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Abstract

This article focuses on numerically studying the eigenstructure behavior of gen-
eralized eigenvalue problems (GEPs) arising in three dimensional (3D) source-
free Maxwell’s equations with magnetoelectric coupling effects which model 3D
reciprocal chiral media. It is challenging to solve such a large-scale GEP effi-
ciently. We combine the null-space free method with the inexact shift-invert
residual Arnoldi method and MINRES linear solver to solve the GEP with a
matrix dimension as large as 5,308,416. The eigenstructure is heavily deter-
mined by the chirality parameter γ. We show that all the eigenvalues are real
and finite for a small chirality γ. For a critical value γ = γ∗, the GEP has 2× 2
Jordan blocks at infinity eigenvalues. Numerical results demonstrate that when
γ increases from γ∗, the 2× 2 Jordan block will first split into a complex conju-
gate eigenpair, then rapidly collide with the real axis and bifurcate into positive
(resonance) and negative eigenvalues with modulus smaller than the other ex-
isting positive eigenvalues. The resonance band also exhibits an anticrossing
interaction. Moreover, the electric and magnetic fields of the resonance modes
are localized inside the structure, with only a slight amount of field leaking into
the background (dielectric) material.
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1. Introduction

Mathematically, the propagation of electromagnetic fields in bianisotropic
media is modelled by the three-dimensional (3D) frequency domain source-free
Maxwell’s equations with the constitutive relations

∇×E(x) = ιωB(x), ∇ ·B(x) = 0, (1.1a)

∇×H(x) = −ιωD(x), ∇ ·D(x) = 0, (1.1b)

where ω is the frequency, E, H, D and B are the electric, the magnetic fields,
the dielectric displacement and the magnetic induction, respectively, at the po-
sition x ∈ R3. Bianisotropic materials are important classes of complex media of
which the coupling effects between electric and magnetic fields can be described
by the constitutive relations

B = µ̃H + ζ̃E, D = ε̃E + ξ̃H, (1.2)

where µ̃ is the permeability, ε̃ is the permittivity, ζ̃ and ξ̃ are magnetoelectric
parameters. For detailed descriptions of bianisotropic materials with respect to
(1.2), we refer to [1, 2, 3, 4, 5, 6, 22, 24, 25] and references therein.

If the photonic crystal is made of complex media that contain magneto-
electric couplings in (1.2), that is, the electric (magnetic) polarization being
induced by the magnetic (electric) field, the eigensystem distinctly differs from
the classical one: the single curl, as well as the double curl operator, appears in
the wave equations [7, 21]. This feature corresponds to the symmetry breaking
in the system and introduces chirality in the eigensystem. It is expected that
circularly or elliptically polarized waves will serve as eigenwaves in the system.
To solve the band structures for this type of photonic crystals, in particular, in
three dimensions, extra care has to be taken on the choice of the range space
with the single curl operator.

The magnetoelectric coupling coefficients µ̃, ε̃, ζ̃ and ξ̃ in (1.2) are usually
tensor matrices in various forms [19, 23]. In particular, a bianisotropic medium
is also called a biisotropic medium, if µ̃, ε̃, ζ̃ and ξ̃ are scalar dyadics, or equiv-
alently,

µ̃ = µ0Ĩ , ε̃ = ε(x)Ĩ , ζ̃ = ζ(x)Ĩ , ξ̃ = ξ(x)Ĩ , (1.3)

where Ĩ is the identity dyadics, µ0 ≡ 1, specially, the permittivity ε(x) and
the reciprocal chiral medium (Pasteur medium) ζ(x), ξ(x) in (1.3) which we are
interested in this paper, are types of biisotropic media with

ε(x) =

{
εi, x ∈ material,

ε0, otherwise,
(1.4a)

ζ(x) =

{
−ιγ, x ∈ material,

0, otherwise,
ξ(x) =

{
ιγ, x ∈ material,

0, otherwise,
(1.4b)

and ε0 > 0, εi > 0, γ ≥ 0.
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The Maxwell’s equations (1.1) together with (1.2) can be rewritten as[
0 −ι∇×

ι∇× 0

] [
H
E

]
= ω

[
µ̃ ζ̃

ξ̃ ε̃

] [
H
E

]
. (1.5)

Based on the Bloch Theorem [18, p.167], the eigenvectors E and H on a given
crystal lattice, satisfying the quasi-periodic conditions

E(x + al) = eι2πk·alE(x), H(x + al) = eι2πk·alH(x), (1.6)

are of interest, where 2πk is the Bloch wave vector in the first Brillouin zone
B and al, l = 1, 2, 3 are the lattice translation vectors (e.g. [17, p.34]). Using
Yee’s finite difference scheme [26] on (1.5) satisfying the source-free conditions
and the quasi-periodic conditions (1.6), the discretized Maxwell’s equations with
biisotropic media (1.4) result in a generalized eigenvalue problem (GEP) in the
form [

0 −ιC
ιCH 0

] [
h
e

]
= ω

[
µd ζd
ξd εd

] [
h
e

]
, (1.7)

where h, e ∈ C3n, µd, εd, ξd, ζd, and C ∈ C3n×3n with C having the special
structure which can easily be treated with the fast Fourier transform (FFT) to
accelerate the numerical simulation [8, 11] (see Section 2 for details).

