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Abstract

In this paper we design a new type of the third order and fifth order modified weighted

essentially non-oscillatory (MWENO) schemes in the finite difference framework for solving

the hyperbolic conservation laws. These schemes adapt between the linear upwind scheme

and the WENO scheme automatically by the usage of a new simple switching principle. The

methodology to reconstruct numerical fluxes for the MWENO schemes is split into two parts:

if all extreme points of the reconstruction polynomial for numerical flux in the big spatial

stencil are located outside of the stencil, the the numerical flux is approximated directly by

the reconstruction polynomial, and the approximation is a linear and high order accuracy;

otherwise the WENO procedure in [12, 18] is applied to reconstruct the numerical flux. The

main advantage of these new MWENO schemes is their robustness and efficiency comparing

with the classical WENO schemes specified in [12, 18]. The MWENO schemes can be applied

to compute some extreme test cases such as the Sedov blast wave, the Leblanc and the high

Mach number astrophysical jet problems et al. by using a normal CFL number without

any further positivity preserving procedure for the purpose of controlling the concurrence of

the negative density and pressure. Extensive numerical results are provided to illustrate the

good performance of the MWENO schemes.
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1 Introduction

In this paper we present a new type of modified weighted essentially non-oscillatory

(MWENO) schemes in the finite difference framework, which can be applied to compute the

rather extreme test cases such as the Sedov blast wave problem, the Leblanc problem and

the high Mach number astrophysical jet problem et al. directly with normal CFL number

and without any additional positivity preserving procedure. For the sake of devising robust,

accurate and efficient methods for numerically solving these problems is of considerable

importance and as expected, has attracted the interest of many researchers and practitioners.

In recent decades, many high order numerical methods have been developed to solve these

problems. Among them, we would like to mention essentially non-oscillatory (ENO) and

weighted ENO (WENO) schemes, which have been applied quite successfully to solve the

problems with shocks, contact discontinuities and sophisticated smooth structures. In order

to achieve uniform high order accuracy in smooth region, Harten and Osher [10] gave a

weaker version of the total variation diminishing (TVD) criterion [7] and on which they

established a basis for the reconstruction of high order ENO type schemes. Then ENO

schemes were developed by Harten et al. [9] to solve one dimensional problems. The most

important thought of ENO schemes is to apply the most smooth stencil among all candidate

stencils to approximate the variables at cell boundaries for the purpose of obtaining high

order accuracy in smooth region and avoiding spurious oscillations nearby discontinuities

simultaneously. We can also find this thought in [19, 20]. In 1994, the first high order

accurate WENO scheme was introduced by Liu, Osher and Chan [16], in which instead

of using just one optimal smooth candidate stencil, a linear combination of all candidate

stencils including nonsmooth stencils is used. In 1996, third and fifth order finite difference

WENO schemes in multi-space dimensions were constructed by Jiang and Shu [12], with a

general framework for the designing of new smoothness indicators and nonlinear weights.

A key idea in WENO schemes is a linear combination of lower order numerical fluxes or

reconstruction to obtain a higher order approximation. For the system case, the WENO
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schemes are based on local characteristic decomposition and numerical flux splitting method

to avoid nonphysical oscillations nearby strong shocks or contact discontinuities.

The finite difference and finite volume schemes of ENO and WENO [1, 2, 8, 11, 12, 16, 19,

20, 26] are quite successful in numerical simulations for problems with strong discontinuities

and sophisticated smooth structures. But for some extreme test cases, the additional posi-

tivity preserving procedure or/and reduced CFL number are needed to control the concur-

rence of negative density and negative pressure. A series of high order positivity preserving

procedure have been developed for finite volume and finite difference high order methods

[13, 21, 22, 23, 24, 25]. Though the WENO schemes with the additional positivity preserving

procedure can work well for the rather extreme test cases, the computational efficiency is

reduced due to the additional procedure and/or reduced CFL number. In this paper, we

present the third order and fifth order MWENO schemes in the finite difference framework

for solving the hyperbolic conservation laws in one and two dimensions. Comparing with

the classical WENO schemes [12, 18], MWENO schemes are more robust and efficient with

less numerical errors in smooth region. And these schemes can be applied to compute some

benchmark extreme cases including the Sedov blast wave, the Leblanc and the high Mach

number astrophysical jet problems et al. directly using normal CFL number without any

additional positivity preserving procedure. The main procedures of MWENO schemes are

narrated in the following. First, in the finite difference framework, a polynomial based on

the nodal point information of the numerical flux is reconstructed in the interval of the big

spatial stencil. Second, the location of the extreme points of the reconstructed polynomial

is identified. Third, if the extreme points of the reconstruction polynomial in the big spatial

stencil are located outside of the same stencil, the reconstructed polynomial is adapted to

approximate the numerical flux straightforward, the approximation is of high order accuracy

and a linear upwind scheme with less numerical errors is obtained; otherwise the WENO

reconstruction procedure [12, 18] is applied to reconstruct the numerical flux and a WENO

scheme is applicable. For the system case, WENO reconstruction is based on local charac-
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teristic decompositions and flux splitting to avoid spurious oscillations, and the cost of the

computation of smoothness indicators, nonlinear weights and local characteristic decomposi-

tions is very high. The new MWENO schemes designed in this paper are a hybrid of WENO

with an optimal linear combination of lower order of reconstructions. For the linear upwind

reconstructions we can avoid the performance of the local characteristic decompositions and

the computation of the nonlinear weights et al., hence reducing the cost but still maintaining

non-oscillatory properties for the problems with strong shocks including some extreme test

cases without any further special methodologies.

