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Abstract

We consider in this work stochastic differential equation (SDE) model for particles in
contact with a heat bath when the memory effects are non-negligible. As a result of the
fluctuation-dissipation theorem, the differential equations driven by fractional Brownian
noise to model memory effects should be paired with Caputo derivatives and based on
this we consider fractional stochastic differential equations (FSDEs), which should be
understood in an integral form. We establish the existence of strong solutions for such
equations. In the linear forcing regime, we compute the solutions explicitly and analyze
the asymptotic behavior, through which we verify that satisfying fluctuation-dissipation
indeed leads to the correct physical behavior. We further discuss possible extensions to
nonlinear forcing regime, while leave the rigorous analysis for future works.
Keywords Fractional SDE, Fluctuation-dissipation-theorem, Caputo derivative, Frac-
tional Brownian motion, Generalized Langevin equation

1 Introduction

1.1 Physical Background

For a particle in contact with a heat bath (such as a heavy particle surrounded by light
particles), the following stochastic equation is often used to describe the evolution of the
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velocity of the particle
mu̇ = −γu+ η,

where dot denotes derivative on time, −γu counts for friction and η is a Gaussian white
noise which could be understood as the distributional derivative of the Brownian motion
(or Wiener process) up to a constant factor. This equation should be understood in the
SDE form

mdu = −γudt+
√
2DxdW,

where W is a standard Brownian motion and Dx is some constant to be determined. If we
add the equation for position and consider external force, one has the Langevin equation:

ẋ = u, mu̇ = −∇V (x)− γu+ η. (1.1)

Since the friction −γu and random force η both come from interactions between the par-
ticle and the environment, they should be related. The ‘fluctuation-dissipation theorem’ 1

provides a precise connection between them, such that the correlation satisfies

E(η(t1)η(t2)) = 2kTγδ(t1 − t2), (1.2)

where k is the Boltzmann constant and T is the absolute temperature, leading toDx = kTγ.
E is the ‘ensemble average’ in physical language and it is ‘expectation’ over some underlying
probability space in mathematical language. Relation (1.2) was formulated by Nyquist and
then justified by Callen and Welton [1, 2]. The physical meaning of this relation is that
the fluctuating forces must restore the energy dissipated by the friction so that the balance
is achieved and the temperature of the heavy particle can reach the correct value. To see
this in another view point, one may derive, either using Ito’s formula or using Green-Kubo
formula, that Dx is actually the diffusion constant for position x, and Dx = kTγ is called
the Einstein-Smoluchowski relation [3]. This relation also says that the fluctuation and
dissipation must be related.

In the ‘overdamped’ regime where the inertia can be neglected (m ≪ 1), the Langevin
equation is reduced to the following well-known SDE:

γdx = −∇V (x)dt+
√

2DxdW. (1.3)

In [4, 5], the generalized Langevin equation (GLE) was proposed to model particle
motion in contact with a heat bath when the random force is no longer memoryless:

ẋ = u, mu̇ = −∇V −
∫ t

t0

γ(t− s)u(s)ds +R(t), (1.4)

1Note that we are putting quotes for the physical theorems as they are critical claims from physics

compared with mathematical theorems that are rigorously justified.
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where R(t) is some random force. Note that the friction γ becomes a kernel now. For the
particle to achieve equilibrium at the prescribed temperature, the force R(t) and the friction
kernel γ must be related. Without the external force (i.e. ∇V = 0), Kubo assumed that
E(u(t0)R(t)) = 0, t > t0 and that u is a stationary process. He derived formally (though he
used the existence of the one-sided Fourier transform of γ, the formal derivation still holds
if γ /∈ L1[0,∞) as we can understand the transform in the distribution sense or replace the
one-sided Fourier transform with Laplace transform) that

E(R(t0)R(t0 + t)) = mE(u(t0)
2)γ(|t|) = kTγ(|t|). (1.5)

There are other formal derivations as well (e.g. [6]). These derivations are not fully con-
vincing though on the mathematical rigorous level. In [5], Kubo assumed the relation
E(u(t0)R(t)) = 0, t > t0 arguing using causality. The issue is though R(t) does not af-
fect u(t0), u(t0) can affect R(t). In [6], Felderholf obtained this relation from ‘Nyquist’s
theorem’, while no justification is given to the latter.

For a more convincing and rigorous derivation of the GLE (1.4) and relation (1.5), one
could start from a system of interacting particles as the Kac-Zwanzig model (see [7, 8, 9, 10]).
In this model, the surrounding particles in the heat bath have harmonic interactions with
the particle under consideration, which is a good approximation if the configuration is near
equilibrium. The whole system evolves under the total Hamiltonian. If the initial data
satisfy the Gibbs measure, then after integrating out the variables for the surrounding
particles, one obtains the GLE. From this model, the random force R(t) is not necessarily
independent of x(0).

Relation (1.5) is called the ‘fluctuation-dissipation theorem’ for GLE. This relation sim-
ply says the random force must balance the friction so that the system has a nontrivial
equilibrium corresponds to the prescribed temperature. Note that if the kernel γ(t) tends
to γδ(t), the relation (1.2) can be recovered. The coefficient ‘2’ comes from the fact that

∫ ∞

−∞
E(R(t0)R(t0 + t))dt = 2kT

∫ ∞

0
γ(t)dt.

There are few rigorous mathematical justifications of the ‘fluctuation-dissipation theorem’,
all in the context of generalized Langevin equations. In [11], the author tried to rephrase the
‘fluctuation-dissipation theorems’ and the related linear response theory in mathematical
language. Hairer and Majda in [12] developed a framework to justify the use the linear
response theory through the ‘fluctuation-dissipation theorem’ for studying climate models.

In the following discussion, we will simply set kT = 1 for convenience, and the variables
k and T might be used to denote other quantities.

1.2 The motivation of FSDE

Motivated by the discussions in [10, 13], we consider the random force given by the (dis-
tributional) derivative of fractional Brownian motion R ∼ ḂH . To understand this, let us
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first review the basics of the fractional Brownian motion BH . (See [14, 15] for more detailed
discussions.)

The fractional Brownian motion BH with Hurst parameter H ∈ (0, 1) is a Gaussian
process (i.e., the joint distribution for (BH(t1), . . . , BH(td)) is a d-dimensional normal dis-
tribution for any (t1, . . . , td) ∈ R

d
+) defined on some probability space (Ω,F , P ) with mean

zero and covariance

E(BH
t BH

s ) = RH(s, t) =
1

2

(
s2H + t2H − |t− s|2H

)
, (1.6)

where Emeans the expectation over the underlying probability space. By definition, BH has
stationary increments which are normal distributions with E((BH(t)−BH(s))2) = (t−s)2H .
By the Kolmogorov continuity theorem, BH is Hölder continuous with order H − ǫ for any
ǫ ∈ (0,H). BH has finite 1/H-variation. Besides, it is self similar: BH(t)

d

= a−HBH(at)

where ‘
d
=’ means they have the same distribution. It is non-Markovian except for H = 1/2

when it is reduced to the Brownian motion (i.e., Wiener process).
The existence of fractional Brownian motion can be proved by some explicit represen-

tations. In [14], the following representation is given

BH(t) = C1(H)

(∫ t

0
(t− s)H− 1

2dW (s) +

∫ 0

−∞
((t− s)H− 1

2 − (−s)H− 1

2 )dW (s)

)

= C1(H)

∫ 0

−∞
(−r)H− 1

2 (dW (r + t)− dW (r)), (1.7)

where W is a normal Brownian motion and C1(H) is a constant to make (1.6) valid. This
is also used in [16]. In [17, 18], one uses

BH(t) = C2(H)

∫ t

0
(t− s)H− 1

2F

(
H − 1

2
,
1

2
−H,H +

1

2
, 1− t

s

)
dW (s), (1.8)

where F is the Gauss hypergeometric function. Another representation in [19] using frac-
tional integrals might be useful sometimes, which we choose to omit here.

