
Journal of Computational Physics 318 (2016) 110–121
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Short note

A new fifth order finite difference WENO scheme for solving 

hyperbolic conservation laws ✩

Jun Zhu a, Jianxian Qiu b,∗
a College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, PR China
b School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific 
Computing, Xiamen University, Xiamen, Fujian 361005, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 April 2016
Received in revised form 2 May 2016
Accepted 3 May 2016
Available online 7 May 2016

Keywords:
Fifth order WENO scheme
Hyperbolic conservation laws
Finite difference framework

In this paper a new simple fifth order weighted essentially non-oscillatory (WENO) scheme 
is presented in the finite difference framework for solving the hyperbolic conservation laws. 
The new WENO scheme is a convex combination of a fourth degree polynomial with two 
linear polynomials in a traditional WENO fashion. This new fifth order WENO scheme uses 
the same five-point information as the classical fifth order WENO scheme [14,20], could get 
less absolute truncation errors in L1 and L∞ norms, and obtain the same accuracy order 
in smooth region containing complicated numerical solution structures simultaneously 
escaping nonphysical oscillations adjacent strong shocks or contact discontinuities. The 
associated linear weights are artificially set to be any random positive numbers with the 
only requirement that their sum equals one. New nonlinear weights are proposed for 
the purpose of sustaining the optimal fifth order accuracy. The new WENO scheme has 
advantages over the classical WENO scheme [14,20] in its simplicity and easy extension 
to higher dimensions. Some benchmark numerical tests are performed to illustrate the 
capability of this new fifth order WENO scheme.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recently, many high order finite difference or finite volume numerical methods have been investigated to solve for hy-
perbolic conservation laws. The essentially non-oscillatory (ENO) and weighted ENO (WENO) schemes, which have been 
applied quite successfully to solve the problems with strong shocks, contact discontinuities and sophisticated smooth struc-
tures, are the primary schemes used as the current state of the art in the literature. For the purpose of achieving uniform 
high order accuracy both in space and time, Harten and Osher [11] gave a weaker version of the total variation diminishing 
(TVD) criterion [8] and on which they established a basis for the reconstruction of high order ENO type schemes. And a 
series of ENO schemes were developed by Harten et al. [10] to solve one dimensional problems. The most crucial spirit 
of these ENO type schemes is to apply the smoothest candidate stencil among all stencils to approximate the variables at 
cell boundaries for the sake of sustaining high order accuracy in smooth region and not introducing spurious oscillations in 
nonsmooth region [21,22]. The first WENO scheme was originally proposed by Liu, Osher and Chan [15], in which instead 
of using the optimal smooth candidate stencil, a linear convex combination of all stencils including nonsmooth stencils is 
used. After that, such WENO scheme was improved by Jiang and Shu [14], in which a general framework for the designing 
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of new smoothness indicators and nonlinear weights was specified in detail. For the system case, the WENO schemes are 
based on local characteristic decomposition and numerical flux splitting method to avoid spurious oscillations nearby strong 
shocks or contact discontinuities. And some other famous WENO schemes are proposed for specifical computation needs, 
such as optimized WENO schemes for solving linear waves with discontinuity [23], monotonicity preserving WENO schemes 
for very high order accuracy simulation [2], hybrid compact WENO schemes for computing shock and turbulence interaction 
[17,18], and robust WENO schemes for dealing with distorted local mesh geometry or the degeneration of the mesh quality 
varies for complex computational domain [12,16,19] etc. The various types of ENO and WENO schemes [4,5,9,13–15,21,22,
25] are quite successful in numerical simulations for steady and unsteady problems harboring strong discontinuities and 
sophisticated smooth structures.