The organization of the paper is as follows: in Section 2, we construct and analyze the

finite difference modified WENO schemes in detail. In Section 3, some benchmark numerical

tests including low density (vacuum), low pressure with strong shocks are presented to verify

the numerical accuracy, efficiency and robustness of the new MWENO schemes. Concluding

remarks are given in Section 4.

2 Modified WENO scheme

In this section, we first consider one dimensional hyperbolic conservation laws

{

ut + fx(u) = 0,
u(x, 0) = u0(x).

(2.1)

The semidiscretization formula is written as

du

dt
= L(u), (2.2)

where L(u) is the high order spatial discrete formulation of −fx(u). The uniform mesh is

distributed into cells Ii = [xi−1/2, xi+1/2], with the cell size xi+1/2−xi−1/2 = h and cell centers

xi =
1
2
(xi+1/2 + xi−1/2). ui(t) is defined as u(xi, t). Herein, the right hand side of (2.2) can

be written as

L(ui(t)) = −
1

h
(f̂i+1/2 − f̂i−1/2), (2.3)
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where f̂i+1/2 is a numerical flux which is a high order approximation of flux f(u) at the

boundary xi+1/2 of target cell Ii. If the numerical flux f̂i+1/2 is taken to be the (2r+1)th

order approximation to vi+1/2 = v(xi+1/2), where v(x) is defined as

f(u(x)) =
1

h

∫ x+h/2

x−h/2

v(η)dη, (2.4)

then 1
h
(f̂i+1/2 − f̂i−1/2) is the (2r+1)th order approximation to fx(u) at x = xi. For the

purpose of keeping the stability, we need consider the upwind quality of the schemes. We

will split flux f(u) into two parts: f(u) = f+(u) + f−(u) with df+(u)
du

≥ 0 and df−(u)
du

≤ 0.

Here, a simplest Lax-Friedrichs splitting is applied as

f±(u) =
1

2
(f(u)± αu), (2.5)

in which α is set as maxu |f
′(u)| over the whole range of u. Let f̂+

i+ 1

2

and f̂−

i+ 1

2

be the numerical

fluxes at xi+1/2 which are (2r + 1)th order approximation of v(x) in (2.4) with the positive

and negative parts of f(u), respectively, and f̂i+1/2 is defined as f̂+
i+ 1

2

+ f̂−

i+ 1

2

.

Now we describe in detail for the reconstruction procedure of f̂+
i+ 1

2

, and the reconstruction

procedure of f̂−

i+ 1

2

is mirror symmetric with respect to xi+1/2 of that for f̂+
i+ 1

2

. From the

definition of v(x) in (2.4) for f+(u), we have

f+(ui) =
1

h

∫ xi+1/2

xi−1/2

v(η)dη = vi, (2.6)

where vi is the cell average of v(x) on the Ii.

Step 1. Choose the following big stencil: T = {Ii−r, ..., Ii+r}. It is easy to obtain the

reconstructed polynomial which based on the nodal point numerical flux satisfying

1

h

∫

Ij

p(η)dη =
1

h

∫

Ij

v(η)dη = vj = f+(uj), j = i− r, ..., i+ r. (2.7)

Let ξ = (x−xi)
h

, for example, when r = 1, we have:

p(x) = −
1

24
[(vi−1 − 26vi + vi+1) + 12(vi−1 − vi+1)ξ − 12(vi−1 − 2vi + vi+1)ξ

2], (2.8)

and its first derivative polynomial is

p′(x) =
1

2h
[−vi−1 + vi+1 + 2(vi−1 − 2vi + vi+1)ξ]. (2.9)
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When r = 2:

p(x) =
1

1920
[(−116vi−1 + 9vi−2 + 2134vi − 116vi+1 + 9vi+2)− 40(34vi−1 −

5vi−2 − 34vi+1 + 5vi+2)ξ + 120(12vi−1 − vi−2 − 22vi + 12vi+1 − (2.10)

vi+2)ξ
2 + 160(2vi−1 − vi−2 − 2vi+1 + vi+2)ξ

3 − 80(4vi−1 − vi−2 −

6vi + 4vi+1 − vi+2)ξ
4)],

and its first derivative polynomial is

p′(x) =
1

48h
[(−34vi−1 + 5vi−2 + 34vi+1 − 5vi+2) + 6(12vi−1 − vi−2 − 22vi +

12vi+1 − vi+2)ξ + 12(2vi−1 − vi−2 − 2vi+1 + vi+2)ξ
2 + 8(−4vi−1 + (2.11)

vi−2 + 6vi − 4vi+1 + vi+2)ξ
3)].

