηη + ξξξ with ηηη = uuu−Puuu being
the projection error andξξξ = Puuu− uuuh := Peee∈ VVVα ,k

h . Here the projectionP is defined on each cellI j ′

corresponding to the sign variation of the eigenvalues offff ′(uuu); specifically, for anyt ∈ [0,T] andx∈ Ω ,
assuming thatfff ′(uuu) is positive definite, then on each elementI j ′ , we choosePuuu = RRRP

−vvv, and thus
ηηη = RRRηηηvvv with ηηηvvv = vvv−P

−vvv andvvv= RRR−1(uuu j ′)uuu.
We are now ready to state the main theorem for theLLL2 norm error estimates.

THEOREM3.1 For any 06 α 6 k+1, let∂ α
h uuu be the exact solution of equation (2.2), which is assumed

to be sufficiently smooth with bounded derivatives, and assume thatfff ′(uuu) is positive definite. Let∂ α
h uuuh

be the numerical solution of scheme (2.3) with initial condition ∂ α
h uuuh(0) = P(∂ α

h uuu0) when the upwind

flux is used. For a uniform mesh ofΩ = (a,b), if the finite element spaceVVVα ,k
h of piecewise polynomials

with arbitrary degreek > 1 is used, then for small enoughh and anyT > 0 there holds the following
error estimate

‖∂ α
h ξξξ (T)‖2

+
∫ T

0
|[∂ α

h ξξξ ]|2 dt 6C⋆h
2k+3−α , (3.1)

where the positive constantC⋆ depends onuuu, T and fff , but is independent ofh.

COROLLARY 3.1 Under the same conditions as in Theorem 3.1, if in addition α > 1 we have the
following error estimates:

‖∂ α
h (uuu−uuuh)(T)‖6C⋆h

k+ 3
2− α

2 . (3.2)

Proof. Using similar argument in Corollary 2.2, we have that

∂ α
h ηηη =

α

∑
ℓ=0

(

α
ℓ

)

ŘRR(v̌vv−P
−v̌vv)

wherev̌vv= ∂ α−ℓ
h vvv

(

x− ℓ
2h
)

andŘRR= ∂ ℓ
hRRR
(

x+ α−ℓ
2 h
)

, and thus

‖∂ α
h ηηη‖6Chk+1‖∂ α

h uuu‖k+1 (3.3)

by the interpolation error estimate (2.13a) and the fact that the leading term of̌RRR is a constant matrix
(2.19), due to the smoothness offff ′(uuu). To complete the proof, we need only to combine (3.1) and (3.3)
and use the triangle inequality. �
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REMARK 3.1 We would like to point out that if we combine the error estimates from this paper with
the typical divided differences for unstructured meshes, the accuracy enhancement can also be obtained
for unstructured meshes. Indeed, for linear equations, Cockburnet al. (2003) suggests that the divided
difference estimate for unstructured meshes is of order 2k+ 1+m−α with m= (2k+ 1)/(3k+ 2).
Moreover, numerical tests for linear hyperbolic equationsand unstructured meshes were carried out in
Mirzaeeet al. (2013).

To prove high order divided difference estimates in Theorem3.1, we need first to establish a su-
percloseness result withα = 0. The superconvergence result forξξξ (zeroth order divided difference) is
given in the following proposition, which generalizes the supercloseness result from the scalar nonlinear
conservation laws in Menget al. (2012a) to the system case.

PROPOSITION3.2 Letuuu be the exact solution of the system (1.1), which is assumed tobe sufficiently
smooth with bounded derivatives, and assume thatfff ′(uuu) is positive definite. Letuuuh be the numerical
solution of scheme (2.3)(α = 0) with initial conditionuuuh(0) = Puuu0 when the upwind flux is used. For a
quasi-uniform mesh ofΩ =(a,b), if the finite element spaceVVVk

h of piecewise polynomials with arbitrary
degreek> 1 is used, then for small enoughh and anyt ∈ (0,T] there holds the following error estimates

‖ξξξ‖+
(

∫ t

0
|[ξξξ (τ)]|2dτ

) 1
2

6C⋆h
k+ 3

2 , (3.4a)

‖ξξξ x‖6C⋆(‖ξξξ t‖+hk+1), (3.4b)

‖ξξξ t‖+
(

∫ t

0
|[ξξξ t ]|

2dτ
) 1

2

6Chk+1+C⋆h
− 1

2

(

∫ t

0
|[ξξξ (τ)]|2dτ

) 1
2

, (3.4c)

whereC andC⋆ depend onuuu, t and fff , but is independent ofh.

The proof of this proposition is given in Section 3.3.

3.2 The proof of Theorem 3.1

As mentioned in the introduction, the main difficulties comefrom estimates of‖∂ α
h ξξξ‖ and‖∂ α

h ηηη‖.
Using an energy analysis together with the properties of theDG discretization operator established in
Section 2.2.5, we can see that the proof of Theorem 3.1 for thesystem case mainly follows along the
same line as that for the scalar nonlinear case in Meng & Ryan (2017). Therefore, we omit detailed
proofs and only point out the following two main differences

1. Estimate of‖∂ α
h ηηη‖. For scalar nonlinear equations, the estimate of‖∂ α

h η‖ is trivial, as both
the divided difference operator∂h and the projection operatorP− are linear and thus commute
with each other. However, for the system case, the projection P does not commute with∂h. As
discussed in Corollary 2.2, this difficulty can be addressedby analyzing the eigenstructures of
fff ′(uuu) and by using the property of the divided difference for composite functions in (2.10).