Comparing with the above mentioned literature, especially including classical WENO schemes proposed by Jiang and 
Shu [14,20], the major advantages of the new finite difference fifth order WENO scheme in this paper are its simplicity, 
high order accuracy and easy implementation in the computation. This new WENO scheme has a convex combination of a 
fourth degree polynomial which should subtract other two linear polynomials by multiplying proper constant parameters, 
then compound these three unequal degree polynomials which use information on different spatial stencils in a WENO type 
methodology including artificially setting linear weights for the conservation without losing numerical accuracy, computing 
smoothness indicators and proposing new nonlinear weight formula which is different to the expression specified in [3,6], 
for solving the Euler equations in one and two dimensions. The essential merits of such methodology are its simplicity in 
space by the definition of positive linear weights, and only one five-point stencil and two two-point stencils are used to 
reconstruct three different degree polynomials. An innovation of modifying the fourth degree polynomial is very essential 
for sustaining the scheme’s high order accuracy, otherwise, some traditional robust WENO methodologies will degrade their 
numerical accuracy to a lower order of accuracy. Therefore, we try to use fifth order approximation to the numerical flux for 
simplicity and easy implementation for the sake of obtaining high order accuracy in smooth region, and switch it to either 
of two second order approximations on smaller spatial stencils when the computing field is adjacent the shock or contact 
discontinuities for the sake of avoiding spurious oscillations. Thereafter, the new nonlinear weight formulas are presented 
for the final high order numerical flux approximation procedure. When a large, centered stencil permits optimal stability 
and accuracy to be reached, this method will certainly reach that stability and accuracy. However, when the solution on that 
stencil is rough, it is beneficial to seek out a smaller TVD-like stencil. The two small stencils that are used ensure that (when 
the large stencil may be ignored) the method is effectively a TVD scheme with a van Albada-like limiter. Consequently, for 
non-smooth solution vector, this scheme operates like a TVD scheme with all the attendant stability properties of a TVD 
scheme. In other words, the fact that a TVD-like property is built into the method makes it closer to a Monotonicity 
Preserving WENO than a pure WENO-JS (which always relies on an ensemble of large stencils). All in all, the innovations of 
this paper lie in three aspects: the new way of reconstructing a modified fourth degree polynomial by subtracting two linear 
polynomials with proper parameters, a novel WENO type communication among three unequal (modified) polynomials for 
high accurate approximations in smooth region and non-oscillation in nonsmooth region, and the new manner of obtaining 
associated nonlinear weights.

The organization of the paper is as follows: in Section 2, we construct the new finite difference fifth order WENO scheme 
in detail. In Section 3, some classical numerical tests are presented to verify the numerical accuracy and efficiency of the 
new WENO scheme. Concluding remarks are given in Section 4.

2. New simple WENO scheme

One dimensional hyperbolic conservation laws is{
ut + fx(u) = 0,

u(x,0) = u0(x),
(2.1)

and the associated semidiscretization of (2.1) can be reformulated as

du

dt
= L(u), (2.2)

where L(u) is the high order spatial discrete formulation of − fx(u). For simplicity, the uniform mesh is distributed into 
some cells Ii = [xi−1/2, xi+1/2], with the uniform cell size is denoted as xi+1/2 − xi−1/2 = h and associated cell centers are 
defined as xi = 1

2 (xi+1/2 + xi−1/2). ui(t) is defined as a nodal point value u(xi, t). Therefore the right hand side of (2.2) can 
be reformulated as

L(ui(t)) = −1

h
( f̂ i+1/2 − f̂ i−1/2), (2.3)

where f̂ i+1/2 is a numerical flux which has a fifth order approximation of flux f (u) at the boundary xi+1/2 of target cell Ii

in this paper. If the numerical flux f̂ i+1/2 is taken into account the fifth order approximation, then 1
h ( f̂ i+1/2 − f̂ i−1/2) is the 

fifth order approximation to fx(u) at x = xi . For an ordinary flux f (u), it can be split into f (u) = f +(u) + f −(u), satisfying 
df +(u) ≥ 0 and df −(u) ≤ 0. A simplest Lax–Friedrichs splitting is applied as f ±(u) = 1 ( f (u) ± αu), in which α is set as 
du du 2
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maxu | f ′(u)| over the whole range of u. The detailed flowchart of the new simple fifth order WENO scheme is described as 
follows, for simplicity, we only do the reconstruction of f +(u) at point xi+1/2 and denote it as f̂ +

i+1/2.
Step 1. Choose the following big stencil: T1 = {Ii−2, Ii−1, Ii, Ii+1, Ii+2}. It is easy to obtain a fourth degree reconstructed 

polynomial p1(x) which is based on the nodal point information of the flux splitting and satisfying:

1

h

x j+h/2∫
x j−h/2

p1(x)dx = f +
j , j = i − 2, i − 1, i, i + 1, i + 2. (2.4)

Its explicit expression is same as specified in [1]

p1(x) = f +
i + −82 f +

i−1 + 11 f +
i−2 + 82 f +

i+1 − 11 f +
i+2

120
(

x − xi

h
) +

40 f +
i−1 − 3 f +

i−2 − 74 f +
i + 40 f +

i+1 − 3 f +
i+2

56
((

x − xi

h
)2 − 1

12
) +

2 f +
i−1 − f +

i−2 − 2 f +
i+1 + f +

i+2

12
((

x − xi

h
)3 − 3

20
(

x − xi

h
)) +

−4 f +
i−1 + f +

i−2 + 6 f +
i − 4 f +

i+1 + f +
i+2

24
((

x − xi

h
)4 − 3

14
(

x − xi

h
)2 + 3

560
). (2.5)

Choose another two smaller stencils: T2 = {Ii−1, Ii} and T3 = {Ii, Ii+1}. It is also very easy for us to get the two linear 
polynomials which are based on the nodal point information of the flux splitting and satisfying