One can show that (BH(t + h) − BH(t))/h converges in distribution (i.e. under the
topology of the dual of C∞

c (0,∞)) to ḂH(t) where the dot represents distributional time
derivative. We check that

lim
h→0+,h1→0

E

(
BH(h)

h

BH(t+ h1)−BH(t)

h1

)

= lim
h→0+,h1→0

1

2hh1

(
(t+ h1)

2H − (t+ h1 − h)2H − t2H + (t− h)2H
)

= H(2H − 1)t2H−2. (1.9)
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If we pick the initial time in (1.4) as t0 = 0 and choose the random noise as

RH(t) =
1√

H(2H − 1)Γ(2H − 1)
ḂH(t), (1.10)

we then have the model

mu̇ = −∇V (x)− 1

Γ(2H − 1)

∫ t

0
(t− s)2H−2u(s)ds +RH(t)

following the ‘fluctuation-dissipation theorem’.
We will assume throughout the paper that

H ∈
(
1

2
, 1

)
, (1.11)

as they are the physically most realistic regimes [10] and consequently 2− 2H ∈ (0, 1).
In the cases that inertia can be neglected, it is natural to consider the over-damped

equation with fractional noise:

1

Γ(2H − 1)

∫ t

0
(t− s)2−2Hu(s)ds = −∇V (x) +RH(t). (1.12)

Recall that the Caputo derivative starting from t = 0 for a C1 function is given by

Dα
c v =

1

Γ(1− α)

∫ t

0

v̇(s)

(t− s)α
ds. (1.13)

In [20] by two of the authors, a definition of the Caputo derivative that relies on a convolution
group was proposed so that it can be defined for a large class of locally integrable functions,
which agrees with (1.13) when the function is continuous on [0, t] and has a weak derivative
on (0, t]. Note that u(s) = ẋ(s), the left hand side of Equation (1.12) formally becomes the
Caputo derivative of x with α = 2− 2H and the equation becomes a fractional SDE:

D2−2H
c x = −∇V (x) +RH(t). (1.14)

From here on, we will only consider 1D case (x ∈ R) for convenience while the general
dimension is similar. The above discussion then motivates us to consider the fractional
stochastic differential equation (FSDE) where we relax the constraint between H and α:

Dα
c x = −V ′(x) + CHḂH , (1.15)

where

CH =
1√

H(2H − 1)Γ(1 − α)
(1.16)
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for α ∈ (1−H, 1]. The index obtained from the ‘fluctuation-dissipation theorem’ is denoted
as α∗ = 2− 2H. We will also denote the kernel associated with the Caputo derivative as

γ(t) =
1

Γ(1− α)
t−α. (1.17)

By [20], we may de-convolve and change the Caputo derivative to integral form as

x(t) = x(0)− 1

Γ(α)

∫ t

0
(t− s)α−1V ′(x(s))ds +

CH

Γ(α)

∫ t

0
(t− s)α−1dBH , (1.18)

where we formally used RHds = CHdBH . This integral will then be understood as the
rigorous definition of the FSDE (1.15). The last term in (1.18) is an integral with respect
to fractional Brownian motion, which we will make the meaning precise later.

While FSDEs have been discussed in some previous works already, the above equation
(1.18) motivated by the ‘fluctuation-dissipation theorem’ seems to be new. In [18, 16, 21],
they discussed the FSDEs driven by fractional Brownian motions but there is no memory
effect in the dissipating term. In [22], the Caputo derivative is used but they used the usual
white noise to drive the process. According to the above formal derivation, when modeling
a particle in contact with a heat bath with memory effects, the natural noise associated
with the Caputo derivative should be the fractional noise. This means we will probably
require α = α∗ for the correct model from physical concerns. We admit however that it is
possible that the models with α 6= α∗ may be used to describe some other situations instead
of the physical case we consider here.

In this work, we will study FSDE (1.18) and try to understand the role of the ‘fluctuation-
dissipation theorem’. For convenience, we denote

G(t) =
CH

Γ(α)

∫ t

0
(t− s)α−1dBH(s) =

∫ ∞

0
ft(s)dBH(s), (1.19)

where ft(s) =
CH
Γ(α) ((t − s)+)α−1 and α ∈ (1 −H, 1). We shall study the process G in the

next section.
The rest of the paper is organized as follows. In Section 2, we study the process G(t)

(1.19) for FSDE (1.18) in detail, including the meaning of the stochastic integral and the
regularity property of G(t). Based on the study of G(t), in Section 3, we show the existence
and uniqueness of strong solutions for FSDE (1.18) on the interval [0,∞) provided V ′(·)
is Lipschtiz continuous. In Section 4, we focus on the asymptotic behavior of the strong
solutions of (1.18), and argue that satisfying the ‘fluctuation-dissipation theorem’ leads the
correct physical behavior. In particular, in the linear regimes, (i.e. V ′(·) is a linear function),
we compute the solutions exactly and show that the solution converges in distribution to a
stationary process. We discuss that when the ‘fluctuation-dissipation theorem’ is satisfied,
there is balance between the dissipation and fluctuation effect from the random forcing
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and that the Gibbs measure is the final equilibrium distribution. In the nonlinear regime,
we argue formally that when the ‘fluctuation-dissipation theorem’ is satisfied, the FSDE
can be reduced from some Markovian processes in infinite dimensions. These Markovian
approaches might be useful for studying our FSDE. We can see formally from the second
approach that the final equilibrium distribution should be the Gibbs measure as well. The
rigorous study of the nonlinear regimes is left for future works.

2 The process G as a stochastic integral

To make the meaning of the FSDE precise, we must understand the process G. In this
section, we first review the stochastic integrals with respect to fractional Brownian motions
and then study some properties of G.

2.1 Stochastical integrals driven by fractional Brownian motions

The stochastic integrals with respect to fractional Brownian motions have been thoroughly
discussed in literature [23, 24, 17, 25]. In [23, 24], the stochastic integrals are defined
pathwise using the Riemann-Stieltjes integrals by making use of certain properties of the
paths. In [17, 25], the so-called Malliavin calculus is used to define the stochastic integrals
(Wick-Ito-Skorohod integrals, or the ‘divergence’) and the Ito’s formula is established, which
connects both definitions. For a review, one can refer to [15, 26]. In the case that the
integrand is deterministic, those two definitions agree. By (1.18), we only need the integrals
of deterministic processes with respect to fractional Brownian motion. We shall give a brief
introduction to the theory for deterministic processes and the readers can turn to the
references listed here for general processes.

