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Abstract. As V. I. Arnold observed in the 1960s, the Euler equations of incompressible
fluid flow correspond formally to geodesic equations in a group of volume-preserving diffeo-
morphisms. Working in an Eulerian framework, we study incompressible flows of shapes
as critical paths for action (kinetic energy) along transport paths constrained to be shape
densities (characteristic functions). The formal geodesic equations for this problem are Euler
equations for incompressible, inviscid potential flow of fluid with zero pressure and surface
tension on the free boundary. The problem of minimizing this action exhibits an instability
associated with microdroplet formation, with the following outcomes: Any two shapes of
equal volume can be approximately connected by an Euler spray—a countable superposition
of ellipsoidal geodesics. The infimum of the action is the Wasserstein distance squared, and is
almost never attained except in dimension 1. Every Wasserstein geodesic between bounded
densities of compact support provides a solution of the (compressible) pressureless Euler sys-
tem that is a weak limit of (incompressible) Euler sprays. Each such Wasserstein geodesic is
also the unique minimizer of a relaxed least-action principle for a two-fluid mixture theory
corresponding to incompressible fluid mixed with vacuum.

1. Introduction

1.1. Overview. In this paper we develop several points of connection between least-action
principles for incompressible fluids with free boundary and Wasserstein distance between
shapes (as represented by characteristic-function densities). In particular, we show how
Wasserstein distance between shapes (and more generally, compactly supported measures
with bounded densities) arises naturally as a completion or relaxation of the problem of de-
termining geodesic distance along a ‘manifold’ of equal-volume fluid domains.

The geometric interpretation of solutions of the Euler equations of incompressible inviscid
fluid flow as geodesic paths in the group of volume-preserving diffeomorphisms was famously
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pioneered by V. I. Arnold [4]. If we consider an Eulerian description for an incompressible
body of constant-density fluid moving freely in space, such geodesic paths correspond to
critical paths for the action

A =

∫ 1

0

∫
Rd

ρ|v|2 dx dt , (1.1)

where ρ = (ρt)t∈[0,1] is a path of shape densities transported by a velocity field v ∈ L2(ρ dx dt)
according to the continuity equation

∂tρ+∇ · (ρv) = 0 . (1.2)

Here, saying that ρt is a shape density means that ρt is constrained to be a characteristic
function for a fluid domain Ωt:

ρt = 1Ωt , t ∈ [0, 1]. (1.3)

Naturally, then, the velocity field must be divergence free in the interior of Ωt, satisfying
∇ · v = 0 there. Equation (1.2) holds in the sense of distributions in Rd × [0, 1], interpreting
ρv as 0 wherever ρ = 0.

In this Eulerian framework, it is natural to study the action in (1.1) subject to given
endpoint conditions of the form

ρ0 = 1Ω0 , ρ1 = 1Ω1 . (1.4)

These conditions differ from Arnold-style conditions that fix the flow-induced volume-preserving
diffeomorphism between Ω0 and Ω1, and correspond instead to fixing only the image of this
diffeomorphism. As we show in section 3 below, it turns out that the geodesic equations that
result are precisely the Euler equations for potential flow of an incompressible, inviscid fluid
occupying domain Ωt, with zero pressure and zero surface tension on the free boundary ∂Ωt.
In short, the geodesic equations are classic water wave equations with zero gravity and surface
tension. The initial-value problem for these equations has recently been studied in detail—
the works [36, 18, 19] extend the breakthrough works of Wu [56, 57] to deal with nonzero
vorticity and zero gravity, and establish short-time existence and uniqueness for sufficiently
smooth initial data in certain bounded domains.

The problem of minimizing the action in (1.1) subject to the constraints above turns out
to be ill-posed if the dimension d > 1, as we will show in this paper. By this we mean that
action-minimizing paths that satisfy all the constraints (1.2), (1.3) and (1.4) do not exist
in general, even locally. Nevertheless, the infimum of the action defines a distance between
equal-volume sets which we will call shape distance, determined by

ds(Ω0,Ω1)2 = inf A , (1.5)

where the infimum is taken subject to the constraints (1.2), (1.3), (1.4) above. By the well-
known result of Benamou and Brenier [6], it is clear that

ds(Ω0,Ω1) ≥ dW (1Ω0 ,1Ω1), (1.6)

where dW (1Ω0 ,1Ω1) denotes the usual Wasserstein distance (Monge-Kanotorvich distance
with quadratic cost) between the measures with densities 1Ω0 and 1Ω1 . This is so because the
result of [6] characterizes the squared Wasserstein distance dW (1Ω0 ,1Ω1)2 as the infimum in
(1.5) subject to the same transport and endpoint constraints as in (1.2) and (1.4), but without
the constraint (1.3) that makes ρ a characteristic function.

Our objective in this paper is to develop several results that precisely relate the infimum
in (1.5) and corresponding geodesics (critical paths for action) on the one hand, to Wasser-
stein distance and corresponding length-minimizing Wasserstein geodesics—also known as
displacement interpolants—on the other hand. Wasserstein geodesic paths typically do not
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have characteristic-function densities, and thus do not correspond to geodesics for shape dis-
tance. A common theme in our results is the observation that the least-action problem in
(1.5) is subject to an instability associated with microdroplet formation.

The idea that Arnold’s least action principle for incompressible flows may suffer analytically
from instability or non-attainment appears to have led Brenier and others starting in the late
1980s to investigate various forms of relaxed least-action problems for incompresible flows
[8, 10, 48, 11, 12, 13, 1, 37]. Such relaxed problems involve generalizing the notion of flows
of diffeomorphisms to formulate a framework in which existence of minimizers can be proved,
using convex analysis or variational methods. Our microdroplet constructions also provide
a precise connection between Wasserstein geodesic paths (which correspond to pressureless,
compressible fluid flows) and relaxed least-action problems for flows of incompressible-fluid–
vacuum mixtures.

1.2. Main results. Broadly speaking, our aim is to investigate the geometry of the space
of shapes (corresponding to characteristic-function densities), focusing on the geodesics for
shape distance and the corresponding distance induced by (1.5). Studies of this type have
been carried out by many other authors, as will be discussed in subsection 1.3. One issue
about which we have little to say is that of geodesic completeness, which corresponds here to
global existence in time for weak solutions of the free-boundary Euler equations. In addition
to other well-known difficulties for Euler equations, here there arise further thorny problems
such as collisions of fluid droplets, for example.

Geodesic connections. Our first results instead address the question of determining which
targets and sources are connected by geodesics for shape distance, and how these relate to
(1.5). The general question of determining all exact connections is an interesting one that
seems difficult to answer. In regard to a related question in a space of smooth enough volume-
preserving diffeomorphisms of a fixed manifold, Ebin and Marsden in [24, 15.2(vii)] established
a covering theorem showing that the geodesic flow starting from the identity diffeomorphism
covers a full neighborhood. By contrast, what our first result will show essentially is that
for an arbitrary bounded open source domain Ω0, targets for shape-distance geodesics are
globally dense in the ‘manifold’ of bounded open sets of the same volume. The idea is that
it is possible to construct geodesics comprised of disjoint microdroplets (which we call Euler
sprays) that approximately reach an arbitrarily specified Ω1 as closely as desired in terms of
an optimal-transport distance.

Below, it is convenient to denote the distance between two bounded measurable sets Ω0,
Ω1 that is induced by Wasserstein distance by the overloaded notation

dW (Ω0,Ω1) = dW (1Ω0 ,1Ω1), (1.7)

and similarly with Lp-Wasserstein distance dp for any value of p ∈ [1,∞].

Theorem 1.1. Let Ω0, Ω1 be any pair of bounded open sets in Rd with equal volume. Then
for any ε > 0, there is an Euler spray which transports the source Ω0 (up to a null set) to a
target Ωε

1 satisfying d∞(Ω1,Ω
ε
1) < ε. The action Aε of the spray satisfies

ds(Ω0,Ω
ε
1)2 ≤ Aε ≤ dW (Ω0,Ω1)2 + ε .

The precise definition of an Euler spray and the proof of this result will be provided in sec-
tion 4. A particular, simple geodesic for shape distance will play a special role in our analysis.
Namely, we observe in Proposition 3.4 that a path t 7→ Ωt of ellipsoids determines a critical
path for the action (1.1) constrained by (1.2)–(1.4) if and only if the d-dimensional vector
a(t) = (a1(t), . . . , ad(t)), formed by the principal axis lengths, follows a geodesic curve on
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the hyperboloid-like surface in Rd determined by the constraint that corresponds to constant
volume,

a1a2 · · · ad = const. (1.8)

(a) Source disk Ω0 decom-
posed into microdroplets Bi at
t = 0.

(b) Displacement interpolants at
path midpoint t = 1

2
.

(c) Expanded target (1 + ε)T (Ω0)
at t = 1, indicating expanded
microdroplet images (1 + ε)T (Bi)
(dark) and ellipsoidal approxima-
tion of T (Bi) (light). ε = 0.25.

Figure 1. Illustration of Wasserstein geodesic flow from Ω0 to Ω1 = T (Ω0),
where T is the Brenier map. Source Ω0 is decomposed into countably many
small balls, few shown. Matching shades indicate corresponding droplets trans-
ported by displacement interpolation. Euler spray droplets are nested inside
Wasserstein ellipsoids and remain disjoint.

To prove Theorem 1.1, we decompose the source domain Ω0, up to a set of measure zero,
as a countable union of tiny disjoint open balls using a Vitali covering lemma. These ‘mi-
crodroplets’ are transported by ellipsoidal geodesics that approximate a local linearization of
the Wasserstein geodesic (displacement interpolant) which produces straight-line transport of
points from the source Ω0 to the target Ω1. Crucially, the droplets remain disjoint, and the
total action or cost along the resulting path of ‘spray’ shape densities is then shown to be
close to that attained by the Wasserstein geodesic.

The ideas behind the construction of the Euler sprays are illustrated in Figure 1. The
shaded background in panel (c) indicates the target Ω1 = T (Ω0), expanded by a factor
(1 + ε), where T : Ω0 → Ω1 is a computed approximation to the Brenier (optimal transport)
map. The expanded images (1+ε)T (Bi) of balls Bi in the source are shown in dark shades, and
(nested inside) ellipsoidal approximations to T (Bi) in corresponding light shades. We show
that along Wasserstein geodesics (displacement interpolants), nested images remain nested,
and that the ellipsoidal Euler geodesics (not shown) remain nested inside the Wasserstein-
transported ellipses indicated in light shades.

The result of Theorem 1.1 directly implies that a natural relaxation of the shape distance
ds—the lower semicontinuous envelope with respect to Wasserstein distance—agrees with
the induced Wasserstein distance dW . (See [7, section 1.7.2] regarding the general notion of
relaxation of variational problems.) In fact, by a rather straightforward completion argument
we can identify the shape distance in (1.5) as follows.

Theorem 1.2. For every pair of bounded measurable sets in Rd of equal volume,

ds(Ω0,Ω1) = dW (Ω0,Ω1).
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As is well known, Wasserstein distance between measures of a given mass that are supported
inside a fixed compact set induces the topology of weak-? convergence. In this topology,
the closure of the set of such measures with characteristic-function densities is the set of
measurable functions ρ : Rd → [0, 1] with compact support. The result above is a corollary of
the following more general result that indicates how Euler-spray geodesic paths approximately
connect arbitrary endpoints in this set.