1

h

x j+h/2∫
x j−h/2

p2(x)dx = f +
j , j = i − 1, i, (2.6)

and

1

h

x j+h/2∫
x j−h/2

p3(x)dx = f +
j , j = i, i + 1. (2.7)

Their explicit expressions are

p2(x) = f +
i + ( f +

i − f +
i−1)(

x − xi

h
), (2.8)

and

p3(x) = f +
i + ( f +

i+1 − f +
i )(

x − xi

h
). (2.9)

Step 2. The main selection principle of the linear weights is solely based on the consideration of a balance between 
accuracy and ability to achieve essentially nonoscillatory shock transitions. In all of our numerical tests, following the 
practice in [7,26], we take the positive linear weights as γ1 = 0.98 and γ2 = γ3 = 0.01. The linear weights can be chosen 
to be any set of positive numbers with the condition that the summation is one and would not pollute the new scheme’s 
optimal accuracy.

Step 3. Compute the smoothness indicators βn, n = 1, 2, 3, which measure how smooth the functions pn(x), n = 1, 2, 3, 
are in the target cell Ii . The smaller these smoothness indicators, the smoother the functions are in Ii . We use the same 
recipe for the smoothness indicators as in [1,14,20]

βn =
r∑

α=1

∫
Ii

h2α−1(
dα pn(x)

dxα
)2dx, n = 1,2,3. (2.10)

The associated explicit expressions are

β1 = (
−82 f +

i−1 + 11 f +
i−2 + 82 f +

i+1 − 11 f +
i+2

120
+

2 f +
i−1 − f +

i−2 − 2 f +
i+1 + f +

i+2
)2 +
120
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3
(

40 f +
i−1 − 3 f +

i−2 − 74 f +
i + 40 f +

i+1 − 3 f +
i+2

56
+

123

455

−4 f +
i−1 + f +

i−2 + 6 f +
i − 4 f +

i+1 + f +
i+2

24
)2 +

781

20
(

2 f +
i−1 − f +

i−2 − 2 f +
i+1 + f +

i+2

12
)2 +

1421461

2275
(
−4 f +

i−1 + f +
i−2 + 6 f +

i − 4 f +
i+1 + f +

i+2

24
)2, (2.11)

β2 = ( f +
i−1 − f +

i )2, (2.12)

and

β3 = ( f +
i − f +

i+1)
2. (2.13)

The expansions of (2.11) to (2.13) in Taylor series about f +
i are obtained as

β1 = h2(( f +
i )′)2 + 13h4(( f +

i )′′)2/12 + h6(5467(( f +
i )′′′)2 − 14( f +

i )′′( f +
i )(4) − 336( f +

i )′

( f +
i )(5))/5040 + O (h8) = h2(( f +

i )′)2(1 + O (h4)) = O (h2), (2.14)

β2 = h2(( f +
i )′)2 − h3( f +

i )′( f +
i )′′ + h4(

( f +
i )′′

4
+ ( f +

i )′( f +
i )′′′

3
) + O (h5) =

h2(( f +
i )′)2(1 + O (h)) = O (h2), (2.15)

and

β3 = h2(( f +
i )′)2 + h3( f +

i )′( f +
i )′′ + h4(

( f +
i )′′

4
+ ( f +

i )′( f +
i )′′′

3
) + O (h5) =

h2(( f +
i )′)2(1 + O (h)) = O (h2). (2.16)

It is assumed that the indicators of smoothness can be rewritten as: β1 = D(1 + O (h4)) and β2,3 = D(1 + O (h)), in which 
D = h2(( f +

i )′)2 is a non-zero constant independent of n on condition that ( f +
i )′ �= 0.

Step 4. Calculate the non-linear weights based on the linear weights and the smoothness indicators. For instance, as 
shown in [3,6], we use new τ which is simply defined as the absolute deference between β1, β2 and β3, and is different to 
the formula specified in [3,6]. Since the two difference expansions in Taylor series about f +

i are

β1 − β2 = ( f +
i )′( f +

i )′′h3 + (
5(( f +

i )′′)2

6
− ( f +

i )′( f +
i )′′′

3
)h4 + O (h5)

=
{

O (h3), ( f +
i )′ �= 0, ( f +

i )′′ �= 0,

O (h4), ( f +
i )′ = 0, ( f +

i )′′ �= 0,
(2.17)

and

β1 − β3 = −( f +
i )′( f +

i )′′h3 + (
5(( f +

i )′′)2

6
− ( f +

i )′( f +
i )′′′

3
)h4 + O (h5)

=
{

O (h3), ( f +
i )′ �= 0, ( f +

i )′′ �= 0,

O (h4), ( f +
i )′ = 0, ( f +

i )′′ �= 0.
(2.18)

It is easy to verify

τ = (
|β1 − β2| + |β1 − β3|

2
)2 =

{
O (h6), ( f +

i )′ �= 0, ( f +
i )′′ �= 0,

O (h8), ( f +
i )′ = 0, ( f +

i )′′ �= 0.
(2.19)

