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Abstract. We present an efficient null space free Jacobi-Davidson method to compute the positive eigenvalues of time
harmonic Maxwell’s equations. We focus on a class of spatial discretizations that guarantee the existence of discrete vector
potentials, such as Yee’s scheme and the edge elements. During the Jacobi-Davidson iteration, the correction process is applied
to the vector potential instead. The correction equation is solved approximately as in standard Jacobi-Davidson approach.
The computational cost of the transformation from the vector potential to the corrector is negligible. As a consequence, the
expanding subspace automatically stays out of the null space and no extra projection step is needed. Numerical evidence
confirms that the proposed scheme indeed outperforms the standard and projection-based Jacobi-Davidson methods by a
significant margin.
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1. Introduction. Photonic crystals are made of dielectric materials with periodic structure. The shape
and permittivity of the dielectric material completely determines the band structure of the photonic crystal.
Over past few decades, photonic crystals with specific band structures are of practical interest and have been
extensively studied. The governing equation for three-dimensional photonic crystals is the time harmonic
Maxwell’s equations:

∇×H = iωεE(1.1)

∇×E = −iωµH(1.2)

∇ · (εE) = 0(1.3)

∇ · (µH) = 0(1.4)

where ω is the frequency and ε = εrε0, µ = µrµ0. The constants ε0 = 8.854 × 10−12Farad/meter and
µ0 = 1.257× 10−6Henry/meter represent vacuum permittivity and vacuum permeability, respectively. The
relative permittivity εr and relative permeability µr are dimensionless, material dependent parameters.

We can recast the Maxwell’s equations in terms of the electric field E alone:

∇× µ−1
r ∇×E = λ εrE(1.5)

∇ · (εrE) = 0(1.6)

where λ = ε0µ0ω
2 is the eigenvalue. The degenerate elliptic operator ∇ × µ−1

r ∇× is self-adjoint and non-
negative. Since µr and εr are material dependent and therefore piecewise constant, (1.5) constitutes an
elliptic interface problem [35, 16]. Equations (1.5) and (1.6) need to be supplied with appropriate boundary
conditions which we will elaborate in the beginning of Section 2.

Equation (1.6) serves as a constraint for the degenerate elliptic equation (1.5) and is redundant for the
nonzero eigenvalues λ 6= 0 as a consequence of the basic identity from calculus

(1.7) ∇ · ∇× ≡ 0.

A traditional wisdom to reflect this fact is to adopt spatial discretizations that admit discrete analogue of
(1.7). This class of spatial discretizations includes the Yee’s scheme [37], the Whitney form [7, 36], the
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co-volume discretization [25], the mimetic discretization [20] and the edge element [23, 24, 28]. With this
approach, the divergence free constraint (1.6) is ignored and the resulting discretized system is a generalized
eigenvalue problem

(1.8) Ae = λBe

where A is the matrix representation of the discretized ∇× µ−1
r ∇× and B is the mass matrix.

In the unconstrained formulation (1.8), the matrix A is symmetric and non-negative semidefinite. The
major difficulty with this approach, however, is the large null space associated with (1.5) in the absence of
(1.6). This can be seen easily from the identity

(1.9) ∇×∇φ ≡ 0.

In other words, the null space of ∇× µ−1
r ∇× contains all the gradient vectors. The discrete counterpart of

(1.9) holds true for the generalized eigenvalue problem (1.8) with the class of spatial discretizations under
consideration. As a result, a huge spurious null space arises from discarding the divergence free constraint
(1.6). In Yee’s discretization for example, the dimension of the null space is the same as the number of cells,
constituting one third of the total degrees of freedom. This causes severe numerical difficulties in numerical
computation since in practice, we are mainly interested in the lowest nonzero eigenvalues of (1.5), (1.6)
which are now located deep in the interior of the spectrum.

In this paper, we propose a novel numerical scheme to handle the null space issue using a modified Jacobi-
Davidson iteration. The Jacobi-Davidson method [1, 2, 3, 5, 12, 26, 31, 32] is a well established, efficient
eigensolver based on expanding subspace iteration. Contrast to classical eigensolvers such as the inverse
power method [9, 15] and various Lanczos [2, 30] or Arnoldi methods [5] which require the shift-and-invert
technique to compute interior eigenpairs, the linear system for the corrector in the Jacobi-Davidson iteration
only needs to be solved approximately. This is the key to efficiency of the Jacobi-Davidson method. On the
other hand, since the corrector is only solved approximately, direct application of the Jacobi-Davidson method
inevitably brings null vectors into the expanding subspace. As a result, the efficiency of the Jacobi-Davidson
method is significantly deteriorated. The pollution of the spurious null space is common to other eigensolvers
as well. The standard remedy is to project the approximate eigenvector back to the orthogonal complement
of the null space. A well known approach for the projection is through the Helmholtz decomposition [1, 3, 15].
See also [9] for the approach of combining the CG method with multigrid iteration.

In this paper, we take a different approach and propose a null space free Jacobi-Davidson iteration
inspired by the Poincaré Lemma ([10, 11, 29]), whose discrete analogue remains valid for the class of spatial
discretizations under consideration:

Poincaré Lemma: If v ∈ C1(Ω) and ∇·v = 0 on a contractible domain Ω, then v = ∇× v̂

for some vector potential v̂.
The Poincaré Lemma on general domains can be found in, for example, [33, Theorem 1.5]. See also [14,
Theorem 2.1] for the discrete counterpart.

Motivated by the Poincaré Lemma, we will show in Theorem 2.2 the existence of discrete vector potentials
for the relevant vector fields. Instead of solving the corrector directly, the novelty of our approach is to derive
and solve an equation for the vector potential of the corrector. The vector potential only needs to be solved
approximately as in original Jacobi-Davidson approach. By taking the discrete curl of the approximate vector
potential, we annihilate completely the components in the null space and obtain a good approximation of the
corrector which is null vector free. As a result, the expanding subspace automatically satisfies the divergence
free constrain (1.6). The total cost to get an approximate corrector from an approximate vector potential
is a single sparse matrix-vector multiplication. This is by far much cheaper than any projection. Numerical
experiments have confirmed that our approach effectively resolves the slow convergence issue caused by the
spurious null space in original Jacobi-Davidson iteration. In addition, our scheme also outperforms the
projection based method by a significant margin over a wide range of parameter regime and provides a
competitive alternative to existing schemes.
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The rest of the paper is organized as follows. In Section 2, we present detailed mathematical formulations
for the eigenvalue problem (1.8), including Theorem 2.2 which characterizes the subspace spanned by the
eigenvectors perpendicular to the null space in terms of discrete vector potentials. This is the foundation
of our new scheme. The vector potential approach admits a magnetic field interpretation which leads to
an isospectral reformulation of (1.8). We then further interplay between these equivalent formulations in
Section 3 and derive our null space free Jacobi-Davidson method (NFJD) as an application of Theorem 2.2.
We also present a dual version of NFJD with the roles of electric field and magnetic field interchanged during
the iteration. In Section 4, we conduct extensive numerical comparison among the original Jacobi-Davidson
(JD) method, the Helmholtz projected Jacobi-Davidson (HPJD) and NFJD to show the robustness and
efficiency of NFJD. The finite element version of our scheme is described in the Appendix.

2. Background and Mathematical Formulation. The photonic crystals consist of dielectric ma-
terials fabricated in periodic structure. The relative permittivity εr(x) and relative permeability µr(x), as
material dependent parameters, are therefore periodic and piecewise constant. In other words,

(2.1) (εr(x), µr(x)) =

{
(εr,1, µr,1) in material 1

(εr,2, µr,2) in material 2
,

εr(x + aℓ) = εr(x)
µr(x + aℓ) = µr(x)

, ℓ = 1, 2, 3,

where the lattice translation vectors aℓ, ℓ = 1, 2, 3, span the primitive cell which extends periodically to form
the photonic crystal.

From Bloch’s Theorem [21], the eigenfunctions of (1.5) satisfy the k-periodic boundary condition:

(2.2) E(x + aℓ) = e
√
−1k·aℓE(x), ℓ = 1, 2, 3,

for some vector k in the first Brillouin zone.
To apply our scheme, we will only consider a class of spatially compatible discretizations satisfying

discrete analogue of (1.7). Such discretizations include Yee’s scheme, the co-volume discretization and the
edge elements. In this paper, we only report numerical results from Yee’s discretization due to its simplicity
in implementation. In addition, it is also easier to find an efficient preconditioner for the corresponding
linear system.

For simplicity of presentation, we assume that the primitive cell is a unit cube spanned by the basis
vectors

(2.3) a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 1).