2. Taylor expansion.For nonlinear systems of conservation laws, in order to write out the nonlinear
terms, namelyfff (uuu)− fff (uuuh) and fff (uuu)− fff (uuu−h ), we need to use the following second order Taylor
expansion

fff (uuu)− fff (uuuh) = fff ′(uuu)ξξξ + fff ′(uuu)ηηη −eeeT
Heee, (3.5a)

fff (uuu)− fff (uuu−h ) = fff ′(uuu)ξξξ−
+ fff ′(uuu)ηηη−− (eee−)T

H̃eee−. (3.5b)
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Here and below,eeeT
Heee := (eeeT

H1eee, . . . ,eeeT
Hmeee)T with Hi being the Hessian matrix in the integral

form of the remainders of the second order Taylor expansion,and the(p,q)-th entry ofHi given

by (Hi)p,q =
∫ 1

0
∂ 2 fi(uuu

s)
∂up∂uq

(1− s)dswith uuus= uuu+s(uuuh−uuu). Likewise for(eee−)T
H̃eee−. We would like

to emphasize that the various order spatial derivatives, time derivatives and divided differences
of each components ofH and H̃ are all bounded uniformly due to the smoothness offff anduuu.
Without loss of generality, we take the first order divided difference estimate‖∂hξξξ‖ for example.
In order to obtain optimal(k+1)th order, we need only to choosevvvh = ∂hξξξ in the error equation
involving the first order divided differences and use properties of the DG discretization operator
in Section 2.2.5 in combination with the superconvergence error estimates in Proposition 3.2.

3.3 The proof of Proposition 3.2

The original DG scheme withα = 0 is

((uuuh)t ,vvvh) j =H j ( fff (uuuh),vvvh) , (3.6)

which holds for allvvvh ∈VVVk
h and j = 1, . . . ,N. For periodic boundary conditions under consideration in

this paper, by Galerkin orthogonality and summing over allj, we get the error equation

(eeet ,vvvh) =H( fff (uuu)− fff (uuuh),vvvh) (3.7)

for all vvvh ∈VVVk
h . Lettingvvvh = ξξξ = Puuu−uuuh, we arrive at the following identity

LHS= RHS, (3.8)

where

LHS= (eeet ,ξξξ ) , (3.9a)

RHS=H( fff (uuu)− fff (uuuh),ξξξ ) . (3.9b)

Clearly,

LHS=
1
2

d
dt
‖ξξξ‖2

+(ηηηt ,ξξξ ) . (3.10a)

If we now denote byξξξ c
j =

1
h j

∫

I j
ξξξ dx the cell average ofξξξ on each elementI j , and further define piece-

wise constant polynomialξξξ c whose restriction onI j is ξξξ c
j , then we can easily obtain a bound for(ηηηt ,ξξξ ),

|(ηηη t ,ξξξ ) |= |
(

ηηηt ,ξξξ − ξξξ c) |6Chk+2‖ξξξ x‖, (3.10b)

since, by (2.12),ηηη and thusηηηt are orthogonal to piecewise constant functions, where in the last step
we have also used the approximation error estimates (2.13a)and the Poincaré–Wirtinger inequality
‖ξξξ − ξξξ c‖6Ch‖ξξξx‖.

In what follows, we shall estimateRHS, which is given in the following lemma.

LEMMA 3.1 Suppose that the interpolation property (2.13a) is satisfied. Then we have

RHS6 (C(e)+C⋆h
−3‖eee‖2

∞)‖ξξξ‖2− δ
2
|[ξξξ ]|2+C⋆h

k+2‖ξξξx‖+Ch2k+3 (3.10c)

with C(e) =C+C⋆h−1‖eee‖∞, whereC andC⋆ are independent ofh anduuuh.
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Proof. Using the second order Taylor expansion (3.5)

fff (uuu)− fff (uuuh) = fff ′(uuu)ξξξ + fff ′(uuu)ηηη −eeeT
Heee, θθθ 1+θθθ 2+θθθ 3, (3.11a)

fff (uuu)− fff (uuu−h ) = fff ′(uuu)ξξξ−
+ fff ′(uuu)ηηη−− (eee−)T

H̃eee− , θθθ−
1 +θθθ−

2 +θθθ−
3 , (3.11b)

we rewriteRHSas
RHS=Θ 1+Θ2+Θ3

with Θ i given by

Θ i =H(θθθ i ,ξξξ ) = (ξξξ x,θθθ i)+
N

∑
j=1

([[ξξξ ]]Tθθθ−
i ) j+ 1

2
, (i = 1,2,3),

which will be estimated one by one below.
By the same argument as that in the proof of (2.14b) in Lemma 2.1, we have that

Θ 1 6C⋆‖ξξξ‖2− δ
2
|[ξξξ ]|2. (3.12a)

A direct application of (2.16a) in Lemma 2.2 leads to a bound forΘ 2

Θ 2 6C⋆h
k+2‖ξξξ x‖. (3.12b)

It follows from the Cauchy–Schwarz inequality, the inverseproperties (i) as well as (ii), and the approx-
imation error estimate (2.13a), that

Θ 3 6C⋆‖eee‖∞

(

‖eee‖‖ξξξ x‖+ ‖eee‖Γh
‖ξξξ‖Γh

)