Theorem 1.3. Let ρ0, ρ1 : Rd → [0, 1] be measurable functions of compact support that satisfy∫
Rd
ρ0 =

∫
Rd
ρ1 .

Then

(a) For any ε > 0 there are open sets Ω0, Ω1 which satisfy

d∞(ρ0,1Ω0) + d∞(ρ1,1Ω1) < ε,

and are connected by an Euler spray whose total action Aε satisfies

Aε ≤ dW (ρ0, ρ1)2 + ε.

(b) For any ε > 0 there is a path ρε = (ρεt )t∈(0,1) on (0, 1) consisting of a countable
concatenation of Euler sprays, such that

ρεt
?−⇀ ρ0 as t→ 0+ , ρεt

?−⇀ ρ1 as t→ 1− ,

and the total action Aε of the path satisfies

Aε =

∫ 1

0

∫
Rd
ρεt |vε|2 dx dt ≤ dW (ρ0, ρ1)2 + ε.

The results of Theorems 1.1 and 1.3 concern geodesics for shape distance that only approx-
imately connect arbitrary sources Ω0 and targets Ω1. A uniqueness property of Wasserstein
geodesics allows us to establish the following sharp criterion for existence and non-existence
of length-minimizing shape geodesics that exactly connect source to target.

Theorem 1.4. Let Ω0, Ω1 be bounded open sets in Rd with equal volume, and let ρ =
(ρt)t∈[0,1] be the density along the Wasserstein geodesic path that connects 1Ω0 and 1Ω1. Then
the infimum for shape distance in (1.5) is achieved by some path satisfying the constraints
(1.2),(1.3),(1.4) if and only if ρ is a characteristic function.

For dimension d = 1 the Wasserstein density is always a characteristic function. For
dimension d > 1 however, this property of being a characteristic function requires that the
Wasserstein geodesic is given piecewise by rigid body motion. (See Remarks 2.2–2.3.)

Limits of Euler sprays. For the Euler sprays constructed in the proof of Theorem 1.1, the
fluid domains Ωt do not typically have smooth boundary, due to the presence of cluster points
of the countable set of microdroplets. The geodesic equations that they satisfy, then, are not
quite classical free-boundary water-wave equations. Rather, our Euler sprays provide a family
of weak solutions (ρε, vε, pε) to the following system of Euler equations:

∂tρ+∇ · (ρv) = 0, (1.9)

∂t(ρv) +∇ · (ρv ⊗ v) +∇p = 0, (1.10)

with the “incompressibility” constraint that ρε is a shape density, meaning it is a characteristic
function as in (1.3). Both of these equations hold in the sense of distributions on Rd × [0, 1],
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which means the following: For any smooth test functions q ∈ C∞c (Rd × [0, 1],R) and ṽ ∈
C∞c (Rd × [0, 1],Rd), ∫ 1

0

∫
Rd
ρ(∂tq + v · ∇q) dx dt =

∫
Rd
ρq dx

∣∣∣∣t=1

t=0

, (1.11)∫ 1

0

∫
Rd
ρv · (∂tṽ + v · ∇ṽ) + p∇ · ṽ dx dt =

∫
Rd
ρv · ṽ dx

∣∣∣∣t=1

t=0

. (1.12)

Now, limits as ε → 0 of these Euler-spray geodesics can be considered. By dealing with
a sequence of initial and final data ρk0 = 1Ωk0

, ρk1 = 1Ωk1
that converge weak-?, we find that

it is possible to approximate a general family of Wasserstein geodesic paths, in the following
sense.

Theorem 1.5. Let ρ0, ρ1 : Rd → [0, 1] be measurable functions of compact support that satisfy∫
Rd
ρ0 =

∫
Rd
ρ1 .

Let (ρ, v) be the density and transport velocity determined by the unique Wasserstein geodesic
that connects the measures with densities ρ0 and ρ1 as described in section 2.

Then there is a sequence of weak solutions (ρk, vk, pk) to (1.11)–(1.12), associated to Euler
sprays as provided by Theorem 1.1, that converge to (ρ, v, 0), and (ρ, v) is a weak solution of
the pressureless Euler system

∂tρ+∇ · (ρv) = 0, (1.13)

∂t(ρv) +∇ · (ρv ⊗ v) = 0. (1.14)

The convergence holds in the the following sense: pk → 0 uniformly, and

ρk
?−⇀ ρ, ρkvk

?−⇀ ρv, ρkvk ⊗ vk ?−⇀ ρv ⊗ v, (1.15)

weak-? in L∞ on Rd × [0, 1].

This result shows that one can approximate a large family of solutions of pressureless
Euler equations, ones coming from Wasserstein geodesics having bounded densities of compact
support, by solutions of incompressible Euler equations with vacuum. (For densities taking
values in [0, R] instead of [0, 1], one can simply scale the densities coming from the Euler
sprays, by multiplying by R.)

The convergence in (1.15) can be strengthened in terms of the TLp topology that was
introduced in [29] to compare two functions that are absolutely continuous with respect to
different probability measures—see subsection 6.2. The result of Theorem 6.7 essentially
shows that while oscillations exist in space and time for the densities ρk and velocities vk in
Theorem 1.5, there are no oscillations following the flow lines. Our analysis of convergence
in the TLp topology is based upon an improved stability result regarding the stability of
transport maps. We describe and establish this stability result separately in an Appendix,
due to its potential for independent interest.

Relaxed least-action principles. Our next result establishes a precise connection between
Wasserstein geodesics and a relaxed least-action principle for incompressible flow of two-fluid
mixtures. In particular this relates to work of Brenier on relaxations of Arnold’s least-action
principle for incompressible flow [8, 10, 11, 12, 13, 14]. The mixture model is a variant of
Brenier’s model for homogenized vortex sheets [11], and is related to the variable-density
model studied by Lopes et al. [37]. Our model, however, also allows one fluid to have zero
density, corresponding to a fluid-vacuum mixture. In this degenerate case, we show that the
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Wasserstein geodesic provides the unique minimizer of the relaxed least-action principle—see
Theorem 7.2.

An important point of constrast between our results and those of Brenier [12] and Lopes
et al. [37] concerns the issue of consistency of the relaxed theory with classical solutions. The
results of [12] and [37] establish that classical smooth solutions of the incompressible fluid
equations do provide action minimizers locally, for sufficiently short time. However, the result
of Theorem 1.4 above shows that for any smooth free-boundary fluid motion (corresponding
to a shape geodesic) that is not given locally by rigid motion, the solution never achieves
minimum action, over any positive interval of time.

Shape distance without volume constraint. Our investigations in this paper were moti-
vated in part by an expanded notion of shape distance that was introduced and examined
by Schmitzer and Schnörr in [46]. These authors considered a shape distance determined
by restricting the Wasserstein metric to smooth paths of ‘shape measures’ consisting of uni-
form distributions on bounded open sets in R2 with connected smooth boundary. This allows
one to naturally compare shapes of different volume. In our present investigation, the only
smoothness properties of shapes and paths that we require are those intrinsically associ-
ated with Wasserstein distance. Thus, we investigate the geometry of a ‘submanifold’ of the
Wasserstein space consisting of uniform distributions on shapes regarded as arbitrary bounded
measurable sets in Rd. As we will see in Section 8 below, geodesics for this extended shape
distance correspond to a modified water-wave system with spatially uniform compressibility
and zero average pressure. In Theorem 8.1 below we extend the result of Theorem 1.2, for
volume-constrained paths of shapes, to deal with paths of uniform measures connecting two
arbitrary bounded measurable sets. We show that the extended shape distance again agrees
with the Wasserstein distance between the endpoints. The proof follows directly from the
construction of concatenated Euler sprays used to prove Theorem 1.3(b).

1.3. Related work on the geometry of image and shape space. The shape distance
that we defined in (1.5) is related to a large body of work in imaging science and signal
processing.

The general problem of finding good ways to compare two signals (such as time series,
images, or shapes) is important in a number of application areas, including computer vision,
machine learning, and computational anatomy. The idea to use deformations as a means of
comparing images goes back to pioneering work of D’Arcy Thompson [49].

Distances derived from optimal transport theory (Monge-Kantorovich, Wasserstein, or
earth-mover’s distance) have been found useful in analyzing images by a number of work-
ers [28, 32, 43, 47, 53, 54]. The transport distance with quadratic cost (Wasserstein distance)
is special as it provides a (formal) Riemannian structure on spaces of measures with fixed
total mass [3, 42, 51].

Methods which endow the space of signals with the metric structure of a Riemannian
manifold are of particular interest, as they facilitate a variety of image processing tasks. This
geometric viewpoint, pioneered by Dupuis, Grenander & Miller [23, 31], Trouvé [50], Younes
[58] and collaborators, has motivated the study of a variety of metrics on spaces of images
over a number of years—see [23, 30, 33, 46, 59] for a small selection.

The main thrust of these works is to study Riemannian metrics and the resulting distances
in the space of image deformations (diffeomorphisms). Connections with the Arnold viewpoint
of fluid mechanics were noted from the outset [58], and have been further explored by Holm,
Trouvé, Younes and others [30, 33, 59]. This work has led to the Euler-Poincaré theory of
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metamorphosis [33], which sets up a formalism for analyzing least-action principles based on
Lie-group symmetries generated by diffeomorphism groups.

A different way to consider shapes is to study them only via their boundary, and consider
Riemannian metrics defined in terms of normal velocity of the boundary. Such a point of view
has been taken by Michor, Mumford and collaborators [16, 39, 40, 60]. As they show in [39],
a metric given by only the L2 norm of normal velocity does not lead to a viable geometry, as
any two states can be connected by an arbitrarily short curve. On the other hand it is shown
in [16] that if two or more derivatives of the normal velocity are penalized, then the resulting
metric on the shape space is geodesically complete.

In this context, we note that what our work shows is that if the metric is determined by
the L2 norm of the transport velocity in the bulk, then the global metric distance is not zero,
but that it is still degenerate in the sense that a length-minimizing geodesic typically may
not exist in the shape space. While our results do not directly involve smooth deformations
of smooth shapes, it is arguably interesting to consider shape spaces which permit ‘pixelated’
approximations, and our results apply in that context.

We speculate that to create a shape distance that (even locally) admits length-minimizing
paths in the space of shapes, one needs to prevent the creation a large perimeter at negligible
cost. This is somewhat analogous to the motivation for the metrics on the space of curves
considered by Michor and Mumford [39]. Possibilities include introducing a term in the metric
which penalizes deforming the boundary, or a term which enforces greater regularity for the
vector fields considered.

A number of existing works obtain regularity of geodesic paths and resulting diffeomor-
phisms by considering Riemannian metrics given in terms of second-order derivatives of ve-
locities, as in the Large Deformation Diffeomorphic Metric Mapping (LDDMM) approach of
[5]. Metrics based on conservative transport which penalize only one derivative of the velocity
field are connected with viscous dissipation in fluids and have been considered by Fuchs et
al. [27], Rumpf, Wirth and collaborators [44, 55], as well as by Brenier, Otto, and Seis [15],
who established a connection to optimal transport.