Step 2. Identify the extreme points of the reconstruction polynomial p(x). First, we

compute the zero points of p′(x), if p′(x) has real zero points, then it is easy to identify

whether these real zero points are extreme points of p(x) or not. When r = 1, the degree

of p′(x) is at most one, then there is at most one real zero point, and real zero point is the

extreme point of p(x). When r = 2, the degree of p′(x) is at most three, and we can solve

the real zero points of p′(x) explicitly [3], and one is the extreme point of p(x) if it is not

doubled zero point of p′(x).

Step 3. If there is not the extreme point of the reconstruction polynomial p(x), or all

extreme points are located outside of the big spatial stencil T , the final reconstruction of the

numerical flux of f+(u) at x = xi+1/2 is directly given by f̂+
i+1/2 = p(xi+ 1

2

), and which is a

linear upwind approximation to f+(u). Then the procedure jumps to Step 5.

Step 4. If there are the extreme points of the reconstruction polynomial p(x) which

are located in the big spatial stencil T , then the following WENO procedure is fulfilled to

reconstruct the f̂+
i+1/2. The stencil T is divided into r+1 smaller stencils: S0 = {Ii−r, ..., Ii},

..., Sr = {Ii, ..., Ii+r}. Similarly as specified in Step 1, the polynomials pl(x), l = 0, ..., r are
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constructed in the associated smaller stencils to approximate the function v(x) with

1

h

∫

Ij

pl(η)dη =
1

h

∫

Ij

v(η)dη = vj = f+(uj), j = i− r + l, ..., i+ l, l = 0, ..., r.

The values of the functions pl(x) at the point xi+1/2 of cell Ii, can be written as a linear

combination of {vj} (see [12, 18]). Then the linear weights are calculated on condition

that p(xi+1/2) =
∑r

l=0 γlpl(xi+1/2). For the smaller stencils Sl, we compute the smoothness

indicators βl, which measure how smooth the functions pl(x) are in the target cell Ii. The

smaller these smoothness indicators, the smoother the functions are in the target interval.

We use the same recipe for the smoothness indicators as in [12, 18]

βl =

r
∑

α=1

∫

Ii

h2α−1(
dαpl(x)

dxα
)2dx, (2.12)

Then the nonlinear weights based on the linear weights and associated smoothness indicators

[12, 18] are

ωl =
ωl

∑r
k=0 ωk

, ωl =
γl

(ε+ βl)2
. (2.13)

Where γl are the linear weights, for r = 1, γ0 =
1
3
, γ1 =

2
3
, for r = 2, γ0 =

1
10
, γ1 =

3
5
, γ2 =

3
10
,

respectively, and ε is a small positive number to avoid division by zero, ε is set as 10−6 in

the paper. The final reconstruction of the numerical flux f(u) at x = xi+1/2 is given by

f̂+
i+1/2 =

r
∑

l=0

ωlpl(xi+ 1

2

).

Step 5. The semidiscrete scheme (2.2) is discretized in time by Runge-Kutta method,

such as a fourth order one [19]















u(1) = un + 1
2
∆tL(un),

u(2) = un + 1
2
∆tL(u(1)),

u(3) = un +∆tL(u(2)),
un+1 = −1

3
un + 1

3
u(1) + 2

3
u(2) + 1

3
u(3) + 1

6
∆tL(u(3)).

(2.14)

Remarks: For system cases, such as the compressible Euler equations, we first split the

flux f into two parts f = f+ + f−, such that the eigenvalues of Jacobian matrixes df+

du
and

df−

du
are positive and negative, respectively. Then, we reconstruct the polynomials on the
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big spatial stencil T for all components of f+, respectively. If the extreme points of all the

reconstructed polynomials are located outside of T , the numerical fluxes of f+ at x = xi+1/2

are directly approximated by the values of the reconstructed polynomials at x = xi+1/2,

and the approximations are linear and the local characteristic projection is avoided to save

the computational cost. Otherwise, all of the reconstructions are performed in the local

characteristic directions, for each local characteristic direction we follow Step 1 to Step 4 to

reconstruct the numerical fluxes for f+ at x = xi+1/2. The reconstruction procedure of the

numerical fluxes for f− at x = xi+1/2 is mirror symmetric with respect to xi+1/2 of that for

f+ at x = xi+1/2. When the methods are extended from one to two dimensional cases, the

reconstruction procedure is performed in a ”dimension-by-dimension” manner.

3 Numerical tests

In this section we present the results of numerical tests of the third and fifth order

MWENO schemes which are described in the previous section comparing with the classical

WENO schemes [12, 18]. The CFL number is set as usual as 0.6 for different WENO and

MWENO schemes. WENO3, WENO5, MWENO3 and MWENO5 are denoted as the third

order WENO, fifth order WENO, third order MWENO and fifth order MWENO schemes,

respectively.

Example 3.1.

∂

∂t





ρ
ρµ
E



+
∂

∂x





ρµ
ρµ2 + p
µ(E + p)



 = 0. (3.1)

In which ρ is density, µ is the velocity in x direction, E is total energy and p is pressure.