6C⋆h
−1‖eee‖∞

(

‖ξξξ‖+ ‖ηηη‖+h
1
2‖ηηη‖Γh

)

‖ξξξ‖

6C⋆h
−1‖eee‖∞‖ξξξ‖2

+C⋆h
k‖eee‖∞‖ξξξ‖

6 (C⋆h
−1‖eee‖∞ +C⋆h

−3‖eee‖2
∞)‖ξξξ‖2

+Ch2k+3, (3.12c)

where Young’s inequality is used in the last step. To finish the proof of Lemma 3.1, we need only to
combine (3.12a)–(3.12c). �

We now insert the estimates (3.10a)–(3.10c) into (3.8) to get

1
2

d
dt
‖ξξξ‖2

+
δ
2
|[ξξξ ]|2 6 (C(e)+C⋆h

−3‖eee‖2
∞)‖ξξξ‖2

+C⋆h
k+2‖ξξξ x‖+Ch2k+3. (3.13)

To deal with the nonlinearity offff (uuu) we make an a priori assumption that, for small enoughh

‖Puuu−uuuh‖6 h2. (3.14)

This a priori assumption can be verified by using the same argument as that in Menget al. (2012a) for
piecewise polynomials of degreek> 1, and is useful to derive a crude bound forξξξ , which is necessary
in the proof ofξξξ t in Lemma 3.2.

COROLLARY 3.2 Suppose that the interpolation property (2.13b) is satisfied, then the a priori assump-
tion (3.14) implies that

‖eee‖∞ 6Ch
3
2 and ‖ξξξ‖∞ 6Ch

3
2 . (3.15)
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Proof. This follows from the inverse property (iii), the interpolation property (2.13b) and triangle
inequality. �

COROLLARY 3.3 Under the same conditions as in Lemma 3.1, if the a priori assumption (3.14) holds,
we have the following error estimates

‖eee‖6Chk+1 and ‖ξξξ‖6Chk+1. (3.16)

Proof. We first apply inverse inequality (i) to (3.10b) and (3.12b) to obtain|(ηηηt ,ξξξ ) |+Θ 2 6C⋆hk+1‖ξξξ‖.
Then, noting (3.13), the results in Corollary 3.3 follow by using (3.15) implied by the a priori assumption
(3.14) and a simple application of Gronwall’s inequality together with the fact thatξξξ (·,0) = 0 due to
the special choice of the initial condition. �

From (3.13), one can see that the supercloseness result of‖ξξξ‖ depends heavily on the estimate of
‖ξξξ x‖ and further‖ξξξ t‖, which are given in the following two lemmas.

LEMMA 3.2 Under the same conditions as in Proposition 3.2, if, in addition, the a priori assumption
(3.14) holds, we have

‖ξξξx‖6C(‖ξξξ t‖+hk+1), (3.17)

for anyt ∈ [0,T], whereC is independent ofh anduuuh.

The proof of this lemma is postponed to Appendix A.1.

LEMMA 3.3 Under the same conditions as in Proposition 3.2, if, in addition, the a priori assumption
(3.14) holds, we have

‖ξξξ t‖+
(

∫ t

0
|[ξξξ t ]|

2dτ
) 1

2

6Chk+1+C⋆h
− 1

2

(

∫ t

0
|[ξξξ (τ)]|2dτ

) 1
2

, (3.18)

for anyt ∈ [0,T], whereC andC⋆ are independent ofh anduuuh.

The proof of this lemma is deferred to Appendix A.2. It is worth pointing out that, unlike the scalar
case,‖ξξξ t‖ is bounded by|[ξξξ ]| instead of‖ξξξ‖ in Menget al. (2012a). This enables us to fully make use
of properties of the DG operator established in Section 2.2.5 to deal with the mixed integral termK1

(see Appendix A.2), which simplifies the proof a lot, and the technique based on integration by parts
with respect to time as that in Menget al. (2012a) is no longer needed.

Collecting the estimates (3.17) and (3.18) into (3.13) and using (3.15), we have

1
2

d
dt
‖ξξξ‖2

+
δ
2
|[ξξξ ]|2 6C1‖ξξξ‖2

+C2

∫ t

0
|[ξξξ (τ)]|2dτ +C3h2k+3, (3.19)

whereC1,C2 andC3 are positive constants independent ofh. Note that there holds the following identity

d
dt

∫ t

0
|[ξξξ (τ)]|2dτ = |[ξξξ (t)]|2.

Then, (3.19) becomes

d
dt

(

‖ξξξ (t)‖2
+ δ

∫ t

0
|[ξξξ (τ)]|2dτ

)

6C0

(

‖ξξξ (t)‖2
+ δ

∫ t

0
|[ξξξ (τ)]|2dτ

)

+Ch2k+3, (3.20)

whereC0 = max(2C1,2C2/δ ), C= 2C3 are positive constants independent ofh.
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An application of Gronwall’s inequality together with the fact thatξξξ (·,0) = 0 gives us the desired
result (3.4a), namely

‖ξξξ‖+
(

∫ t

0
|[ξξξ (τ)]|2dτ

) 1
2

6C⋆h
k+ 3

2 . (3.21)

To complete the proof of Proposition 3.2, we need only to combine Lemma 3.2 and Lemma 3.3.