1.4. Plan. The plan of this paper is as follows. In section 2 we collect some basic facts and
estimates that concern geodesics for Monge-Kantorovich/Wasserstein distance. In section 3
we derive formally the geodesic equations for paths of shape densities and describe the special
class of ellipsoidal solutions. The construction of Euler sprays and the proof of Theorem 1.1
is carried out in section 4. Theorem 1.2 is proved in section 5. The connection between
Wasserstein geodesics and a relaxed least-action priniciple motivated by Brenier’s work is
developed in section 7. The paper concludes in section 8 with a treatment of the extended
notion of shape distance related to that examined by Schmitzer and Schnörr in [46].

2. Preliminaries: Wasserstein geodesics between open shapes

In this section we recall some basic properties of the standard minimizing geodesic paths
(displacement interpolants) for the Wasserstein or Monge-Kantorovich distance between shape
densities on open sets, and establish some basic estimates. Two properties that are key in
the sequel are that the density ρ is (i) smooth on an open subset of full measure, and (ii) it
is convex along the corresponding particle paths, see Lemma 2.1.

2.1. Standard Wasserstein geodesics. Let Ω0 and Ω1 be two bounded open sets in Rd
with equal volume. Let µ0 and µ1 be measures with respective densities

ρ0 = 1Ω0 , ρ1 = 1Ω1 .
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As is well known [9, 35], there exists a convex function ψ such that T = ∇ψ (called the
Brenier map in [51]) is the optimal transportation map between Ω0 and Ω1 corresponding to
the quadratic cost. Moreover, this map is unique a.e. in Ω0; see [9] or [51, Thm. 2.32].

McCann [38] later introduced a natural curve t 7→ µt that interpolates between µ0 and
µ1, called the displacement interpolant, which can be described as the push-forward of the
measure µ0 by the interpolation map Tt given by

Tt(z) = (1− t)z + t∇ψ(z), 0 ≤ t ≤ 1. (2.1)

Because ψ is convex we have 〈∇ψ(z)−∇ψ(ẑ), z − ẑ〉 ≥ 0 for all z, ẑ, hence the interpolating
maps Tt are injective for t ∈ [0, 1), satisfying

|Tt(z)− Tt(ẑ)| ≥ (1− t)|z − ẑ| . (2.2)

Note that particle paths z 7→ Tt(z) follow straight lines with constant velocity:

v(Tt(z), t) = ∇ψ(z)− z. (2.3)

Furthermore µt has density ρt that satisfies the continuity equation

∂tρ+ div(ρv) = 0. (2.4)

In terms of these quantities, the Wasserstein distance satisfies

dW (µ0, µ1)2 =

∫
Ω0

|∇ψ(z)− z|2 dz =

∫ 1

0

∫
Ωt

ρ|v|2 dx dt , (2.5)

and the L∞ transport distance may be defined as a minimum over maps S that push forward
the measure µ0 to µ1 [45, Thm. 3.24], satsifying

d∞(µ0, µ1) = min{‖S − id‖L∞(µ0) : S]µ0 = µ1}

≥ |Ω0|−1/2 min{‖S − id‖L2(µ0) : S]µ0 = µ1}

= |Ω0|−1/2dW (Ω0,Ω1).

(2.6)

The displacement interpolant has the property that

dW (µs, µt) = (t− s)dW (µ0, µ1), 0 ≤ s ≤ t ≤ 1. (2.7)

The property (2.7) implies that the displacement interpolant is a constant-speed geodesic
(length-minimizing path) with respect to Wasserstein distance. The displacement interpolant
t 7→ µt is the unique constant-speed geodesic connecting µ0 and µ1, due to the uniqueness of
the Brenier map and Proposition 5.32 of [45] (or see [2, Thm. 3.10]). For brevity the path
t 7→ µt is called the Wasserstein geodesic from µ0 to µ1.

At this point it is convenient to mention that the result of Theorem 1.4, providing a sharp
criterion for the existence of a minimizer for the shape distance in (1.5), will be derived by
combining the uniqueness property of Wasserstein geodesics with the result of Theorem 1.2—
see the end of section 5 below.

Extending the regularity theory of Caffarelli [17], Figalli [25] and Figalli & Kim [26] have
shown (see Theorem 3.4 in [20] and also [21]) that the optimal transportation potential ψ is
smooth away form a set of measure zero. More precisely, there exist relatively closed sets of
measure zero, Σi ⊂ Ωi for i = 0, 1 such that T : Ω0\Σ0 → Ω1\Σ1 is a smooth diffeomorphism
between two open sets.

Let λ1(z), . . . , λd(z) be the eigenvalues of Hessψ(z) for z ∈ Ω0\Σ0. Due to convexity and
regularity of ψ, λi > 0 for all i = 1, . . . , n. Furthermore, because ∇ψ is a map that pushes
forward the Lebesgue measure on Ω0 to that on Ω1, it follows that the Jacobian of T has
value 1 and thus λ1 · · ·λd = 1.
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Along the particle paths of displacement interpolation starting from any z ∈ Ω0 \ Σ0, the
mass density satisfies

ρ(Tt(z), t)
−1 = det

∂Tt
∂z

= det((1− t)I + t∇2ψ(z)) =

d∏
j=1

(1− t+ tλj(z)) . (2.8)

We now show that the density ρ is convex along these paths. The stronger fact that ρ−1/d

is concave along particle paths follows from more general classical results stated in [38] and
related to a well-known proof of the Brunn-Minkowski inequality by Hadwiger and Ohmann.
Since a simple proof is available for our case, we present it here for completeness.

Lemma 2.1. Along the particle paths t 7→ Tt(z) of displacement interpolation between the

measures µ0 and µ1 with respective densities 1Ω0 and Ω1 as above, the map t 7→ ρ(Tt(z), t)
−1/d

is concave. Further, the map t 7→ ρ(Tt(z), t) is convex. Moreover, ρ ≤ 1.

Proof. Fix z and let g(t) = ρ(Tt(z), t)
−1/d. We compute

g′

g
=

1

d

d∑
j=1

λj − 1

1− t+ tλj
,

g′′

g
=

1

d

d∑
j=1

λj − 1

1− t+ tλj

2

− 1

d

d∑
j=1

(
λj − 1

1− t+ tλj

)2

≤ 0 (2.9)

due to the Cauchy-Schwartz (or Jensen’s) inequality. This shows g is concave. That t 7→
ρ(Tt(z), t) is convex follows directly. Because ρ equals 1 when t = 0 and t = 1, we infer ρ ≤ 1
along particle paths. �

We also note that computations above and continuity equation (2.3) imply

div v = −1

ρ

(
dρ

dt

)
= − d

dt
log ρ =

d∑
j=1

λj − 1

1− t+ tλj
. (2.10)

Remark 2.2. We remark that according to the result of Theorem 1.4, a minimizer for (1.5) will
exist if and only if ρ(Tt(z), t) ≡ 1 for all z in the non-singular set Ω0 \Σ0. For this, clearly it
is a necessary consequence of (2.9) that λj ≡ 1 everywhere in Ω0 \Σ0. This means T is a rigid
translation on each component of Ω0 \Σ0. Thus Ω1 represents some kind of decomposition of
Ω0 by fracturing into pieces that can separate without overlapping.

As a nontrivial example in the case of one dimension (d = 1), let C ⊂ [0, 1] be the standard
Cantor set, and let Ω0 = (0, 1). Define the Brenier map T (x) = x+ c(x) with c given by the
Cantor function, increasing and continuous on [0, 1] with c(0) = 0, c(1) = 1 and c′ = 0 on
(0, 1) \ C. Then T (Ω0) = (0, 2), but the pushforward of uniform measure on Ω0 is the uniform
measure on the set Ω1 = T (Ω0 \ C), which has countably many components, and total length
|Ω1| = 1.

Remark 2.3. Actually, in the case d = 1 it is always the case that ρ(Tt(z), t) ≡ 1 for all z
in the non-singular set. This is so because the diffeomorphism T : Ω0\Σ0 → Ω1\Σ1 must be
a rigid translation on each component, as it pushes forward Lebesgue measure to Lebesgue
measure.
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2.2. Local linear approximation and estimates. Let λ1, . . . , λd be the eigenvalues of
Hessψ(x), as before. Recall that λi > 0 for all i = 1, . . . , n and λ1 · · ·λd = 1. Let λ(x) and
λ(x) be the minimal and maximal eigenvalues of Hessψ(x) = DT (x) respectively. We define,
for any U ⊂ Ω0\Σ0,

λU = inf{λ(x) : x ∈ U}, λU = sup{λ(x) : x ∈ U}, (2.11)

and note that for any x ∈ U and x̂ ∈ Rd,

λU |x̂| ≤ |DT (x)x̂| ≤ λU |x̂|. (2.12)

For U ∈ Ω0\Σ0 we also let

‖D3ψ‖U := sup
x∈U

max
|u|=|v|=|w|=1

∣∣∣∣∣∣
d∑

i,j,k=1

∂3ψ(x)

∂xi∂xj∂xk
uivjwk

∣∣∣∣∣∣ . (2.13)

Taylor expansion provides a basic estimate on the difference between the optimal transport
map and its linearization: Whenever B(x0, r) ⊂ Ω0 \ Σ0 and x ∈ B(x0, r),

|T (x)− T (x0)−DT (x0)(x− x0)| < 1

2
‖D3ψ‖B(x0,r) r

2. (2.14)

3. Geodesics and incompressible fluid flow

3.1. Incompressible Euler equations for smooth critical paths. In this subsection,
for completeness we derive the Euler fluid equations that formally describe smooth geodesics
(paths with stationary action) for the shape distance in (1.5). To cope with the problem of
moving domains we work in a Lagrangian framework, computing variations with respect to
flow maps that preserve density and the endpoint shapes Ω0 and Ω1.