Then we define

ωn = ω̄n∑3
�=1 ω̄�

, ω̄n = γn(1 + τ

ε + βn
), n = 1,2,3. (2.20)

Here ε is a small positive number to avoid the denominator to become zero. By the usage of (2.14) to (2.16) and (2.19) in 
the smooth region, it satisfies

τ = O (h4),n = 1,2,3, (2.21)

ε + βn



114 J. Zhu, J. Qiu / Journal of Computational Physics 318 (2016) 110–121
on condition that ε � βn . Therefore, the nonlinear weights ωn, n = 1, 2, 3, satisfy the order accuracy condition ωn = γn +
O (h4) [3,6], providing the formal fifth order accuracy to the WENO scheme elaborated in [14,20]. We take ε = 10−6 in our 
computation.

Remark. For case ( f +
i )′ = 0, ( f +

i )′′ = 0, it is also easy to verify that ωn = γn + O (h4).

Step 5. The new final reconstructions of the numerical flux at x = xi+1/2 is given by

f̂ +
i+1/2 = ω1(

1

γ1
p1(xi+ 1

2
) − γ2

γ1
p2(xi+ 1

2
) − γ3

γ1
p3(xi+ 1

2
)) + ω2 p2(xi+ 1

2
) + ω3 p3(xi+ 1

2
). (2.22)

The first term of the right hand side of (2.22) looks very complicated at the first glance. If (2.22) is simply defined as 
ω1 p1(xi+ 1

2
) + ω2 p2(xi+ 1

2
) + ω3 p3(xi+ 1

2
) as usual, the scheme would degrade its optimal fifth order accuracy because of 

p2(xi+ 1
2
) and p3(xi+ 1

2
) are active and the convex combination together with p1(xi+ 1

2
) would not offer high order approxi-

mation at point xi+1/2 to numerical flux in smooth region. Thus we should do something to wipe off their contribution in 
smooth region. By doing so, if a big spatial stencil permits optimal stability and accuracy to be reached, (2.22) could obtain 
that stability and accuracy obviously. However, when the solution on the big spatial stencil is rough, it is beneficial to seek 
out smaller two-point TVD-like stencils. Such two small spatial stencils that are used ensure that (when the large five-point 
spatial stencil may be inactive and ignored) the equation (2.22) can gradually transit to become a TVD scheme with a 
van Albada-like limiter. So, for the purpose of solving non-smooth numerical solutions, (2.22) performs like a TVD scheme 
with all the attendant stability properties of a TVD scheme. In this way, it is not very crucial to deliberately choose linear 
weights for the purpose of sustaining high order accuracy in smooth region and could keep the shock transition sharply in 
nonsmooth region.

Step 6. The semidiscrete scheme (2.2) is discretized in time by a third order TVD Runge–Kutta method [21]⎧⎪⎨
⎪⎩

u(1) = un + 	tL(un),

u(2) = 3
4 un + 1

4 u(1) + 1
4 	tL(u(1)),

un+1 = 1
3 un + 2

3 u(2) + 2
3 	tL(u(2)).

(2.23)

Remark. For the systems of conservation laws, such as the compressible Euler equations, all of the reconstruction proce-
dures are implemented in the local characteristic directions for the purpose of avoiding spurious oscillations. For the two 
dimensional problems, all of these reconstruction procedures are carried out in a dimension-by-dimension fashion.

3. Numerical tests

In this section we present the results of numerical tests of the fifth order new WENO scheme termed as WENO-ZQ 
specified in the previous section in comparison to the classical WENO scheme termed as WENO-JS narrated in [14,20] in 
one and two dimensions. The CFL number is set as 0.6 for WENO-JS and WENO-ZQ schemes in our computations. For the 
purpose of testing whether the random choice of the linear weights would pollute the optimal order accuracy of WENO-ZQ 
scheme or not, we set different type of linear weights in the numerical accuracy cases as: (1) γ1 = 0.98, γ2 = 0.01 and 
γ3 = 0.01; (2) γ1 = 1.0/3.0, γ2 = 1.0/3.0 and γ3 = 1.0/3.0; (3) γ1 = 0.01, γ2 = 0.495 and γ3 = 0.495. And set γ1 = 0.98, 
γ2 = 0.01 and γ3 = 0.01 in the latter examples.