4. Superconvergent error estimates

Although a superconvergent result about the negative-order norm estimates for the DG error itself to
the scalar nonlinear conservation laws has been given in Jiet al. (2013), this paper goes further in
that it addresses nonlinear systems and treats the estimates for both the equation itself and the divided
differences of the equation. It is worth emphasizing that compared to Jiet al. (2013) the following
superconvergent estimate about the negative-order norm ofthe divided differences of the DG error is
more complicated and technical, as it not only needs to use the duality argument but also requires
establishing the correspondingLLL2 norm error estimates of the divided difference as shown in Section 3.

THEOREM 4.1 For any 16 α 6 k+ 1, let ∂ α
h uuu be the exact solution of the problem (2.2), which is

assumed to be sufficiently smooth with bounded derivatives,and assume thatfff ′(uuu) is positive definite.
Let ∂ α

h uuuh be the numerical solution of the scheme (2.3) with initial condition∂ α
h uuuh(0) = P(∂ α

h uuu0) when

the upwind flux is used. For a uniform mesh ofΩ = (a,b), if the finite element spaceVVVα ,k
h of piecewise

polynomials with arbitrary degreek> 1 is used, then for small enoughh and anyT > 0 there holds the
following error estimate

‖∂ α
h (uuu−uuuh)(T)‖−(k+1),Ω 6Ch2k+ 3

2− α
2 , (4.1)

where the positive constantC depends onuuu, δ andT, but is independent ofh.

The above negative-order norm error estimate together withTheorem 2.1 leads to a superconvergent
result for the post-processed solution.

COROLLARY 4.1 Under the same conditions as in Theorem 4.1, if in addition Kν,k+1
h is a convolu-

tion kernel consisting ofν = 2k+1+ω (ω > ⌈− k
2⌉) B-splines of orderk+1 such that it reproduces

polynomials of degreeν −1, then we have

‖uuu−Kν,k+1
h ⋆uuuh‖6Ch

3
2k+1. (4.2)

4.1 Proof of the main results in the negative-order norm

As mentioned before, the negative-order norm estimates forthe divided differences of the DG error
depend on both the correspondingL2 norm estimates and the duality argument. On the one hand, it
is highly nontrivial to deriveLLL2 norm error estimates of the divided differences from the standardLLL2

error estimates (see, e.g., Zhang & Shu, 2010; Luoet al., 2015) and some delicate supercloseness results
needs to be established; see Section 3. On the other hand, to perform the duality analysis, we follow the
same line as that for the scalar case in Jiet al.(2013) and Meng & Ryan (2017). First, by (2.7), we need
to concentrate on the estimate of

(∂ α
h (uuu−uuuh)(T),Φ) (4.3)
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for Φ ∈C∞
0 (Ω). Then, define the dual problem as: find a functionϕϕϕ such thatϕϕϕ(·, t) is periodic for all

t ∈ [0,T] and

∂ α
h ϕϕϕt + fff ′(uuu)∂ α

h ϕϕϕx = 0, (x, t) ∈ Ω × [0,T), (4.4a)

ϕϕϕ(x,T) = Φ(x), x∈ Ω . (4.4b)

A combination of (2.2a) and (4.4a) gives us

d
dt

(∂ α
h uuu,ϕϕϕ)+F(uuu;ϕϕϕ) = 0, (4.5)

whereF(uuu;ϕϕϕ) = (−1)α ( fff ′(uuu)uuu− fff (uuu),∂ α
h ϕϕϕx

)

. Thus,

(∂ α
h uuu,ϕϕϕ)(T) = (∂ α

h uuu,ϕϕϕ) (0)−
∫ T

0
F(uuu;ϕϕϕ)dt. (4.6)

Consequently, for anyκκκ ∈VVVα ,k
h , we deduce that

(∂ α
h (uuu−uuuh)(T),Φ) =G1+G2+G3,

where

G1 = (∂ α
h (uuu−uuuh),ϕϕϕ)(0),

G2 =−
∫ T

0

[

((∂ α
h uuuh)t ,ϕϕϕ −κκκ)−H(∂ α

h fff (uuuh),ϕϕϕ −κκκ)
]

dt,

G3 =−
∫ T

0

[

(∂ α
h uuuh,ϕϕϕt)+H(∂ α

h fff (uuuh),ϕϕϕ)+F(uuu,ϕϕϕ)
]

dt.

The estimates toG1,G2,G3 can be obtained essentially following the same arguments asthose for
the scalar case in Meng & Ryan (2017). Thus, we will only present the results here and omit detailed
proofs.

LEMMA 4.1 (Projection estimate) There exists a positive constantC, independent ofh, such that

|G1|6Ch2k+1‖∂ α
h uuu0‖k+1‖ϕϕϕ(0)‖k+1. (4.7)

LEMMA 4.2 (Residual) There exists a positive constantC, independent ofh, such that

|G2|6Ch2k+ 3
2− α

2 ‖ϕϕϕ‖L1([0,T];HHHk+1). (4.8)

LEMMA 4.3 (Consistency) There exists a positive constantC, independent ofh, such that

|G3|6Ch2k+3− α
2 ‖ϕϕϕ‖L1([0,T];HHHk+1). (4.9)

Collecting the estimates in Lemmas 4.1–4.3 and using the regularity result in Lemma 2.3, namely
‖ϕϕϕ‖k+1 6C‖Φ‖k+1, we get a bound for

(

∂ α
h (uuu−uuuh)(T),Φ

)

(∂ α
h (uuu−uuuh)(T),Φ)6Ch2k+ 3

2− α
2 ‖Φ‖k+1.