In the presence of the chirality parameter γ in (1.4b), the degeneracy be-
tween the first two bands has been lifted, that is, the two bands are no longer
degenerate [8, Figures 2 and 5], as a result of the symmetry breaking in the
constitutive relation. As γ increases, a larger discrepancy is found between the
two bands. For any two Hermitian matrices A and B, we say that the matrix
pair (A,B) or the matrix pencil A − ωB is positive definite if B is positive
definite. All eigenvalues of positive definite matrix pair (A,B) are real. For
photonic crystals made of isotropic chiral media (1.4) with a small chirality γ,
namely, the weakly-coupled case, the matrix pair in (1.7) is positive definite for
which efficient numerical algorithms and band structures have been well-studied
by Chern et al [8]. A critical condition occurs when the chirality parameter is
equal to the square root of the permittivity εi in (1.4a), where the constitu-
tive matrix is no longer positive definite [8]. In this situation, the right-hand

side coefficient matrix

[
µd ζd
ξd εd

]
in (1.7) becomes singular. When the chirality

parameter exceeds the critical value, the matrix pairs in (1.7) may introduce
very different and complicated eigenstructures. As shown in Section 5, such
eigenstructures lead to the following two new interesting physical phenomena.

• The band structure changes so drastically that a large number of res-
onance modes emerge from lower frequencies due to the bifurcation of
eigenvalues, pushing the original modes to higher frequencies. The reso-
nance modes tend to be dispersionless, that is, insensitive to the change
of wave vectors, and are represented by flat bands. In particular, each of
the resonance bands exhibits an anticrossing (avoided crossing) interaction
with the original one.
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• A distinguished feature of the resonance mode is that the electromagnetic
fields are highly concentrated inside the chiral material, with only a slight
amount of fields leaking into the background (dielectric) material. In a
homogeneous chiral medium characterized by the dielectric constant ε and
chirality parameter γ, there are two effective refractive indices

√
ε+γ and√

ε− γ [7]. For a larger γ such that γ >
√
ε,
√
ε+ γ becomes even larger

and the chiral medium behaves as a waveguide when it is surrounded by
the medium with a lower refractive index. In this situation, most fields
will be concentrated in the region with a higher refractive index, leading
to the so-called waveguide mode. On the other hand,

√
ε − γ becomes

negative and the chiral medium behaves like a negative index material.
When it is connected to the background with a positive refractive index,
the fields will be concentrated at the interface, leading to the so-called
surface mode. In the present problem, the emerging resonance modes
are basically a combination of waveguide modes and surface modes, with
the fields highly localized in the structure and slightly smeared to the
background. This is considered a unique feature of the eigenmodes in
the chiral photonic crystals when the chirality parameter goes beyond the
critical value.

However, how to solve the GEP (1.7) with the chirality parameter greater
than the critical value, namely, the strongly-coupled case, efficiently is still open.
The difficulty is that the matrix pair in (1.7) is no longer a positive definite ma-
trix pair which may introduce a very different and complicated eigenstructure.
Numerical results by newly developed algorithms (see Section 4) show that the
matrix pair of (1.7) can create some new state whose energy (frequency) is
smaller to that of the original ground state.

In this paper, we make the following contribution on the 3D Maxwell’s equa-
tions with strongly coupled reciprocal chiral media:

• For a critical value γ = γ∗, the matrix pair in (1.7) becomes positive
semidefinite such that null spaces of both matrices in (1.7) generically
have no non-trivial intersection (this property always holds in our practical
applications), and has 2× 2 Jordan blocks at ω =∞.

• For γ = γ∗+0+, the matrix pair in (1.7) creates lots of complex conjugate
eigenvalue pairs near ±ι∞ which rapidly collide with the real axis at γ ≡
γ1 > γ∗ and bifurcate into positive (resonance) and negative eigenvalues
with modulus smaller than the other existing positive eigenvalues. The
newly created positive eigenmode pushes the original modes to higher
frequencies.

• We use the shift-invert residual Arnoldi (SIRA) method [16, 20] combined
with MINRES [10] and the FFT-based scheme [11] to find a few smallest
positive eigenvalues of (1.7) for γ > γ∗ and show that the associated
fields are highly localized in the structure and slightly smeared to the
background material. Numerical experiments also show that the resonance
band and the original band exhibit an anticrossing interaction.
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This paper is outlined as follows. In Section 2, we briefly introduce the
matrix representation of the discretization of Maxwell’s equations and the as-
sociated singular value decomposition. In Section 3, we analyze and discuss the
eigenstructure behavior of discretized Maxwell’s equations. A null-space free
method and shift-invert residual Arnoldi method are introduced in Section 4
to solve the GEP (1.7). Numerical results are demonstrated in Section 5 to
show the iteration numbers of the eigensolver, colliding eigenvalues, anticross-
ing eigencurves and condensations of eigenvectors. Finally, a concluding remark
is given in Section 6.
Notation. Bold letters denote vectors; ι =

√
−1 is the imaginary unit; In is the

identity matrix of size n; I(i) ∈ R3n×3n denotes the diagonal matrix with the
j-th diagonal entry being 1 for the corresponding j-th discrete point inside the
material and zero otherwise; I(0) = I3n − I(i); Î(0) and Î(i) denote the matrices
consisting of all nonzero columns of I(0) and I(i), respectively. For matrices
A and B, A> and AH are the transpose and conjugate transpose, respectively;
N (A) and R(A) are the null space and the range space of A, respectively; A⊗B
and A⊕B = diag(A,B) are, respectively, the Kronecker product and the direct
sum of A and B (with suitable sizes).