The initial conditions are: (1) ρ(x, 0) = 1 + 0.99 sin(x); (2) ρ(x, 0) = 1 + 0.999 sin(x); (3)

ρ(x, 0) = 1+ 0.99999 sin(x); and µ(x, 0) = 1, p(x, 0) = 1, γ = 1.4. The computing domain is

x ∈ [0, 2π]. Periodic boundary condition is applied in this test. The exact solutions are: (1)

ρ(x, t) = 1+0.99 sin(x−t); (2) ρ(x, t) = 1+0.999 sin(x−t); (3) ρ(x, t) = 1+0.99999 sin(x−t),

respectively. The final time is T = 0.1. The WENO schemes [12] do not work for the case (3)
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Table 3.1: 1D-Euler equations: initial data ρ(x, 0) = 1+0.99 sin(x), µ(x, 0) = 1 and p(x, 0) =
1. MWENO scheme and WENO scheme. T = 0.1. L1 and L∞ errors.

MWENO3 scheme WENO3 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40 4.38E-3 1.96E-2 5.63E-3 2.27E-2
80 1.30E-3 1.74 8.30E-3 1.25 1.65E-3 1.77 9.50E-3 1.26
160 1.79E-4 2.87 2.12E-3 1.97 3.34E-4 2.31 3.02E-3 1.65
320 3.64E-6 5.61 1.02E-4 4.37 3.35E-5 3.31 4.31E-4 2.81
640 8.92E-8 5.35 2.04E-6 5.64 2.02E-6 4.04 2.07E-5 4.38
1280 7.97E-9 3.48 5.05E-8 5.33 1.17E-7 4.10 6.73E-7 4.94

MWENO5 scheme WENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40 1.47E-6 6.39E-6 8.58E-6 1.74E-5
80 3.94E-8 5.22 1.29E-7 5.62 2.77E-7 4.95 5.68E-7 4.93
160 1.24E-9 4.98 3.45E-9 5.22 8.74E-9 4.98 1.78E-8 4.99
320 3.92E-11 4.99 8.90E-11 5.27 2.74E-10 4.99 5.45E-10 5.02
640 1.22E-12 4.99 1.93E-12 5.52 8.59E-12 4.99 1.63E-11 5.06
1280 3.83E-14 4.99 6.59E-14 4.87 2.68E-13 4.99 4.70E-13 5.11

for the computed density appears negative. The numerical errors and orders of the density

for the MWENO schemes and the WENO schemes [12] are shown in Table 3.1 and Table 3.2,

we can see that both the MWENO and WENO achieve the designed order, and numerical

errors of the MWENO are smaller than those of the WENO at the same meshes. In Table

3.3, we show The numerical errors and orders of the density for the MWENO schemes, we

also can see that the MWENO3 and MWENO5 schemes achieve their optimal order without

breaking down during the simulations. In Figure 3.1 and Figure 3.2 we show numerical errors

against CPU times for the MWENO schemes and WENO schemes for case (1) and (2). We

can see that the MWENO schemes use less CPU times and have smaller numerical errors

than those for the WENO schemes at the same meshes. The MWENO schemes are more

efficient and robust than the WENO schemes in this one dimensional benchmark test case

with different initial conditions.
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Figure 3.1: 1D-Euler equations: initial data ρ(x, 0) = 1 + 0.99 sin(x), µ(x, 0) = 1 and
p(x, 0) = 1. Computing time and error. Plus signs and a solid line denote the results of the
MWENO schemes; squares and a solid line denote the results of the WENO schemes. From
top to bottom: the third order scheme; the fifth order scheme.
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Table 3.2: 1D-Euler equations: initial data ρ(x, 0) = 1 + 0.999 sin(x), µ(x, 0) = 1 and
p(x, 0) = 1. MWENO scheme and WENO scheme. T = 0.1. L1 and L∞ errors.

MWENO3 scheme WENO3 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40 6.04E-3 2.38E-2 6.97E-3 2.64E-2
80 1.88E-3 1.68 1.09E-2 1.13 2.30E-3 1.60 1.22E-2 1.11
160 3.84E-4 2.30 3.75E-3 1.54 6.50E-4 1.82 5.10E-3 1.27
320 3.79E-5 3.34 7.87E-4 2.25 1.36E-4 2.25 1.62E-3 1.65
640 7.04E-7 5.75 2.51E-5 4.96 1.73E-5 2.98 2.92E-4 2.47
1280 2.79E-8 4.65 5.42E-7 5.53 1.16E-6 3.88 1.71E-5 4.09

MWENO5 scheme WENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40 2.83E-6 1.08E-5 1.93E-5 3.83E-5
80 1.10E-7 4.68 2.60E-7 5.38 7.74E-7 4.63 1.54E-6 4.63
160 3.66E-9 4.91 8.15E-9 4.99 2.57E-8 4.91 5.02E-8 4.94
320 1.17E-10 4.96 2.28E-10 5.15 8.23E-10 4.96 1.58E-9 4.98
640 3.70E-12 4.98 6.99E-12 5.03 2.59E-11 4.99 4.88E-11 5.02
1280 1.16E-13 4.99 2.03E-13 5.10 8.11E-13 4.99 1.50E-12 5.02

Table 3.3: 1D-Euler equations: initial data ρ(x, 0) = 1 + 0.99999 sin(x), µ(x, 0) = 1 and
p(x, 0) = 1. MWENO scheme. T = 0.1. L1 and L∞ errors.