Thus, by (2.7), we have the bound for the negative-order norm

‖∂ α
h (uuu−uuuh)(T)‖−(k+1),Ω 6Ch2k+ 3

2− α
2 .

This finishes the proof of Theorem 4.1.
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5. Numerical examples

The superconvergent result in Corollary 4.1 suggests that amore compact kernel with fewer B-splines
can achieve the theoretical superconvergence order, and the standard full kernel (a kernel function com-
posed of a linear combination of 2k+1 B-splines of orderk+1) is no longer necessary. Therefore, in
this section, we show the effect of using different total number of B-splines (denoted byν = 2k+1+ω
with ω > ⌈− k

2⌉) of the kernel in our numerical experiments. To reduce time errors, we consider the
third-order Runge–Kutta time discretization and choose a small time step. The numerical errors and
convergence orders usingP2 andP3 polynomials are given, and a specific value ofω =−2 is chosen to
match the superconvergence order. It is worth pointing out that a quadruple precision package is used
for the post-processing procedure forP3 polynomials in Example 5.1 and Example 5.2, which helps us
to get rid of the effect of round off errors in our calculations. The numerical results are only shown for
the density to save space.

EXAMPLE 5.1 Consider the one-dimensional Euler equations of compressible gas dynamics

uuut + fff (uuu)x = 0 (5.1a)

with

uuu=





ρ
ρv
E



 , fff (uuu) =





ρv
ρv2+ p
v(E+ p)



 , (5.1b)

whereE = p
γ−1 +

1
2ρv2 andγ = 1.4 with periodic boundary conditions and the following initial condi-

tions: ρ(x,0) = 1+0.5sin(x),v(x,0) = 1, p(x,0) = 1, x∈ [0,2π ].

The numerical errors and orders atT = 1 are given in Table 5.1. From the table, we can see that
the standard full kernel (ω = 0) could yield at least(2k+1)th order superconvergence, which is similar
to the results for linear hyperbolic systems in Cockburnet al. (2003). For the compact kernel with
ω =−2, superconvergence of order 2k can be observed. The pointwise errors are plotted in Figure 5.1,
which show that the post-processed filter with the standard or the more compact kernel can both remove
oscillations in the errors.

Table 5.1.L2- andL∞ errors for Example 5.1 (Euler equation with smooth solution). Before post-processing (left), after post-
processing (middle) and post-processing with the more compact kernel (right).T = 1.

Before post-processing Post-processed (ω = 0) Post-processed (ω =−2)
Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order L2 error Order L∞ error Order

P2

20 5.35E-05 – 1.83E-04 – 1.28E-06 – 1.82E-06 – 6.58E-05 – 9.30E-05 –
40 6.69E-06 3.00 2.31E-05 2.99 2.24E-08 5.83 3.19E-08 5.83 4.14E-06 3.99 5.86E-06 3.99
80 8.36E-07 3.00 2.89E-06 3.00 4.24E-10 5.73 6.02E-10 5.73 2.59E-07 4.00 3.67E-07 4.00
160 1.04E-07 3.00 3.61E-07 3.00 8.91E-12 5.57 1.26E-11 5.57 1.62E-08 4.00 2.29E-08 4.00

P3

20 1.03E-06 – 2.74E-06 – 4.94E-08 – 6.98E-08 – 1.82E-06 – 2.57E-06 –
40 6.52E-08 3.99 1.93E-07 3.82 2.54E-10 7.60 3.60E-10 7.60 2.88E-08 5.98 4.07E-08 5.98
80 4.03E-09 4.01 1.19E-08 4.02 1.45E-12 7.45 2.06E-12 7.45 4.50E-10 6.00 6.37E-10 6.00
160 2.52E-10 4.00 7.43E-10 4.00 9.25E-15 7.30 1.31E-14 7.30 7.04E-12 6.00 9.95E-12 6.00

EXAMPLE 5.2 Consider the Euler equation with a source term

uuut + fff (uuu)x = ggg(x, t)
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FIG. 5.1. The errors in absolute value and in logarithmic scale for P2 (top) andP3 (bottom) polynomials withN = 20,40,80 and
160 elements for Example 5.1 (Euler equation with smooth solution). Before post-processing (left), after post-processing (middle)
and post-processing with the more compact kernel (right).T = 1.
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with periodic boundary conditions and the following initial condition:ρ(x,0) = 2+0.5sin(x),v(x,0) =
1−0.1cos(x), p(x,0) = 1. Here,uuu and fff (uuu) has been given in (5.1b), andggg(x, t) is suitably chosen such
that the exact solution isρ(x, t) = 2+0.5sin(x+ t),v(x, t) = 1−0.1cos(x+ t), p(x, t) = 1.

The numerical errors and orders atT = 1 are given in Table 5.2. From the table, we can see that the
orders of convergence for the standard kernel (ω = 0) and the more compact kernel (ω =−2) are 2k+1
and 2k, respectively. The pointwise errors are plotted in Figure 5.2, which show that the post-processed
errors with both kernels are less oscillatory and much smaller in magnitude, and that the errors of our
more compact kernel are less oscillatory than that for the standard kernel. This example demonstrates
that the SIAC filter is also effective for nonlinear systems of conservation laws with source terms.

Table 5.2. L2- and L∞ errors for Example 5.2 (Euler equation with source terms). Before post-processing (left), after post-
processing (middle) and post-processing with the more compact kernel (right).T = 1.