2. Discretization of Maxwell’s equations

From crystallography, it is well-known that crystal structures can be clas-
sified as 14 Bravais lattices. Because of various lattices, the matrix C in (1.7)
of the discretized single-curl operator on the electric field may have different
forms. To look through the details of the discretization process of Yee’s scheme
for Maxwell’s equations (1.5) with three-dimensional photonic crystals, we refer
the reader to [14]. For convenience, in this paper, we only consider the face
centered cubic (FCC) lattice with

a1 =
a√
2

[1, 0, 0]>,a2 =
a√
2

[
1

2
,

√
3

2
, 0

]>
,a3 =

a√
2

[
1

2
,

2

2
√

3
,

√
2

3

]>
, (2.1)

where a is the lattice constant. Let n1, n2 and n3 denote the numbers of grid

points in the x1-, x2- and x3- axis, respectively. Set δ1 = a
n1

√
2
, δ2 = a

√
3

n22
√
2
,

δ3 = a
n3

√
3

, the associated mesh lengths, and n = n1n2n3. Then the resulting

3n× 3n matrix C is of the form [11, 12]

C =

 0 −C3 C2

C3 0 −C1

−C2 C1 0

 , (2.2)

where

C1 = 1
δ1
In2n3 ⊗K1,n1(eι2πk·a1), (2.3a)

C2 = 1
δ2
In3
⊗Kn1,n2

(eι2πk·a2J1), (2.3b)

C3 = 1
δ3
Kn1n2,n3

(eι2πk·a3J2) (2.3c)
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with 2πk being Bloch wave vectors as in (1.6),

J1 =

[
0 e−ι2πk·a1In1/2

In1/2 0

]
, (2.4a)

J2 =

[
0 e−ι2πk·a2In2/3 ⊗ In1

I2n2/3 ⊗ J1 0

]
, (2.4b)

and

Km1,m2
(X) =


−Im1 Im1

. . .
. . .

−Im1 Im1

X −Im1

 ∈ Cm1m2×m1m2 . (2.4c)

It has been shown in [11] that the matrices C1, C2, and C3 can be diagonal-
ized by a common unitary matrix as in Theorem 2.1.

Theorem 2.1 (Eigendecompositions of Ci’s [11]). The matrices C1, C2 and C3

in (2.3) are simultaneously diagonalizable by the unitary matrix T = 1√
n1n2n3

[T1, T2,

· · · , Tn1 ] with Ti = [Ti,1, · · · , Ti,n2 ] and Ti,j = [zi,j,1 ⊗ yi,j ⊗ xi, · · · , zi,j,n3 ⊗
yi,j ⊗ xi], in the forms

THC1T = Λn1
⊗ In2n3

≡ Λ1, (2.5a)

THC2T = ⊕n1
i=1(Λi,n2

⊗ In3
) ≡ Λ2, (2.5b)

THC3T = (⊕n1
i=1 ⊕

n2
j=1 Λi,j,n3) ≡ Λ3, (2.5c)

where

Λn1 = δ1
−1diag

(
eθ1 − 1, · · · , eθn1 − 1

)
, (2.5d)

Λi,n2
= δ2

−1diag
(
eθi,1 − 1, · · · , eθi,n2 − 1

)
, (2.5e)

Λi,j,n3
= δ3

−1diag
(
eθi,j,1 − 1, · · · , eθi,j,n3 − 1

)
, (2.5f)

and {
θi = ι2π(i+k·a1)

n1
,

xi =
[
1, eθi , · · · , e(n1−1)θi

]>
,

(2.5g){
θi,j =

ι2π(j− i
2+k·â2)

n2
with â2 = a2 − 1

2a1,

yi,j =
[
1, eθi,j , · · · , e(n2−1)θi,j

]>
,

(2.5h){
θi,j,k =

ι2π(k− 1
3 (i+j)+k·â3)

n3
with â3 = a3 − 1

3 (a1 + a2),

zi,j,k =
[
1, eθi,j,k , · · · , e(n3−1)θi,j,k

]>
,

(2.5i)

for i = 1, · · · , n1, j = 1, · · · , n2, k = 1, · · · , n3.

The following important singular value decomposition of C is derived in [8].
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Theorem 2.2 ([8]). There exist unitary matrices

Q =
[
Qr Q0

]
≡ (I3 ⊗ T )

[
Π1 Π2 Π0

]
≡ (I3 ⊗ T )

 Π1,1 Π1,2 Π1,0

Π2,1 Π2,2 Π2,0

Π3,1 Π3,2 Π3,0

 ,
(2.6a)

P =
[
Pr P0

]
= (I3 ⊗ T )

[
−Π̄2 Π̄1 Π̄0

]
, (2.6b)

where Qr, Pr ∈ C3n×2n and Πi,j ∈ Cn×n, i = 1, 2, 3, j = 0, 1, 2, are diagonal
such that C has a singular value decomposition

C = Pdiag(Λ1/2
q ,Λ1/2

q , 0)QH = PrΣrQ
H
r , Σr = diag(Λ1/2

q ,Λ1/2
q ) (2.7)

with Λq = ΛH1 Λ1 + ΛH2 Λ2 + ΛH3 Λ3.

We now consider the discretization of the right hand side in (1.7). The
diagonal matrices µd, εd, ξd and ζd in (1.7) can be determined by the shape of
the medium. From (1.3) and (1.4) we have

µd = I3n, εd = ε0I
(0) + εiI

(i), (2.8a)

ζd = −ιγI(i), ξd = ιγI(i), (2.8b)

where εi, ε0 are the permittivites inside and outside the medium, respectively,
γ > 0 is the chirality, I(0) and I(i) are defined in Notations of Section 1.