The corresponding first Brillouin zone is given by

(2.4) {k = (k1, k2, k3) ∈ R
3 | − π ≤ kj ≤ π, j = 1, 2, 3}

In Yee’s discretization for (1.1)-(1.4), the magnetic field and electric field are defined on different locations.
The centers of cell edges, cell faces and cell centers are abbreviated as

E = E1 ∪ E2 ∪ E3(2.5)

E1 = {(xi− 1

2

, yj, zk)}, E2 = {(xi, yj− 1

2

, zk)}, E3 = {(xi, yj, zk− 1

2

)}(2.6)

F = F1 ∪ F2 ∪ F3(2.7)

F1 = {(xi, yj− 1

2

, zk− 1

2

)}, F2 = {(xi− 1

2

, yj , zk− 1

2

)}, F3 = {(xi− 1

2

, yj− 1

2

, zk)}(2.8)

V = {(xi, yj , zk)}(2.9)

where 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3.
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We denote by VE , VF and VV the spaces of complex valued, k-periodic functions on E , F and V

respectively:

VE =
{
E1(xi− 1

2

, yj , zk), E2(xi, yj− 1

2

, zk), E3(xi, yj , zk− 1

2

)
∣∣

Em(x + aℓ) = e
√
−1k·aℓEm(x), m, ℓ = 1, 2, 3

} ∼= C
3N1N2N3

(2.10)

VF =
{
F1(xi, yj− 1

2

, zk− 1

2

), F2(xi− 1

2

, yj , zk− 1

2

), F3(xi− 1

2

, yj− 1

2

, zk)
∣∣

Fn(x + aℓ) = e
√
−1k·aℓFn(x), n, ℓ = 1, 2, 3

} ∼= C
3N1N2N3

(2.11)

(2.12) VV =
{
Φ(xi, yj, zk)

∣∣Φ(x + aℓ) = e
√
−1k·aℓΦ(x), ℓ = 1, 2, 3

} ∼= C
N1N2N3

The curl operator can be discretized naturally using standard centered differencing:

(2.13) ∇h× : VE 7→ VF .

For example, if E ∈ VE , then the first component of ∇h ×E is given by

(∇h ×E)1(xi, yj− 1

2

, zk− 1

2

) =
E3(xi, yj, zk− 1

2

)− E3(xi, yj−1, zk− 1

2

)

h2

−
E2(xi, yj− 1

2

, zk)− E2(xi, yj− 1

2

, zk−1)

h3

(2.14)

where h1 = 1/N1, h2 = 1/N2, h3 = 1/N3 are mesh sizes and N1, N2, N3 are numbers of partitions in x, y
and z directions, respectively.

Similarly, one can define the discrete curl operator on VF :

(2.15) ∇h×∗ : VF 7→ VE .

with

(∇h ×∗ H)1(xi− 1

2

, yj , zk) =
H3(xi− 1

2

, yj+ 1

2

, zk)−H3(xi− 1

2

, yj− 1

2

, zk)

h2

−
H2(xi− 1

2

, yj , zk+ 1

2

)−H2(xi− 1

2

, yj, zk− 1

2

)

h3

(2.16)

and so on, as well as the discrete divergence operator on VE :

(2.17) −∇∗
h : VE 7→ VV ,

(−∇∗
hE)(xi, yj , zk) =

E1(xi+ 1

2

, yj , zk)− E1(xi− 1

2

, yj, zk)

h1
+

E2(xi, yj+ 1

2

, zk)− E2(xi, yj− 1

2

, zk)

h2

+
E3(xi, yj, zk+ 1

2

)− E3(xi, yj , zk− 1

2

)

h3
.

(2.18)

One can show that −∇∗
h is indeed the adjoint of −∇h, where the discrete gradient ∇h is given by

(2.19) ∇h : VV 7→ VE ,
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(∇hΦ)1(xi− 1

2

, yj , zk) =
Φ(xi, yj, zk)− Φ(xi−1, yj, zk)

h1
,(2.20)

and similarly for (∇hΦ)2(xi, yj− 1

2

, zk) and (∇hΦ)3(xi, yj , zk− 1

2

).

Even though (2.18) is a natural finite difference interpretation of discrete divergence operator on VE , we
have adopted −∇∗

h instead of the usual notation ∇h· so that the notations are consistent with those of the
edge element discretization detailed in Appendix A. In the latter case, the divergence free constraint can
only be realized through adjoint of the gradient operator.

The crucial identity

(2.21) −∇∗
h ∇h×∗ ≡ 0,

a discrete analogue of the identity (1.7), follows from straight forward calculation. The resulting generalized
eigenvalue problem can be written as

(2.22) ∇h ×∗ µ−1
r,h∇h ×E = λεr,hE, E ∈ VE

where εr,h : VE 7→ VE and µ−1
r,h : VF 7→ VF represent (multiplication by) numerical approximations of εr and

µ−1
r , respectively. Both ∇h×∗ and ∇h× are discrete approximations of the curl operator ∇×, they act on

different spaces and are adjoint to each other. See Lemma 2.1 below.
For E, U ∈ VE and F , H ∈ VF , we denote by 〈·, ·〉E and 〈·, ·〉F the standard inner products on VE and

VF respectively:

〈E, U〉E =h1h2h3

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
(E1U1)i− 1

2
,j,k + (E2U2)i,j− 1

2
,k + (E3U3)i,j,k− 1

2

)
(2.23)

〈F , H〉F =h1h2h3

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
(F 1H1)i,j− 1

2
,k− 1

2

+ (F 2H2)i− 1

2
,j,k− 1

2

+ (F 3H3)i− 1

2
,j− 1

2
,k

)
(2.24)

The following lemma explains the notations used for the two discrete curl operators in (2.16), (2.14) and is
crucial to the development of our scheme.

Lemma 2.1. If U , V ∈ VE , then

(2.25) 〈U , ∇h ×∗ µ−1
r,h∇h × V 〉E = 〈∇h ×U , µ−1

r,h∇h × V 〉F .

Proof. It suffices to show that

(2.26) 〈U , ∇h ×∗ H〉E = 〈∇h ×U , H〉F for all U ∈ VE , H ∈ VF .

This follows from the summation by parts identity and k-periodic boundary condition. To see this, we denote
by W = ∇h ×∗ H ∈ VE . We have

〈U , ∇h ×∗ H〉E = 〈U , W 〉E

=h1h2h3

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
(U1W1)i− 1

2
,j,k + (U2W2)i,j− 1

2
,k + (U3W3)i,j,k− 1

2

)
:= h1h2h3(I1 + I2 + I3),

(2.27)

where

(2.28) I1 =

N1∑

i=1

N2∑

j=1

N3∑

k=1

U1,i− 1

2
,j,k

(H3,i− 1

2
,j+ 1

2
,k −H3,i− 1

2
,j− 1

2
,k

h2
−

H2,i− 1

2
,,k+ 1

2

−H2,i− 1

2
,,k− 1

2

h3

)
,
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and I2, I3 are defined similarly. The first term in I1 can be rearranged as

N1∑

i=1

N3∑

k=1

N2∑

j=1

U1,i− 1

2
,j,k

H3,i− 1

2
,j+ 1

2
,k −H3,i− 1

2
,j− 1

2
,k

h2

=−
N1∑

i=1

N3∑

k=1

(U1,i− 1

2
,1,k

h2
H3,i− 1

2
, 1
2

,k +

N2∑

j=2

U1,i− 1

2
,j,k − U1,i− 1

2
,j−1,k

h2
H3,i− 1

2
,j− 1

2
,k −

U1,i− 1

2
,N2,k

h2
H3,i− 1

2
,N2+

1

2
,k

)

=−
N1∑

i=1

N3∑

k=1

N2∑

j=1

U1,i− 1

2
,j,k − U1,i− 1

2
,j−1,k

h2
H3,i− 1

2
,j− 1

2
,k

(2.29)

where in the last equality, we have used

(2.30) U1,i− 1

2
,N2,k = e

√
−1k2U1,i− 1

2
,0,k, H3,i− 1

2
,N2+

1

2
,k = e

√
−1k2H3,i− 1

2
, 1

2
,k

which follows from the k-periodic boundary conditions (2.2), (2.3) imposed on U and H . The second term
in I1 can be treated similarly. Overall, we have

(2.31) I1 =

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
−

U1,i− 1

2
,j,k − U1,i− 1

2
,j−1,k

h2
H3,i− 1

2
,j− 1

2
,k +

U1,i− 1

2
,j,k − U1,i− 1

2
,j,k−1

h3
H2,i− 1

2
,j,k− 1

2

)
,

and similarly

(2.32) I2 =

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
−

U2,i,j− 1

2
,k − U2,i,j− 1

2
,k−1

h3
H1,i,j− 1

2
,k− 1

2

+
U2,i,j− 1

2
,k − U2,i−1,j− 1

2
,k

h1
H3,i− 1

2
,j− 1

2
,k

)
,

(2.33) I3 =

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
−

U3,i,j,k− 1

2

− U3,i−1,j,k− 1

2

h1
H2,i− 1

2
,j,k− 1

2

+
U3,i,j,k− 1

2

− U3,i,j−1,k− 1

2

h2
H1,i,j− 1

2
,k− 1

2

)
.

Consequently, (2.26) follows from (2.27), (2.31), (2.32) and (2.33).
From Lemma 2.1, the operator ∇h ×∗ µ−1

r,h∇h× is self adjoint on VE and semidefinite. In addition, the
operator εr,h· is positive definite. It follows that the eigenvalues in (2.22) are real and non-negative. The
eigenvectors constitute a basis in VE and are orthogonal with respect to the inner product induced by εr,h:

(2.34) 〈E, U〉E,εr,h
= h1h2h3

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
(E1εr,hU1)i− 1

2
,j,k + (E2εr,hU2)i,j− 1

2
,k + (E3εr,hU3)i,j,k− 1

2

)
.