Before post-processing Post-processed (ω = 0) Post-processed (ω =−2)
Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order L2 error Order L∞ error Order

P2

20 5.37E-05 – 1.79E-04 – 1.16E-06 – 1.80E-06 – 6.56E-05 – 9.28E-05 –
40 6.71E-06 3.00 2.40E-05 2.90 1.92E-08 5.92 3.29E-08 5.78 4.14E-06 3.99 5.85E-06 3.99
80 8.34E-07 3.01 3.16E-06 2.93 3.35E-10 5.84 5.69E-10 5.85 2.59E-07 4.00 3.66E-07 4.00
160 1.04E-07 3.00 3.87E-07 3.03 6.63E-12 5.66 1.26E-11 5.50 1.62E-08 4.00 2.29E-08 4.00

P3

20 1.10E-06 – 3.90E-06 – 9.16E-08 – 1.41E-07 – 1.80E-06 – 2.57E-06 –
40 6.56E-08 4.07 2.30E-07 4.08 6.79E-10 7.08 1.06E-09 7.05 2.86E-08 5.98 4.06E-08 5.98
80 4.03E-09 4.03 1.31E-08 4.13 5.24E-12 7.02 8.41E-12 6.98 4.49E-10 5.99 6.37E-10 6.00
160 2.52E-10 4.00 8.05E-10 4.03 4.10E-14 7.00 6.63E-14 6.99 7.03E-12 6.00 9.95E-12 6.00
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FIG. 5.2. The errors in absolute value and in logarithmic scale for P2 (top) andP3 (bottom) polynomials withN = 20,40,80 and
160 elements for Example 5.2 (Euler equation with source terms). Before post-processing (left), after post-processing (middle)
and post-processing with the more compact kernel (right).T = 1.
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EXAMPLE 5.3 In this example we consider the Sod problem, namely the system (5.1) with the following
initial condition:ρ(x,0) = 1,v(x,0) = 0, p(x,0) = 1 for x6 0 andρ(x,0) = 0.125,v(x,0) = 0, p(x,0) =
0.1 for x> 0, x∈ [−5,5].

We test the Example 5.3 atT = 2, when the solution contains shock and rarefaction. We measure
the errors on the smooth region,[−5,−2.6]∪ [4,5]. The orders of convergence with different kernels
are listed in Table 5.3 and pointwise errors are plotted in Figure 5.3. We can see that the post-processed
errors are smaller in magnitude for most of elements. This example demonstrates that the accuracy en-
hancement technique is also useful for nonlinear systems ofhyperbolic conservation laws with complex
discontinuous solutions.

Table 5.3. L2- andL∞ errors in smooth regions for Example 5.3 (Sod problem with complex discontinuous solution). Before
post-processing (left), after post-processing (middle) and post-processing with the more compact kernel (right).T = 2.

Before post-processing Post-processed (ω = 0) Post-processed (ω =−2)
Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order L2 error Order L∞ error Order

P2

50 1.12E-03 – 8.75E-03 – 9.06E-04 – 6.84E-03 – 8.59E-04 – 6.54E-03 –
100 3.13E-04 1.84 3.29E-03 1.41 2.35E-04 1.95 1.90E-03 1.85 1.89E-04 2.19 1.52E-03 2.11
200 3.91E-05 3.00 3.60E-04 3.19 2.50E-05 3.23 2.41E-04 2.98 1.97E-05 3.26 1.94E-04 2.96
400 1.28E-06 4.93 2.70E-05 3.74 9.89E-07 4.66 1.61E-05 3.91 8.01E-07 4.62 1.27E-05 3.93

P3

50 6.14E-04 – 3.47E-03 – 2.56E-04 – 2.16E-03 – 2.66E-04 – 2.46E-03 –
100 1.32E-04 2.22 1.44E-03 1.27 1.84E-05 3.80 1.58E-04 3.78 1.08E-05 4.62 1.59E-04 3.95
200 1.47E-05 3.16 2.37E-04 2.60 6.81E-07 4.76 1.17E-05 3.75 5.84E-07 4.21 9.57E-06 4.05
400 3.32E-07 5.47 5.43E-06 5.45 1.25E-08 5.77 2.64E-07 5.47 1.18E-08 5.63 2.54E-07 5.23
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FIG. 5.3. The errors in absolute value and in logarithmic scale for P2 (top) andP3 (bottom) polynomials withN = 50,100,200
and 400 elements for Example 5.3 (Sod problem with discontinuous solution). Before post-processing (left), after post-processing
(middle) and post-processing with the more compact kernel (right). T = 2.
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6. Concluding remarks

In this paper, we investigate divided difference estimatesand accuracy enhancement of DG methods
for nonlinear symmetric systems of hyperbolic conservation laws. These estimates are essential for
theoretically proving that it is possible to draw out extra orders of accuracy using a SIAC filter. The main
technical difficulties come from the estimates to the divided difference of the projection error as well as
the supercloseness property. By using properties of the DG discretization operator and properties of the
divided differences, we are able to prove that theLLL2 norm of theα-th order divided difference of the DG
error achieves(k+ 3

2 − α
2 )th order when upwind fluxes are used, under the condition thatflux Jacobian

matrix fff ′(uuu) is positive definite. TheLLL2 norm estimates together with a duality argument produce
superconvergentnegative-order norm estimates of order 2k+ 3

2 − α
2 , allowing for that the post-processed

solution to be of at least(3
2k+1)th order superconvergent to the exact solution in theLLL2 norm. Thus,

some computationally efficient more compact kernels can be used to match the proved superconvergence
order in practice. A series of numerical experiments are given, showing that oscillations can be removed
a lot using our more compact kernels and that the accuracy enhancement holds true for general nonlinear
systems of conservation laws with different initial conditions and complex structure of solutions.