Let us fix T > 0 and define the stochastic integrals on the interval [0, T ]. The definition
of integration of deterministic processes on [0, T ] starts with the step functions. Let E be
the set of all step functions on [0, T ], i.e. ϕ ∈ E is given by

ϕ =

m∑

j=1

aj1(tj−1,tj ](t), (2.1)

where 1E(t) is the indicator function of set E. The integral BH(ϕ) is defined by

BH(ϕ) =

∫ T

0
ϕdBH(t) =

m∑

j=1

aj

(
BH(tj)−BH(tj−1)

)
. (2.2)

Consider the inner product

〈ϕ1, ϕ2〉H = E(BH(ϕ1)B
H(ϕ2)). (2.3)
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It is easily verified that ∀ϕ1, ϕ2 ∈ E ,

〈ϕ1, ϕ2〉H = H(2H − 1)

∫ T

0

∫ T

0
|r − u|2H−2ϕ1(r)ϕ2(u)dudr

=
πκ(2κ + 1)

Γ(1− 2κ) sin(πκ)

∫ T

0
s−2κ(Iκuκf)(s)(Iκuκg)(s)ds, (2.4)

where κ = H − 1
2 and Iκ is the right Riemann-Liouville fractional calculus, given by ([19]):

(Iκf)(s) =





1

Γ(κ)

∫ T

s
f(u)(u− s)κ−1du, κ > 0,

− 1

Γ(1− κ)

d

ds

∫ T

s
f(u)(u− s)−κdu. κ < 0.

This then motivates the definition of

H0 =
{
ϕ ∈ L1

loc[0, T ] :

∫ T

0

∫ T

0
|r − u|2H−2|ϕ(r)||ϕ(u)|drdu < ∞

}
(2.5)

and

Λ =

{
f ∈ L1

loc[0, T ] :

∫ T

0
s−2κ(Iκuκf)2(s)ds < ∞

}
. (2.6)

Clearly, H0 ⊂ Λ. The integral BH(ϕ) can then be defined for ϕ ∈ Λ by approximating
them with step functions. In [27, 19], it is shown that both inner product spaces H0 and Λ
are not complete and therefore not Hilbert spaces. However, the space BH(E ) clearly has a
closure in L2(Ω, P ). This means some elements in the closure corresponds to distributions
that are not in L1

loc[0, T ]. Let H be the space of the closure of E under the inner product
(2.3) and thus H contains some distributions. ∀ϕ1, ϕ2 ∈ H0 ⊂ H ,

〈ϕ1, ϕ2〉H = E(BH(ϕ1)B
H(ϕ2)) = H(2H − 1)

∫ T

0

∫ T

0
|r − u|2H−2ϕ1(r)ϕ2(u)dudr. (2.7)

The following lemma provides a convenient way to check that some deterministic processes
can be integrated by fractional Brownian motion ([28, 15]):

Lemma 1. If H > 1/2 and ϕ ∈ L1/H([0, T ]), then

‖ϕ‖H0
≤ bH‖ϕ‖L1/H [0,T ]. (2.8)

where

‖ϕ‖2H0
=

∫ T

0

∫ T

0
|r − u|2H−2|ϕ(r)||ϕ(u)|drdr.
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2.2 Some basic properties of G

We can easily verify that ft ∈ L1/H [0, T ] whenever t ≤ T , and hence the integral on [0, T ] is
well defined. Further, for any T1 > t, T2 > t, the integral of ft over [0, T1] and [0, T2] agree
on [0,min(T1, T2)]. In this sense, the integral

∫∞
0 ft(s)dBH(s) can then be understood as in

[0, T ] for any T > t.
Roughly speaking, since BH is H − ǫ Hölder continuous for any ǫ ∈ (0,H), G(t) should

be like α+H − 1− ǫ Hölder continuous for any ǫ ∈ (0, α+H − 1) by the regularity of BH .
We shall make this precise in this subsection.

Lemma 2. G(t) is a Gaussian process with mean zero and covariance given by

φ(t1, t2) = E(G(t1)G(t2)) =
B(2H − 1, α)

B(α, 1 − α)Γ(α)
×

∫ min(t1,t2)

0
dr
(
(t1 − r)α−1(t2 − r)2H−2+α + (t2 − r)α−1(t1 − r)2H−2+α

)
. (2.9)

In particular, if α = α∗, G(t)
d

= βHB1−H where
d

= means they have the same distribution,
and

βH =

√
2√

Γ(3− 2H)
. (2.10)

In other words, G(t) is a fractional Brownian motion with Hurst parameter 1 −H up to a
constant βH if α = α∗.

Proof. Clearly, G(t) is a Gaussian process with mean zero because any linear operation of
Gaussian process is again Gaussian.

Without loss of generality, we can assume t2 ≥ t1 ≥ 0. The covariance can be computed
using the isometry (2.7)

E(G(t1)G(t2)) = 〈ft1 , ft2〉H =

1

Γ(α)B(α, 1 − α)

∫ t1

0

∫ t2

0
|r − u|2H−2(t1 − r)α−1(t2 − u)α−1dudr.

We break the integral into two parts I1 + I2, where

I1 =
1

Γ(α)B(α, 1 − α)

∫∫

u≥r
. . . dudr, I2 =

1

Γ(α)B(α, 1 − α)

∫∫

r≥u
. . . dudr.

By explicit computation,

I1 =
1

Γ(α)B(α, 1 − α)

∫ t1

0
dr(t1 − r)α−1

∫ t2

r
du(u− r)2H−2(t2 − u)α−1

=
B(2H − 1, α)

Γ(α)B(α, 1 − α)

∫ t1

0
(t1 − r)α−1(t2 − r)2H−2+αdr.
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This can further be written in terms of the so-called hypergeometric functions but we choose
not to do it. Similarly,

I2 =
1

Γ(α)B(α, 1 − α)

∫ t1

0
du(t2 − u)α−1

∫ t1

u
dr(r − u)2H−2(t1 − r)α−1

=
B(2H − 1, α)

Γ(α)B(α, 1 − α)

∫ t1

0
(t2 − u)α−1(t1 − u)2H−2+αdu.

If α = α∗ = 2− 2H, the integrals can be evaluated exactly and we have

I1 + I2 =
1

Γ(3− 2H)

(
t2−2H
1 + t2−2H

2 − (t2 − t1)
2−2H

)
,

which shows the last claim.

The above computation shows trivially that

Corollary 1. In the case V (x) is a constant, the solution of FSDE D2−2H
c x = RH(t)

satisfies Var(x) ∝ t2−2H . In other words, we have subdiffusion.

This agrees with the Langevin model in [10, Theorem 2.2], though the author was
discussing the case with mass.

Lemma 3. Suppose 0 < β ≤ 1 and a ≥ b ≥ 0. Then,

aβ − bβ ≤ (a− b)β. (2.11)

Proof. This claim follows trivially from
∫ b
0 (a− r)β−1dr ≤

∫ b
0 (b− r)β−1dr.

Proposition 1. There exists C > 0 such that E|G(t2) −G(t1)|2 ≤ C|t2 − t1|2H+2α−2 and
therefore G(t) is H + α− 1− ǫ Hölder continuous for any ǫ > 0.

Proof.
E|G(t2)−G(t1)|2 = φ(t2, t2) + φ(t1, t1)− 2φ(t1, t2).

To be notationally convenient, let us define

ϕ(s, t) =
B(α, 1− α)Γ(α)

B(2H − 1, α)
φ(s, t).