We therefore have the following eigen decomposition:

(2.35) VE = ker(∇h×)⊕ ker(∇h×)⊥εr,h

where

(2.36) ker(∇h×) = ker
(
∇h ×∗ µ−1

r,h∇h ×
)

= {V ∈ VE , ∇h × V = 0}

and

ker(∇h×)⊥εr,h =
{
U ∈ VE | 〈U , V 〉εr,h

= 0, ∀ V ∈ ker(∇h×)
}

= Span{Vj ∈ VE | ∇h ×∗ µ−1
r,h∇h × Vj = λjεr,hVj , λj > 0}.

(2.37)
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The following main Theorem is the foundation of our null space free algorithm.
Theorem 2.2. U ∈ ker(∇h×)⊥εr,h if and only if εr,hU = ∇h×∗µ−1

r,hÛ for some discrete vector potential

Û ∈ VF .

Proof. Denote by (λj , Vj) the eigenpairs of the generalized eigenvalue problem (2.22).

Suppose that U ∈ ker(∇h×)⊥εr,h , then there exist constants aj such that U =
∑

λj>0 ajVj . Thus

(2.38)

εr,hU = εr,h

∑

λj>0

ajVj =
∑

λj>0

aj∇h×∗µ−1
r,h∇h×λ−1

j Vj = ∇h ×∗
(
µ−1

r,h

∑

λj>0

aj∇h × λ−1
j Vj

)
= ∇h ×∗ µ−1

r,hÛ

where Û =
∑

λj>0

aj∇h × (λ−1
j Vj) ∈ VF .

Conversely, we suppose that εr,hU = ∇h ×∗ µ−1
r,hÛ with Û ∈ VF . Then for any V ∈ ker(∇h×), we have

(2.39) 〈U , V 〉E,εr,h
= 〈εr,hU , V 〉E = 〈∇h ×∗ µ−1

r,hÛ , V 〉E = 〈µ−1
r,hÛ , ∇h × V 〉F = 0.

Thus U ∈ ker(∇h×)⊥εr,h , completing the proof.
The matrix representation of the discrete curl operator ∇h× : VE 7→ VF is given by

C =




0
−1

h3
K3

1

h2
diag (K2, · · · , K2)

1

h3
K3 0

−1

h1
diag (K1, · · · , K1)

−1

h2
diag (K2, · · · , K2)

1

h1
diag (K1, · · · , K1) 0



∈ C

3N×3N ,

where

K1 =




1 −e−
√
−1k1

−1 1
. . .

. . .

−1 1


 ∈ C

N1×N1 ,(2.40a)

K2 =




IN1
−e−

√
−1k2IN1

−IN1
IN1

. . .
. . .

−IN1
IN1


 ∈ C

(N1N2)×(N1N2),(2.40b)

K3 =




IN1×N2
−e−

√
−1k3IN1×N2

−IN1×N2
IN1×N2

. . .
. . .

−IN1×N2
IN1×N2




∈ C
N×N ,(2.40c)

and N = N1N2N3.
The matrix representation of (2.22) is thus

(2.41) Ae = λBe,

where A = C∗B̂C. The diagonal matrices B and B̂ represent multiplication by εr,h(x) for x ∈ E and
multiplication by µ−1

r,h(x) for x ∈ F , respectively.
Before we proceed, we briefly summarize our notations for reader’s convenience.
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(a) Hatted uppercase boldface characters denote discrete vector potentials of elements in VE . The

latter are denoted by (non-hatted) uppercase boldface characters. For example, V̂ ∈ VF is a vector

potential of V ∈ VE with ∇h ×∗ µ−1
r,hV̂ = εr,hV .

(b) Lowercase boldface characters denote the column vector representation of corresponding elements

in VE or VF . For example, both T ∈ VE and T̂ ∈ VF have three components, each of them being

an N1 ×N2 ×N3 array, while t and t̂ are 3N1N2N3 × 1 column vector representation of T and T̂ ,
respectively.

(c) Uppercase blackboard bold characters such as A, B̂, I denote matrices of varying dimensions.

3. Jacobi-Davidson Method, Helmholtz Projection and Vector Potential. The Jacobi-Davidson
method [32] is a subspace iteration algorithm for large sparse eigenvalue problems and has been proved suc-
cessful in many practical applications such as various quantum dot models [17, 18, 19, 34].

The major advantage of the Jacobi-Davidson method for general eigenvalue problem is that the correction
equation only needs to be solved approximately. However, this advantage becomes a drawback for (2.22) as
the correcting procedure inevitably brings null space components into the expanding subspace, causing slow
convergence.

A simple remedy is to project out the null space components by means of the Helmholtz decomposition.
The Helmholtz projection has been applied in conjunction with both the inverse power iteration [15] and the
Jacobi-Davidson iteration [3] and obtained decent convergence rate. However, there is an essential difference
in the two projection-based approaches. While inverse power iteration requires accurate Helmholtz projection
in order to maintain accuracy of the numerical eigenpairs, the Jacobi-Davidson method seems to be quite
sensitive to inexact projections and therefore much more demanding on the accuracy of the Helmholtz
projection step. We found that, for the Helmholtz projected Jacobi-Davidson method to work properly, the
projection step needs to be solved much more accurately than the generalized eigenvalue problem (2.22)
itself. More detailed, quantitative demonstration of this assertion can be found in Section 4.

In contrast, our remedy to the spurious null-space components is to initialize and expand the approx-
imating subspace in terms of the discrete vector potential given in Theorem 2.2. Instead of solving the
correction equation directly, we lift the correction equation and the approximate solver to the vector po-
tential level. The vector potential version of the correction equation is similar to the original one. As in
the original Jacobi-Davidson method, the vector potential only needs to be solved approximately. An ap-
proximate corrector is then obtained by taking the discrete curl of the approximate vector potential. The
null-space components are then annihilated completely to machine accuracy at the expense of a single sparse
matrix multiplication. As a result, in our vector potential based algorithm, the approximating subspace
remains null space free through out the iteration.

In this section, we first review the original Jacobi-Davidson (JD) method and Helmholtz Projected
Jacobi-Davidson (HPJD) method and then introduce our Nullspace Free Jacobi-Davidson (NFJD) method.
Detailed numerical comparison among these methods will be given in Section 4. Our numerical experi-
ment confirms that the vector potential approach indeed yields superior performance against original and
projection-based Jacobi-Davidson methods.

3.1. Jacobi-Davidson Method. The Jacobi-Davidson method for the generalized eigenvalue problem
(2.22) consists of following steps:

1. To compute the ith eigenpair (λi, Ei), one initializes a subspace V1 := Span{E1, · · · , Ei−1, V1} ⊂ VE
where E1, · · · , Ei−1, i ≥ 2, are previously computed eigenvectors corresponding to eigenvalues
λ1, · · · , λi−1.

2. For k = 1, 2, 3, · · · , do
(i) Find θ ∈ R \ {λ1, · · · , λi−1 } nearest to the target and U ∈ Vk, with ‖U‖εr,h

= 1 such that

(3.1)
〈
(∇h ×∗ µ−1

r,h∇h × − θεr,h)U , V
〉
E

= 0, for all V ∈ Vk.

Denote by (θk, Uk) the solution to (3.1).
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(ii) Set

(3.2) Rk := (∇h ×∗ µ−1
r,h∇h × − θkεr,h)Uk.

(iii) If ‖Rk‖E is less than a prescribed tolerance, then
(
θk, Uk

)
is accepted as an eigenpair. Output

(λi, Ei) = (θk, Uk). Stop.
Else, solve approximately for T from

(3.3)
(
I− εr,hUk⊗Uk

)(
∇h×∗ µ−1

r,h∇h× − θkεr,h

)(
I−Uk ⊗ (εr,hUk)

)
T = −Rk, T ⊥εr,h

Uk,

where (I−U ⊗ V )W := W − 〈V , W 〉
E

U .
Orthonormalize T against Vk with respect to the inner product 〈·, ·〉E,εr,h

to get Vk+1.
Expand Vk+1 := Span{ Vk , Vk+1 }.

The implementation detail is summarized as Algorithm 1 in matrix-vector notations:

Set E0 = [ ], Λ0 = ∅.
for i = 1, 2, 3, · · · , imax do

Initialize a vector v1 with ‖v1‖B = 1,
((

PBv1 = v1

))
and E

∗
i−1Bv1 = 0.

Set V1 = [Ei−1, v1].
Compute W1 = V∗

1AV1.
for k = 1, 2, 3, · · · do

(i) Compute all the eigenpairs of (Wk − θ I)s = 0.
Select the desired eigenpair (θk, sk) with θk /∈ Λi−1 nearest to the target and ‖sk‖2 = 1.

(ii) Compute uk = Vksk, rk = (A− θkB)uk.
(iii) if ‖rk‖2 < τJD then

Output λi = θk, ei = uk.
Update Ei = [Ei−1, ei], Λi = Λi−1 ∪ {λi}.
Exit k.

else
Solve (approximately)

(I− Buku∗
k)(A− θkB)(I − uku∗

kB)t = −rk, t ⊥B uk.((
Apply Helmholtz projection: t←− PB

( t

‖PBt‖
) ))

.