MWENO3 scheme MWENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40 6.34E-3 2.46E-2 6.56E-6 1.83E-5
80 1.98E-3 1.68 1.13E-2 1.12 4.20E-7 3.96 8.61E-7 4.41
160 4.33E-4 2.19 4.11E-3 1.47 1.82E-8 4.52 3.44E-8 4.64
320 6.48E-5 2.74 1.14E-3 1.84 8.13E-10 4.48 1.45E-9 4.56
640 5.76E-6 3.48 1.86E-4 2.62 3.14E-11 4.69 5.51E-11 4.72
1280 5.47E-7 3.39 2.19E-5 3.08 1.08E-12 4.85 1.87E-12 4.87
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Figure 3.2: 1D-Euler equations: initial data ρ(x, 0) = 1 + 0.999 sin(x), µ(x, 0) = 1 and
p(x, 0) = 1. Computing time and error. Plus signs and a solid line denote the results of the
MWENO scheme; squares and a solid line denote the results of the WENO scheme. From
top to bottom: the third order scheme; the fifth order scheme.
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Example 3.2.

∂

∂t









ρ
ρµ
ρν
E









+
∂

∂x









ρµ
ρµ2 + p
ρµν

µ(E + p)









+
∂

∂y









ρν
ρµν

ρν2 + p
ν(E + p)









= 0. (3.2)

In which ρ is density; µ and ν are the velocities in the x and y directions, respectively; E is

total energy; and p is pressure. The initial conditions are: (1) ρ(x, y, 0) = 1+0.99 sin(x+y);

(2) ρ(x, y, 0) = 1+0.999 sin(x+ y); (3) ρ(x, y, 0) = 1+0.99999 sin(x+ y); and µ(x, y, 0) = 1,

ν(x, y, 0) = 1, p(x, y, 0) = 1 and γ = 1.4. The computing domain is (x, y) ∈ [0, 2π]× [0, 2π].

Periodic boundary conditions are applied in both directions. We compute the solution up to

T = 0.1. As in Example 3.1, the WENO schemes also do not work for the case (3) for the

computed density appears negative. The numerical errors and orders of the density for the

MWENO schemes and the WENO schemes are shown in Table 3.4 and Table 3.5, we can

see that both the MWENO and WENO schemes achieve their designed order of accuracy,

and numerical errors of the MWENO3 and MWENO5 schemes are smaller than those of the

WENO3 and WENO5 schemes at the same meshes. In Table 3.6, we can only show The

numerical errors and orders of the density for the MWENO3 and MWENO5 schemes, we

also can see that the MWENO schemes achieve their optimal order accurately. In Figure

3.3 and Figure 3.4 we show numerical errors against CPU times for the MWENO schemes

and WENO schemes for case (1) and case (2). We can see that the MWENO schemes use

less CPU times and have smaller numerical errors in comparison with the WENO schemes

at the same meshes. So the specified MWENO schemes are more efficient and robust than

the classical WENO schemes in this two dimensional test case with three extreme density

initial conditions.

Example 3.3. We solve the 1D Euler equations with Riemann initial condition for the Lax

problem:

(ρ, u, p, γ)T =

{

(0.445, 0.698, 3.528, 1.4)T , x ∈ [−0.5, 0),
(0.5, 0, 0.571, 1.4)T , x ∈ [0, 0.5].

(3.3)

For T = 0.16, we present the exact solution and the computed density ρ obtained with the

MWENO schemes comparing to the WENO schemes by using 200 grid points in Figure 3.5.
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Table 3.4: 2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.99 sin(x + y), µ(x, y, 0) = 1,
ν(x, y, 0) = 1 and p(x, y, 0) = 1. MWENO scheme and WENO scheme. T = 0.1. L1 and
L∞ errors.

MWENO3 scheme WENO3 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40× 40 7.02E-3 2.78E-2 8.92E-3 3.05E-2
80× 80 1.88E-3 1.90 1.09E-2 1.35 2.71E-3 1.72 1.32E-2 1.20
160×160 2.93E-4 2.68 3.98E-3 1.46 6.07E-4 2.16 4.31E-3 1.62
320×320 5.16E-6 5.82 1.06E-4 5.22 6.42E-5 3.24 6.89E-4 2.64
640×640 1.50E-7 5.10 2.18E-6 5.60 3.86E-6 4.05 3.99E-4 4.10

MWENO5 scheme WENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40× 40 2.32E-6 9.02E-6 1.63E-5 3.64E-5
80× 80 7.37E-8 4.98 2.07E-7 5.44 5.17E-7 4.97 1.28E-6 4.82
160×160 2.33E-9 4.98 5.91E-9 5.13 1.63E-8 4.98 3.94E-8 5.03
320×320 7.30E-11 4.99 1.56E-10 5.24 5.11E-10 4.99 1.14E-9 5.10
640×640 2.28E-12 4.99 5.90E-12 4.72 1.60E-11 4.99 3.44E-11 5.05

Table 3.5: 2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.999 sin(x + y), µ(x, y, 0) = 1,
ν(x, y, 0) = 1 and p(x, y, 0) = 1. MWENO scheme and WENO scheme. T = 0.1. L1 and
L∞ errors.