3. Eigenstructure behaviour of discretized Maxwell’s equations

We now study the eigenstructure behaviour of the GEP in (1.7). It is easily
seen that equation (1.7) can be rewritten as[

I3n 0
ξdµ
−1
d I3n

]([
0 −ιC

ιCH ιξdµ
−1
d C − ιCHµ−1d ζd

]
− ω

[
µd 0
0 εd − ξdµ−1d ζd

])[
I3n µ−1d ζd
0 I3n

] [
h
e

]
= 0. (3.1)

Together with the choices of µd, εd, ξd, ζd as in (2.8), we have the following
matrix pencil instead.[

0 −ιC
ιCH −γ[I(i)C + CHI(i)]

]
− ω

[
I3n 0
0 ε0I

(0) + (εi − γ2)I(i)

]
≡ Aγ − ωBγ . (3.2)

Furthermore, it is easily seen that (ω,

[
h
e

]
) is an eigenpair of (1.7) if and only if

(ω,

[
h− ιγI(i)e

e

]
) is an eigenpair of (3.2). With ω 6= 0 it holds that h = ι(γI(i)−
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ω−1C)e. Note that Aγ , Bγ in (3.2) are Hermitian with Aγ being indefinite;
(Aγ , Bγ) is regular (i.e., det(Aγ − ωBγ) 6≡ 0) if γ 6= √εi; For γ <

√
εi, the

matrix pair (Aγ , Bγ) with Bγ > 0 being positive definite has all real eigenvalues
[8]; For γ >

√
εi, Bγ is indefinite and (Aγ , Bγ) may have complex eigenvalues.

We now study the eigenstructure of the critical case when γ = γ∗ =
√
εi.

For this case, from (3.2) we have

Aγ∗ =

[
0 −ιC

ιCH −γ∗[I(i)C + CHI(i)]

]
, Bγ∗ =

[
I3n 0
0 ε0I

(0)

]
. (3.3)

It is easily checked thatN (Bγ∗) = R
([

0

Î(i)

])
, where Î(i) is defined in Notations

of Section 1. From Theorem 2.2, it follows that N (C) = R((I3 ⊗ T )Π0) and
N (CH) = R((I3 ⊗ T )Π̄0). Thus, N (Aγ∗) = R(Nγ∗), where

Nγ∗ =

[
−ιγ∗I(i)(I3 ⊗ T )Π0 (I3 ⊗ T )Π̄0

(I3 ⊗ T )Π0 0

]
. (3.4)

Theorem 3.1. It holds generically that N (Aγ∗) ∩N (Bγ∗) = {0}.

Proof. Let x ∈ N (Aγ∗) ∩ N (Bγ∗). Then there are z1 ∈ C2n, z2 ∈ Cni with ni

being the number of columns of Î(i) such that x = Nγ∗z1 =

[
0

Î(i)

]
z2. It follows

that

Ñγ∗z ≡
[
Nγ∗

∣∣∣∣ 0

−Î(i)
] [

z1
z2

]
= 0 (3.5)

with Ñγ∗ ∈ C6n×(2n+ni). Ñγ∗ is generically of full column rank. This implies
that z = 0, and thus x = 0.

Theorem 3.2. Suppose that the ni × ni submatrix Î(i)
>

(C + CH)Î(i) in Aγ∗

has nullity n̂i ≥ 1. Then the matrix pencil Aγ∗ − ωBγ∗ in (3.2) has at least n̂i
2× 2 Jordan blocks at ω =∞.

Proof. From the assumption that Î(i)
>

(C + CH)Î(i) in Aγ∗ corresponding to
the ni×ni zero diagonal block of ε0I

(0) in Bγ∗ has a nullspace of dimension n̂i.
Because of N (Aγ∗) ∩ N (Bγ∗) = {0} as in Theorem 3.1, from Theorem 4.1 of
[9], Aγ∗ − ωBγ∗ has at least n̂i 2× 2 Jordan blocks at ω =∞.

Remark 3.1. In fact, the condition of the singularity of Î(i)
>

(C + CH)Î(i) in
Theorem 3.2 heavily depends on shapes of materials in (1.4). This condition
always holds for our numerical examples in Section 5.3.

Theorem 3.3. For γ+ = γ∗ + η as η → 0+, it holds that Aγ+ − ωBγ+ has at
least one complex conjugate eigenvalue pairs of the forms

ω±(γ+) :=
1

1 + η
± ι
√
η(1 + η)

, as η → 0+. (3.6)
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Proof. From Theorem 3.2, Aγ∗ − ωBγ∗ has at least one 2 × 2 Jordan form at
ω = ∞. Therefore, Aγ+ − ωBγ+ must have a canonical sub-block of the form[
0 1
1 0

]
− ω

[
1 η
η −η

]
, as η → 0+. Here, for convenience, we write η ≡ O(η) > 0

with “O” denoting the big O. Thus, we have ηω2 + (1− ηω)2 = 0 solving which
we get (3.6).

Discussion 1. (i) Let [(h− ιγI(i)e)>, e>]> be the eigenvector of Aγ −ωBγ in
(3.2) corresponding to ω. Then it holds that

c(e)− ωγb(e)− ω2[ε0a0(e) + (εi − γ2)ai(e)] = 0, (3.7)

where

c(e) = eHCHCe ≥ 0, b(e) = eH
[
I(i)C + CHI(i)

]
e, (3.8a)

a0(e) = eHI(0)e ≥ 0, ai(e) = eHI(i)e = eHe− a0(e) ≥ 0. (3.8b)

Then we have

ω±(γ) =
γb(e)±

√
∆(e)

−2[ε0a0(e) + (εi − γ2)ai(e)]
(3.9)

with

∆(e) = γ2b(e)2 + 4c(e)[ε0a0(e) + (εi − γ2)ai(e)]

= γ2b(e)2 + 4c(e)[(ε0 + γ2 − εi)a0(e) + (εi − γ2)eHe]. (3.10)

From Theorem 3.3, when γ+ = γ∗+η (as η → 0+) with ∆(e) < 0, it must
hold that a0(e) ≈ 0 and b(e) ≈ 0. Thus, e(0) ≡ I(0)e ≈ 0, i.e., at γ = γ+,
the electric field E(x) almost vanish when x is outside the material.