B-orthonormalize t against Vk: vk+1 =
t−

∑k
ℓ=1(v

∗
ℓBt)vℓ

‖t−∑k

ℓ=1(v
∗
ℓBt)vℓ‖B

.

Expand Vk+1 = [Vk, vk+1], Wk+1 =

[
Wk V∗

kAvk+1

v∗
k+1AVk v∗

k+1Avk+1

]
.

endif
end for k

end for i

Algorithm 1: Jacobi-Davidson Method (JD) and Helmholtz-Projected Jacobi-Davidson ((HPJD)) Method.
Additional projection step in HPJD are marked by double parenthesis.

The main computational cost in the original Jacobi-Davidson method is in step (iii), where the correction
equation

(3.4) (I− Buku∗
k)(A− θkB)(I− uku∗

kB)t = −rk, t ⊥B uk

is solved by standard iterative methods such as GMRES with a preconditioner [32]

(3.5) Mp := (I− Buku∗
k)M(I− uku∗

kB)
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where M is a preconditioner for (A− θkB). In jth iteration of the linear solver, one solves for z(j) from

(3.6) Mpz
(j) = y(j), z(j)⊥Buk

The solution to (3.6) is given by

(3.7) z(j) = M
−1y(j) − ζ(j)

M
−1

Buk, where ζ(j) =
u∗

kBM−1y(j)

u∗
kBM−1Buk

.

Remark 1. The correction equation (3.3) is equivalent to

(3.8)
(
∇h ×∗ µ−1

r,h∇h × − θkεr,h

)
T = −Rk + ηεr,hUk = −

(
∇h ×∗ µ−1

r,h∇h × − θkεr,h

)
Uk + ηεr,hUk

where η =
〈
εr,hUk,

(
∇h×∗ µ−1

r,h∇h× − θkεr,h

)−1
εr,hUk

〉−1

E
. If (3.3) were solved accurately, then one would

have T = 1
θk

ε−1
r,h∇h×∗ (

µ−1
r,h∇h× (T +Uk)

)
− θk+η

θk
Uk ∈ ker(∇h×)⊥εr,h . In other words, the corrector T and

hence the approximating subspace V k+1 would remain null vectors free. However, the same should not be
expected when (3.3) is only solved approximately as in original Jacobi-Davidson method (3.5)-(3.7). Under
such circumstances, null vectors are inevitably introduced into V k+1 to deteriorate the overall performance.

3.2. Helmholtz-Projected Jacobi-Davidson Method. To overcome the slowing down caused by
the null space, a standard approach to remove the null space components by means of Helmholtz decom-
position. An approximate solution t of (3.4) is post-processed with the Helmholtz projection before it is
appended to the expanding subspace:

(3.9) t←− PB

( t

‖t‖B
)

=
(
I−G(G∗

BG)−1
G

∗
B
)( t

‖t‖B
)
.

Here G is the matrix representation of the discrete gradient ∇h : VV 7→ VE , and −G∗ is precisely the matrix
representation of the discrete divergence operator (2.18).

The Helmholtz projection (3.9) requires solving an elliptic equation

(3.10) −G
∗
BG φ = −G

∗
B
( t

‖t‖B
)

for each vector appended to the expanding subspace. The combination of Jacobi-Davidson method and
Helmholtz projection has been proposed in literature [15]. In addition to a linear solver and preconditioner
for the correction equation (3.4), the Helmholtz projection (3.9) also requires an efficient Poisson solver and
preconditioner for (3.10). The overall performance of HPJD depends on the solver/preconditioner selected
for the correction equation and the Poisson equation. Although solving the Poisson equation (3.10) is straight
forward and much easier compared to solving the correction equation (3.4), the load balance between the
Poisson equation (3.10) and the correction equation (3.4) is somewhat delicate. We will elaborate this issue in
section 4. Both standard Jacobi-Davidson (JD) and Helmholtz-Projected Jacobi-Davidson (HPJD) methods
are summarized in Algorithm 1.

3.3. Discrete Vector Potential and Null Space Free Jacobi-Davidson Method. Instead of
the Helmholtz projection, we propose an alternative approach by vector potential formulation in order to
filter out the nullspace components. The novelty of our scheme is to derive and solve a new correction
equation satisfied by the vector potential. The vector potential T̂ only needs to be solved approximately
as in the original Jacobi-Davidson method. An approximate corrector for (3.3) is then obtained by taking

T := ε−1
r,h∇h ×∗ µ−1

r,hT̂ .
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3.3.1. Vector Potential Approach for the Correction Equation (Step (iii)). We first explain
how to derive a new correction equation for the vector potential. This procedure can be illustrated, for
example, by the evaluation of M−1Buk in (3.7), or equivalently by getting an approximate solution of

(3.11) (∇h ×∗ µ−1
r,h∇h ×−θkεr,h)Q = εr,hUk.

By construction, Uk ∈ ker(∇h×)⊥εr,h . Therefore from Theorem 2.2, we have

(3.12) εr,hUk = ∇h ×∗ µ−1
r,hÛk.

We seek solution to (3.11) of the form

(3.13) εr,hQ = ∇h ×∗ µ−1
r,hQ̂.

Substituting (3.12), (3.13) into (3.11), we have

(3.14) ∇h ×∗ (
µ−1

r,h∇h × ε−1
r,h∇h ×∗ µ−1

r,h − θkµ−1
r,h

)
Q̂ = ∇h ×∗ µ−1

r,hÛk.

Instead of solving (3.11) directly, we propose to solve for the vector potential

(3.15)
(
µ−1

r,h∇h × ε−1
r,h∇h ×∗ µ−1

r,h − θkµ−1
r,h

)
Q̂ = µ−1

r,hÛk,

or equivalently

(3.16)
(
∇h × ε−1

r,h∇h ×∗ −θkµr,h

)
(µ−1

r,hQ̂) = Ûk,

then take Q = ε−1
r,h∇h ×∗ µ−1

r,hQ̂ as an approximate solution of (3.11) which lies in ker(∇h×)⊥εr,h automati-
cally.

The same idea can be used to derive an equation for the vector potential of the corrector. We now
elaborate the procedure in matrix notations. From Theorem 2.2, we have

(3.17) uk = B
−1

C
∗
B̂ûk, t = B

−1
C

∗
B̂t̂.

We now substitute (3.17) into the correction equation

(3.18) (I− Buku∗
k)(A− θkB)(I − uku∗

kB)t = −rk, t ⊥B uk.

The left hand side of (3.18) becomes

(I− Buku∗
k)(A− θkB)(I − uku∗

kB)t

= (I− C
∗
B̂ûkû

∗
kB̂CB

−1)(C∗
B̂C− θkB)B−1

C
∗
B̂(I− ûkû

∗
kB̂CB

−1
C

∗
B̂)t̂

= (I− C
∗
B̂ûkû

∗
kB̂CB

−1)C∗(B̂CB
−1

C
∗
B̂− θkB̂)(I− ûkû

∗
kÂ)t̂

= C
∗(I− B̂ûkû

∗
kÂB̂

−1)(Â− θkB̂)(I − ûkû
∗
kÂ)t̂

where Â = B̂CB−1C∗B̂. The right hand side of (3.18) reduces to

rk = (A− θkB)uk = (C∗
B̂CB

−1
C

∗
B̂− θkC

∗
B̂)ûk = C

∗(Â− θkB̂)ûk := C
∗r̂k(3.19)

which implies that

(3.20) C
∗((I− B̂ûkû

∗
kÂB̂

−1)(Â− θkB̂)(I− ûkû
∗
kÂ)t̂ + r̂k

)
= 0
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where

(3.21) r̂k = (Â− θkB̂)ûk.

It suffices to solve

(I− B̂ûkû
∗
kÂB̂

−1)(Â− θkB̂)(I− ûkû
∗
kÂ)t̂ = −r̂k(3.22)

under the original constraint t ⊥B uk. From (3.17), it follows that

(3.23) t∗Buk = t̂
∗
B̂CB

−1
BB

−1
C

∗
B̂ ûk = t̂

∗
Âûk.

Thus the condition t ⊥B uk now translates to t̂ ⊥bA
ûk, and the correction equation for the vector potential

is given by

(I− B̂ûkû
∗
kÂB̂

−1)(Â− θkB̂)(I− ûkû
∗
kÂ)t̂ = −r̂k, t̂ ⊥bA

ûk.(3.24)

The solution procedure for (3.24) remains the same. One solves it iteratively with a preconditioner
similar to the one given in (3.5):

(3.25) M̂p := (I− B̂ûkû
∗
kÂB̂

−1)M̂(I− ûkû
∗
kÂ)

where M̂ is a preconditioner for (Â− θkB̂).
In jth GMRES iteration, one solves for

M̂pẑ
(j) = ŷ

(j), û
∗
kÂẑ

(j) = 0.(3.26)

A solution to (3.26) is therefore given by

(3.27) ẑ
(j) = M̂

−1ŷ
(j) − ζ̂(j)

M̂
−1

B̂ûk, where ζ̂(j) =
û
∗
kÂM̂−1ŷ

(j)

û
∗
kÂM̂−1B̂ûk

.