Future work consists of the study of accuracy enhancement ofthe DG method for nonlinear scalar
and systems of conservation laws in multi-dimensional cases on structured as well as unstructured mesh-
es.Investigation of some suitable numerical examples would also be carried out.
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A. Appendix: Proof of several lemmas

In this appendix, we give the proofs for some of the more technical lemmas.

A.1 The proof of Lemma 3.2

Let us prove the relation between‖ξξξx‖ and‖ξξξ t‖ in Lemma 3.2. Consider the error equation (3.7),
namely

(eeet ,vvvh) =H( fff (uuu)− fff (uuuh),vvvh) (A.1)

which holds for allvvvh ∈VVVk
h . To deal with the nonlinearity of the flux functionfff (uuu), we use the second

order Taylor expansion (3.11a) and (3.11b) to rewrite (A.1)as

(eeet ,vvvh) =Θ 1+Θ2+Θ3 (A.2)

with Θ i given by

Θ i =H(θθθ i ,vvvh) = ((vvvh)x,θθθ i)+
N

∑
j=1

(

[[vvvh]]
Tθθθ−

i

)

j+ 1
2
, (i = 1,2,3),

which will be estimated one by one below.
First considerΘ 1. We begin by using thestrongform ofH, (2.5b), to get

Θ 1 =H
(

fff ′(uuu)ξξξ ,vvvh
)

=−
(

vvvh,∂x( fff ′(uuu)ξξξ )
)

−
N

∑
j=1

(

(vvv+h )
T fff ′(uuu)[[ξξξ ]]

)

j− 1
2
.

Next, letLk be the standard Legendre polynomial of degreek in [−1,1], soLk(−1) = (−1)k, andLk

is orthogonal to any polynomials of degree at mostk− 1. If we now letvvvh = ξξξ x −dddLk(s) with ddd =

(−1)k(ξξξ x)
+
j− 1

2
being a constant vector ands=

2(x−xj )
h j

∈ [−1,1], we obtain

Θ 1 =−
(

vvvh,∂x fff ′(uuu)ξξξ
)

−
(

ξξξ x−dddLk(s), fff ′(uuu)ξξξ x

)

,−W−Z, (A.3)

since(vvvh)
+
j− 1

2
= 0. On each elementI j , by the linearizationfff ′(uuu) = fff ′(uuu j)+( fff ′(uuu)− fff ′(uuuj)) and noting

(

dddLk, fff ′(uuu j)ξξξ x

)

j = 0, we arrive at an equivalent form ofZ

Z = Z1+Z2, (A.4)
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where

Z1 =
(

ξξξ x, fff ′(uuu j)ξξξ x

)

,

Z2 =
(

ξξξ x−dddLk,( fff ′(uuu)− fff ′(uuuj))ξξξ x

)

.

By the inverse property (ii), it is easy to show, forvvvh = ξξξ x−dddLk(s), that

‖vvvh‖6C‖ξξξx‖.

Inserting the above results into (A.2) and using the assumption that fff ′(uuu) is positive definite (and thus
fff ′(uuu)> δ III), we obtain

δ‖ξξξ x‖
2
6 Z1 =Θ 2+Θ3−W−Z2− (eeet ,ξξξ x−dddLk) . (A.5)

We will estimate the terms on the right side of (A.5) one by onebelow.
A direct application of (2.16b) in Lemma 2.2 leads to a bound for Θ 2

|Θ2|6C⋆h
k+1‖ξξξ x‖. (A.6a)

By an analysis similar to that in the proof of (3.12c), we get

|Θ 3|6C⋆h
−1‖eee‖∞

(

‖ξξξ‖+hk+1
)

‖ξξξx‖, (A.6b)

where we have also used the approximation error estimate (2.13a). By the Cauchy–Schwarz inequality,
we have

|W|6C⋆‖ξξξ‖‖ξξξx‖. (A.6c)

Using the Cauchy–Schwarz inequality as well as the inverse property (i), and taking into account the
fact that‖ fff ′(uuu)− fff ′(uuu j)‖M 6C⋆h on each elementI j , we obtain

|Z2|6C⋆‖ξξξ‖‖ξξξx‖. (A.6d)

The triangle inequality and the approximation error estimate (2.13a) yield

|(eeet ,vvvh) |6C(‖ξξξ t‖+hk+1)‖ξξξ x‖. (A.6e)

Finally, the error estimate (3.17) follows by collecting the estimates (A.6a)–(A.6e) into (A.5) and by
using the estimates (3.15) and (3.16) in Corollary 3.2 and Corollary 3.3, respectively. This finishes the
proof of Lemma 3.2.