Example 3.1. We solve the following nonlinear scalar Burgers equation:

μt + (
μ2

2
)x = 0, 0 < x < 2, (3.1)

with the initial condition μ(x, 0) = 0.5 + sin(πx) and periodic boundary condition. When t = 0.5/π the solution is still 
smooth, and the errors and numerical orders of accuracy by the WENO-ZQ scheme are shown in Table 3.1. For comparison, 
errors and numerical orders of accuracy by the classical WENO-JS scheme are shown in the same table. We can see that 
both WENO-ZQ and WENO-JS schemes achieve their designed order of accuracy, and WENO-ZQ scheme with different type 
of linear weights produces less truncation errors and achieves optimal orders of accuracy. Fig. 3.1 shows that WENO-ZQ 
scheme needs less CPU time than WENO-JS does to obtain the same quantities of L1 and L∞ errors, so WENO-ZQ scheme 
is more efficient than WENO-JS scheme in this test case.

Example 3.2. We solve the following two-dimensional nonlinear scalar Burgers equation:

μt + (
μ2

2
)x + (

μ2

2
)y = 0, 0 < x, y < 4, (3.2)

with the initial condition μ(x, y, 0) = 0.5 + sin(π(x + y)/2) and periodic boundary conditions. When t = 0.5/π the solution 
is still smooth, and the errors and numerical orders of accuracy by the WENO-ZQ scheme in comparison to that of WENO-JS 
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Table 3.1
μt + (

μ2

2 )x = 0. Initial data μ(x, 0) = 0.5 + sin(πx). WENO-ZQ scheme and WENO-JS scheme. T = 0.5/π . L1 and L∞ errors.

Grid points WENO-ZQ (1) scheme WENO-JS scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.64E−2 5.32E−2 1.91E−2 7.48E−2
20 1.44E−3 3.51 9.73E−3 2.45 2.06E−3 3.21 1.21E−2 2.63
40 7.29E−5 4.31 6.93E−4 3.81 1.24E−4 4.05 1.03E−3 3.54
80 2.38E−6 4.93 3.06E−5 4.50 4.41E−6 4.81 4.72E−5 4.46

160 7.07E−8 5.07 9.31E−7 5.04 1.64E−7 4.75 1.38E−6 5.09
320 2.09E−9 5.07 2.78E−8 5.06 4.76E−9 5.11 7.28E−8 4.25

Grid points WENO-ZQ (2) scheme WENO-ZQ (3) scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 3.48E−2 1.10E−1 3.76E−2 1.16E−1
20 4.55E−3 2.93 1.55E−2 2.83 5.61E−3 2.74 1.95E−2 2.58
40 1.41E−4 5.01 8.15E−4 4.25 1.68E−4 5.06 1.13E−3 4.11
80 2.57E−6 5.77 3.05E−5 4.74 2.68E−6 5.97 3.04E−5 5.21

160 7.10E−8 5.18 9.31E−7 5.03 7.12E−8 5.23 9.31E−7 5.03
320 2.09E−9 5.08 2.78E−8 5.06 2.09E−9 5.09 2.78E−8 5.06

Fig. 3.1. μt + (
μ2

2 )x = 0. Initial data μ(x, 0) = 0.5 + sin(πx). Computing time and error. Number signs and a solid red line denote the results of WENO-ZQ 
scheme with different linear weights (1), (2) and (3); squares and a solid line denote the results of WENO-JS scheme. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

scheme are shown in Table 3.2. We can see that the WENO-ZQ scheme with different type of linear weights achieves close 
to its designed order of accuracy and generates less absolute truncation errors. And the Fig. 3.2 shows that WENO-ZQ 
scheme needs less CPU time than WENO-JS scheme does to obtain the same quantities of L1 and L∞ errors.

Example 3.3.

∂

∂t

⎛
⎝ ρ

ρμ
E

⎞
⎠ + ∂

∂x

⎛
⎝ ρμ

ρμ2 + p
μ(E + p)

⎞
⎠ = 0. (3.3)

In which ρ is density, μ is the velocity in x-direction, E is total energy and p is pressure. The initial conditions are: 
ρ(x, 0) = 1 + 0.2 sin(x), μ(x, 0) = 1, p(x, 0) = 1, γ = 1.4. The computing domain is x ∈ [0, 2π ]. Periodic boundary condition 
is applied in this test. The exact solution is ρ(x, t) = 1 +0.2 sin(x −t). The final time is t = 2. The errors and numerical orders 
of accuracy of the density by the WENO-ZQ scheme and WENO-JS scheme are shown in Table 3.3 and the numerical error 
against CPU time graphs are in Fig. 3.3. We can observe that the theoretical order is actually achieved and the WENO-ZQ 
scheme can get better results and is more efficient than WENO-JS scheme in this test case.
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Table 3.2
μt + (

μ2

2 )x + (
μ2

2 )y = 0. Initial data μ(x, y, 0) = 0.5 + sin(π(x + y)/2). WENO-ZQ scheme and WENO-JS scheme. T = 0.5/π . L1 and L∞ errors.