Note that, if t̂ is an approximate solution of (3.24), then the transformation (3.17) gives rise to an approximate

solution of (3.18) which lies in ker(∇h×)⊥εr,h automatically. The only difference between NFJD and HPJD is

how an approximate solution to (3.18) (that lies in ker(∇h×)⊥εr,h ) is obtained. A more detailed comparison
between NFJD and HPJD can be found in Section 4.

For purpose of implementation, it is more convenient to work with the vector potential variables. We
now express the rest of the steps in Algorithm 1 in terms of the vector potential. The B-orthonormalization
for the corrector in step (iii) of Algorithm 1,

(3.28) vk+1 =
t−∑k

ℓ=1(v
∗
ℓBt)vℓ

‖t−∑k
ℓ=1(v

∗
ℓBt)vℓ‖B

can now be recast to

(3.29) B
−1

C
∗
B̂ v̂k+1 =

B−1C∗B̂
(
t̂−∑k

ℓ=1(v̂
∗
ℓ Ât̂)v̂ℓ

)

‖t−∑k

ℓ=1(v
∗
ℓBt)vℓ‖B

.

We can therefore express the orthogonalization procedure in terms of vector potentials and Â as

(3.30) v̂k+1 =
t̂−∑k

ℓ=1(v̂
∗
ℓ Ât̂)v̂ℓ

‖t−∑k

ℓ=1(v
∗
ℓBt)vℓ‖B

=
t̂−∑k

ℓ=1(v̂
∗
ℓ Ât̂)v̂ℓ∣∣t̂−∑k

ℓ=1(v̂
∗
ℓ Ât̂)v̂ℓ

∣∣
bA

,

where we have adopted the notation

(3.31) |ẑ|bA := (ẑ∗
Âẑ)

1

2 = (ẑ∗
B̂CB

−1
C

∗
B̂ẑ)

1

2 = ‖B−1
C

∗
B̂ẑ‖B.
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3.3.2. Isospectral Reformulation and the Subspace Eigenvalue Problem (Step (i)). It re-
mains to formulating the subspace eigenvalue problem in terms of vector potentials. This can be done by
retaining step (i) in Algorithm 1 and substituting v = B−1C∗B̂v̂ to get

(3.32) (Wk − θkI)sk = 0, (Wk)ℓm = v∗
ℓAvm = v̂

∗
ℓ B̂CB

−1
C

∗
B̂CB

−1
C

∗
B̂v̂m = v̂

∗
ℓ ÂB̂

−1
Âv̂m; ûk = V̂ksk.

The subspace eigenvalue problem (3.32) amounts to:

(SEP-1) Find ûk ∈ Range(V̂k), θk > 0 nearest to the target such that

(B−1
C

∗
B̂v̂)∗(A− θkB)(B−1

C
∗
B̂ûk) = 0, for all v̂ ∈ Range(V̂k),

which is essentially identical to standard approximation of the original pencil (A, B) on the subspace Vk,

except the subspace now takes the particular form Vk = B−1C∗B̂V̂k and remains perpendicular to the null
space.

There is yet an alternative approach to formulate the subspace eigenvalue problem in terms of the vector
potential. Recall from (3.19) and (3.21) that (θk, B−1CB̂ûk) is an approximate eigenpair of the pencil (A, B)

with residual rk = (A− θkB)uk, provided that (θk, ûk) is an approximate eigenpair of the pencil (Â, B̂) with

residual r̂k = (Â− θkB̂)ûk and rk = C
∗r̂k.

In fact, it is not difficult to verify that the two pencils (A, B) = (C∗B̂C, B) and (Â, B̂) = (B̂CB−1C∗B̂, B̂)

have identical spectrum. This is not surprising since the eigenvalue problem Âê = λB̂ê, or equivalently

(3.33) CB
−1

C
∗h = λB̂

−1h

is nothing but the matrix representation of the Maxwell’s equations (1.1)-(1.4) written in terms of the
magnetic field H:

(3.34) ∇h × ε−1
r,h∇h ×∗ H = λµr,hH.

In view of this, we now have another formulation for the subspace eigenvalue problem:
(SEP-2) Find ûk ∈ Range(V̂k), θk > 0 nearest to the target such that

v̂
∗(Â− θkB̂)ûk = 0, for all v̂ ∈ Range(V̂k),

or, in matrix notations (recall the normalization v̂
∗
l Âv̂m = δlm in step (iii)):

(3.35) (I− θkẐk)sk = 0, (Ẑk)ℓm = v̂
∗
ℓ B̂v̂m; ûk = V̂ksk.

Even though the pencils (A, B) and (Â, B̂) are isospectral, their subspace approximations (SEP-1) and

(SEP-2) are generally different and correspond to the pencils (V̂∗
kÂB̂−1ÂV̂k, V̂∗

kÂV̂k) and (V̂∗
kÂV̂k, V̂∗

kB̂V̂k),
respectively. The ûk selected from (SEP-1) or (SEP-2) is implicitly processed to get an approximate eigenpair

(θk, uk) = (θk, B−1C∗B̂ûk) for the pencil (A, B). Similar to A, the matrix Â also possesses a huge nullspace

constituting of those v̂ such that C∗B̂v̂ = 0. When the selected ûk lies very close to ker(Â), the corresponding
(θk, uk) is no longer a good approximate eigen-pair for (A, B). Since in this situation, θk ≈ 0 and the dominant

part of ûk (the ker(Â) component) is completely wiped out upon multiplication by B−1C∗B̂. The remaining

components in ker(Â)⊥bB are therefore amplified to get an essentially random vector uk = B−1C∗B̂ûk in
ker(A)⊥B . To prevent this from happening, we have setup a threshold in the selection of the nearest-to-
target approximate eigenvalue for (SEP-2). More precisely, we select the smallest θ such that θ ≥ θc > 0
in (SEP-2). The threshold value θc, together with other parameters are detailed in section 4. On the other
hand, a threshold is not needed for (SEP-1) since it also corresponds to a subspace eigenvalue problem for

the pencil (ÂB̂−1Â, Â). The above mentioned scenario (θk ≈ 0, with ûk very close to ker(A)) does not occur.
We simply choose the smallest θ > 0 for (SEP-1).
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In view of (3.32) and (3.35), it is obvious that the magnetic field approach (SEP-2) requires less arithmetic

operations in forming the subspace matrix (Wk vs Ẑk). We have implemented both versions and found that
(SEP-2) with the threshold indeed prevails under otherwise identical settings and they both outperform
HPJD.

Note that, however, setting up threshold does not help in the original JD method (that is, without
Helmholtz projection). In general, JD with the same threshold performs worse than the original JD and
frequently fails to converge.

We summarize the null space free Jacobi-Davidson method (NFJD) using the magnetic field subspace
eigenvalue problem (SEP-2) as Algorithm 2. A detailed comparison between HPJD and NFJD will be given
in section 4.

Set Ê0 = [ ], Λ0 = ∅.
for i = 1, 2, 3, · · · , imax do

Initialize a vector potential v̂1 with |v̂1|bA = 1 and Ê∗
i−1Âv̂1 = 0.

Set V̂1 = [Êi−1, v̂1].

Compute Ẑ1 = V̂∗
1B̂V̂1.

for k = 1, 2, 3, · · · do
(i) Compute all the eigenpairs of (I− θẐk)s = 0.

Select the desired eigenpair (θk, sk) with θk /∈ Λi−1 nearest to the target and ‖sk‖2 = 1.

(ii) Compute ûk = V̂ksk, r̂k = (Â− θkB̂)ûk.
(iii) if (‖r̂k‖2 < τNFJD) then

Output λi = θk and ei = B−1C∗B̂ûk.
Update Êi = [Êi−1, ûk], Λi = Λi−1 ∪ {λi}.
Exit k.

else
Solve (approximately)

(I− B̂ûkû
∗
kÂB̂−1)(Â− θkB̂)(I− ûkû

∗
kÂ)t̂ = −r̂k, t̂ ⊥bA

ûk.

Â-orthonormalize t̂ against V̂k: v̂k+1 =
t̂−

∑k
ℓ=1(v̂

∗
ℓ Ât̂)v̂ℓ∣∣t̂−∑k

ℓ=1(v̂
∗
ℓ Ât̂)v̂ℓ

∣∣
bA

.

Expand V̂k+1 = [V̂k, v̂k+1], Ẑk+1 =

[
Ẑk V̂∗

kB̂v̂k+1

v̂
∗
k+1B̂V̂k v̂

∗
k+1B̂v̂k+1

]
.

endif
end for k

end for i

Algorithm 2: Null space free Jacobi-Davidson (NFJD) method. Primary working variables (hatted vectors)
are in VF and output eigenvectors in VE .