(ii) We increase γ+ to γ0 so that two complex conjugate eigenvalues ω±(γ)
collide on the real axis at γ = γ0 with ∆(e) = 0 and create (bifurcate
into) two new real eigenvalues ω±(γ1) with γ1 > γ0 in which ω+(γ1) > 0
is the smallest one among other existing positive real eigenvalues. In this
case, from (3.9) and (3.8), we see that a0(e) ≈ O(η) and b(e) ≈ O(1)
with small η > 0 . This implies that at γ = γ1, the electric field E(x)
is also flat when x is outside the material (see numerical experiments in
Section 5.5).

(iii) Interchanging the roles of µd and εd as well as h and e in (1.7), similarly
to (3.1) and (3.2), we have the matrix pencil[

−γ[I(i)C̃H + C̃I(i)] −ιC̃
ιC̃H 0

]
− ω

[
ε0I

(0) + (εi − γ2)I(i) 0
0 I3n

]
(3.11)
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with the eigenpair (ω,

[
h

ẽ− ιγI(i)h̃

]
), where C̃ = ε

1/2
d Cε

−1/2
d , h̃ = ε

−1/2
d h

and ẽ = ε
1/2
d e. As in (3.7)-(3.10), it also holds that

ω±(γ) =
−γb̃(h̃) +

√
∆̃(h̃)

−2[ε0ã0(h̃) + (εi − γ2)ãi(h̃)]
(3.12)

with ∆̃(h̃) = γ2b̃(h̃)2 + 4c̃(h̃)[ε0ã0(h̃) + (εi − γ2)ãi(h̃)], where

ã0(h̃) = h̃HI(0)h̃ ≥ 0, (3.13a)

ãi(h̃) = h̃HI(i)h̃ ≥ 0, (3.13b)

b̃(h̃) = h̃H [I(i)C̃H + C̃I(i)]h̃ ∈ R, (3.13c)

c̃(h̃) = h̃HC̃HC̃h̃ ≥ 0. (3.13d)

As in (ii), we can also conclude that for ω+(γ1) with γ1 > γ∗ the smallest
eigenvalue among the other existing positive real eigenvalues, the associ-
ated magnetic field H(x) is flat when x is outside the material.

4. Null-space free method with shift-invert residual Arnoldi method

Since the 6n× 6n Hermitian matrix Aγ in (3.2) has a huge null space with
nullity 2n, it would significantly affect and slow down the convergence of smallest
positive eigenvalues. To remedy this drawback, we develop an efficient numerical
algorithm for the computation of a few smallest positive eigenpairs of (1.7) by
applying the SIRA to the 4n× 4n null-space free GEP (NFGEP) derived in [8].

Theorem 4.1 ([8]). If γ 6= γ∗, then the GEP in (1.7) can be reduced to a
4n× 4n NFGEP

Âryr = ω

(
ι

[
0 Σ−1r

−Σ−1r 0

])
yr ≡ ωB̂ryr, (4.1)

and [
h> e>

]>
= ι

[
−I3n −ζd
ξd εd

]−1
diag (Pr, Qr)yr,

where

Âr := Âr(γ) ≡ diag(PHr , Q
H
r )

[
ζd −I3n
I3n 0

] [
Φ−1 0

0 I3n

] [
ξd I3n
−I3n 0

]
diag(Pr, Qr)

(4.2)
with Φ := Φ(γ) ≡ εd − ξdζd being Hermitian.

Form (3.7)-(3.10) it follows that for γ > γ∗, each complex eigenvalue of
(Aγ , Bγ) in (3.2) appears in a complex conjugate pair. In the following theorem,

we further show that the eigenvalues of the null-space free matrix pair (Âr, B̂r)
in (4.1) have the common property as the complex Hamiltonian matrix.
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Theorem 4.2. For γ > γ∗, if ω is a complex eigenvalue of (Âr, B̂r) as in (4.1),
then ω̄ is also an eigenvalue.

Proof. Let y =

[
0 Σ

−1/2
r

Σ
−1/2
r 0

]
yr. Then the equation (4.1) can be rewritten

as

Hy ≡

[
Σ

1/2
r 0

0 −Σ
1/2
r

]
Âr

[
0 Σ

1/2
r

Σ
1/2
r 0

]
y = ιωy. (4.3)

With J =

[
0 I
−I 0

]
, it is easy to check that

HJ = −J

[
0 Σ

1/2
r

Σ
1/2
r 0

]
Âr

[
Σ

1/2
r 0

0 −Σ
1/2
r

]
= −JHH .

So, H is a complex Hamiltonian matrix. It follows that if λ = ιω is an eigen-
value of H, then −λ̄ = ιω̄ is also an eigenvalue of H. Therefore, each complex
eigenvalue appears in a complex conjugate pair.

For the case γ < γ∗, the diagonal matrix Φ in (4.2) is positive definite, so Âr
in (4.2) is also Hermitian and positive definite. This means that all eigenvalues
in (4.1) are positive real [8] and the inverse Lanczos method can be applied
to solve (4.1). In each step of the inverse Lanczos method, the crucial linear

system Âru = b can be efficiently solved by the conjugate gradient (CG) method
without any preconditioner [8, 13]. However, for the case γ > γ∗, Φ in (4.2) is

indefinite. So, both Âr and B̂r are indefinite. The inverse Lanczos method with
the CG-method can no longer be applied for solving (4.1).