Toward this end, suppose that

Q =
⋃

t∈[0,1]

Ωt × {t} ⊂ Rd × [0, 1] (3.1)

is a space-time domain generated by smooth deformation of Ω0 due to a smooth velocity field
v : Q̄→ Rd. That is, the t-cross section of Q is given by

Ωt = X(Ω0, t), (3.2)

where X is the Lagrangian flow map associated to v, satisfying

Ẋ(z, t) = v(X(z, t), t), X(z, 0) = z, (3.3)

for all (z, t) ∈ Ω0 × [0, 1].
For any (smooth) extension of v to Rd × [0, 1], the solution of the mass-transport equation

in (1.2) with given initial density ρ0 supported in Ω̄0 is

ρ(x, t) = ρ0(z) det

(
∂X

∂z
(z, t)

)−1

, x = X(z, t) ∈ Ωt,

with ρ = 0 outside Q.
Considering a smooth family X = Xε of flow maps defined for all small values of a varia-

tional parameter ε, the variation δX = (∂X/∂ε)|ε=0 induces a variation in density satisfying

− δρ

ρ
= δ log det

(
∂X

∂z
(z, t)

)
= tr

(
∂δX

∂z

(
∂X

∂z

)−1
)

(3.4)
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Introducing ṽ(x, t) = δX(z, t), x = X(z, t), it follows

− δρ

ρ
= ∇ · ṽ. (3.5)

For variations that leave the density invariant, necessarily ∇ · ṽ = 0.
We now turn to consider the variation of the action or transport cost as expressed in terms

of the flow map:

A =

∫ 1

0

∫
Rd
ρ|v|2dx dt =

∫ 1

0

∫
Ω0

|Ẋ(z, t)|2dz dt . (3.6)

For flows preserving ρ = 1 in Q, of course ∇· v = 0. Computing the first variation of A about
such a flow, after an integration by parts in t and changing to Eulerian variables, we find

δA
2

=

∫ 1

0

∫
Ω0

Ẋ · δẊ dz dt

=

∫
Ω0

Ẋ · δX dz

∣∣∣∣
t=1

−
∫ 1

0

∫
Ω0

Ẍ · δX dz dt

=

∫
Ωt

v · ṽ dx
∣∣∣∣
t=1

−
∫ 1

0

∫
Ωt

(∂tv + v · ∇v) · ṽ dx dt. (3.7)

Recall that any L2 vector field u on Ωt has a unique Helmholtz decomposition as the sum
of a gradient and a field L2-orthogonal to all gradients, which is divergence-free with zero
normal component at the boundary:

u = ∇p+ w, ∇ · w = 0 in Ωt, w · n = 0 on ∂Ωt. (3.8)

If we loosen the requirement that w · n = 0 on the boundary, it is still the case that∫
∂Ωt

w · ndS =

∫
Ωt

∇ · w dx = 0,

It follows that the space orthogonal to all divergence-free fields on Ωt is the space of gradients
∇p such that p is constant on the boundary, and we may take this constant to be zero:

p = 0 on ∂Ωt. (3.9)

Requiring δA = 0 for arbitrary virtual displacements having ∇ · ṽ = 0 (and ṽ = 0 at t = 1 at
first), we find that necessarily u = −(∂tv+v ·∇v) is such a gradient. Thus the incompressible
Euler equations hold in Q:

∂tv + v · ∇v +∇p = 0 , ∇ · v = 0 in Q, (3.10)

where p : Q̄→ R is smooth and satisfies (3.9).
Finally, we may consider variations ṽ that do not vanish at t = 1. However, we require

ṽ · n = 0 on ∂Ω1 in this case because the target domain Ω1 should be fixed. That is, the
allowed variations in the flow map X must fix the image at t = 1:

Ω1 = X(Ω0, 1). (3.11)

The vanishing of the integral term at t = 1 in (3.7) then leads to the requirement that v is a
gradient at t = 1. For t = 1 we must have

v = ∇φ in Ωt. (3.12)
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We claim this gradient representation actually must hold for all t ∈ [0, 1]. Let v = ∇φ+w be
the Helmholtz decomposition of v, and for small ε consider the family of flow maps generated
by

Ẋ(z, t) = (v + εw)(X(z, t), t) X(z, 0) = z. (3.13)

Corresponding to this family, the action from (3.6) takes the form

A =

∫ 1

0

∫
Ω0

|Ẋ(z, t)|2dz dt =

∫ 1

0

∫
Ωt

|∇φ|2 + |(1 + ε)w|2 dx dt (3.14)

Because w · n = 0 on ∂Ωt, the domains Ωt do not depend on ε, and the same is true of ∇φ
and w, so this expression is a simple quadratic polynomial in ε. Thus

1

2

dA
dε

∣∣∣∣
ε=0

=

∫ 1

0

∫
Ωt

|w|2 dx dt (3.15)

and consequently it is necessary that w = 0 if δA = 0. This proves the claim.
The Euler equation in (3.10) is now a spatial gradient, and one can add a function of t

alone to φ to ensure that

∂tφ+
1

2
|∇φ|2 + p = 0, ∆φ = 0 in Ωt. (3.16)

The equations boxed above, including (3.16) together with the zero-pressure boundary con-
dition (3.9) and the kinematic condition that the boundary of Ωt moves with normal velocity
v · n (coming from (3.2)-(3.3)), comprise what we shall call the Euler droplet equations, for
incompressible, inviscid, potential flow of fluid with zero surface tension and zero pressure at
the boundary.

Definition 3.1. A smooth solution of the Euler droplet equations is a triple (Q,φ, p) such
that φ, p : Q̄ → R are smooth and the equations (3.1), (3.2), (3.3), (3.12), (3.16), (3.9) all
hold.

Proposition 3.2. For smooth flows X that deform Ω0 as above, that respect the density
constraint ρ = 1 and fix Ω1 = X(Ω0, 1), the action A in (3.6) is critical with respect to
smooth variations if and only if X corresponds to a smooth solution of the Euler droplet
equations.

3.2. Weak solutions and Galilean boost. Here we record a couple of simple basic prop-
erties of solutions of the Euler droplet equations.

Proposition 3.3. Let (Q,φ, p) be a smooth solution of the Euler droplet equations. Let
ρ = 1Q and v = 1Q∇φ, and extend p as zero outside Q.

(a) The Euler equations (1.9)-(1.10) hold in the sense of distributions on Rd × [0, 1].
(b) The mean velocity

v̄ =
1

|Ωt|

∫
Ωt

v(x, t) dx (3.17)

is constant in time, and the action decomposes as

A =

∫ 1

0

∫
Ωt

|v − v̄|2dx dt+ |Ω0||v̄|2 . (3.18)
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(c) Given any constant vector b ∈ Rd, another smooth solution (Q̂, φ̂, p̂) of the Euler droplet
equations is given by a Galilean boost, via

Q̂ =
⋃

t∈[0,1]

(Ωt + bt)× {t} , (3.19)

φ̂(x+ bt, t) = φ(x, t) + b · x+
1

2
|b|2t , p̂(x+ bt, t) = p(x, t) . (3.20)

Proof. To prove (a), what we must show is the following: For any smooth test functions
q ∈ C∞c (Rd × [0, 1],R) and ṽ ∈ C∞c (Rd × [0, 1],Rd),∫

Q
(∂tq + v · ∇q) dx dt =

∫
Ωt

q dx

∣∣∣∣t=1

t=0

(3.21)∫
Q
v · (∂tṽ + v · ∇ṽ) + p∇ · ṽ dx dt =

∫
Ωt

ṽ · v dx
∣∣∣∣t=1

t=0

(3.22)

Changing to Lagrangian variables via x = X(z, t), writing q̂(z, t) = q(x, t), and using incom-
pressibility, equation (3.21) is equivalent to∫ 1

0

∫
Ω0

d

dt
q̂(z, t) dz dt =

∫
Ω0

q̂(z, t) dz

∣∣∣∣t=1

t=0

. (3.23)

Evidently this holds. In (3.22), we integrate the pressure term by parts, and treat the rest as
in (3.7) to find that (3.22) is equivalent to∫

Q
(∂tv + v · ∇v +∇p) · ṽ dx dt = 0. (3.24)

Then (a) follows. The proof of parts (b) and (c) is straightforward. �

3.3. Ellipsoidal Euler droplets. The intial-value problem for the Euler droplet equations
is a difficult fluid free boundary problem, one that may be treated by the methods developed
by Wu [56, 57]. For flows with vorticity and smooth enough intial data, smooth solutions for
short time have been shown to exist in [36, 18, 19].

In this section, we describe simple, particular Euler droplet solutions for which the fluid
domain Ωt remains ellipsoidal for all t. Our main result is the following.

Proposition 3.4. Given a constant r > 0, let a(t) = (a1(t), . . . , ad(t)) be any constant-speed
geodesic on the surface in Rd+ determined by the relation

a1 · · · ad = rd. (3.25)

Then this determines an Euler droplet solution (Q,φ, p) with Ωt equal to the ellipsoid Ea(t)

given by

Ea =
{
x ∈ Rd :

∑
j

(xj/aj)
2 < 1

}
, (3.26)

and potential and pressure given by

φ(x, t) =
1

2

∑
j

ȧjx
2
j

aj
− β(t) , p(x, t) = β̇

1−
∑
j

x2
j

a2
j

 , (3.27)

with

β̇(t) =
1

2

∑
j ȧ

2
j/a

2
j∑

j 1/a2
j

. (3.28)
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For clarity, we first derive the result in the planar case, then treat the case of general
dimension d ≥ 2.

3.3.1. Droplets in dimension d = 2. We seek incompressible flows inside a time-dependent
elliptical domain where

x2

a(t)2
+

y2

b(t)2
< 1, (3.29)

with the geometric mean r = (ab)1/2 constant in time for volume conservation. We will find
such flows as time-stretched straining flows (X,Y ), satisfying

(Ẋ, Ẏ ) = v(X,Y, t) = α(t)(X,−Y ) .

Such flows have velocity potential satisfying v = ∇φ, with

φ(x, y, t) =
1

2
α(t)(x2 − y2)− β(t), (3.30)

∂tφ =
1

2
α̇(x2 − y2)− β̇, 1

2
|∇φ|2 =

1

2
α2(x2 + y2) .

To satisfy the Bernoulli equation we require ∂tφ+ 1
2 |∇φ|

2 = 0 on the boundary of the ellipse
(x, y) = (a cos θ, b sin θ), or

(α̇+ α2)a2 cos2 θ + (−α̇+ α2)b2 sin2 θ = 2β̇

In order for this to hold independent of θ, we require

(α̇+ α2)a2 = −(α̇− α2)b2 = 2β̇.

Due to the motion of the boundary points (a, 0), (0, b) we need

ȧ = αa, ḃ = −αb,

whence

2β̇ = aä =
2b2ȧ2

(a2 + b2)
=

2r4ȧ2

(a4 + r4)

because r2 = ab is constant. Notice ä > 0 in all cases. There is a first integral (because
kinetic energy is conserved) which we can find by writing

ä

ȧ
= 2ȧ

(
1

a
− a3

r4 + a4

)
,

whence we find that a(t) and b(t) are determined by solving

ȧ

a
=

c√
a2 + b2

= − ḃ
b

= α(t). (3.31)

for some real constant c. From the derivation of the Bernoulli equation, inside the ellipse the
pressure is

p = −∂tφ−
1

2
|∇φ|2 = β̇

(
1− x2

a2
− y2

b2

)
. (3.32)

where β̇ is recovered from the equation

β̇(t) =

(
cab

a2 + b2

)2

. (3.33)
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To summarize, an elliptical Euler droplet solution (Q,φ, p) is determined in terms of any
solution (a(t), b(t)) of (3.31) (with any real c) by (3.29), (3.30), (3.32), and (3.33). We note
that the speed of motion of the point (a, b) on the hyperbola ab = r2 is constant: by (3.31),

ȧ2 + ḃ2 = c2. (3.34)

In the context of the fixed-endpoint problem, then, |c| is the distance along the hyperbola
betweeen (a(0), b(0)) and (a(1), b(1)).

3.3.2. Droplets in dimension d ≥ 2. Let us now derive the result stated in Proposition 3.4.
The flow X associated with a velocity potential of the form in (3.27) must satisfy

Ẋj = αj(t)Xj , αj =
ȧj
aj
, j = 1, . . . , d. (3.35)

Then (Xj/aj)˙ = 0 for all j, so the flow is purely dilational along each axis and consequently
ellipsoids are deformed to ellipsoids as claimed. Note that incompressibility corresponds to
the relation

∆φ =
∑
j

αj =
∑
j

ȧj
aj

=
d

dt
log(a1 · · · ad) = 0.