3.3.3. Stopping Tolerance, Error Bounds and Variant of NFJD. In NFJD, even though the
actual working variables are the vector potentials (or magnetic field vectors), the underlying eigenvalue
problem remains the original one for the electric field, namely Ae = λBe. An error bound for the computed
eigenpair follows from standard estimate ([27]):

| sin ∠B(ei, e
NFJD
i )| ≤ 1

γi

‖rNFJD‖B−1

‖eNFJD
i ‖B

≤ 1

γi

|||B−1|||2‖rNFJD‖2
‖eNFJD

i ‖B
,

|λi − λNFJD
i |≤min

{‖rNFJD‖B−1

‖eNFJD
i ‖B

,
1

γi

(‖rNFJD‖B−1

‖eNFJD
i ‖B

)2}
≤min

{ |||B−1|||2‖rNFJD‖2
‖eNFJD

i ‖B
,

1

γi

( |||B−1|||2‖rNFJD‖2
‖eNFJD

i ‖B

)2}

(3.36)
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where

(3.37) | sin ∠B(u, v)| =
√

1−
( u∗Bv

‖u‖B‖v‖B

)2

, γi = min
λj 6=λi

|λj − λNFJD
i |.

Since rNFJD = C∗r̂, where rNFJD = (A − θB)u, r̂ = (Â − θB̂)û, the stopping criterion ‖r̂‖2 < τNFJD

implies

(3.38) ‖rNFJD‖2 = ‖C∗r̂‖ ≤ |||C∗|||2‖r̂‖2 < |||C∗|||2 τNFJD,

with

(3.39) |||C∗|||2 ≤
√
|||C∗|||1|||C∗|||∞ = 2 max

{
1

h1
+

1

h2
,

1

h2
+

1

h3
,

1

h3
+

1

h1

}
.

Upon convergence, an approximate eigenvector e is obtained by taking eNFJD = u = B−1C∗B̂û, which is
B-normalized as in standard JD and HPJD computation:

(3.40) ‖eNFJD‖B = ‖u‖B = ‖B−1
C

∗
B̂û‖B = |û|bA = 1.

An error bound like (3.36) applies equally to JD and HPJD. In view of (3.38) and (3.40), it follows that
for NFJD to give comparable accuracy with JD or HPJD computation, it suffices to take τJD = |||C∗|||2τNFJD.
This is the basis of our numerical comparison. See section 4 for details.

With the magnetic field interpretation for NFJD, an alternative null-space free approach emerges
naturally. First observe that a slight change in step (iii) of Algorithm 2, from ”Output λi = θk and

ei = B−1C∗B̂ûk” to ”Output λi = θk and hi = B̂ûk” results in a (nullspace free) numerical scheme for the
magnetic field eigenvalue problem (3.33). Alternatively, one could have started with the Jacobi-Davidson
method for (3.33) instead, and then apply similar derivation as in NFJD. This approach is dual to NFJD
with the roles of electric field vectors and magnetic field vectors interchanged during the iteration. In this
new scheme, denoted as NFJD∗, both the primary working variables and output eigenvectors are the electric
field vectors. The magnetic field vectors (i.e. the vector potentials) only appear as auxiliary variables in the
derivation. We omit the details and summarize the result in Algorithm 3.

The major difference between NFJD and NFJD∗ lies in the routine matrix-vector multiplication. Namely,
Âv̂ = B̂CB−1C∗B̂v̂ in NFJD vs. Av = C∗B̂Cv in NFJD∗. For Yee’s discretization, both B and B̂ are diagonal
matrices (with µr ≡ 1, B̂ = I in most applications). The difference between NFJD and NFJD∗ is insignificant.

In the finite element case, the mass matrices B and B̂ are sparse and banded. In addition, multiplication by
Â in NFJD requires solving a linear system Bv = c and is more expensive than NFJD∗. In Appendix A, we
will give a brief derivation for the finite element version of NFJD∗.

4. Numerical Tests. Our numerical tests are based on the benchmark example shown in Figure 4.1
where the periodic dielectric structure within a primitive cubic cell is depicted. The structure consists of
dielectric spheres with radius r connected by circular cylinders with radius s. Here r/a = 0.345, s/a = 0.11
and a is the edge length of the cube. Inside the structure is the dielectric material with permittivity contrast
εr,i/εr,o = 13 and µr,i = µr,o = 1 (corresponding to B̂ = I).

Figure 4.2 shows the plot of w = a
√

λ/(2π) vs. sample points k in the first Brillouin zone for the
benchmark problem computed using NFJD with N1 = N2 = N3 = 100. The smallest nonzero eigenvalues
are calculated for 40 sample points k distributed along the segments connecting Γ = (0, 0, 0), X = (π, 0, 0),
M = (π, π, 0), R = (π, π, π) and back to Γ in the first Brillouin zone. A clear band gap lies between the 5-th
and 6-th smallest positive eigenvalues.

As a preliminary test, we summarize the result with various grid resolutions in Table 4.1. Here wlow

denotes the maximum of the 5-th eigenvalue, wup the minimum of the 6-th eigenvalue and

γgm :=
wup − wlow

(wup + wlow)/2
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Set E0 = [ ], Λ0 = ∅.
for i = 1, 2, 3, · · · , imax do

Initialize a vector v1 with |v1|A = 1 and E∗
i−1Av1 = 0.

Set V1 = [Ei−1, v1].
Compute Z1 = V∗

1BV1.
for k = 1, 2, 3, · · · do

(i) Compute all the eigenpairs of (I− θZk)s = 0.
Select the desired eigenpair (θk, sk) with θk /∈ Λi−1 nearest to the target and ‖sk‖2 = 1.

(ii) Compute uk =
Vksk

‖Vksk‖B
, rk = (A− θkB)uk.

(iii) if ‖rk‖2 < τNFJD∗ then
Output λi = θk, ei = uk.
Update Ei = [Ei−1, ei], Λi = Λi−1 ∪ {λi}.
Exit k.

else
Solve (approximately)

(I− Buku∗
kAB−1)(A− θkB)(I− uku∗

kA)t = −rk, t ⊥A uk.

A-orthonormalize t against Vk: vk+1 =
t−∑k

ℓ=1(v
∗
ℓAt)vℓ

|t−
∑k

ℓ=1(v
∗
ℓAt)vℓ|A

.

Expand Vk+1 = [Vk, vk+1], Zk+1 =

[
Zk V

∗
kBvk+1

v∗
k+1BVk v∗

k+1Bvk+1

]
.

endif
end for k

end for i

Algorithm 3: NFJD∗, dual version of Jacobi-Davidson method for Maxwell’s equations. Primary working
variables and output eigenvectors are both in VE .

The result shows clear convergence and agrees well with those reported in the literature [6, 9].

Table 4.1

The computed gap-midgap ratio with various grid sizes.

grids 50× 50× 50 100× 100× 100 200× 200× 200

wlow 0.41785 0.41789 0.41782
wup 0.48023 0.48079 0.48096
γgm 0.1389 0.1400 0.1405

To further illustrate the accuracy and efficiency of NFJD, we have devised several numerical experiments
for JD, HPJD and NFJD in various setting. In the following tests, all examples are computed using 1003

cells with initial vector obtained from interpolating the ground state of 503 calculation. All computations
are conducted under identical setting for JD, HPJD and NFJD, except the tolerances are scaled according
to (3.38) and (3.39),

(4.1) τNFJD := τJD/400

The Fast Fourier Transform (FFT) is used as preconditioner for (3.10), (3.18) and (3.24). More precisely,
we take

(4.2) M = (C∗
C− θεrI), M̂ = (ε−1

r CC
∗ − θI)
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a

Fig. 4.1. The periodic dielectric structure within a primitive cell. Inside: dielectric material. Outside: air. Here
r/a = 0.345, s/a = 0.11 and εr,i/εr,o = 13.
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Fig. 4.2. Band structure computed with 100 × 100 × 100 grid.

where εr and ε−1
r are spatial averages of εr and ε−1

r , respectively. Similarly, we use G∗G as the preconditioner

for the Poisson equation (3.10). The matrices M, M̂ and G∗G are all FFT-invertible. Since both the correction
equations and their preconditioners are highly indefinite (with about one third of eigenvalues being negative),
we adopt GMRES as the linear solver for (3.18), (3.24) and PCG as the linear solver for (3.10), in conjunction

with the preconditioners M, M̂ and G∗G. All numerical tests are performed on a PC equipped with an Intel
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Fig. 4.3. Figure (a), (b): Convergence history of the Ritz value θk for λ1 and λ2 using standard JD with k = (π, 0.6π, 0).
Figure (c), (d): Convergence history of the residual.

Q9550, 2.83GHz Processor and 16 GB main memory using Intel Fortran compiler version 11.1.

We start with investigating the effect of the null space on the original Jacobi-Davidson (JD) method.

Example 1. Standard JD and Dragging Effect of the Null Space.

Figure 4.3 shows a typical convergence history of the Ritz value and the residual for the first two
eigenvalues in standard JD. The computed Ritz value θj ’s are constantly dragged towards zero during
the subspace iteration. This effect of dragging is also reflected in the convergence history of the residual.
Without further treatment on the nullspace, a significant portion of the CPU time in standard JD is wasted
in producing dragged Ritz values and the resulting scheme is much too slow for practical applications. In
contrast, the Ritz value converges monotonically for NFJD as shown in Figure 4.4.