MWENO3 scheme WENO3 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40× 40 1.08E-2 3.52E-2 1.08E-2 3.58E-2
80× 80 3.14E-3 1.79 1.58E-2 1.16 3.75E-3 1.52 1.67E-2 1.10
160×160 5.71E-4 2.46 5.09E-3 1.63 1.18E-3 1.66 7.97E-3 1.07
320×320 5.98E-5 3.25 1.06E-3 2.26 2.96E-4 2.01 2.92E-3 1.45
640×640 1.30E-6 5.51 3.73E-5 4.82 4.31E-5 2.78 5.21E-4 2.49

MWENO5 scheme WENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40× 40 6.75E-6 1.68E-5 4.44E-5 9.68E-5
80× 80 2.41E-7 4.80 5.20E-7 5.01 1.59E-6 4.79 4.01E-6 4.59
160×160 8.12E-9 4.89 1.56E-8 5.05 5.39E-8 4.88 1.30E-7 4.94
320×320 2.59E-10 4.96 4.79E-10 5.02 1.72E-9 4.96 3.91E-9 5.05
640×640 8.15E-12 4.99 1.50E-11 4.99 5.42E-11 4.99 1.30E-10 4.90
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Figure 3.3: 2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.99 sin(x + y), µ(x, y, 0) = 1,
ν(x, y, 0) = 1 and p(x, y, 0) = 1. Computing time and error. Plus signs and a solid line
denote the results of the MWENO scheme; squares and a solid line denote the results of the
WENO scheme. From top to bottom: the third order scheme; the fifth order scheme.

Table 3.6: 2D-Euler equations: initial data ρ(x, y, 0) = 1+ 0.99999 sin(x+ y), µ(x, y, 0) = 1,
ν(x, y, 0) = 1 and p(x, y, 0) = 1. MWENO scheme. T = 0.1. L1 and L∞ errors.

MWENO3 scheme MWENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
40× 40 1.11E-2 3.59E-2 1.69E-5 3.70E-5
80× 80 3.26E-3 1.77 1.62E-2 1.15 8.39E-7 4.33 1.63E-6 4.50
160×160 6.28E-4 2.38 5.45E-3 1.57 4.13E-8 4.34 7.41E-8 4.46
320×320 8.73E-5 2.85 1.39E-3 1.96 1.79E-9 4.53 3.14E-9 4.56
640×640 8.13E-6 3.42 2.20E-4 2.66 6.91E-11 4.69 1.18E-10 4.73
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Figure 3.4: 2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.999 sin(x+ y), µ(x, y, 0) = 1,
ν(x, y, 0) = 1 and p(x, y, 0) = 1. Computing time and error. Plus signs and a solid line
denote the results of the MWENO scheme; squares and a solid line denote the results of the
WENO scheme. From top to bottom: the third order scheme; the fifth order scheme.
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The zoomed in picture for different schemes and the time history of the points where the

WENO reconstruction procedure is used in MWENO schemes are shown in Figure 3.5. We

observe that the computational results by the MWENO schemes are better than those by

the WENO schemes.

Example 3.4. A higher order scheme would show its advantage when the solution con-

tains both shocks and complex smooth region structures. A typical example for this is

the problem of shock interaction with entropy waves [18]. We solve the Euler equations

(3.1) with a moving Mach=3 shock interacting with sine waves in density: (ρ, µ, p, γ)T =

(3.857143, 2.629369, 10.333333, 1.4)T for x ∈ [−5,−4); (ρ, µ, p, γ)T = (1+0.2 sin(5x), 0, 1, 1.4)T

for x ∈ [−4, 5]. The computed density ρ is plotted at T = 1.8 against the referenced ”exact”

solution which is a converged solution computed by the fifth order finite difference WENO

scheme [12] with 2000 grid points in Figure 3.6. The zoomed in picture for different schemes

and the time history of the points where the WENO reconstruction procedure is used in

MWENO scheme are also shown in Figure 3.6. We can also see that the computational

results by the MWENO schemes are better than those by the WENO schemes.

Example 3.5. We now consider the interaction of two blast waves. The initial conditions

are:

(ρ, u, p, γ)T =







(1, 0, 103, 1.4)T , 0 < x < 0.1,
(1, 0, 10−2, 1.4)T , 0.1 < x < 0.9,
(1, 0, 102, 1.4)T , 0.9 < x < 1.

(3.4)

The computed density ρ is plotted at T = 0.038 against the reference ”exact” solution which

is a converged solution computed by the fifth order finite difference WENO scheme [12] with

2000 grid points in Figure 3.7. Then the zoomed in picture for different schemes and the

time history of the points where the WENO reconstruction procedure is used in MWENO

scheme are shown in Figure 3.7. The MWENO schemes could get much better resolution

than WENO schemes.