Without loss of generality, we assume t2 ≥ t1. Applying a+b ≥ 2
√
ab whenever a ≥ 0, b ≥ 0,

we have

ϕ(t1, t2) ≥ 2

∫ t1

0
(t2 − r)H+α−3/2(t1 − r)H+α−3/2dr

10



If H + α− 3/2 ≤ 0, then,

ϕ(t1, t2) ≥ 2

∫ t1

0
(t2 − r)2H+2α−3dr =

2

2H + 2α− 2
(t2H+2α−2

2 − (t2 − t1)
2H+2α−2).

Hence,

E|G(t2)−G(t1)|2 ≤ C1

(
t2H+2α−2
1 − t2H+2α−2

2

+ 2(t2 − t1)
2H+2α−2

)
≤ 2C1(t2 − t1)

2H+2α−2,

since 0 < 2H + 2α− 2 ≤ 1, t2H+2α−2
1 − t2H+2α−2

2 ≤ 0.
If H + α− 3/2 > 0, then

ϕ(t2, t2) + ϕ(t1, t1)− 2ϕ(t1, t2) =

∫ t2

t1

(t2 − r)2H+2α−3dr+

+

∫ t1

0
((t2 − r)H+α−3/2 − (t1 − r)H+α−3/2)2dr.

The first integral is easily seen to be bounded by C|t2 − t1|2H+2α−2 for some constant C.
For the second term, we have:

(
(t2 − r)H+α− 3

2 − (t1 − r)H+α− 3

2

)2
=

(
H + α− 3

2

)2(∫ t2

t1

(s− r)H+α− 5

2ds

)2

.

Let Iǫ = (
∫ t2
t1
(s− r + ǫ)H+α−5/2ds)2 with r ≤ t1. Then,

∫ t1

0
Iǫdr ≤ (t2 − t1)

∫ t1

0

∫ t2

t1

(s− r + ǫ)2H+2α−5dsdr = (t2 − t1)

∫ t2

t1

∫ t1

0
. . . drds

=
(t2 − t1)

|2H + 2α− 4|(2H + 2α− 3)

(
(t2 − t1 + ǫ)2H+2α−3 − ǫ2H+2α−3

− (s+ ǫ)2H+2α−3|t2t1
)
≤ Cα,H(t2 − t1)(t2 − t1 + ǫ)2H+2α−3.

Note that 2H + 2α − 4 < 0. Taking ǫ → 0 shows that the second term is bounded by
C(t2 − t1)

2H+2α−2.
The Kolmogorov continuity criteria shows that G(t) is H +α− 1− ǫ Hölder continuous

for any ǫ ∈ (0,H + α− 1) almost surely, ending the proof.
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Lemma 4. Let {gβ} be the convolution group in [20]. In particular, for β > −1

gβ =





1
Γ(β) t

β−1, β > 0,

δ(t), β = 0,
1

Γ(1+β)D
(
u(t)tβ

)
, β ∈ (−1, 0).

D here means the distributional derivative. Let α1 ∈ (1 −H, 1) and α2 + α1 ∈ (1 −H, 1).
Then, it holds that gα2

∗Gα1
= Gα1+α2

.

Proof. It suffices to look at a continuous path of BH . For such a path, we can mollify to
Bǫ

H = BH ∗ ηǫ where ηǫ = 1
ǫη(

t
ǫ) with η ∈ C∞

c (−∞, 0), 0 ≤ η ≤ 1 and
∫
ηdt = 1. Then,

gα2
∗ (gα1

∗ d
dtB

ǫ
H) = gα1+α2

∗ d
dtB

ǫ
H by [20]. Taking ǫ → 0 and using the Hölder continuity

of BH , we arrive at the conclusion.

3 Existence of the strong solutions

For the discussion on existence of solutions of a class of SDEs driven by fractional Brownian
motion, one may refer to [18]. However, our FSDEs are different from those studied as we
have both the Caputo derivatives and fractional Brownian motions. We first define the
so-called strong solution:

Definition 1. Given a probability space (Ω,F , P ) and a random variable x0 on this space,
suppose BH is a fractional Brownian motion over this space, which may be coupled to x0. A
Strong solution of the fractional stochastic differential equation (1.15) with initial condition
x0 on the interval [0, T ) (T > 0) is a process x(t) that is continuous and adapted to the
filtration (Gt) with Gt = ∩s>t(σ(BH(τ), 0 ≤ τ ≤ s) ∪ σ(x0)), ∀t ∈ [0, T ), satisfying

(1) P (x(0) = x0) = 1.
(2) With probability one, we have ∀t ∈ [0, T ), Equation (1.18) holds.

We now prove that the strong solution exists and is unique given the initial data.

Theorem 1. Let H > 1/2 and α ∈ (1 − H, 1). Assume that V ′(·) is Lipschitz continu-
ous. Then, there exists a unique strong solution on [0,∞) to the FSDE (1.15) for a given
fractional Brownian motion and initial distribution in the sense of Definition 1.

Proof. We just consider a sample point x0 and a sample path G with G being continuous.
We then construct a path that satisfies the integral equation given this sample initial data.

By Proposition 1, G(t) is continuous. Consider the sequence given by

x(0) = x0,

12



and x(n), n ≥ 1 is given by

x(n)(t) = x0 −
1

Γ(α)

∫ t

0
(t− s)α−1V ′(x(n−1)(s))ds +G(t).

Assume L is a Lipschitz constant for V ′(·). Introducing gγ = 1
Γ(γ) t

γ−1, we find that

{gγ}γ>0 forms a convolution semigroup. We define

en = x(n) − x(n−1).

Explicit formula tells us that

e1 = −V ′(x0)gα+1 +G(t),

and that

|en| = | − gα ∗ (V ′(xn−1)− V ′(xn−2))| ≤ Lgα ∗ |en−1|, n ≥ 2.

Hence,

|en| ≤ Ln−1g(n−1)α ∗ |e1|.

Direct computation shows that sup0≤t≤T g(n−1)α ∗ |e1| decays exponentially in n. Hence,∑
n |en| converges. It follows that

∑
n e

n converges uniformly on any interval [0, T ] with
T ∈ (0,∞). The limit is also a continuous function. It turns out that the limit satisfies the
integral equation.

For the uniqueness, assume that both x(t) and y(t) are solutions. Then, we take a
sample where both x(t) and y(t) are continuous. For this sample, ∀t > 0,

|x(t)− y(t)| = 1

Γ(α)

∣∣∣∣
∫ t

0
(t− s)α−1(V ′(x(s))− V ′(y(s)))

∣∣∣∣ ds ≤ L(gα ∗ |x− y|)(t).

Applying this inequality iteratively and using the semi-group property of gγ , we find

|x− y|(t) ≤ Lngnα ∗ |x− y|.

Fixing T > 0, the right hand side goes to zero uniformly on [0, T ]. Then, we find that x = y
on [0, T ] for this sample path. Since both solutions are continuous almost surely, then x = y
on [0, T ] almost surely. By the arbitrariness of T , x = y almost surely. The uniqueness then
is shown. This then completes the proof of the theorem.