From (3.27) we next compute

∂tφt +
1

2
|∇φ|2 = −β̇ +

1

2

∑
j

(α̇j + α2
j )x

2
j = −β̇ +

1

2

∑
j

äjx
2
j

aj
.

This must equal zero on the boundary where xj = ajsj with s ∈ Sd−1 arbitrary. We infer
that for all j,

aj äj = 2β̇ . (3.36)

The expression for pressure in (3.27) in terms of β̇ then follows from (3.16), and p = 0 on
∂Ωt.

We recover β̇ by differentiating the constraint twice in time. We find

0 =
∑
j

(∑
k

a1 · · · ad
ȧk
ak

ȧj
aj

+ a1 . . . ad
aj äj − ȧ2

j

a2
j

)

= 0 +
∑
j

2β̇ − ȧ2
j

a2
j

whence (3.28) holds.
To get the first integral that corresponds to kinetic energy, multiply (3.36) by 2ȧj/aj and

sum to find

0 =
∑
j

ȧj äj , whence
∑
j

ȧ2
j = c2

and we see that c = |ȧ(t)| is the constant speed of motion.
It remains to see that (3.36) are the geodesic equations on the constraint surface. To see

this, recall that geodesic flow on the constraint surface corresponds to a stationary point for
the augmented action ∫ 1

0

1

2
|ȧ|2 + λ(t)

∏
j

aj − rd
 dt
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which leads to the Euler-Lagrange equations

−äj +
λ(t)rd

aj
= 0.

Correspondingly, λrd = 2β̇. This finishes the demonstration of Proposition 3.4.

Remark 3.5. For later reference, we note that äj > 0 for all t, due to (3.36) and (3.28).

Remark 3.6. Given any two points on the surface described by the constraint (3.25), there
exists a constant-speed geodesic connecting them. This fact is a straightforward consequence
of the Hopf-Rinow theorem on geodesic completeness [34, Theorem 1.7.1], because all closed
and bounded subsets on the surface are compact.

Remark 3.7. The Euclidean metric on the hyperboloid-like surface arises, in fact, as the
metric induced by the Wasserstein distance [52, Chap. 15], because, given any dilational flow
satisfying (3.35) with a1 · · · ad = rd,∫

Ωt

|v|2 dx =

∫
Ωt

∑
j

α2
jx

2
j dx =

∑
j

ȧ2
j

∫
|z|≤1

z2
j dz r

d =
ωdr

d

d+ 2

∑
j

ȧ2
j ,

where ωd = |B(0, 1)| is the volume of the unit ball in Rd. For a geodesic, this expression is
constant for t ∈ [0, 1] and equals the action Aa in (3.6) for the ellipsoidal Euler droplet.

3.4. Ellipsoidal Wasserstein droplets. Let (Q,φ, p) be an ellipsoidal Euler droplet solu-
tion as given by Proposition 3.4, so that Ω0 = Ea(0) and Ω1 = Ea(1) are co-axial ellipsoids.
We will call the optimal transport map T between these co-axial ellipsoids an ellipsoidal
Wasserstein droplet. This is described and related to the Euler droplet as follows.

Given A ∈ Rd, let DA = diag(A1, . . . , Ad) denote the diagonal matrix with diagonal A.
Then, given Ω0 = Ea(0), Ω1 = Ea(1) as above, the particle paths for the Wasserstein geodesic
between the corresponding shape densities are given by linear interpolation via

Tt(z) = DA(t)D
−1
A(0)z , A(t) = (1− t)a(0) + ta(1) . (3.37)

Note that a point z ∈ EA if and only if D−1
A z lies in the unit ball B(0, 1) in Rd. Thus the

Wasserstein geodesic flow takes ellipsoids to ellipsoids:

Tt(Ω0) = EA(t) , t ∈ [0, 1].

Let a(t), t ∈ [0, 1], be the geodesic on the hyperboloid-like surface that corresponds to the
Euler droplet that we started with. Recall that Ωt = Ea(t) from Proposition 3.4. Because
each component t 7→ aj(t) is convex by Remark 3.5, it follows that for each j = 1, . . . , d,

aj(t) ≤ Aj(t), t ∈ [0, 1]. (3.38)

Because EA = DAB(0, 1), we deduce from this the following important nesting property,
which is illustrated in Figure 2 (where for visibility the ellipses at times t = 1

2 and t = 1 are

offset horizontally by b
2 and b respectively).

Proposition 3.8. Given any corresponding elliptical Euler droplet and Wasserstein droplet
that deform one ellipsoid Ω0 = Ea(0) to another Ω1 = Ea(1), the Euler domains remain nested
inside their Wasserstein counterparts, with

X(Ω0, t) = Ωt ⊂ Tt(Ω0), t ∈ [0, 1]. (3.39)
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Ω0 Ω 1
2

Ω1

0
b
2 b

T 1
2
(Ω0)

@@I

Figure 2. Euler droplet (light blue) deforming a circle to an ellipse, nested
inside a Wasserstein droplet (dark orange). Tracks of the center and endpoints
of vertical major axis are indicated for both droplets.

Remark 3.9. In terms of the notation of this subsection, the straining flow X associated with
the Euler droplet is given by X(z, t) = Da(t)D

−1
a(0)z in terms of the constant-speed geodesic

a(t) of Proposition 3.4. Due to (3.38), this flow satisfies, for each j = 1, . . . , d and z ∈ Rd,

|Xj(z, t)| =
aj(t)

aj(0)
|zj | ≤

Aj(t)

Aj(0)
|zj | = |Tt(z)j |.

For the nesting property X(Ω̂, t) ⊂ Tt(Ω̂) to hold, convexity of Ω̂ is not sufficient in general.
However, a sufficient condition is that whenever αj ∈ [0, 1] for j = 1, . . . , d,

x = (x1, . . . , xd) ∈ Ω̂ implies Dαx = (α1x1, . . . , αnxn) ∈ Ω̂.

For later use below, we describe how to bound the action for a boosted elliptical Euler
droplet in terms of action for the corresponding boosted elliptical Wasserstein droplet, in the
case when the source and target domains are respectively a ball and translated ellipse:

Lemma 3.10. Given r > 0, â ∈ Rd+ with â1 · · · âd = rd, and b ∈ Rd, let

Ω0 = B(0, r), Ω1 = Eâ + b .

Let a(t), t ∈ [0, 1], be the minimizing geodesic on the surface (3.25) with

a(0) = r̂ = (r, . . . , r), a(1) = â = (â1, . . . , âd) .

Let (Q,φ, p) be the elliptical Euler droplet solution corresponding to the geodesic a, and let Aa
denote the corresponding action. Then

dW (1Ω0 ,1Ω1)2 ≤ Aa ≤ dW (1Ω0 ,1Ω1)2 +
λ

4

λ2 ωdr
d+2 , (3.40)

where

λ = min
âi
r
, λ = max

âi
r
. (3.41)
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Proof. First, consider the transport cost for mapping Ω0 to Ω1. The (constant) velocity of
particle paths starting at x ∈ B(0, r) is

u(x) = (r−1Dâ − I)x+ b,

and the squared transport cost or action is (substituting x = rz)

dW (1Ω0 ,1Ω1)2 =

∫
B(0,r)

|u(x)|2 dx =
∑
j

∫
B(0,r)

(
âj
r
− 1

)2

z2
j + b2j dz

= ωdr
d

(
|b|2 +

|Ȧ|2

d+ 2

)
, (3.42)

where A(t) = (1− t)r̂ + tâ is the straight-line path from r̂ to â.
The mass density inside the transported ellipsoid Tt(Ω0) is constant in space, given by

ρ(t) = detDT−1
t =

∏
i

r

Ai(t)
=
∏
i

(
1− t+ t

âi
r

)−1

.

Due to Remark 3.7, the corresponding action for the Euler droplet is bounded by that of the
constant-volume path found by dilating the elliptical Wasserstein droplet: Let

γj(t) = ρ(t)1/dAj(t) .

Then the flow St(z) = r−1Dγ(t)z is dilational and volume-preserving (with
∏
j γj(t) ≡ rd) and

has zero mean velocity. The flow z 7→ St(z) + tb takes Ω0 to Ω1, as on Figure 2, with action

Aγ =

∫ 1

0

∫
B(0,r)

∑
j

(
bj +

γ̇jzj
r

)2

dz dt

= ωdr
d

(
|b|2 +

1

d+ 2

∫ 1

0
|γ̇|2 dt

)
. (3.43)

Note that
∑

j(γ̇j/γj)
2 ≤

∑
j(Ȧj/Aj)

2, because

γ̇j
γj

=
Ȧj
Aj

+
ρ̇

dρ
=
Ȧj
Aj
− 1

d

∑
i

Ȧi
Ai
.

Because ρ is convex we have ρ ≤ 1, hence γ2
j ≤ maxA2

i . Thus

|γ̇|2 ≤ (maxA2
i )
∑
j

Ȧ2
j

A2
j

≤
(

maxA2
i

minA2
i

)
|Ȧ|2 ≤

(
max â2

i

min â2
i

)
|â− r̂|2 . (3.44)

Plugging this back into (3.43) and using (3.42), we deduce that

Aγ ≤ dW (1Ω0 ,1Ω1)2 +
ωdr

d

d+ 2

(
max â2

i

min â2
i

)
|â− r̂|2 . (3.45)

With the notation in (3.41), λ and λ respectively are the maximum and minimum eigenvalues
of DTt, and because |1− âi/r| ≤ max(1, âi/r) ≤ λ for all i = 1, . . . , d, this estimate implies

Aa ≤ Aγ ≤ dW (1Ω0 ,1Ω1)2 +
d

d+ 2

λ
4

λ2 ωdr
d+2 . (3.46)

�
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3.5. Velocity and pressure estimates. Lastly in this section we provide bounds on the
velocity v = ∇φ and pressure p for the ellipsoidal Euler droplet solutions. Note that because
1/a2

j ≤
∑

i(1/a
2
i ),

0 ≤ p ≤ β̇ ≤ 1

2

∑
j

ȧ2
j ≤

1

2

∫ 1

0
|γ̇|2 dt

Using (3.44) and the notation in (3.41), it follows

0 ≤ p ≤ λ
4

λ2 r
2d . (3.47)

For the velocity, it suffices to note that in (3.35), |Xj/aj | ≤ 1 hence |Ẋ|2 ≤
∑

j ȧ
2
j . Thus the

same bounds as above apply and we find

|∇φ|2 ≤ λ
4

λ2 r
2d. (3.48)

Finally, for a boosted elliptical Euler droplet, with velocity boosted as in (3.20) by a
constant vector b ∈ Rd, the same pressure bound as above in (3.47) applies, and the same
bound on velocity becomes

|∇φ̂− b|2 ≤ λ
4

λ2 r
2d. (3.49)

4. Euler sprays

Heuristically, an Euler spray is a countable disjoint superposition of solutions of the Euler
droplet equations. Recall that the notation tnΩn means the union of disjoint sets Ωn.