Grid points WENO-ZQ (1) scheme WENO-JS scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 1.84E−2 5.38E−2 2.06E−2 7.49E−2
20 × 20 1.73E−3 3.41 9.49E−3 2.50 2.16E−3 3.25 1.21E−2 2.63
40 × 40 7.46E−5 4.54 6.93E−4 3.78 1.27E−4 4.09 1.03E−3 3.54
80 × 80 2.41E−6 4.95 3.06E−5 4.50 4.47E−6 4.83 4.72E−5 4.46

160 × 160 7.11E−8 5.08 9.31E−7 5.04 1.65E−7 4.76 1.38E−6 5.09
320 × 320 2.09E−9 5.08 2.78E−8 5.06 4.77E−9 5.11 7.28E−8 4.25

Grid points WENO-ZQ (2) scheme WENO-ZQ (3) scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 3.81E−2 1.10E−1 4.11E−2 1.17E−1
20 × 20 4.82E−3 2.98 1.56E−2 2.82 5.85E−3 2.81 1.92E−2 2.60
40 × 40 1.42E−4 5.08 7.94E−4 4.30 1.70E−4 5.10 1.10E−3 4.12
80 × 80 2.61E−6 5.77 3.05E−5 4.70 2.71E−6 5.97 3.04E−5 5.18

160 × 160 7.14E−8 5.19 9.30E−7 5.03 7.17E−8 5.24 9.30E−7 5.03
320 × 320 2.09E−9 5.09 2.78E−8 5.06 2.09E−9 5.09 2.78E−8 5.06

Fig. 3.2. μt + (
μ2

2 )x + (
μ2

2 )y = 0. Initial data μ(x, y, 0) = 0.5 + sin(π(x + y)/2). Computing time and error. Number signs and a solid red line denote the 
results of WENO-ZQ scheme with different linear weights (1), (2) and (3); squares and a solid line denote the results of WENO-JS scheme. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3.3
1D-Euler equations: initial data ρ(x, 0) = 1 + 0.2 sin(x), μ(x, 0) = 1 and p(x, 0) = 1. WENO-ZQ scheme and WENO-JS scheme. T = 2. L1 and L∞ errors.

Grid points WENO-ZQ (1) scheme WENO-JS scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.36E−3 3.51E−3 4.49E−3 6.79E−3
20 3.04E−5 5.49 5.97E−5 5.87 2.15E−4 4.38 3.75E−4 4.18
40 9.62E−7 4.98 1.60E−6 5.21 6.74E−6 5.00 1.28E−5 4.87
80 3.01E−8 5.00 4.75E−8 5.07 2.07E−7 5.02 3.99E−7 5.01

160 9.39E−10 5.00 1.47E−9 5.01 6.38E−9 5.02 1.15E−8 5.11
320 2.93E−11 5.00 4.60E−11 5.00 1.92E−10 5.05 3.16E−10 5.19

Grid points WENO-ZQ (2) scheme WENO-ZQ (3) scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 8.59E−3 2.27E−2 1.08E−2 2.70E−2
20 1.30E−4 6.05 3.98E−4 5.84 1.88E−4 5.85 5.31E−4 5.67
40 9.98E−7 7.02 5.07E−6 6.29 1.15E−6 7.34 6.80E−6 6.28
80 3.01E−8 5.05 6.48E−8 6.29 3.01E−8 5.27 7.35E−8 6.53

160 9.39E−10 5.00 1.54E−9 5.39 9.39E−10 5.00 1.58E−9 5.53
320 2.93E−11 5.00 4.60E−11 5.07 2.93E−11 5.00 4.61E−11 5.10
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Fig. 3.3. 1D-Euler equations: initial data ρ(x, 0) = 1 + 0.2 sin(x), μ(x, 0) = 1 and p(x, 0) = 1. Computing time and error. Number signs and a solid red line 
denote the results of WENO-ZQ scheme with different linear weights (1), (2) and (3); squares and a solid line denote the results of WENO-JS scheme. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3.4
2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.2 sin(x + y), μ(x, y, 0) = 1, ν(x, y, 0) = 1 and p(x, y, 0) = 1. WENO-ZQ scheme and WENO-JS scheme. 
T = 2. L1 and L∞ errors.

Grid points WENO-ZQ (1) scheme WENO-JS scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 6.32E−4 1.00E−3 3.68E−3 7.51E−3
20 × 20 1.74E−5 5.18 3.15E−5 5.00 1.37E−4 4.75 2.57E−4 4.87
40 × 40 5.01E−7 5.11 9.31E−7 5.08 3.62E−6 5.24 6.63E−6 5.28
80 × 80 1.49E−8 5.07 2.81E−8 5.05 9.47E−8 5.25 1.78E−7 5.22

160 × 160 4.56E−10 5.04 8.62E−10 5.03 2.40E−9 5.30 4.74E−9 5.23
320 × 320 1.40E−11 5.02 2.66E−11 5.01 5.56E−11 5.43 1.12E−10 5.39