If V ′(x) is only locally Lipschitz, we probably need V to be confining, or in other words,
lim|x|→∞ V (x) = ∞ and e−βV (x) ∈ L1 for any β > 0 for the global existence of the solution.
We are not going to pursue this issue any further in this work.
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4 Asymptotic analysis

4.1 Linear force case

Consider that V ′(x) = kx for some k > 0. By Theorem 1, the solution exists and is unique.
For each continuous sample path G(t), the equation can be solved exactly. To see this, let
T > 0. We set G̃(t) = G(T ) when t > T . Consider the equation

x(t) = x(0)− k

Γ(α)

∫ t

0
(t− s)α−1x(s)ds+ G̃(t). (4.1)

As all functions are continuous, we can then take the Laplace transform (denoted by L) on
both sides. Since L(tα−1) = Γ(α)s−α, we find

L(x) = x0s
α−1

sα + k
+ L(G̃)

(
1− k

sγ + k

)
. (4.2)

Denote

eα,k(t) = Eα(−ktα), (4.3)

where

Eα(z) =
∞∑

n=0

zn

Γ(nα+ 1)
(4.4)

is the Mittag-Leffler function. We have by the Laplace transform of eα,k that

x(t) = x0eα,k(t) + G̃(t) +

∫ t

0
G̃(t− s)ėα,k(s)ds.

Recall again that the dot means derivative on time. This is valid for t ≤ T . Since T is
arbitrary, then, we have for any t ≥ 0:

x(t) = x0eα,k(t) +

(
G(t) +

∫ t

0
G(t− s)ėα,k(s)ds

)
=: X1 +X2. (4.5)

Since G(t) is a Gaussian process, X2 = G(t) +
∫ t
0 G(t− s)ėα,k(s)ds is Gaussian. The mean

of X2 is clearly zero. We can investigate the variance to see its asymptotic behavior.
We first of all introduce a lemma regarding the behavior of eα,k:

Lemma 5. eα,k solves the equation Dα
c eα,k = −keα,k, eα,k(0) = 1. It is continuous on

[0,∞) and smooth on (0,∞). eα,k = O(t−α) as t → ∞. ėα,k(t) < 0 and ėα,k(t) ∼ Ctα−1

when t → 0+. There exist C1 > 0, C2 > 0 such that for t ≥ 1,

C1t
−α−1 ≤ |ėα,k(t)| ≤ C2t

−α−1. (4.6)
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Denoting the Heaviside step function as u(t) and gα = u(t)
Γ(α) t

α−1, we have

u(t)ėα,k = −kgα − kgα ∗ (u(t)ėα,k). (4.7)

Proof. The fact that eα,k is the solution to the IVP is well-known. One can refer to [29, 20].
Using the group technique and the inverse formula introduced in [20], we find that

u(t)eα,k = u(t) (1 + gα ∗ (−ku(t)eα,k)) .

Taking the distributional derivative on both sides, we find that

u(t)ėα,k = −kgα − kgα ∗ (u(t)ėα,k).

Since all distributions are locally integrable, they can be understood in the Lebesgue sense
and we have the equality.

By the series expansion of Mittag-Leffler functions (Eq. (4.4)), we find the local behavior
of ėα,k near t = 0. From the series expansion, it is seen that eα,k is strictly decreasing on
(0,∞). The asymptotic behavior at t → ∞, is obtained by Tauberian analysis ([30]) using
the Laplace transforms of ėα,k(t) and ëα,k(s) (Note L(ėα,k) = − k

sα+k ), or the asymptotic
behavior of Mittag-Leffler function directly.

Computing the variance of X2 directly yields an integral that is hard to evaluate. To
compute the variance, we should find an alternative form of X2. As in [10], one can compute
formally that,

L(G) =
CH

Γ(α)

∫ ∞

0
e−st

∫ t

0
(t− τ)γ−1dBH(τ) = CHs−γ

∫ ∞

0
e−sτdBH(τ).

Hence, L(G)(1 − λ
sγ+λ) = CH

∫∞
0

e−sτ

sγ+λdBH . This then motivates the following alternative
form of X2 which we will prove in another way:

Lemma 6. The process X2 can be written as

X2 = −CH

k

∫ t

0
ėα,k(t− τ)dBH(τ). (4.8)

Proof. We first of all rewrite
∫ t

0
G(t− s)ėα,k(s)ds =

CH

Γ(α)

∫ t

0

∫ t−s

0
(t− s− τ)α−1dBH(τ)ėα,k(s)ds.

As in the proof of Lemma 4, we may mollify the random path. Then, we can change the
order of integration. Taking the mollifying parameter to zero, we get

CH

Γ(α)

∫ t

0

∫ t−τ

0
(t− s− τ)α−1ėα,k(s)dsdBH(τ).
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By the identity for ėα,k (Eq. (4.7)), we have

1

Γ(α)

∫ t−τ

0
(t− s− τ)α−1ėα,k(s)ds = −gα − 1

k
ėα,k.

This then yields

∫ t

0
G(t− s)ėα,k(s)ds = − CH

Γ(α)

∫ t

0
(t− τ)α−1dBH(τ)− CH

k

∫ t

0
ėα,k(t− τ)dBH(τ).

This then shows the claim.

To be notational convenient, let us denote

r(t) = −ėα,k ≥ 0. (4.9)

By the isometry, we can compute that

σ(t) = Var(X2(t)) = H(2H − 1)
C2
H

k2

∫ t

0

∫ t

0
r(t− u)r(t− v)|u− v|2H−2dvdu

=
1

k2Γ(1− α)

∫ t

0

∫ t

0
r(u)r(v)|v − u|2H−2dvdu. (4.10)

Lemma 7. Let α ∈ (1−H, 1). σ = limt→∞ σ(t) exists and there exist C1 > 0, C2 > 0 such
that

C1t
2H−2−α < σ − σ(t) < C2t

2H−2−α. (4.11)

Proof. Note that r is positive. By the formula of r, we find

∫ ∞

0
rdt = 1.

By Lemma 5, there exist C1 > 0, C2 > 0 such that for t ≥ 1

C1t
−α−1 ≤ r ≤ C2t

−α−1.

Then, that σ = limt→∞ σ(t) exists is clear.
Consider the remainder σ− σ(t), which is an integral over the region R

2
≥0 \ [0, t]× [0, t].

Due to the symmetry, we have

k2Γ(1− α)(σ − σ(t)) = 2

∫ ∞

t
dur(u)

∫ u

0
r(v)(u− v)2H−2dv.
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Consider that t is large and therefore u ≥ t > 1. Below, the variable C denotes a generic
constant which is independent of u and t but the concrete values could change from line to
line. Denote the inside of the above integral as

J(u) =

∫ u

0
r(v)(u− v)2H−2dv ≤

∫ 1

0
r(v)(u− v)2H−2dv +

∫ u

1
Cv−α−1|u− v|2H−2dv.

The first term is controlled by (u− 1)2H−2
∫ 1
0 r(v)dv. The second term

Cu2H−2−α

(∫ 1/2

1/u
z−1−α(1− z)2H−2dz +

∫ 1

1/2
z−1−α(1− z)2H−2dz

)

≤ Cu2H−2−α

(
22−2H 1

α
(uα − 2α) + C̄

)
≤ Cu2H−2,

where C̄ =
∫ 1
1/2 z

−1−α(1 − z)2H−2dz independent of u. Hence by the asymptotic behavior
of r,

σ − σ(t) ≤ C

∫ ∞

t
|r(u)|u2H−2du ≤ Ct2H−2−α.

For the other direction, we just note J(u) ≥ u2H−2
∫ 1
0 |r(v)|dv.