Definition 4.1. An Euler spray is a triple (Q,φ, p), with Q a bounded open subset of
Rd × [0, 1] and φ, p : Q → R, such that there is a sequence {(Qn, φn, pn)}n∈N of smooth
solutions of the Euler droplet equations, such that Q = t∞n=1Qn is a disjoint union of the sets
Qn, and for each n ∈ N, φn = φ|Ωn and pn = p|Ωn.

With each Euler spray that satisfies appropriate bounds we may associate a weak solution
(ρ, v, p) of the Euler system (1.9)-(1.10). The following result is a simple consequence of
the weak formulation in (1.11)-(1.12) together with Proposition 3.3(a) and the dominated
convergence theorem.

Proposition 4.2. Suppose (Q,φ, p) is an Euler spray such that |∇φ|2 and p are integrable
on Q. Then with ρ = 1Q and v = 1Q∇φ and with p extended as zero outside Q, the triple

(ρ, v, p) satisfies the Euler system (1.9)-(1.10) in the sense of distributions on Rd × [0, 1].

Our main goal in this section is to prove Theorem 1.1. The strategy of the proof is simple
to outline: We will approximate the optimal transport map T : Ω0 → Ω1 for the Monge-
Kantorovich distance, up to a null set, by an ‘ellipsoidal transport spray’ built from a countable
collection of ellipsoidal Wasserstein droplets. The spray maps Ω0 to a target Ωε

1 whose shape
distance from Ω1 is as small as desired. Then from the corresponding ellipsoidal Euler droplets
nested inside, we construct the desired Euler spray (Q,φ, p) that connects Ω0 to Ωε

1 by a critical
path for the action in (1.1).

Remark 4.3. In general, for the Euler sprays that we construct, the domain Q = t∞n=1Qn
has an irregular boundary ∂Q strictly larger than the infinite union t∞n=1∂Qn of smooth
boundaries of individual ellipsoidal Euler droplets, since ∂Q contains limit points of sequences
belonging to infinitely many Qn.
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4.1. Approximating optimal transport by an ellipsoidal transport spray. Heuristi-
cally, an ellipsoidal transport spray is a countable disjoint superposition of transport maps on
ellipsoids, whose particle trajectories do not intersect.

Definition 4.4. An ellipsoidal transport spray on Ω0 is a map S : Ω0 → Rd, such that

Ω0 =
⊔
n∈N

Ωn
0

is a disjoint union of ellipsoids, the restriction of S to Ωn
0 is an ellipsoidal Wasserstein droplet,

and the linear interpolants St defined by

St(z) = (1− t)z + tS(z), z ∈ Ω0,

remain injections for each t ∈ [0, 1].

Proposition 4.5. Let Ω0, Ω1 be a pair of shapes in Rd of equal volume, and let T : Ω0 → Ω1

be the optimal transport map for the Monge-Kantorovich distance with quadratic cost. For
any ε > 0, there is an ellipsoidal transport spray Sε : Ωε

0 → Rd such that

(i) Ωε
0 is a countable union of balls in the non-singular set Ω0 \Σ0 with |Ω0 \Ωε

0| = 0, and
(ii) sup

z∈Ωε0

|T (z)− Sε(z)| < εdiam Ω1 .

(iii) The L∞ transportation distance between the uniform distributions on Ωε
1 and Ω1 sat-

isfies d∞(Ωε
1,Ω1) < εdiam Ω1.

The proof of this result will comprise the remainder of this subsection. The strategy is
as follows. The set Ωε

0 is chosen to be the union of a suitable Vitali covering of Ω0 a.e. by
balls Bi. We expand the Brenier map T by a factor of 1 + ε and consider the displacement
interpolation map between Ω0 and (1 + ε)Ω1 given by

T εt (x) = (1− t)x+ t(1 + ε)T (x) . (4.1)

Next, on each ball Bi we approximate T by an affine map which takes the ball center xi to
(1 + ε)T (xi). Namely, this approximation will take the form

Sε(x) = (1 + ε)T (xi) +DT (xi)(x− xi) , x ∈ Bi . (4.2)

The corresponding displacement interpolation map has three key properties: (i) it is locally
affine so maps balls to ellipsoids, (ii) it is volume-preserving, and (iii) the dilation by 1 + ε
grants each ellipsoidal image sufficient ‘personal space’ to ensure the injectivity of the piecewise
affine approximation.

4.1.1. Vitali covering. We suppose 0 < ε < 1. The first step in the proof of Proposition 4.5
is to produce a suitable Vitali covering of Ω0, up to a null set, by a countable disjoint union
of balls. By a simple translation of target and source so that the origin is the midpoint of
two points in Ω̄1 separated by distance diam Ω1, because the distance from any point in Ω1

to each of the two points is also no more than diam Ω1 we may assume that

sup
x∈Ω0

|T (x)| ≤
√

3

2
diam Ω1 . (4.3)

Recall that there is a relatively closed null set Σ0 ⊂ Ω0 such that T = ∇ψ is a smooth
diffeomorphism from Ω0 \ Σ0 to its image. Then for every x ∈ Ω0\Σ0, there exists r(x, ε) ∈
(0, diam Ω1) such that whenever 0 < r < r̄, then B(x, r) ⊂ Ω0\Σ0 and both

ε

4
>

r‖D3ψ‖B(x,r)

λ2
B(x,r)

, ε >

(
λ

2
B(x,r)

λB(x,r)

r

diam Ω1

)2

, (4.4)
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where λU and λU are defined by (2.11) and ‖D3ψ‖U is defined by (2.13). This follows by
noting that the right-hand sides are continuous functions of r with value 0 when r = 0. The
family of balls

{B(x, r) : x ∈ Ω0\Σ0, 0 < r < r(x, ε)}
forms a Vitali cover of Ω0\Σ0. Therefore, by Vitali’s covering theorem [22, Theorem III.12.3],
there is a countable family of mutually disjoint balls B(xi, ri), with xi ∈ Ω0\Σ0 and 0 < ri <
r(xi, ε), such that

|(Ω0\Σ0)\ ∪i∈N B(xi, ri)| = 0 .

We let

Ωε
0 =

⋃
i∈N

Bi , Bi = B(xi, ri). (4.5)

For further use below, we note that λi ≤ 1 ≤ λi for all i, where

λi = λB(xi,ri) , λi = λB(xi,ri) , i ∈ N. (4.6)

We observe that from the first constraint in (4.4) follows

‖D3ψ‖Bi ri <
ε

4
λ2
i ≤

ε

4
. (4.7)

4.1.2. An approximating ellipsoidal transport spray. We shall approximate the optimal trans-
port map T on Ωε

0 through linear approximation on each ball Bi, combined with a homothetic
expansion of the ball centers to maintain injectivity.

For each i ∈ N, we denote the linear approximation to T on Bi by

Ai(x) = T (xi) +DT (xi)(x− xi). (4.8)

Then we define Sε : Ωε
0 → Rd by (4.2) whenever x ∈ Bi, so that

Sε(x) = Ai(x) + εT (xi) . (4.9)

Because each Bi is a ball and DT (xi) = Hessψ(xi) whose determinant is 1, the affine map Ai

is an ellipsoidal Wasserstein droplet, so the same is true for the restriction of Sε to Bi.
For every x ∈ Bi, note that we have the estimate by Taylor’s theorem

|T (x)− Sε(x)| ≤ |T (x)−Ai(x)|+ ε|T (xi)|

≤ 1

2
‖D3ψ‖Bir2

i +
ε

2
diam Ω1

≤ 1

8
εri +

√
3

2
εdiam Ω1 . (4.10)

Because ri ≤ diam Ω1, the estimate in part (ii) holds. In order to show that Sε is an ellip-
soidal transport spray and complete the proof of Proposition 4.5, it remains to show that the
interpolants Sεt defined as in Definition 4.4 are injections for each t ∈ [0, 1].

Lemma 4.6 (Injectivity of interpolants). For each t ∈ [0, 1], the interpolant

Sεt = (1− t)I + tSε

is an injection. Its image is a union of the disjoint ellipsoids Sεt (Bi), i ∈ N, separated
according to

dist(Sεt (Bi), S
ε
t (Bj)) ≥

εt

2
(λ2
i ri + λ2

jrj), i 6= j. (4.11)
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Proof. Define T εt by (4.1). Because T = ∇ψ with ψ convex, as for (2.2), for all x, x̂ ∈ Ω0 we
have

|T εt (x)− T εt (x̂)| ≥ (1− t)|x− x̂| . (4.12)

Hence the images T εt (Bi) and T εt (Bj) are disjoint whenever i 6= j and t ∈ [0, 1). In order to
prove the lemma it suffices to show that for each k, Sεt (Bk) ⊂ T εt (Bk) and that

dist(Sεt (Bk), T
ε
t (∂Bk)) ≥

εt

2
λ2
krk .

Fix k ∈ N and for x ∈ Bk define an affine approximation to T εt as

U εt (x) = T εt (xk) +DT εt (xk)(x− xk) . (4.13)

Then by Taylor’s theorem, for all x ∈ Bk we have the estimate

|T εt (x)− U εt (x)| ≤ 1

2
(1 + ε)tδk < tδk , (4.14)

where δk := ‖D3ψ‖Bkr2
k <

1
4ελ

2
krk due to (4.7). Now, because

Sεt (x) = T εt (xk) +DTt(xk)(x− xk)

we see that the ellipsoids given by

E = Sεt (Bk)− T εt (xk) , Ê = U εt (Bk)− T εt (xk)

are concentric with identical principal axes having respective principal stretches

1− t+ tλ , 1− t+ t(1 + ε)λ ,

for each eigenvalue λ of DT (xk) = Hessψ(xk). Due to the definition of λk from (4.6), each
such eigenvalue satisfies λ ≥ λk. Because λk ≤ 1, the ratio of the principal stretches has a
common lower bound:

1− t+ t(1 + ε)λ

1− t+ tλ
≥ 1 +

εtλk
1− t+ tλk

> 1 + εtλk =: α . (4.15)

Thus the uniform dilation αE is contained in Ê and hence the distance from E to ∂Ê is
greater than the distance from E to ∂(αE), which is easily seen to be (α − 1)λkrk. This
means

dist(Sεt (Bk), U
ε
t (∂Bk)) = dist(E, Ê) ≥ dist(E, ∂(αE)) = (α− 1)λkrk = εtλ2

krk .

Combining this with (4.14) we deduce that for ε < 1,

dist(Sεt (Bk), T
ε
t (∂Bk)) ≥ εtλ2

krk − tδk ≥
εt

2
λ2
krk . (4.16)

The inclusion Sεt (Bk) ⊂ T εt (Bk) now follows by continuation from the common point T εt (xk).
�

This completes the proof of parts (i) and (ii) of Proposition 4.5. For part (iii), we note that
the set Ωε

0 = (Sε)−1(Ωε
1) has full measure in Ω0 \Σ0, and T is a smooth diffeomorphism from

this set to Ω1 \Σ1 so maps null sets to null sets. It follows T ◦ (Sε)−1 maps Ωε
0 to a set of full

measure in Ω1, satisfies

sup
x∈Ωε1

|T ◦ (Sε)−1(x)− x| < εdiam Ω1,

and pushes forward uniform measure to uniform measure. The result claimed in part (iii)
follows, due to (2.6).
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4.2. Action estimate for Euler spray. Each of the ellipsoidal Wasserstein droplets that
make up the ellipsoidal transport spray Sε is associated with a boosted ellipsoidal Euler droplet
nested inside, due to the nesting property in Proposition 3.8. The disjoint superposition of
these Euler droplets make up an Euler spray that deforms Ωε

0 to the same set Ωε
1.