Grid points WENO-ZQ (2) scheme WENO-ZQ (3) scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 1.44E−3 3.59E−3 1.90E−3 4.48E−3
20 × 20 1.86E−5 6.28 3.37E−5 6.74 1.93E−5 6.62 3.94E−5 6.83
40 × 40 5.03E−7 5.21 9.25E−7 5.19 5.04E−7 5.26 9.24E−7 5.41
80 × 80 1.49E−8 5.07 2.81E−8 5.04 1.49E−8 5.07 2.81E−8 5.04

160 × 160 4.56E−10 5.04 8.62E−10 5.03 4.56E−10 5.04 8.62E−10 5.03
320 × 320 1.40E−11 5.02 2.66E−11 5.01 1.40E−11 5.02 2.66E−11 5.01

Example 3.4.

∂

∂t

⎛
⎜⎜⎝

ρ
ρμ
ρν
E

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρμ

ρμ2 + p
ρμν

μ(E + p)

⎞
⎟⎟⎠ + ∂

∂ y

⎛
⎜⎜⎝

ρν
ρμν

ρν2 + p
ν(E + p)

⎞
⎟⎟⎠ = 0. (3.4)

In which ρ is density; μ and ν are the velocities in the x and y-directions, respectively; E is total energy; and p is 
pressure. The initial conditions are: ρ(x, y, 0) = 1 + 0.2 sin(x + y), μ(x, y, 0) = 1, ν(x, y, 0) = 1, p(x, y, 0) = 1 and γ = 1.4. 
The computing domain is (x, y) ∈ [0, 2π ] × [0, 2π ]. Periodic boundary conditions are applied in both directions. The exact 
solution is ρ(x, y, t) = 1 + 0.2 sin(x + y − 2t). We compute the solution up to t = 2. The errors and numerical orders of 
accuracy of the density by the WENO-ZQ scheme and WENO-JS scheme are shown in Table 3.4 and the numerical error 
against CPU time graphs are in Fig. 3.4. WENO-ZQ scheme with different type of linear weights is better than WENO-JS 
scheme in this two dimensional test case.
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Fig. 3.4. 2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.2 sin(x + y), μ(x, y, 0) = 1, ν(x, y, 0) = 1 and p(x, y, 0) = 1. Computing time and error. Number 
signs and a solid red line denote the results of WENO-ZQ scheme with different linear weights (1), (2) and (3); squares and a solid line denote the results 
of WENO-JS scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3.5. The Lax problem. T = 0.16. From left to right: density; density zoomed in. Solid line: the exact solution; plus signs: the results of WENO-ZQ 
scheme; squares: the results of WENO-JS scheme. Grid points: 200.

Example 3.5. We solve the 1D Euler equations with Riemann initial condition for the Lax problem:

(ρ, u, p, γ )T =
{

(0.445,0.698,3.528,1.4)T , x ∈ [−0.5,0),

(0.5,0,0.571,1.4)T , x ∈ [0,0.5]. (3.5)

For t = 0.16, we present in Fig. 3.5 the exact solution and the computed density ρ obtained with the WENO-ZQ scheme 
comparing to the WENO-JS scheme by using 200 grid points. The results and zoomed in picture for different schemes are 
shown in Fig. 3.5. We observe that the computational results obtained by the WENO-ZQ scheme works better than the 
WENO-JS scheme.

Example 3.6. A higher order scheme would show its advantage when the solution contains both shocks and complex 
smooth region structures. A typical example for this is the problem of shock interaction with entropy waves [20]. We 
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Fig. 3.6. The shock density wave interaction problem. T = 1.8. From left to right: density; density zoomed in. Solid line: the exact solution; plus signs: the 
results of WENO-ZQ scheme; squares: the results of WENO-JS scheme. Grid points: 400.

solve the Euler equations (3.3) with a moving Mach = 3 shock interacting with sine waves in density: (ρ, μ, p, γ )T =
(3.857143, 2.629369, 10.333333, 1.4)T for x ∈ [−5, −4); (ρ, μ, p, γ )T = (1 + 0.2 sin(5x), 0, 1, 1.4)T for x ∈ [−4, 5]. The com-
puted density ρ is plotted at t = 1.8 against the referenced “exact” solution which is a converged solution computed by 
the finite difference fifth order WENO scheme [14] with 2000 grid points in Fig. 3.6. The results and zoomed in picture for 
different schemes are also shown in Fig. 3.6. The WENO-ZQ scheme could get much better resolution than that of WENO-JS 
scheme.

Example 3.7. We now consider the interaction of two blast waves. The initial conditions are:

(ρ, u, p, γ )T =
⎧⎨
⎩

(1,0,103,1.4)T , 0 < x < 0.1,

(1,0,10−2,1.4)T , 0.1 < x < 0.9,

(1,0,102,1.4)T , 0.9 < x < 1.