A.2 The proof of Lemma 3.3

Let us first prove the initial error estimate for‖ξξξ t(0)‖. We start by noting that the error equation (3.7)
still holds att = 0 for anyvvvh ∈VVVk

h . Sinceξξξ (·,0) = 0, the nonlinear terms in (3.11a) and (3.11b) on the
right-hand side of (3.7) reduce to

fff (uuu)− fff (uuuh) = fff ′(uuu)ηηη −ηηηT
Hηηη , (A.7a)

fff (uuu)− fff (uuu−h ) = fff ′(uuu)ηηη−− (ηηη−)T
H̃ηηη−. (A.7b)
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By an analysis similar to that in the proof of Lemma 3.1, we caneasily get a bound for the right-hand
side of (3.7) att = 0, denoted byRHS; it reads

RHS6C⋆(h
k+1+hk‖ηηη(·,0)‖∞)‖vvvh‖, (A.8)

which holds for anyvvvh ∈VVVk
h . If we now letvvvh = ξξξ t(·,0) in (3.7) as well as in (A.8), we get that

‖ξξξ t(·,0)‖6 ‖ηηηt(·,0)‖+C⋆(h
k+1+hk‖ηηη(·,0)‖∞)6Chk+1, (A.9)

by the interpolation properties (2.13a) and (2.13b).
We then move on to the estimate of‖ξξξ t(·, t)‖ for t > 0. To do that, we proceed as follows. We take

the time derivative of the error equation (3.7) and letvvvh = ξξξ t to get

(eeett ,ξξξ t) =H(( fff (uuu)− fff (uuuh))t ,ξξξ t) . (A.10)

To estimate the right-hand side of (A.10), we use the Taylor expansion (3.11) to split the nonlinear terms
as follows

( fff (uuu)− fff (uuuh))t = ∂t fff ′(uuu)ξξξ + fff ′(uuu)ξξξ t + ∂t fff ′(uuu)ηηη + fff ′(uuu)ηηηt −eeeT∂tHeee−2eeeT
H∂teee

, ρρρ1+ · · ·+ρρρ6, (A.11a)

( fff (uuu)− fff (uuu−h ))t = ∂t fff ′(uuu)ξξξ−
+ fff ′(uuu)ξξξ−

t + ∂t fff ′(uuu)ηηη−

+ fff ′(uuu)ηηη−
t − (eee−)T∂t H̃eee−−2(eee−)T

H̃∂teee
−

, ρρρ−
1 + · · ·+ρρρ−

6 , (A.11b)

sinceH andH̃ are symmetric matrices. Therefore, the right-hand side of (A.10), denoted byϒ , can be
formulated as

ϒ = K1+ · · ·+K6 (A.12)

with Ki =H(ρρρ i ,ξξξ t) (i = 1, . . . ,6). Consequently, (A.10) can be represented by

1
2

d
dt
‖ξξξ t‖

2
6ϒ + ‖ηηηtt‖‖ξξξ t‖6ϒ +Chk+1‖ξξξ t‖, (A.13)

by the interpolation error estimate (2.13a).
We estimate the termK1 first. A simple application of (2.14a) in Lemma 2.1 gives us a bound for

K1; it reads

K1 6C⋆

(

‖ξξξ‖+ ‖ξξξx‖+h−
1
2 |[ξξξ ]|

)

‖ξξξ t‖

6C⋆

(

‖ξξξ t‖+hk+1+h−
1
2 |[ξξξ ]|

)

‖ξξξ t‖

6C⋆‖ξξξ t‖
2
+h−1|[ξξξ ]|2+Ch2k+2, (A.14a)

where we have used (3.16) and (3.17) in the second step and Young’s inequality in the last step. Next, a
direct application of (2.14b) in Lemma 2.1 leads to a bound for K2

K2 6C⋆‖ξξξ t‖
2− δ

2
|[ξξξ t ]|

2
, (A.14b)
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where we have used the assumption thatfff ′(uuu) is positive definite with the smallest eigenvalueδ . To
estimateK3 andK4, we need only to employ the property (2.16b) in Lemma 2.2, which is given as
follows

K3+K4 6C⋆h
k+1‖ξξξ t‖, (A.14c)

where we have also used the fact thatP is a linear operator with respect tot, namely(Puuu)t = P(uuut), and
thus‖(uuu−Puuu)t‖ 6 Chk+1‖uuut‖k+1 by the approximation error estimate (2.13a). It is easy to show, for
high order termsK5 andK6, that

K5 6C⋆h
−1‖e‖∞(‖ξξξ‖+hk+1)‖ξξξ t‖6C⋆h

k+1‖ξξξ t‖, (A.14d)

K6 6C⋆h
−1‖e‖∞(‖ξξξ t‖+hk+1)‖ξξξ t‖6C⋆‖ξξξ t‖

2
+Chk+1‖ξξξ t‖, (A.14e)

where we have also employed (3.15) and (3.16) in Corollary 3.2 and Corollary 3.3 in the last inequality.
Therefore, by collecting the estimates (A.14a)–(A.14e) into (A.12) and (A.13), we get, after a simple
application of Young’s inequality, that

1
2

d
dt
‖ξξξ t‖

2
+

δ
2
|[ξξξ t ]|

2
6C⋆‖ξξξ t‖

2
+h−1|[ξξξ ]|2+Ch2k+2, (A.15)

whereC andC⋆ are positive constants independent ofh. Finally, a direct application of Gronwall’s
inequality together with the initial error estimate (A.9) leads to the desired result

‖ξξξ t‖+
(

∫ t

0
|[ξξξ t ]|

2dτ
) 1

2

6Chk+1+C⋆h
− 1

2

(

∫ t

0
|[ξξξ (τ)]|2dτ

) 1
2

.

This completes the proof of Lemma 3.3.