A standard approach to accelerating convergence in JD is to apply Helmholtz projection as described in
section 3.2. In addition to efficient solvers and preconditioners for the correction equation and the Helmholtz
projection, the performance of HPJD also relies on proper load balance between them. Denote by τHP and
τJD the stopping tolerance for (3.10) and (3.2), respectively. More precisely, an approximate eigenpair (θ, u)
with ‖u‖B = 1 is accepted as a solution to (1.8) provided

(4.3) ‖(A− θB)u‖2 < τJD,

while an approximate solution φ of (3.10) is accepted if

(4.4)
∥∥∥−G

∗
BG φ + G

∗
B
( t

‖t‖B
)∥∥∥

2
< τHP.
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Fig. 4.4. Figure (a), (b): Convergence history of the Ritz value for λ1 and λ2 using NFJD with k = (π, 0.6π, 0). Figure
(c), (d): Convergence history of the residual.

Roughly speaking, there is a critical τc
HP (depending on τJD) such that HPJD does not converge if τHP > τc

HP.
Since the overall accuracy of HPJD is governed by τJD only, one should take τHP ≈ τc

HP in order to minimize
CPU time spent on the Helmholtz projection and get optimal performance. However, it is difficult to predict
a priori what τc

HP is. This is a fairly good reason to advocate NFJD and NFJD∗.
We have conducted extensive numerical experiments and concluded that

(4.5) τc
HP / τJD

in the sense that τc
HP is generally 2-3 orders of magnitude smaller than τJD.

We now proceed to illustrate (4.5) with following examples.

Example 2. HPJD with (τJD, τHP) = (10−6, 10−7).

This is the case where τHP exceeds the critical value τc
HP, resulting in an inexact Helmholtz projection.

The remaining null space components accumulate gradually as the subspace Vk grows. As a result, HPJD
fails to converge at higher eigenvalues. We have observed similar dragging effect as shown in Figure 4.5,

Example 3. Detailed comparison between HPJD and NFJD.

We now compare NFJD against HPJD at its optimal setting. We set τJD = 10−6 and τNFJD = 2.5×10−9

according to (4.1). The critical τHP roughly corresponds to τc
HP = 10−9 ∼ 10−8, depending on other

parameters (see below). As τHP decreases, the overall CPU time for HPJD increases constantly. The
smallest positive eigenvalue in our simulation occurs at k = (0.1π, 0, 0) with λ1 ∼ 0.045. Accordingly, we
have set our threshold for NFJD as θc = 0.01 (see section 3.3.2 for the reason of setting up the threshold).
An approximate eigenvalue in step (i) of NFJD is considered admissible only if θ ≥ θc.
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Fig. 4.5. Convergence history of Ritz value θk and residual rk for λ5 at k = (0.5π, 0, 0) when using HPJD with τJD = 10−6,
τHP = 10−7.

Table 4.2

CPU time comparison for first ten eigenvalues (averaged over k) with τNFJD = 2.5 × 10−9, τJD = 10−6 and τHP ≈ τc

HP
.

NS: Restart dimension. NR: Number of recycled Ritz vectors from λi−1’s subspace Vk.

(NR, NS) τHP HPJD NFJD ratio

(3, 15) 10−8 5473 sec 3789 sec 1.444
(5, 15) 10−8 4897 sec 3536 sec 1.385
(7, 15) 10−8 4537 sec 3442 sec 1.318
(9, 15) 10−8 4347 sec 3528 sec 1.232

(NR, NS) τHP HPJD NFJD ratio

(3, 25) 10−9 5097 sec 3695 sec 1.379
(5, 25) 10−9 4720 sec 3412 sec 1.383
(7, 25) 10−9 4493 sec 3308 sec 1.358
(9, 25) 10−9 4299 sec 3307 sec 1.300

In Table 4.2, we summarize the result for the computation of λ1 through λ10 with different parameters.
One of the varying parameters is the restart dimension, denoted by NS. To accelerate convergence, we recycle
a number of Ritz vectors after λi−1 converges (i ≥ 2) and after a restart. These NR Ritz vectors are used
to build up initial subspace for λi in the beginning and after a restart. This accelerated version of NFJD is
summarized as Algorithm 4. The accelerated version of HPJD and NFJD∗ can be obtained through similar
modification.

The results in Example 3 shows that NFJD outperforms HPJD by a significant margin in all cases. In
addition, HPJD is considerably slower for small NR’s. On the other hand, the performance of NFJD is
relatively insensitive to (NR, NS).

Next in Table 4.3, we document in more details the relevant components of HPJD and NFJD. One can
see that, for sufficiently large NR, the CPU time spent on the JD part are comparable in HPJD and NFJD.
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Set Ê0 = [ ], Λ0 = ∅.
Initialize a vector v̂1 with |v̂1|bA = 1.

Set Û0 = [v̂1].
for i = 1, 2, 3, · · · , imax do

Set V̂1 = [Êi−1, Ûi−1].

Compute Ẑ1 = V̂∗
1 B̂V̂1.

for k = 1, 2, 3, · · · ,while dim(V̂k) ≤ i− 1 + NS, do

(i) Compute all the eigenpairs of (I− θẐk)s = 0.
Select the desired eigenpair (θk, sk) with θk /∈ Λi−1 nearest to the target and ‖sk‖2 = 1.

Select next NR nearest eigenpairs with θ̃1, · · · , θ̃NR
/∈ Λi−1 and ‖s̃1‖2 = · · · = ‖s̃NR

‖2 = 1.

(ii) Compute ûk = V̂ksk, r̂k = (Â− θkB̂)ûk.
(iii) if ‖r̂k‖2 < τNFJD then

Output λi = θk, ei = B−1C∗B̂uk.
Update Êi = [Êi−1, ûk], Ûi = [V̂ks̃1, · · · V̂ks̃NR

], Λi = Λi−1 ∪ {λi}.
Exit k.

else
if dim(V̂k) = i− 1 + NS then

Restart V̂k+1 = [Êi−1, V̂ksk, V̂ks̃1, · · · V̂ks̃NR
], Ẑk+1 = V̂∗

k+1ÂV̂k+1.
else

Solve (approximately)

(I− B̂ûkû
∗
kÂB̂−1)(Â− θkB̂)(I− ûkû

∗
kÂ)t̂ = −r̂k, t̂ ⊥bA

ûk.

Â-orthonormalize t̂ against V̂k: v̂k+1 =
t̂−∑k

ℓ=1(v̂
∗
ℓ Ât̂)v̂ℓ

|t̂−
∑k

ℓ=1(v
∗
ℓ Ât̂)v̂ℓ|bA

.

Expand V̂k+1 = [V̂k, v̂k+1], Ẑk+1 =

[
Ẑk V̂∗

k B̂v̂k+1

v̂
∗
k+1B̂V̂k v̂

∗
k+1B̂v̂k+1

]
.

endif
endif

end for k
end for i

Algorithm 4: Accelerated version of NFJD. Modified from Algorithm 2 with NR recycled Ritz vectors and
restart dimension NS. Accelerated version of HPJD and NFJD∗ can be similarly modified from Algorithm
1 and Algorithm 3.

The additional CPU time spent in Helmholtz projection constitutes a significant portion in HPJD, even
though such an FFT-based Helmholtz projector is indeed extremely efficient. For smaller NR, NFJD is even
more efficient on the JD part.

Finally, in Table 4.4, we record the total CPU time needed for HPJD as τHP decreases below τc
HP for

various cases of (NR, NS). As expected, the CPU time spent in the Helmholtz projection increases constantly
as τHP decreases, while the CPU time for the JD part remains roughly the same (details not shown here).
The result confirms that the CPU time in Table 4.2 is indeed optimal for HPJD. However, we wish to
reiterate that it is not easy to predict the critical τc

HP and get optimal performance for HPJD. The safe play,
taking τHP to machine accuracy, may result in significant increase in CPU time for HPJD. In contrast, our
scheme NFJD is free from such consideration.

5. Conclusion. We have proposed an efficient numerical scheme for time harmonic Maxwell’s equa-
tions. The novelty of our approach include the combination of Jacobi-Davidson method with the discrete
vector potential and delicate interplay between equivalent forms of Maxwell’s equations. By lifting the cor-
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Table 4.3

Detailed comparison between HPJD and NFJD with τJD = 10−6, τNFJD = 2.5 × 10−9.

HPJD NFJD HPJD NFJD
(NR, NS, (τHP)) (3, 15, (10−8)) (3, 15) (9, 15, (10−8)) (9, 15)

avg. CPU time 5473 sec 3789 sec 4347 sec 3528 sec
avg. num. of JD iter. 161.5 143.8 149.0 142.5
avg. CPU time on solving correction eq. 3961 sec 3455 sec 2736 sec 2803 sec

avg. num. of M or M̂ inversions per JD iter. 11.96 11.82 9.182 9.906
avg. CPU time on Helmholtz projection 1123 sec 959.0 sec
avg. num. of G∗G inversions per JD iter. 18.95 17.55

HPJD NFJD HPJD NFJD
(NR, NS, (τHP)) (3, 25, (10−9)) (3, 25) (9, 25, (10−9)) (9, 25)

avg. CPU time 5097 sec 3695 sec 4299 sec 3307 sec
avg. num. of JD iter. 149.8 138.9 135.8 133.2
avg. CPU time on solving correction eq. 3526 sec 3381 sec 2706 sec 2788 sec

avg. num. of M or M̂ inversions per JD iter. 11.53 11.89 9.870 10.48
avg. CPU time on Helmholtz projection 1178 sec 1061 sec
avg. num. of G∗G inversions per JD iter. 21.53 21.28

Table 4.4

CPU time for HPJD on first ten eigenvalues with τJD = 10−6 and different τHP’s.