In general, the shift-invert Arnoldi method can be used to find a few of the
smallest positive eigenvalues of the NFGEP (4.1). However, in each iteration
of the shift-and-invert Arnoldi method, a highly accurate solution of the linear
system (

Âr − σB̂r
)
z ≡

(
Âr − ισ

[
0 Σ−1r

−Σ−1r 0

])
z = c (4.4)

with a shift σ is required, which in practice is quite expensive. To remedy this
drawback, we consider the inexact SIRA method [13, 15, 16, 20] for solving (4.1).
In fact, the SIRA is designed to find a few of the eigenvalues that are close to the
shift value σ. The SIRA is mathematically equivalent to the Arnoldi method
in exact arithmetic [20]. The framework of the inexact SIRA is similar to the
Jacobi-Davidson method. Given an orthonormal matrix Vm = [v1, . . . ,vm],

let (θ,y) be the Ritz pair of (Âr, B̂r) with respect to Vm. To compute the
additional basis vector vm+1 in each iteration, the SIRA first approximately
solves the linear system (

Âr − σB̂r
)
v = r (4.5)
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for the residual vector r = Âry−θB̂ry. The basis vector vm+1 is then computed
by orthogonalizing v against Vm. We summarize the process of inexact SIRA
in Algorithm 1.

Algorithm 1 The Shift-Invert Residual Arnoldi method for solving Âry =
ωB̂ry.

Require: Hermitian coefficient matrices Âr and B̂r, the number of desired
eigenvalues `, an initial vector V1, target σ, tolerance ε and number of Ritz
vectors m.

Ensure: The desired eigenpairs (ωj ,yj) for j = 1, . . . , `.
1: Set Vy = [ ], k = 1 and r0 = e1.
2: for j = 1, . . . , ` do
3: Compute Wk = ÂrVk, Zk = B̂rVk, Mk = V Hk Wk and Nk = V Hk Zk.
4: while ( ‖rk−1‖2 ≥ ε ) do
5: Compute the eigenpairs (θi, si) of Mks = θNks with ‖si‖2 = 1. Assume

θ1 > 0 is the closest to σ.
6: Compute uk = Vks1 and rk = (Âr − θ1B̂r)uk.
7: if (‖rk‖2 < ε), set λj = θ1, yj = uk, k := k + 1. Go to line 4.
8: Solve (approximately) a tk from

(Âr − σB̂r)tk = rk. (4.6)

9: Orthogonalize tk against Vk; set vk+1 = tk/‖tk‖.

10: Compute wk+1 = Ârvk+1, Mk+1 =

[
Mk V Hk wk+1

vHk+1Wk vHk+1wk+1

]
.

11: Compute zk+1 = B̂rvk+1, Nk+1 =

[
Nk V Hk zk+1

vHk+1Zk vHk+1zk+1

]
.

12: Expand Vk+1 = [Vk,vk+1], Wk+1 = [Wk,wk+1] and Zk+1 = [Zk, zk+1].
Set k := k + 1.

13: end while
14: Set Vy = [Vy,yj ], Vj+m−1 = [Vy, Vk−1[s2, · · · , sm]], k = j + m − 1 and

rk−1 = e1.
15: end for

It has been shown in [16] that when the relative error of the approximate
solution of (4.5) is modestly small at each iteration, the inexact SIRA mimics
the exact SIRA well. The numerical results in [13] also demonstrate that the
inexact SIRA is effective even the relative error is only 5 × 10−4. Since the
coefficient matrix Âr −σB̂r in (4.5) is Hermitian, we use MINRES without any
preconditioner to solve (4.5). Based on the results in [13, 16], the stopping
criterion is taken as 10−3. A heuristic strategy in Algorithm 2 is utilized to
determine the maximum iteration number mk of MINRES.

Remark 4.1. As Âr in (4.2) with (Pr, Qr) in (2.6) as well as ζd, ξd, Φ, and
Λj (j = 1, 2, 3) being diagonal matrices, the main computational cost for solving

12



Algorithm 2 The heuristic strategy for determining the maximal iteration mk

of MINRES in solving (4.6) approximately.

Require: m0 = 1000, mk−1, residual vectors rk−1 and rk.
Ensure: The maximal iteration mk.

1: if ‖rk‖2 ≥ 0.1 and k > 14 then
2: Set mk = 2000;
3: else if ‖rk‖2 < 0.1 and ‖rk−1‖2/‖rk‖2 < 4 then
4: Set mk = min(2000,mk−1 + 100);
5: else
6: Set mk = mk−1;
7: end if

(4.5) by using MINRES is the matrix-vector multiplications THp and Tq, where
T is defined in Theorem 2.1. As shown in [11], these matrix-vector multipli-
cations can be computed efficiently by the FFT-based schemes without explic-
itly forming matrix T . Therefore the matrix-vector multiplication with matrix
Âr − σB̂r in each iteration can be computed effectively.

5. Numerical experiments

To study numerical behaviors of the 3D Maxwell’s equations for reciprocal
chiral media (2.8b) with γ >

√
εi in (2.8a), we consider the FCC lattice [11]

which consists of dielectric spheres with connecting spheroids as shown in Fig-
ure 1. The radius r of the spheres and the minor axis length s of the spheroids
are r = 0.08a and s = 0.06a, respectively, where a is the lattice constant. The
perimeter of the irreducible Brillouin zone for the lattice is formed by the cor-

ners X = 2π
a Ω[0, 1, 0]>, U = 2π

a Ω
[
1
4 , 1,

1
4

]>
, L = 2π

a Ω
[
1
2 ,

1
2 ,

1
2

]>
, G = [0, 0, 0]>,

W = 2π
a Ω

[
1
2 , 1, 0

]>
, and K = 2π

a Ω
[
3
4 ,

3
4 , 0
]>

, where

Ω =
1√
2

 1 1 0
− 1√

3
1√
3

2√
3

2√
6
− 2√

6
2√
6

 .
Here, we take the permittivity εi to be 13 and then γ∗ =

√
13 ≈ 3.606.