Theorem 2. Let V = 1
2kx

2. As t → ∞, x(t) in (4.5) converges in distribution to a normal
distribution, i.e., x(t) tends to a stationary Gaussian process: x∞(t). The covariance θ(τ) =
E(x∞(t)x∞(t+ τ)) of this stationary process satisfies

F(θ(τ)) =
2Γ(2H + 1) sin(Hπ)

Γ(1− α)

|ω|1−2H

|(iω)α + k|2 , (4.12)

where F(·) is the Fourier transform operator for tempered distributions. If α = α∗, the
covariance is given exactly by

θ(τ) =
1

k
eα,k(τ). (4.13)

In particular, if α = α∗, x∞(t) satisfies the Gibbs measure

µ(dx) ∼ exp(−1

2
kx2)dx.

Proof. By inspection of the solution (4.5), it is clear that X1 → 0 almost surely and in L2

as t → ∞. We only have to focus on X2.
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Since X2 is a Gaussian process with mean zero, we only have to show that Var(X2)
converges. We compute the covariance

σ(τ ; t) = E(X2(t)X2(t+ τ)) =
1

k2Γ(1− α)

∫ t

0

∫ t+τ

0
r(t− u)r(t+ τ − v)|u − v|2H−2dvdu

=
1

k2Γ(1− α)

∫ t

0

∫ t+τ

0
r(u)r(v)|v − τ − u|2H−2dvdu.

Hence, as t → ∞,

σ(τ ; t) → θ(τ) =
1

k2Γ(1− α)

∫ ∞

0

∫ ∞

0
r(u)r(v)|v − τ − u|2H−2dvdu.

This is valid for −∞ < τ < ∞ by the decay rate of r. Hence, X2 converges in distribution
to a normal distribution.

It is not hard to show that θ(τ) is bounded, and therefore it is a tempered distribu-
tion. The Fourier transform exists. The following formal computation can be justified by
considering θ(τ)e−ǫτ2 and then taking the limit ǫ → 0 under the topology of the tempered
distribution.

∫ ∞

−∞
e−iωτ

∫ ∞

0

∫ ∞

τ
r(u− τ)r(v)|u− v|2H−2dudvdτ

=

∫ ∞

0

∫ ∞

−∞

∫ u

−∞
r(u− τ)e−iωτdτ |u− v|2H−2r(v)dudv.

The inner most integral turns out to be

e−iωu

∫ ∞

0
eiωτ r(τ)dτ = I(−iω)e−iωu,

with

I(s) =
k

sα + k
.

The whole thing turns out to be

I(−iω)I(iω)

∫ ∞

−∞
e−iωz|z|2H−2dz =

k2

|(iω)α + k|2 (2Γ(2H + 1) sin(Hπ))|ω|1−2H ).

This shows the first claim.
If α = α∗ = 2− 2H, we find that

F(θ(τ)) =
2 sin(Hπ)|ω|1−2H

|(iω)α + k|2 .
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Recall that we have the identity

∫ ∞

0
e−tsEα(−ktα)dt =

sα−1

sα + k
.

It follows that
∫ ∞

−∞
e−iωtEα(−k|t|α)dt = 2

Re((iω)α−1)(k + (−iω)α)

|k + (iω)α|2 =
2k sin(απ/2)|ω|α−1

|k + (iω)|2 .

Hence, we find in this case

θ(τ) =
1

k
eα,k(τ).

If follows that the final equilibrium is a normal distribution with variance 1/k and the
last claim follows.

Remark 1. It is clear that X2 never converges in Lp or almost surely, as the random force
is being present for all the time.

The variance of the first term is ∼ t−2α while the variance of the second term increases
to the stationary variance with rate t2H−2−α. Hence, the loss of the variance of the first
term can be balanced by the gain of the second term only if −2α = 2H − 2− α or α = α∗.
If α is too small, then, the effect of initial data dampens slowly, or the dissipation caused
by viscosity is small, which cannot balance the fluctuation. If α is too big, then the effect of
initial data dampens too fast due to strong dissipation. Hence, the fluctuation-dissipation
theorem must be satisfied to model a true physical system so that there is balance. We
also remark that, as we have seen, even if there is no balance between fluctuation and
dissipation, the whole process will still tends to a normal distribution, though it might not
be the correct physical equilibrium.

4.2 The general case

We have seen that for linear regimes, when α = α∗ is considered, the distribution converges
to the Gibbs measure with algebraic rate. For general regimes, even for this critical case
α = α∗, proving that the distribution converges to a stationary process algebraically seems
hard. In the following, we propose two possible Markovian embedding approaches that may
be helpful for studying the asymptotic behavior. We believe that for general V (·), algebraic
convergence to the Gibbs measure is still true if the ‘fluctuation-dissipation theorem’ is
satisfied, i.e., α = α∗.

19



4.2.1 A first Markovian approach

If the kernel γ(t) is the sum of finitely many exponentials, then, the GLE has a Markovian
representation (see [31] for the details). In our FSDE, the kernel γ(t) = 1

Γ(1−α) t
−α is

completely monotone. By the famous Bernstein theorem [30], any completely function on
(0,∞) is the Laplace transform of a Radon measure on [0,∞). In other words, the kernel
γ(·) can be written as superpositions of infinitely many exponentials. Based on this fact, we
will generalize the representation in [31] formally to our case here, though the total mass
for the measure is not finite.

To understand the idea, we first of all consider the deterministic equation

Dα
c x = γ(t) ∗ (u(t)ẋ) = x, x(0) = x0. (4.14)

where x(·) is some unknown continuous function and ẋ is understood as the distributional
derivative. It is well-known that the solution of this equation is x = x0Eα(t

α), which is
continuous on [0,∞) and smooth on (0,∞), and further ẋ ≥ 0 [20].

The kernel γ(t) is completely monotone and γ =
∫
[0,∞) e

−λtµ(dλ). It turns out the
Radon measure µ is absolutely continuous with respect to the Lebesgue measure:

γ(t) =

∫ ∞

0
e−λtµ(dλ) =

∫ ∞

0
e−λtρ(λ)dλ. (4.15)

By explicit computation, we find that

ρ(λ) =
1

B(α, 1− α)
λα−1. (4.16)

where B(·, ·) is the Beta function.
Consider the following system





x = ξ, t > 0, x(0+) = x0,

ξ̇λ = −λξλ +
√
ρẋ, ξλ(0) = 0,

ξ = limǫ→0

∫∞
0 e−λǫ√ρξλdλ.

(4.17)

From the second equation, one obtains that

ξλ =

∫ t

0

√
ρe−λ(t−s)ẋ(s)ds, (4.18)

which implies that ξλ is Lebesgue-measurable in λ and ξ in the third equation is well-defined.
Provided the properties of x in advance,

∫
ρe−λ(t−s+ǫ)|ẋ|ds is convergent for t > 0. Switching

the order of integration and applying monotone convergence theorem (ẋ is positive),

ξ = lim
ǫ→0

∫ ∞

0

∫ t

0
ρe−λ(t−s+ǫ)ẋdsdα = lim

ǫ→0

1

Γ(1− α)

∫ t

0
(t − s + ǫ)−αẋ(s)ds = Dα

c x. (4.19)
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The first equation tells us that

x = Dα
c x, t > 0, (4.20)

which recovers the equation. This system then decouples the memory to a system of un-
countable Markovian functions.

Let us mention a subtlety of the system: it seems that the initial value of x is unimpor-
tant as one can reduce the system to

ξ̇λ = −λξλ +
√
ρξ̇, t > 0. ξλ(0) = 0.