(NR, NS) (3,15) (9, 15) (3,25) (9, 25)

τHP = 10−8 5473 sec 4347 sec 5056 sec not conv.
τHP = 10−9 5561 sec 4450 sec 5097 sec 4299 sec
τHP = 10−11 5788 sec 4635 sec 5341 sec 4434 sec
τHP = 10−13 5954 sec 4835 sec 5593 sec 4625 sec
τHP = 10−15 6204 sec 5062 sec 5799 sec 4814 sec

rection equation up to the vector potential and mapping the (approximate) solution back to the original
vector space, our scheme retains the merits of the Jacobi-Davidson method and filters out the spurious null
space almost cost-free. We believe these ideas may be generalized to other eigensolvers. Numerical evidence
also confirms the efficiency and robustness of the new scheme.

Acknowledgments. This work is sponsored in part by National Science Committee and National
Center of Theoretical Sciences of Taiwan.

Appendix A. Vector Potential Formulation for Edge Elements. The combination of vector
potential with Jacobi-Davidson iteration is not limited to finite difference setting. It carries over naturally to
other spatially compatible discretizations. Here we demonstrate the procedure in the finite element setting.

Let K be an interface conforming tetrahedral tessellation of Ω. We consider a family of finite element
spaces

(A.1) Xh
V ⊂ H1(Ω), Xh

E ⊂ H(curl; Ω), Xh
F ⊂ H(div; Ω), Xh

C ⊂ L2(Ω).

based on the same tessellation K such that

(A.2) ∇Xh
V ⊂ Xh

E , ∇×Xh
E ⊂ Xh

F , ∇ ·Xh
F ⊂ Xh

C .



NFJD for Maxwell’s equations 23

Here Ω = [0, 1]3 with periodic extension. Functions in these finite element spaces are complex valued and
satisfy the k-periodic boundary condition. The gradient, curl and divergence in (A.2) are realized in the
sense of distribution.

Denote by V , E , F and C the collections of degrees of freedoms associated with Xh
V
, Xh

E , Xh
F and Xh

C

respectively. In the lowest order case, V , E , F and C can simply be identified with the vertices, edges, faces
and barycenters of the tetrahedrons in K.

Well known examples in (A.1) include curl-conforming edge elements [23, 24] and div-conforming Nédélec
elements [23, 24], Raviart-Thomas elements [28] and Brezzi-Douglas-Marini elements [8]. Proper combination
of finite element spaces in (A.1) results in discrete de Rham subcomplexes that satisfy the inclusion relation
(A.2) and the celebrated ‘commuting de Rham diagram’ property. Examples of discrete de Rham complexes
can be found in [22, p150, p209] and [4, p60]. See also [13] for systematic construction of finite element de
Rham complexes from the viewpoint of differential forms and exterior calculus. In what follows, we will give
a brief derivation of finite element discretization of Maxwell’s equation in Xh

E and Algorithm 3. The edge
element based discretization only involves the subchain (Xh

V
, Xh

E , Xh
F ).

The weak formulation of (1.5) in the curl-conforming finite element space Xh
E is given by:

Find E ∈ Xh
E , λ > 0 such that

(A.3) 〈∇ ×Φ, µ−1
r ∇×E〉Ω = λ〈Φ, εrE〉Ω for all Φ ∈ Xh

E .

Following our notation convention, we denote by E an element in Xh
E and its column vector representation

by e. That is, E(x) =
∑|E|

j=1 ejΦj(x), where {Φj}|E|j=1 is a basis for Xh
E . From the second inclusion of (A.2),

the curl operator induces a linear mapping

∇h× := ∇× |Xh
E

: Xh
E 7→ Xh

F

and makes it possible to generalize the vector potential formulation to (A.3). Denote by C the matrix
representation of ∇h× with respect to the (real valued) basis functions Φj ∈ Xh

E , Ψi ∈ Xh
F . That is, if

E(x) =
∑|E|

j=1 ejΦj(x), F (x) =
∑|F |

i=1 fiΨi(x), and F (x) = ∇×E(x), then fi =
∑|E|

j=1 Cijej .
In matrix notations, (A.3) reads

(A.4) Ae = λBe, where A = C
∗
MF C, B = ME ,

and ME , MF are the mass matrices generated by the basis functions in Xh
E and Xh

F , respectively:

(A.5) (ME )j,j′ = 〈Φj , εrΦj′〉Ω, (MF )i,i′ = 〈Ψi, µ
−1
r Ψi′ 〉Ω.

The mass matrices ME and MF induce natural inner products on Xh
E and Xh

F :

(A.6) 〈E, U〉εr
:= e∗

MEu =

∫

Ω

Ē(x) · εr(x)U (x)dx, E, U ∈ Xh
E ,

(A.7) 〈F , H〉µ−1
r

:= f∗
MF h =

∫

Ω

F̄ (x) · µ−1
r (x)H(x)dx, F , H ∈ Xh

F .

Denote by G the matrix representation of ∇h := ∇|Xh
V

: Xh
V
7→ Xh

E . Then the solutions to (A.4) with

λ 6= 0 satisfy the discrete analogue of the divergence free constraint (1.6) automatically:

−G
∗
Be = − 1

λ
G

∗
C

∗
MF Ce = 0.

This is a direct consequence of (1.9) and the fact that CG is the matrix representation of ∇×∇ on Xh
V
.
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The finite element version of NFJD and NFJD∗ are identical to Algorithm 2 and Algorithm 3, respec-
tively. Here we give a brief derivation of NFJD∗ for (A.4). We start with the following reformulation of
(A.4):

(A.8) Âê = λB̂ê, where B̂ = MF , Â = MF CM
−1
E C

∗
MF = B̂CB

−1
C

∗
B̂.

Note that (A.8) is merely an equivalent formulation of (A.4) obtained through algebraic manipulation. It is

not meant to be a new finite element discretization of the magnetic field equation µ−1
r ∇× ε−1

r ∇× µ−1
r Ê =

λµ−1
r Ê on Xh

F .
In general, (A.8) is less suitable for numerical computation than (A.4). Since in standard numerical

methods, the core matrix-vector multiplication Âv̂ for (A.8) is more expensive than the corresponding
operation Av for (A.4). We will see, however, that the situation is reversed in their null-space free Jacobi-
Davidson formulations Algorithm 2 (for (A.4)) and Algorithm 3 (for (A.8)).

Since both Â and B̂ are self-adjoint with B̂ positive definite, the spectral decomposition argument used
in Theorem 2.2 remains valid. In other words, we have

(A.9) ker(Â)⊥MF = ker(M−1
E C

∗
MF )⊥MF = Span{v̂j ∈ Xh

F |MF CM
−1
E C

∗
MF v̂j = λjMF v̂j , λj > 0},

and the counterpart of Theorem 2.2 holds:
Theorem A.1. Let û ∈ Xh

F . Then û ∈ ker(Â)⊥MF if and only if û = Cu for some u ∈ Xh
E .

The standard Jacobi-Davidson method applied to (A.8) results in the following correction equation

(A.10) (I− B̂ûkû
∗
k)(Â− θkB̂)(I− ûkû

∗
kB̂)t̂ = −r̂k, û

∗
kB̂t̂ = 0.

In view of Theorem A.1, we can now substitute t̂ = Ct, ûk = Cuk into (A.10) to get

(A.11)

(I− B̂ûkû
∗
k)(Â− θkB̂)(I − ûkû

∗
kB̂)t̂

=
(
I− B̂Cuku∗

kC∗)(B̂CB−1C∗B̂− θkB̂
)
C

(
I− Cuku∗

kC∗B̂C
)
t

=
(
I− B̂Cuku∗

kC∗)B̂CB−1
(
C∗B̂C− θkB

)(
I− Cuku∗

kA
)
t

= B̂CB−1
(
I− Buku∗

kAB−1
)(

A− θkB
)(

I− Cuku∗
kA

)
t

and

(A.12) r̂k = (Â− θkB̂)ûk = (B̂CB
−1

C
∗
B̂− θkB̂)Cuk = B̂CB

−1(A− θkB)uk = B̂CB
−1rk.

In addition, û
∗
kB̂t̂ = u∗

kC∗B̂Ct = u∗
kAt. Thus the correction equation can be translated to Xh

E as

(A.13)
(
I− Buku∗

kAB
−1

)(
A− θkB

)(
I− uku∗

kA
)
t = −rk, u∗

kAt = 0.

Finally, we switch back to the electric field pencil (A, B) on the subspace eigenvalue problem:
Find uk ∈ Range(Vk), θk > 0 nearest to the target such that

(A.14) v∗(A− θkB)uk = 0, for all v ∈ Range(Vk).

With the orthonormalization v∗
l Avm = δlm, (A.14) leads to the following subspace eigenvalue problem and

the B-normalized approximate eigenvector:

(A.15) (I− θkZk)sk = 0, (Zk)ℓm = v∗
ℓ Bvm; uk =

Vksk

‖Vksk‖B
.
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[23] J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35(3):315–341, 1980.
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