In order to complete the proof of Theorem 1.1, it remains to bound the action of this
Euler spray in terms of the Wasserstein distance between the uniform measures on Ω0 and
Ω1. Toward this goal, we first note that because the maps T and Sε are volume-preserving,
due to the estimate in part (ii) of Proposition 4.5 we have

dW (T (Bi), S
ε(Bi))

2 ≤ (εK1)2 |Bi| , K1 = diam Ω1.

(One obtains this by bounding the transport cost of straight-line motion from T (z) to Sε(z)
using the Lagrangian form of the action in (3.6).) Now by the triangle inequality,

dW (Bi, S
ε(Bi))

2 ≤
(
dW (Bi, T (Bi)) + εK1|Bi|1/2

)2

≤ dW (Bi, T (Bi))
2(1 + ε) + (ε+ ε2)K2

1 |Bi| (4.17)

Recall that by inequality (3.40) of Lemma 3.10, the action of the i-th ellipsoidal Euler
droplet, denoted by Ai, satisfies

Ai ≤ dW (Bi, S
ε(Bi))

2 +
λ

4
i

λ2
i

r2
i |Bi|

≤ dW (Bi, T (Bi))
2(1 + ε) + 2εK2

1 |Bi| , (4.18)

where we make use of the second constraint in (4.4).
By summing over all i, we obtain the required bound,

Aε =
∑
i

Ai ≤ dW (1Ω0 ,1Ω1)2 +Kε

where

K = dW (1Ω0 ,1Ω1)2 + 2|Ω0|(diam Ω1)2.

This concludes the proof of Theorem 1.1.

5. Shape distance equals Wasserstein distance

Our main goal in this section is to prove Theorem 1.3, which establishes the existence of
paths of shape densities (as countable concatenations of Euler sprays) that exactly connect
any two compactly supported measures having densities with values in [0, 1] and have action
as close as desired to the Wasserstein distance squared between the measures. Theorem 1.2
follows as an immediate corollary, showing that shape distance between arbitrary bounded
measurable sets with positive, equal volume is the Wasserstein distance between the corre-
sponding characteristic functions.

Theorem 1.3 will be deduced from Theorem 1.1 by essentially ‘soft’ arguments. Theorem 1.1
shows that the relaxation of shape distance, in the sense of lower-semicontinuous envelope
with respect to the topology of weak-? convergence of characteristic functions, is Wasserstein
distance. Essentially, here we use this result to compute the completion of the shape distance
in the space of bounded measurable sets.
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Lemma 5.1. Let ρ : Rd → [0, 1] be a measurable function of compact support. Then for any
ε > 0 there is an open set Ω such that its volume is the total mass of ρ and the L∞ transport
distance from ρ to its characteristic function is less than ε:

|Ω| =
∫
Rd
ρ dx and d∞(ρ,1Ω) < ε .

Proof. We recall that weak-? convergence of probability measures supported in a fixed compact
set is equivalent to convergence in (either L2 or L∞) Wasserstein distance. Given k ∈ N, cover
the support of ρ a.e. by a grid of disjoint open rectangles of diameter less than εk = 1/k.
For each rectangle R in the grid, shrink the rectangle homothetically from any point inside
to obtain a sub-rectangle R̂ ⊂ R such that |R̂| =

∫
R ρ dx. Let Ωk be the disjoint union of

the non-empty rectangles R̂ so obtained. Then the sequence of characteristic functions 1Ωk
evidently converges weak-? to ρ in the space of fixed-mass measures on a fixed compact set:
for any continuous test function f on Rd, as k →∞ we have∫

Ωk

f(x) dx→
∫
Rd
f(x)ρ(x) dx .

Choosing Ω = Ωk for some sufficiently large k yields the desired result. �

Proof of Theorem 1.3 part (a). Let ρ0, ρ1 have the properties stated, and suppose D :=
dW (ρ0, ρ1) > 0. (The other case is trivial.) Let ε > 0. By Lemma 5.1 we may choose

open sets Ω0 and Ω̂1 whose volume is
∫
Rd ρ0 and such that

d∞(ρ0,1Ω0) + d∞(ρ1,1Ω̂1
) <

ε

2
, dW (Ω0, Ω̂1)2 ≤ dW (ρ0, ρ1)2 +

ε

2
. (5.1)

Then we can apply Theorem 1.1 to find an Euler spray that connects Ω0 to a set Ω̂ε
1 =: Ω1

close to Ω̂1 with the properties

d∞(Ω1, Ω̂1) <
ε

3
, Aε ≤ dW (Ω0, Ω̂1)2 +

ε

3
, (5.2)

where Aε is the action of this Euler spray. By combining the inequalities in (5.1) and (5.2)
we find that the sets Ω0, Ω1 have the properties required. �

Before we establish part (b), we separately discuss the concatenation of transport paths.
Let ρk = (ρkt )t∈[0,1] be a path of shape densities for each k = 1, 2, . . . ,K, with associated

transport velocity field vk ∈ L2(ρk) and action

Ak =

∫ 1

0

∫
Rd
ρkt (x)|vk(x, t)|2 dx dt.

We say this set of paths forms a chain if ρk1 = ρk+1
0 for k = 1, . . . ,K − 1. Given such a chain,

and numbers τk > 0 such that
∑K

k=1 τk = 1, we define the concatenation of the chain of paths

ρk compressed by τk to be the path ρ = (ρt)t∈[0,1] given by

ρt = ρks for t = τks+
∑
j<k

τk , s ∈ [0, 1]. (5.3)

The transport velocity associated with the concatenation is

v(·, t) = τ−1
k vk(·, s) for t = τks+

∑
j<k

τk , s ∈ [0, 1], (5.4)
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and the action is

A =

∫ 1

0

∫
Rd
ρt|v|2 dx dt =

K∑
k=1

τ−1
k

∫ 1

0

∫
Rd
ρks(x)|v(x, s)|2 dx ds =

K∑
k=1

τ−1
k Ak. (5.5)

Remark 5.2. We mention here how the triangle inequality for the shape distance defined in
(1.5) follows directly from this concatenation procedure. Given the chain ρk as above with
actions Ak, let δk =

√
Ak and set

τk =
δk∑
j δj

, k = 1, . . . ,K.

Let A be the action of the concatenation of paths ρk compressed by τk, and let δ =
√
A. Then

A = δ2 =
∑
k

τ−1
k δ2

k =

(∑
k

δk

)2

.

From this the triangle inequality follows.

Proof of Theorem 1.3 part (b). Next we establish part (b). The idea is to construct a path of
shape densities ρ = (ρt)t∈[0,1] connecting ρ0 to ρ1 by concatenating the Euler spray from part
(a) together with two paths of small action that themselves are concatenated chains of Euler
sprays that respectively connect Ω0 to sets that approximate ρ0, and connect Ω1 to sets that
approximate ρ1.

Let ε > 0, and let ρε be a shape density determined by an Euler spray as from part (a)
that connects bounded open sets Ω0 and Ω1 of volume

∫
Rd ρ0, but with the (perhaps tighter)

conditions

dW (1Ω0 , ρ0) + dW (1Ω1 , ρ1) <
1

4
ε2−1, Aε < dW (ρ0, ρ1)2 + ε ,

where Aε is the action of this spray.
Next we construct a chain of Euler sprays with shape densities ρk, k = 1, 2, . . ., with action

Ak that connect Ω1 with a chain of sets Ωk such that 1Ωk
?−⇀ ρ1 as k →∞ and

dW (1Ωk , ρ1) <
1

4
ε2−k, Ak < (ε2−k)2. (5.6)

We proceed by recursion by applying Theorem 1.1 like in the proof of part (a). Given k ≥ 1,
suppose Ωk is defined and ρj are defined for j < k. Using Lemma 5.1 we can find a bounded
open set Ω̂k+1 such that

|Ω̂k+1| =
∫
Rd
ρ0 and dW (1Ω̂k+1

, ρ1) <
1

8
ε2−k−1 .

Then by invoking Theorem 1.1 and the triangle inequality for dW , we obtain an Euler spray
with action Ak that connects Ωk to a bounded open set Ωk+1, such that

dW (Ωk+1, Ω̂k+1) <
1

8
ε2−k−1 and Ak < dW (Ωk, Ω̂k+1)2 +

1

2
(ε2−k)2 < (ε2−k)2 .

We let ρk = (ρkt )t∈[0,1] be the path of shape densities for this spray, so that ρk0 = 1Ωk and

ρk1 = 1Ωk+1
. This completes the construction of the chain of paths ρk satisfying (5.6).

It is straightforward to see that dW (ρkt , ρ1)→ 0 as k →∞ uniformly for t ∈ [0, 1]. Now we
let ρ+ = (ρ+

t )t∈[0,1] be the countable concatenation of this chain of paths ρk compressed by
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τk = 2−k according to the formulas (5.3)–(5.5) above taken with K →∞, and with ρ+
1 = ρ1.

The action A+ of this concatenation then satisfies

A+ =

∞∑
k=1

2kAk < ε2. (5.7)

In exactly analogous fashion we can construct a countable concatenation ρ̂− of a chain of
paths coming from Euler sprays, that connects ρ̂−0 = 1Ω0 with ρ̂−1 = ρ0 and having action
A− < ε2. Then define ρ− be the reversal of ρ̂−, given by

ρ−t = ρ̂−1−t .

This path ρ− has the same action A−.
Finally, define the path ρ by concatenating ρ−, ρε, ρ+ compressed by ε, 1 − 2ε and ε

respectively. This path satisfies the desired endpoint conditions and has action A that satisfies

A = ε−1A− + (1− 2ε)−1Aε + ε−1A+ < dW (ρ0, ρ1)2 +Kε,

for some constant K independent of ε small. The result of part (b) follows. �

As we indicated in section 2, the result of Theorem 1.4, providing a sharp criterion for the
existence of a minimizer for the shape distance in (1.5), follows by combining the uniqueness
property of Wasserstein geodesics with the result of Theorem 1.2.

Proof of Theorem 1.4. Clearly, if the Wasserstein geodesic density is a characteristic func-
tion, then the Wasserstein geodesic provides a minimizing path for shape distance. On
the other hand, if a minimizer for (1.5) exists, it must have constant speed by a standard
reparametrization argument. Then by Theorem 1.2 it provides a constant-speed minimizing
path for Wasserstein distance as well, hence corresponds to the unique Wasserstein geodesic.
Thus the Wasserstein geodesic density is a characteristic function. �

6. Displacement interpolants as weak limits

6.1. Proof of Theorem 1.5. Next we supply the proof of Theorem 1.5. We will accomplish
this in two steps, first dealing with the case that the endpoint densities ρ0, ρ1 are characteristic
functions of bounded open sets. To extend this result to the general case, we will make use
of fundamental results on stability of optimal transport plans from [3] and [52].

Proposition 6.1. Let Ω0, Ω1 be bounded open sets of equal volume. Let (ρ, v) be the density
and transport velocity determined by the unique Wasserstein geodesic (displacement inter-
polant) that connects the uniform measures on Ω0 and Ω1 as described in section 2.