ξ = lim
ǫ→0

∫ ∞

0
e−λǫ√ρξλdλ.

This seems to be solvable without considering x0. Actually, this system is not well-posed.
The reason is that the equation for ξλ may not be valid at t = 0 and limt→0 ξ(t) 6= ξ(0) = 0.
(In the original system, ξ(0) = ξ(0+) = x(0+) is equivalent to limt→0 D

α
c x = 0.) We must

know limt→0 ξ(t) = limt→0D
α
c x to start the process, which is equivalent to assigning the

initial value of x.

Remark 2. Note that the new system is Markovian in the sense that if all the information
of ξλ(t1) and also ξ(t1+) = ξ(t1) are given at some t1 > 0, then we can continue the system
without knowing the history. For example, we can solve that

ξλ(t) = ξλ(t1)e
−λ(t−t1) +

∫ t

t1

e−λ(t−s)√ρξ̇(s)ds.

By the same approach, we find for t > t1 that

x(t) = lim
ǫ→0

∫ ∞

0
e−λǫe−λ(t−t1)√ρξλ(t1)dλ+Dα

c,t1x. (4.21)

where the symbol Dα
c,t1x means the Caputo derivative starting from t1. We need to know all

the ξλ(t1) values to continue. Note that we must also specify ξ(t1+) = ξ(t1) to continue the
process. This is the same subtlety as what we discussed above for t = 0. The reason is that
we do not require Equation (4.21) to be valid at t = t1. If we specify it to be valid at t = t1,
then limt→t1 D

α
c,t1x = 0, which is equivalent to the continuity condition ξ(t1+) = ξ(t1).

Back to our FSDE (1.15), the computation for the deterministic case then leads us to
consider:





ξ = −V ′(x), t > 0

ξ = limǫ→0+
∫∞
0 ξλe

−ǫλρ1/2dλ, t > 0

ξ̇λ = −λξλ +
√
ρẋ(t) +

√
2λẆλ(t).

(4.22)
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Here we assume ξα(0)’s are i.i.d, normal with variance 1. This is a random DAE system,
and clearly Markovian. The issue is that we have an uncountable-dimensional stochastic
process driven by an uncountable-dimensional Wiener process (normal Brownian motion).

Clearly, as long as we have the random noise, we may not be able justify the compu-
tation as we did for the deterministic cases. However, a formal computation may still be
illustrating, through which we argue that this DAE system is equivalent to our FSDE. By
solving ξλ formally, we have

ξ(t) = lim
ǫ→0+

∫

[0,∞)
ξλ(0)

√
ρe−λ(t+ǫ)dλ+ lim

ǫ→0+

∫

[0,∞)

∫ t

0
ρ(λ)e−λ(t−s+ǫ)ẋ(s)dsdλ

+ lim
ǫ→0

∫

[0,∞)

∫ t

0

√
2λρe−λ(t−s+ǫ)dWλ(s)dλ. (4.23)

Denote the random noise as

R(t) = lim
ǫ→0

∫

[0,∞)
ξα(0)

√
ρe−λ(t+ǫ)dλ+

∫

[0,∞)

∫ t

0

√
2λρeλ(t+ǫ−s)dWλ(s)dλ. (4.24)

In the case t > 0, τ ≥ 0, we have

E(R(t)R(t+ τ)) =

∫

[0,∞)
ρe−λ(2t+τ) Var(ξ0)dλ+

∫

[0,∞)

∫ t

0
2λρ(α)e−λ(2t+τ−2s)dsdλ

= γ(2(τ + 2t)) + γ(τ)− γ(2(τ + 2t)) = γ(τ). (4.25)

Of course, the change of order of integration and expectation is not justified rigorously, but
the computation is still interesting. Since both R(t) and CHḂH are Gaussian process and
they have the same covariance, we can then identify them.

We now check the other term. Since ρe−ǫλ ∈ L1[0,∞), we may change the order of
integration and have

lim
ǫ→0

∫ t

0
γ(t− s+ ǫ)dx(s) = Dα

c x, t > 0. (4.26)

Hence,

ξ = Dγx+R(t), t > 0. (4.27)

This then formally verifies that FSDE (1.15) can be obtained from the Markovian DAE
system.

The same subtlety appears here. As t → 0, the integral
∫ t
0 γ(t − s)dx(s) may not

vanish. This means the limit limt→0 and the limit limǫ→0 can not be switched. Hence,
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ξ(0) 6= Dαx|t=0 +R(0). Formally, that limt→0+ ξ(t) has a nonzero limit which has nothing
to do with {ξλ(0)} allows us to specify the initial condition x0.

To study the stochastic DAE system, one may have to put some structure in the space of
infinite-dimensional Gaussian process, and then somehow figure out that the Gibbs measure
for the whole system is an invariant measure. This will then be left for future.

4.2.2 A second Markovian approach

We find that the formulation proposed in [32, 33] for the generalized Langevin equation
may be another promising direction to study the asymptotic behavior of our FSDE. (This
formulation is the continuous version of the Kac-Zwanzig model mentioned in [8, 9, 10].)
Formally, if one takes them → 0 limit for the special kernel, our FSDE can be obtained. This
limit for the classical Langevin equation (Eq. (1.1)) is called the Smoluchowski-Kramers
approximation [34] and the limit for generalized Langevin equation has not been studied yet
to our best knowledge. We will summarize the formulation here with some modifications
that are better suited to our case and then give a brief discussion.

Assume that the heat bath is modeled by infinitely many free phonons and the cor-
responding scalar field ϕ is given by the massless Klein-Gordon equation, which is the
standard wave equation,

(−∂2
t +∆)ϕ = 0. (4.28)

The Lagrangian density of this equation reads

L = −1

2
∂µϕ∂µϕ, (4.29)

where µ goes over the time-spatial coordinate in relativity. This then motivates the Hamil-
tonian of the heat bath

Hh =
1

2

∫

Rn

(|∇ϕ|2 + |π|2)dx, (4.30)

where π = ∂tϕ should be regarded as a new variable.
This Hamiltonian motivates that the correct space for the heat bath is V = H1(Rn) ⊗

L2(Rn) with the inner product given by

〈f, g〉 =
∫

Rn

(∇f1 · ∇g1 + f2g2)dx,∀f = (f1, f2) ∈ V, g = (g1, g2) ∈ V. (4.31)

Note that Gaussian measures can be constructed over this Hilbert space. ∀f, g ∈ V and ξ
is an V-valued random variable satisfying a Gaussian measure µβ

φ0
indexed by φ0 ∈ V and

β > 0, then,

E(〈f, ξ − φ0〉〈ξ − φ0, g〉) = β−1〈f, g〉. (4.32)
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Formally, one can understand the Gaussian measure as centered at φ0 = (ϕ0, π0) and

µβ
φ0
(dφ) = Cβ exp

(
−β

2
〈φ− φ0, φ− φ0〉

)
dφ,

where Cβ is a normalization constant and dφ is like a ‘Lebesgue measure’ in the Hilbert
space. To be convenient, later we use µφ0

to mean µ1
φ0
.