All computations in this section are carried out in MATLAB 2017a, and
the MATLAB functions fft and ifft are used to compute the matrix-vector
multiplications THp and Tq, respectively, as mentioned in Remark 4.1. The
mesh numbers n1, n2 and n3 are taken as n1 = n2 = n3 = 96 and the matrix
dimension of Âr in (4.2) is 3,538,944. Furthermore, the stopping tolerance for
the inexact SIRA is set to be 10−12.

5.1. Iteration numbers for solving linear systems (4.5)

First, we discuss iteration numbers of MINRES without any preconditioner
for solving linear systems (4.5). The stopping tolerance of MINRES is set to be
10−3. The wave vector k is chosen to be 13

14X + 1
14U .
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Figure 1: A schema of 3D complex media with the FCC lattice within a single primitive cell.
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(b) Fixed γ = 3.61302

Figure 2: Iteration numbers of MINRES with the stopping tolerance 10−3 for solving (4.5).

The shift values σ in (4.5) are taken as 10−3 and 1. The associated iteration
numbers vs. various γ are shown in Figure 2(a). We see that the numbers of
iterations for σ = 10−3 and σ = 1 are similar and smoothly increasing as γ
raises to 3.612. However, after γ = 3.612, the numbers of iterations become
significantly large (≥ 6000) when γ ≥ 3.613.

Now, we demonstrate iteration numbers vs. shifts σ with a fixed γ. Taking
γ = 3.61302 in Figure 2(b), we show the iteration numbers vs. various shift
values σ. We observe that no matter which shift value is chosen the iteration
numbers range from 7,000 to 10,000. Most of them are significantly greater
than 7,000. This means that solving the linear system (4.5) is a difficult task.
Therefore, Arnoldi method, which needs more accurate solution of (4.5), is not
suitable for solving the NFGEP (4.1). This is the reason why we prefer the
inexact SIRA method over Arnoldi method for solving (4.1).
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Figure 3: Convergence behaviors of SIRA with the stopping tolerance 10−12 for computing
six smallest positive eigenvalues of NFGEP (4.1).

5.2. Convergence of SIRA for solving NFGEP (4.1)

As shown in [13, 16], the relative error of the approximate solution of (4.5)
can be modestly small at each iteration of the inexact SIRA. We take the stop-
ping tolerance for solving (4.5) to be 10−3. Based on the iteration numbers
shown in Figure 2, it needs more than 6,000 iterations to achieve this tolerance
when γ ≥ 3.613. The computational cost becomes very high. In order to reduce
the cost, but still keep the approximation in solving (4.5), we give a heuristic
strategy for determining the maximal iteration of MINRES in Algorithm 2.

In Figure 3, we show the convergence behavior for computing six smallest
positive eigenvalues λ1, . . . , λ6 by using the inexact SIRA. For γ = 3.607, be-
cause most of the relative errors of approximate solutions for (4.5) are less than
the stopping tolerance, the iteration numbers of the inexact SIRA for computing
λ1, . . . , λ6 range from 22 to 38 as shown in Figure 3(a). For γ = 3.61302, even
all relative errors are larger than the stopping tolerance (i.e., all iterations are
reached the maximal iteration numbers defined in Algorithm 2), we can see that
the iteration numbers of the inexact SIRA still range from 31 to 77 as shown in
Figure 3(b). All results demonstrate that the target eigenpairs can be computed
by Algorithm 1 combined with Algorithm 2 in a reasonable iteration number.

5.3. Falling down new smallest positive eigenvalues

In Theorem 3.2, we prove that the matrix pencil Aγ − ωBγ in (3.2) with
γ = γ∗ =

√
εi has at least n̂i 2×2 Jordan blocks at ω =∞. Theorem 3.3 shows

that such infinite eigenvalues with 2×2 Jordan block will split into two complex
conjugate eigenvalues λ1(γ) and λ̄1(γ) as γ → √εi + 0+.

Note that, in our test examples for the FCC lattice, we check the submatrix

Î(i)
>

(C + CH)Î(i) in Theorem 3.2 having at least 30 zero eigenvalues, which
shows that the existence of the positive nullity n̂i in Theorem 3.2 indeed hap-
pens.
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Figure 4: Conjugate eigenvalue pair and eigencurve-structure with k = 13
14
X + 1

14
U.

Now, we verify the existence of the conjugate eigenvalue pair (λ(γ), λ̄(γ))
by numerical experiments. First, we compute the first two eigenvalues with
the smallest module as shown in Figure 4(a). The results show that there is a
complex conjugate eigenvalue pair (λ(γ), λ̄(γ)) for γ ∈ [3.6130144, 3.6130162].
The positive imaginary part of λ(γ) is dramatically decreasing, and then λ(γ)
and λ̄(γ) bifurcate, respectively, into positive and negative eigenvalues λ1 > 0
(resonance mode), λ2 < 0 near γ = 3.613016273.

The result in Figure 4(a) shows the existence of a pair of complex conju-
gate eigenvalues which collide together at some γ = γ0 > γ∗, after γ0, and
bifurcate into a positive and a negative eigenvalue. Actually, there are many
complex conjugate eigenvalue pairs which bifurcate at various γ with γ > γ0.
In Figure 4(b), we show the eigencurve structure vs. various γ and see that four
resonance modes bifurcate from four conjugate eigenvalue pairs which emerge
from lower frequencies and push the original eigenmodes to higher frequencies
when γ ranges from 3.613 to 3.614. The values of resonance modes increase
rapidly as γ increases.

Note that, comparing the results of Figure 2(a) and Figure 4(b), we find
that the iteration number of MINRES dramatically increase when the resonance
modes appear.