(3.6)

The computed density ρ is plotted at t = 0.038 against the reference “exact” solution which is a converged solution com-
puted by the finite difference fifth order WENO scheme [14] with 20000 grid points in Fig. 3.7. The results and zoomed in 
picture for different schemes are shown in Fig. 3.7.

Example 3.8. Double Mach reflection problem [24]. We solve the Euler equations (3.4) in a computational domain of [0, 4] ×
[0, 1]. A reflection wall lies at the bottom of the domain starting from x = 1

6 , y = 0, making a 60o angle with the x-axis. The 
reflection boundary condition is used at the wall, which for the rest of the bottom boundary (the part from x = 0 to x = 1

6 ), 
the exact post-shock condition is imposed. At the top boundary is the exact motion of the Mach 10 shock and γ = 1.4. The 
results are shown at t = 0.2. We present the pictures of region [0, 3] × [0, 1] and the blow-up region around the double 
Mach stems in Fig. 3.8. The WENO-ZQ scheme could gain better density resolutions than the same order WENO-JS scheme.

Example 3.9. A Mach 3 wind tunnel with a step. This model problem is also originally from [24]. The setup of the problem 
is as follows. The wind tunnel is one length unit wide and three length units long. The step is 0.2 length units high and 
is located 0.6 length units from the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow. 
Reflective boundary conditions are applied along the wall of the tunnel and inflow/outflow boundary conditions are applied 
at the entrance/exit. The results are shown at t = 4. In Fig. 3.9, we show 30 equally spaced density contours from 0.32 
to 6.15 computed by the WENO-ZQ scheme comparing with WENO-JS scheme. We can clearly observe that the different 
schemes give good resolution especially for the resolution of the physical instability and roll-up of the contact line.

Remark. We can also use the same methodology to obtain higher order new WENO-ZQ schemes such as the seventh order 
and ninth order WENO-ZQ schemes. Although such new schemes would sustain their optimal order accuracy in smooth 
region, they could not give more sharp shock transitions than the proposed fifth order accurate WENO-ZQ scheme. If the 
big spatial stencil contains discontinuities, the high degree polynomial defined on it is inactive and at least one of the two 
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Fig. 3.7. The blast wave problem. T = 0.038. From left to right: density; density zoomed in. Solid line: the exact solution; plus signs: the results of WENO-ZQ 
scheme; squares: the results of WENO-JS scheme. Grid points: 800.

Fig. 3.8. Double Mach reflection problem. T = 0.2, with grid points: 1600 × 400. 30 equally spaced density contours from 1.5 to 22.7. Zoom-in pictures 
around the Mach stem (Bottom). WENO-ZQ scheme (left); WENO-JS scheme (right).

Fig. 3.9. Forward step problem. T = 4.0, with grid points: 600 × 200. 30 equally spaced density contours from 0.32 to 6.15. WENO-ZQ scheme (left); 
WENO-JS scheme (right).
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linear polynomials is valid and results in the scheme degrades to second order accuracy adjacent to discontinuous region. 
The more we use wilder spatial stencil, the bigger probability of the scheme degrades to lower order accuracy. So it is 
reasonable for us to draw the conclusion that the fifth order WENO-ZQ scheme gets better resolutions than higher order 
WENO-ZQ schemes in nonsmooth region.

4. Concluding remarks

In this paper a new simple finite difference fifth order WENO scheme termed as WENO-ZQ is constructed for solving the 
hyperbolic conservation laws. The crucial advantages of WENO-ZQ scheme are its simplicity and simultaneously obtaining 
optimal fifth order accuracy with three unequal spatial stencils. By the usage of information lies in the five-point and two 
smaller two-point spatial stencils, the procedure of this new WENO methodology is adopted by artificially setting linear 
weights for conservation, computing associated smoothness indicators and redefining new nonlinear weights which are 
different to the formula narrated in [3,6] etc. The constructions of such WENO-ZQ scheme are based on WENO interpolation 
in spatial field and then the third order TVD Runge–Kutta time discretization procedure is used for solving the ODE. In 
WENO-ZQ scheme, the nodal point information is used via time approaching and is easier to be implemented than the 
classical finite difference WENO scheme [14,20]. Comparing it with the classical WENO schemes [14,20], the WENO-ZQ 
scheme is very simple in the computation of problems with strong shocks, can obtain the same order accuracy in the 
same big stencil simultaneously having less absolute numerical truncation errors in L1 and L∞ norms. Extensive numerical 
experiments for compressible Euler systems of gas dynamics are presented to show the simplicity and effectiveness of this 
WENO-ZQ scheme.

The procedure of this new WENO reconstruction can be easily extended to finite volume version, and it will be more 
efficient and simpler than the current finite volume WENO schemes, especially for methods on unstructured meshes. The 
research is going on.
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