The coupling between the particle we consider with the heat bath is given by

HI =

∫

Rn

ϕ(x)ρ(q − x)dx =

∫

Rn

ϕ(x)ρ(x − q)dx,

where ρ is a radially symmetric function which can be understood as the coupling strength.
In literature [32, 33], ρ is assumed to be in L2, so that the coupling strength is finite. The
cases where ρ is not square integrable must be taken as the ideal limit under certain regimes.
If ρ ∈ L2, the interaction Hamiltonian then can be approximated by the dipole expansion:

HI = q ·
∫

Rn

∇ϕρdx+
q2

2

∫

Rn

|ρ2|dx. (4.33)

The second term is some correction added to make the model clean so that the GLE can
be derived from this model.

The total Hamiltonian is then given by

H =
1

2m
p2 + V (q) +

1

2

∫

Rn

(|π|2 + |∇ϕ|2)dx+ q ·
∫

Rn

∇ϕρdx+
q2

2

∫

Rn

|ρ2|dx

=
1

2m
p2 + V (q) +

1

2

∫

Rn

|∇ϕ+ qρ|2 + |π2|dx. (4.34)

where lim|q|→∞ V (q) = ∞ and exp(−βV (·)) ∈ L1(Rn) for any β > 0. At this point, it is
convenient to find αj ∈ H1 so that ∂iαj = ρδij . This can be constructed easily in Fourier
space

α̂j(k) =
nρ̂(k)kj

i|k|2 . (4.35)

Note that ρ̂ is also radially symmetric so that
∫
nk21f(|k|)dk =

∫
|k|2f(|k|)dk. Denote

α = (αj). Then,

∇ϕ+ qρ = ∇(ϕ+ q · α). (4.36)

The system of equations then are given by

q̇ =
∂H
∂p

= p/m, ṗ = −∂H
∂q

= −V ′(q)−
∫

Rn

∇(ϕ+ q · α)ρdx, (4.37)

ϕ̇ =
δH
δπ

= π, π̇ = −δH
δϕ

= ∆(ϕ+ q · α). (4.38)
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Introducing u = p/m, the Hamiltonian system admits an invariant measure proportional to
exp(−H), which is the Gibbs measure

dµ = Z−1

(
exp

(
− mu2

2
− V (q)

)
dqdu

)
× dµ−q·α, (4.39)

where Z is a normalization constant. Conditioning on q, the measure for (ϕ, π) is a Gaussian
measure µ−q·α in V. If we average out the heat bath variables, the marginal distribution of
for the particle is exactly,

µA(dqdu) = Z−1
A exp

(
−mu2

2
− V (q)

)
dqdu, (4.40)

with ZA being a normalization constant.
From here on, we consider only n = 1 (general dimension is similar but the notations

are messier) and assume that the initial distribution is given by

dµ|t=0 = µ0
A(q, u)× µ−q·α. (4.41)

This means we allow the measure the the particle to be arbitrary but the heat bath is
Gaussian conditioning on the particle position, i.e. (ϕ + q(0)α, π) is mean zero Gaussian
conditioning on q(0).

Let φ =

(
ϕ+ q(t)α

π

)
. The second group of equation can be written in the vector

form

∂tφ = Aφ+

(
q̇α
0

)
, A =

(
0 1
∂2
x 0

)
. (4.42)

Then,

φ = eAtφ0 +

∫ t

0
eA(t−s)

(
q̇α
0

)
ds. (4.43)

Define ξ = (α, 0) (α is a scalar since n = 1). Then

∫

R

∂x(ϕ+ qα)ρdx = 〈φ, ξ〉, (4.44)

where 〈·, ·〉 is the inner product (4.31) for n = 1. By taking the Fourier transform, it can
be shown then that

−
〈∫ t

0
eA(t−s)

(
q̇α
0

)
ds, ξ

〉
= −

∫ t

0
γ(t− s)q̇(s)ds, (4.45)
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where

γ(t) =

∫

R

|ρ̂|2eiktdk. (4.46)

Since ρ ∈ L2(R), γ(t) is an even function and continuous and γ(0) =
∫
|ρ|2dx.

Hence, we obtain

q̇ = u, mu̇ = −V ′(q)−
∫ t

0
γ(t− s)q̇(s) +R(t), (4.47)

where

R(t) = −
〈
∂xφ0, e

−Atξ
〉
. (4.48)

Recall φ0 = (ϕ + q(0)α, π) satisfies the mean zero Gaussian distribution conditioning on
q(0), R(t) is also a mean zero Gaussian process. It can then be verified easily by Equation
(4.32) that

E(R(t)R(s)) = γ(|t− s|), (4.49)

regardless of the value q(0). It follows that R(t) is a stationary process. Note that R(t) and
q(0) are not independent! Different from [32] where the GLE is in a different form and the
convolution is between a kernel and q instead of q̇, we impose the initial condition (4.41) so
that the random force R(t) satisfies the usual ‘fluctuation-dissipation theorem’ (1.5).

By the results in [32, 33], we can summarize the following claim for n = 1:

Proposition 2. Suppose R(t) is a 1D stationary Gaussian process with mean zero and

E(R(t)R(s)) = γ(|t− s|). (4.50)

If γ is the Fourier transform of an L1(R) even nonnegative function, then there exists a
coupling between q(0) = q0 and R(t) so that the equation

q̇ = u, mu̇ = −V ′(q)−
∫ t

0
γ(t− s)q̇(s)ds+R(t) (4.51)

admits the Gibbs measure (4.40) as the invariant measure.
For any initial distribution µ0

A that is absolutely continuous with respect to µA and any
coupling between q0 and R(t), µt

A converges weakly to the Gibbs measure µA.

The first claim follows from the discussion above. One can construct a heat bath so that
the coupling is given by (4.41) and (4.48).

For the second claim, one must show that the Hamiltonian system is ergodic. According
to [32], the special coupling (4.41) and (4.48) guarantees that the joint distribution converges
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weakly to the joint Gibbs measure (4.39). For an arbitrary coupling between q0 and R(t), we
must check what happens for a given q0. Conditioning on q0, the random noise according
to (4.48) has the same distribution with R(t), and thus the conditional distribution for
µt
A(·|q0) = P ((q(t), u(t)) ∈ · | q0) is the same for any coupling. µt

A(·|q0) converges weakly to
the Gibbs measure µA. If µ0

A is absolutely continuous with respect to the Gibbs measure,
one can then have uniform estimates on the joint distribution.

Note that our final goal would be to consider the case γ(t) ∝ |t|−α and m → 0. For
kernel |t|−α, ρ /∈ L2(R). One can therefore mollify γ by

γǫ(t) = ηǫ ∗ γ(t), (4.52)

so that the smoothness gives decay in Fourier side and we have ρǫ ∈ L2(R).

Remark 3. In this sense, what matters is the smoothness of γ(·) instead of its tail behavior
as t → ∞. Even if the kernel γ is not integrable but as long as it is smooth, the above
construction works.

Formally, if final equilibrium is preserved with ǫ → 0 limit, then the Gibbs measure is
the equilibrium measure for the GLE with kernel |t|−α. Then, formally, the m → 0 limit
yields that the Gibbs measure proportional to exp(−V (q)) is the final equilibrium measure
of our FSDE (1.18). Regarding the limit m → 0, one should be careful. The limit equation
for a general kernel γ may not be a good initial value problem. The initial value problem

∫ t

0
γ(t− s)q̇(s)ds = −V ′(q) +R(t), q(0) = q0

admits no continuous solution if γ(t) is bounded. Hence, the possible approach is to show
first that convergence to Gibbs measure is valid for the GLE when γ(t) ∝ |t|−α and then
show the m → 0 limit can pass to the final equilibrium measures.
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