5.4. Anticrossing eigencurves

In this subsection, we discuss the influence of the resonance modes for band
structures. Three fully band structures with different γ are shown in Figure 5.
For the critical case that γ = 3.607 ≈ γ∗ =

√
13, the associated band structure

in Figure 5(a) inherits the structure for the case that γ < γ∗. Comparing band
structures in Figures 5(a) and 5(b), we see that a new eigencurve emerges at
γ = 3.61302 which comes from the bifurcation of the conjugate eigenvalue pair
as mentioned in Section 5.3. Besides this new eigencurve, the others are similar
to those in Figure 5(a). However, when γ = 3.6138, four resonance modes as
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Figure 5: Band structures.
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shown in Figure 4(b) appear. The original eigenmodes are pushed up by these
new resonance modes so that the band structure in Figure 5(c) is totally different
from that in Figure 5(a). Moreover, the resonance modes in Figure 5(c) tend
to be dispersionless, that is, insensitive to the change of wave vectors, and are
represented by flat bands.

In Figures 5(b) and 5(c), the eigencurves of the first three smallest positive
eigenvalues are close to each other near points 4

14L and 3
14X, respectively. Now,

we refine the partitions of the red regions in Figure 5(b) and zoom in the first
three smallest positive eigenvalues in Figure 5(d). These results show that the
eigencurves exhibit anticrossing phenomena which occur in the segments LG
and GX of Figures 5(b) and 5(c), respectively.
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Figure 6: The absolute values of e2, me, mh for the resonance mode at k = 6
14
L.

5.5. Condensations of eigenvectors

In this subsection, we display the entire vector e2 by using volumetric slice
plot to validate the results in Discussion 1 of Section 3. The absolute values
of e2 corresponding to the first smallest positive eigenvalue (resonance mode)
with k = 6

14L are plotted in Figures 6(a). We see that these absolute values
are localized in the structure and its neighborhood that meets the shape of the
3D complex media with FCC lattice as in Figure 1. In order to measure the
neighborhood, we define new radius of the sphere and the connecting spheroid to
be ρr and ρs, respectively, for ρ ≥ 1 and denote the region of these new spheres
and cylinders as D(ρ). Note that D(ρ) for ρ > 1 represents the original material
and its neighborhood. Let me and mh denote the maximal absolute values of e
and h, respectively, outside D(ρ). The relationship between (me,mh) and ρ is
plotted in Figure 6(b) which shows that all absolute values outside D(ρ) are less
than 4× 10−4 for ρ ≥ 1.2. This means that the electric field is localized in the

domain D(1.2) which is only 8.9%(= number of indices in D(1.2)
3n ) of the whole

computational domain. This phenomenon indicates that the emerging resonance
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(a) (λ1, e1) (b) (λ3, e3)

Figure 7: The absolute values of the first and third eigenmodes for e1 and e3, respectively,
with k = 13

14
X + 1

14
U and γ = 1.

mode is basically formed as a combination of the waveguide mode with highly
localized in the structure and the surface plasmon mode with slightly smeared
to the background material.

As shown in Figure 7, not all the electric fields for any positive γ (here
γ = 1) are localized in the structure. In the following, we study the relationship
between the condensation and the parameter γ. According to the mesh indices
belonging to the material or not, we separate e and h as (ei, eo) and (hi,ho),
where the index i/o denotes inside/outside the material. Since e∗e + h∗h = 1,

we use the ratios
e∗oeo

e∗i ei
and

h∗oho

h∗i hi
to determine the condensations of the electric

and magnetic fields. The results in Figure 8 show that these ratios decrease as
γ increases. Moreover, when the conjugate eigenvalue pair bifurcates to create
resonance modes (i.e., at γ ≥ 3.61302), the eigenvectors corresponding to the
resonance modes are highly concentrated inside the material, with only a slight
amount of fields leaking into the background (dielectric) material. This also
verifies the inference in Discussion 1 of Section 3.

6. Conclusions

In this paper, we focus on the GEPs arising in the source-free Maxwell
equation with magnetoelectric coupling effects in the 3D chiral media. It is
a challenging problem to solve the GEP efficiently. The coefficient matrix in
the discrete single-curl operator is indefinite and degenerate. A null-space free
method is developed in [8] to deflate the null space from the GEP into a null-
space free GEP (NFGEP). The eigenstructure behavior of the GEP is deter-
mined by the chirality parameter γ. The matrix pair in NFGEP with a small
chirality γ (weakly-coupled case) is positive definite for which efficient numerical
algorithms and band structures have been well-studied by Chern et al [8]; while
the strongly-coupled case is still open. The difficulty is that the matrix pair in
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NFGEP is no longer a positive definite matrix pair which may introduce a very
different and complicated eigenstructure. In this article, we combine the inexact
shift-invert residual Arnoldi method with MINRES linear solver for solving the
NFGEP. Numerical results show that the target eigenpairs can be computed
by our proposed method in a reasonable iteration number even the matrix di-
mension of the GEP is as large as 5,308,416. Therefore, we can use numerical
results to analyze the eigenstructure behavior. For a critical value γ = γ∗, we
show that the GEP has 2 × 2 Jordan blocks at infinity eigenvalues. Numer-
ical results demonstrate that the 2 × 2 Jordan blocks will split into complex
conjugate eigenpairs which rapidly collide on the real axis and bifurcate into a
new negative eigenvalue and a new positive eigenvalue (resonance mode) which
is smaller than the other existing positive eigenvalues. The resonance modes
induce the anticrossing phenomena in the eigencurves. Moreover, the electric
and magnetic fields of the resonance modes are concentrated inside the mate-
rial structure, with only a slight amount of fields leaking into the background
(dielectric) material.
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