Example 3.6. The Sedov blast wave problem. This problem contains very low density

with strong shocks. The exact solution is specified in [14, 17]. The computing domain is
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Figure 3.5: The Lax problem. T=0.16. From top to bottom: density; density zoomed in;
the points where the WENO reconstruction procedure is used in MWENO scheme . Solid
line: the exact solution; plus signs: the results of MWENO scheme; squares: the results of
WENO scheme. From left to right: the third order scheme; the fifth order scheme. Grid
points: 200.
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Figure 3.6: The shock density wave interaction problem. T=1.8. From top to bottom:
density; density zoomed in; the points where the WENO reconstruction procedure is used in
MWENO scheme . Solid line: the exact solution; plus signs: the results of MWENO scheme;
squares: the results of WENO scheme. From left to right: the third order scheme; the fifth
order scheme. Grid points: 400.
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Figure 3.7: The blast wave problem. T=0.038. From top to bottom: density; density zoomed
in; the points where the WENO reconstruction procedure is used in MWENO scheme. Solid
line: the exact solution; plus signs: the results of MWENO scheme; squares: the results of
WENO scheme. From left to right: the third order scheme; the fifth order scheme. Grid
points: 800.
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[−2, 2] and initial conditions are: ρ = 1, µ = 0, E = 10−12 everywhere except that the

energy in the center cell is the constant 3200000
∆x

. The final computing time is T = 0.001. The

WENO schemes do not work for the case. The computational results by MWENO schemes

including the density, velocity, pressure and the time history of the points where the WENO

reconstruction procedure is used in MWENO schemes are shown in Figure 3.8, we can see

that MWENO schemes work well for this extreme test case.

Example 3.7. The double rarefaction wave problem [15]. This test case has the low pressure

and low density regions and is hard to be simulated precisely. The initial conditions are:

(ρ, µ, p, γ)T = (7,−1, 0.2, 1.4)T for x ∈ [−1, 0); (ρ, µ, p, γ)T = (7, 1, 0.2, 1.4)T for x ∈ [0, 1].

The final computing time is T = 0.6. Again, the WENO schemes do not work for the case.

The computational results by MWENO including the density, velocity, pressure and the

time history of the points where the WENO reconstruction procedure is used in MWENO

schemes are shown in Figure 3.9, we also can see that MWENO3 and MWENO5 schemes

could get good performance for this extreme one dimensional test case.

Example 3.8. The Leblanc problem [15]. The initial conditions are: (ρ, µ, p, γ)T =

(2, 0, 109, 1.4)T for x ∈ [−10, 0); (ρ, µ, p, γ)T = (0.001, 0, 1, 1.4)T for x ∈ [0, 10]. The final

computing time is T = 0.0001. The computational results by MWENO schemes including

the density, velocity, pressure and the time history of the points where the WENO recon-

struction procedure is used in MWENO schemes are shown in Figure 3.10, again, we also

can see that MWENO work well for this extreme test case and the WENO schemes break

down for this case.

Example 3.9. Double Mach reflection problem. We solve the Euler equations (3.2) in a

computational domain of [0, 4] × [0, 1]. A reflection wall lies at the bottom of the domain

starting from x = 1
6
, y=0, making a 60o angle with the x-axis. The reflection boundary

condition is used at the wall, which for the rest of the bottom boundary (the part from

x = 0 to x = 1
6
), the exact post-shock condition is imposed. At the top boundary is the

exact motion of the Mach 10 shock and γ = 1.4. The results are shown at T = 0.2. We
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Figure 3.8: The Sedov blast wave problem. T=0.001. From top to bottom: density; velocity;
pressure; the points where the WENO reconstruction procedure is used in MWENO scheme.
Solid line: the exact solution; squares: the results of MWENO scheme. From left to right:
MWENO3 scheme; MWENO5 scheme. Grid points: 400.
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Figure 3.9: The double rarefaction wave problem. T=0.6. From top to bottom: density;
velocity; pressure; the points where the WENO reconstruction procedure is used in MWENO
scheme. Solid line: the exact solution; squares: the results of MWENO scheme. From left
to right: MWENO3 scheme; MWENO5 scheme. Grid points: 400.
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Figure 3.10: The Leblanc problem. T=0.0001. From top to bottom: log plot of density;
velocity; log plot of pressure; the points where the WENO reconstruction procedure is used
in MWENO scheme. Solid line: the exact solution; squares: the results of MWENO scheme.
From left to right: MWENO3 scheme; MWENO5 scheme. Grid points: 6400.
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present the pictures of region [0, 3]× [0, 1], the blow-up region around the double Mach stems

and the points where the WENO reconstruction procedure is used in MWENO schemes in

the final time in Figure 3.11. The MWENO3 and MWENO5 schemes could gain better

density resolutions than the same order WENO schemes.

Example 3.10. The two dimensional double rarefaction wave problem [15]. The initial con-

ditions are: (ρ, µ, ν, p, γ)T = (7,−1, 0, 0.2, 1.4)T for (x, y) ∈ [−1, 0)× [−1, 1]; (ρ, µ, ν, p, γ)T =

(7, 1, 0, 0.2, 1.4)T for (x, y) ∈ [0, 1]× [−1, 1]. The final computing time is T = 0.6. The com-

putational results by MWENO schemes including the density, velocity, pressure and the final

time of the points where the WENO reconstruction procedure is used in MWENO schemes

for the MWENO schemes are shown in Figure 3.12. We can see that MWENO schemes work

well for this extreme test case, but the WENO schemes do not work for the case.

Example 3.11. The two dimensional Sedov problem [14, 17]. The initial conditions are:

ρ=1, µ=0, ν=0, E=10−12 everywhere except that the energy in the lower left corner cell is

the constant 0.244816
∆x∆y

and γ = 1.4. The final time is T = 1. The computational results by

MWENO schemes including the density and the final time of the points where the WENO

reconstruction procedure is used in MWENO schemes are shown in Figure 3.13. Again, we

can see that MWENO work well for this extreme test case, but the WENO schemes do not

work for the case.

Example 3.12. The high Mach number astrophysical jet problem. For solving the gas

and shocks which are discovered by using the Hubble space telescope, one can implement

theoretical models in a gas dynamics simulator [4, 5, 6]. A Mach 80 problem (i.e. the Mach

number of the jet inflow is Mach 25 with respect to the sound speed in the light ambient gas

and Mach 80 with respect to the sound speed in the heavy jet gas) is proposed without the

radiative cooling. The initial conditions are: the computational domain is [0,2] × [-0.5,0.5]

and is full of the ambient gas with (ρ, µ, ν, p, γ)T = (0.5, 0, 0, 0.4127, 5/3)T . The boundary

conditions for the right, top and bottom are outflow. For the left boundary (ρ, µ, ν, p, γ)T =

(5, 30, 0, 0.4127, 5/3)T for y ∈ [−0.05, 0.05] and (ρ, µ, ν, p, γ)T = (0.5, 0, 0, 0.4127, 5/3)T oth-
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Figure 3.11: Double Mach reflection problem. T=0.2. 30 equally spaced density contours
from 1.5 to 22.7. From top to bottom: MWENO scheme; WENO scheme; Squares denote
the points where the WENO reconstruction procedure is used in MWENO schemes; zoomed
in. From left to right: third order scheme; fifth order scheme. Grid points: 1600 × 400.
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Figure 3.12: The 2D double rarefaction wave problem. T=0.6. From top to bottom: 30
equally spaced density contours from 0.25 to 6.77; the points where theWENO reconstruction
procedure is used in MWENO scheme; cut at y = 0 for the 2D problem: density, velocity
and pressure. Solid line: the exact solution; squares: the results of MWENO scheme. From
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erwise. The final time is T = 0.07. The density, pressure, temperature and the final time

of the points using the WENO methodology for the MWENO3 and MWENO5 schemes are

shown in Figure 3.14. Then a Mach 2000 problem (i.e. the Mach number of the jet inflow is

Mach 25 with respect to the sound speed in the light ambient gas and Mach 2000 with respect

to the sound speed in the heavy jet gas) is proposed without the radiative cooling again. The

initial conditions are: the computational domain is [0,1] × [-0.25,0.25] and is full of the ambi-

ent gas with (ρ, µ, ν, p, γ)T = (0.5, 0, 0, 0.4127, 5/3)T . The boundary conditions for the right,

top and bottom are outflow. For the left boundary (ρ, µ, ν, p, γ)T = (5, 800, 0, 0.4127, 5/3)T

for y ∈ [−0.05, 0.05] and (ρ, µ, ν, p, γ)T = (0.5, 0, 0, 0.4127, 5/3)T otherwise. The final time

is t=0.001. The density, pressure, temperature and the final time of the points where the

WENO reconstruction procedure is used in MWENO schemes are shown in Figure 3.15.

Again, we can see that MWENO work well for this extreme test case, but the WENO

schemes do not work for the case.

4 Concluding remarks

In this paper, a new type of high order accurate finite difference MWENO schemes are

constructed for solving the hyperbolic conservation laws. Comparing them with the WENO

schemes [12, 18], the new MWENO schemes are more efficient and robust, and can be applied

to compute rather extreme test cases such as the Sedov blast wave, the Leblanc and the high

Mach number astrophysical jet problems et al. by using a normal CFL number without any

further positivity preserving procedure for the purpose of controlling the appearance of the

negative density and pressure. Extensive numerical tests including the Sedov blast wave,

the Leblanc and the high Mach number astrophysical jet problems et al. are provided to

illustrate the good performance of the MWENO schemes.
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Figure 3.14: Simulation of Mach 80 jet without radiative cooling problem. T=0.07. Scales
are logarithmic. From top to bottom: 40 equally spaced density contours from -2 to 3; 40
equally spaced pressure contours from -0.5 to 5; 40 equally spaced temperature contours
from -2 to 4.5; the points where the WENO reconstruction procedure is used in MWENO
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Figure 3.15: Simulation of Mach 2000 jet without radiative cooling problem. T=0.001.
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