Then, as ε→ 0, the weak solutions (ρε, vε, pε) associated to the Euler sprays of Theorem 1.1
converge to (ρ, v, 0), and (ρ, v) is a weak solution to the pressureless Euler system (1.13)–
(1.14). The convergence holds in the following sense: pε → 0 uniformly, and

ρε
?−⇀ ρ, ρεvε

?−⇀ ρv, ρεvε ⊗ vε ?−⇀ ρv ⊗ v, (6.1)

weak-? in L∞ on Rd × [0, 1].

As our first step toward proving this result, we describe the bounds on pressure and velocity
that come from the construction of the Euler sprays constructed above, for any given ε ∈ (0, 1).

Lemma 6.2. Let (Qε, φε, pε), 0 < ε < 1, denote the Euler sprays constructed in the proof of
Theorem 1.1, and let Xε : Ωε

0 × [0, 1]→ Rd denote the associated flow maps, which satisfy

Ẋε(z, t) = ∇φε(Xε(z, t), t), (z, t) ∈ Ωε
0 × [0, 1],
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with Xε(z, 0) = z. Then for some K̂ > 0 independent of ε, we have

0 ≤ pε(x, t) ≤ K̂ε (6.2)

for all (x, t) ∈ Qε, and

|Xε(z, t)− Tt(z)|+ |Ẋε(z, t)− Ṫt(z)| ≤ K̂
√
ε (6.3)

for all (z, t) ∈ Ωε
0× [0, 1], where (z, t) 7→ Tt(z) is the flow map from (2.1) for the Wasserstein

geodesic.

Proof. By the pressure bound for individual droplets in (3.47) together with the second con-
dition in (4.4), we have the pointwise bound

0 ≤ pε ≤ K0ε , K0 = K2
1d. (6.4)

Next consider the velocity. The boosted elliptical Euler droplet that transports Bi to Sε(Bi)
is translated by xi, and boosted by the vector

bi := (1 + ε)T (xi)− xi = Ṫt(xi) + εT (xi) . (6.5)

In this “i-th droplet,” the velocity satisfies, by the estimate (3.49),

|∇φε − bi| = |vε − bi| ≤ K0ε . (6.6)

Now the particle velocity for the Euler spray compares to that of the Wasserstein geodesic
according to

|Ẋε(z, t)− Ṫt(z)| ≤ |Ẋε − bi|+ |bi − Ṫt(z)|
≤ K0ε+ ε|T (xi)|+ ri max

j
|λj(z)− 1|

≤ K0ε+K1ε+
√
K0ε ≤ K2

√
ε . (6.7)

(Here λj(z) denote the eigenvalues of DT (z) = ∇ψ(z), and we use the fact that |λj(z)−1| ≤ λi
together with (4.4).) Upon integration in time we obtain both bounds in (6.3). �

Proof of Proposition 6.1. Now, let (ρ, v) be the density and velocity of the particle paths for

the Wasserstein geodesic, from (2.8) and (2.4). To prove ρε
?−⇀ ρ weak-? in L∞, it suffices to

show that as ε→ 0, ∫ 1

0

∫
Rd

(ρε − ρ)q dx dt→ 0 , (6.8)

for every smooth test function q ∈ C∞c (Rd× [0, 1],R). Changing to Lagrangian variables using
Xε for the term with ρε = 1Qε and Tt for the term with ρ, the left-hand side becomes∫ 1

0

∫
Ω0

(q(Xε(z, t), t)− q(Tt(z), t)) dz dt . (6.9)

Evidently this does approach zero as ε→ 0, due to (6.3).

Next, we claim ρεvε
?−⇀ ρv weak-? in L∞. Because these quantities are uniformly bounded,

it suffices to show that as ε→ 0,∫ 1

0

∫
Rd

(ρεvε − ρv) · ṽ dx dt→ 0 (6.10)

for each ṽ ∈ C∞c (Rd × [0, 1],Rd). Changing variables in the same way, the left-hand side
becomes ∫ 1

0

∫
Ω0

(
Ẋε(z, t) · ṽ(Xε(z, t), t)− Ṫt(z) · ṽ(Tt(z), t)

)
dz dt . (6.11)
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But because ṽ is smooth and due to the bounds in (6.3), this also tends to zero as ε→ 0.

It remains to prove ρεvε⊗vε ?−⇀ ρv⊗v weak-? in L∞. Considering the terms componentwise,
the proof is extremely similar to the previous steps. This finishes the proof of Theorem 1.5. �

To generalize Proposition 6.1 to handle general densities ρ0, ρ1 : Rd → [0, 1], we will use
a double approximation argument, comparing Euler sprays to optimal Wasserstein geodesics
for open sets whose characteristic functions approximate ρ0, ρ1 in the sense of Lemma 5.1,
then comparing these to the Wasserstein geodesic that connects ρ0 to ρ1. We prove weak-star
convergence for the second comparison by extending the results from [3] and [52] on weak-?
stability of transport plans to establish weak-? stability of Wasserstein geodesic flows (in the
Eulerian framework).

Proposition 6.3. Let (ρ, v) be the density and transport velocity determined by the Wasser-
stein geodesic that connects the measures with given densities ρ0, ρ1 : Rd → [0, 1], measurable
with compact support such that ∫

Rd
ρ0 =

∫
Rd
ρ1 .

Let (ρ̄k, v̄k) be the density and transport velocity determined by the Wasserstein geodesic that
connects the measures with densities 1Ωk0

and 1Ωk1
, where Ωk

0, Ωk
1, k = 1, 2, . . ., are bounded

open sets such that |Ωk
0| = |Ωk

1| =
∫
Rd ρ0 and

d∞(ρ0,1Ωk0
) + d∞(ρ1,1Ωk1

)→ 0 as k →∞.

Then

ρ̄k
?−⇀ ρ, ρ̄kv̄k

?−⇀ ρv, ρ̄kv̄k ⊗ v̄k ?−⇀ ρv ⊗ v, (6.12)

weak-? in L∞ on Rd × [0, 1]. Consequently 0 ≤ ρ ≤ 1 a.e. in Rd × [0, 1].

Proof. Let π (resp. πk) be the optimal transport plan connecting ρ0 to ρ1 (resp. 1Ωk0
to 1Ωk0

).

These plans take the form π = (id×T )]ρ0 (resp. πk = (id×T k)]1Ωk0
) where T (resp. T k)

is the Brenier map. Then by [52, Theorem 5.20] or [3, Proposition 7.1.3], we know that πk

converges weak-? to π in the space of Radon measures on Rd × Rd.
We will prove that ρ̄kv̄k

?−⇀ ρv; it will be clear that the remaining results in (6.12) are
similar. Let ϕ : Rd × [0, 1]→ Rd be smooth with compact support. We claim that∫ 1

0

∫
Rd
ρ̄kv̄kϕ(x, t) dx dt→

∫ 1

0

∫
Rd
ρvϕ(x, t) dx dt. (6.13)

Recall from (2.3) that the geodesic velocities v̄k(x, t) satisfy

v̄k((1− t)z + tT k(z), t) = T k(z)− z.

Hence the left-hand side of (6.13) can be written in the form∫ 1

0

∫
Rd×Rd

(y − z)ϕ((1− t)z + ty, t) dπk(z, y) dt =

∫
Rd×Rd

ψ(z, y) dπk(z, y) ,

where

ψ(z, y) =

∫ 1

0
(y − z)ϕ((1− t)z + ty, t) dt.
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Due to the fact that πk
?−⇀ π and all these measures are supported in a fixed compact set, as

k →∞ we obtain the limit∫
Rd×Rd

ψ(z, y) dπ(z, y) =

∫ 1

0

∫
Rd×Rd

(y − z)ϕ((1− t)z + ty, t) dπ(z, y) dt

=

∫ 1

0

∫
Rd

(T (z)− z)ϕ(Tt(z), t) ρ0(z) dz dt ,

(6.14)

where Tt(z) = (1 − t)z + tT (z). To conclude the proof, we need to recall how ρ and v
are determined by displacement interpolation, in a precise technical sense for the present case
when ρ0 and ρ1 lack smoothness. Indeed, from the results in Lemma 5.29 and Proposition 5.30
of [45] (also see Proposition 8.1.8 of [3]), we find that with the notation

xt(z, y) = (1− t)z + ty ,

the measure µt with density ρt is given by the pushforward

µt = (xt)]π = (xt)](id×T )]µ0 = (Tt)](ρ0 dz) , (6.15)

and the transport velocity is given by

v(x, t) = (T − id) ◦ (Tt)
−1(x). (6.16)

Thus we may use Tt to push forward the measure ρ0(z) dz = dµ0(z) in (6.14) to write, for
each t ∈ [0, 1], ∫

Rd
(T (z)− z)ϕ(Tt(z), t) ρ0(z) dz =

∫
Rd
v(x, t)ϕ(x, t) ρt(x) dx. (6.17)

It then follows that (6.13) holds, as desired. �

Remark 6.4. The validity of the continuity equation (1.13) for (ρ, v) is well known and es-
tablished in several sources, e.g., see [51, Theorem 5.51] or [45, Chapter 5]. The step above
going from (6.14) to (6.17) provides an answer to the related exercise 5.52 in [51]. We are
not aware, however, of any source where the momentum equation (1.14) for (ρ, v) is explicitly
and rigorously justified.

Proof of Theorem 1.5. Let us now finish the proof of Theorem 1.5. As any ball in L∞(Rd ×
[0, 1]) is metrizable [22, Theorem V.5.1], we may fix a metric d in a large enough ball, and select
εk > 0 for each k ∈ N such that for the quantities (ρk, vk, pk) := (ρεk , vεk , pεk) coming from
the Euler sprays of Proposition 6.1, the components of ρk, ρkvk and ρkvk ⊗ vk approximate
the corresponding quantities ρ̄k, ρ̄kv̄k and ρ̄kv̄k ⊗ v̄k that appear in Proposition 6.3, within
distance 1/k. That is,

max
(
d(ρk, ρ̄k), d(ρkvki , ρ̄

kv̄ki ), d(ρkvki v
k
j , ρ̄

kv̄ki v̄
k
j )
)
<

1

k
.

Then the convergences asserted in (1.15) evidently hold. �

6.2. Convergence in the stronger TLp sense. The convergences described in Proposi-
tions 6.1 and 6.3 and Theorem 1.5 actually hold in a stronger sense related to the TLp metric
that was introduced in [29] to measure differences between functions defined with respect to
different measures. We recall the definition of the TP p metric and a number of its properties
in appendix A.

Our first result strengthens the conclusions drawn in Proposition 6.1.
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Proposition 6.5. Under the same hypotheses as Proposition 6.1 and Lemma 6.2, the map
that associates Tt(x) with Xε

t (x) = Xε(x, t), defined by Y ε
t = Xε

t ◦ T−1
t , pushes forward ρt to

ρεt and we have the estimate

|x− Y ε
t (x)|+ |vt(x)− vεt (Y ε

t (x))| ≤ K̂
√
ε (6.18)

for all t ∈ [0, 1] and ρt-a.e. x. By consequence, for all t ∈ [0, 1] we have

dTL∞((ρt, vt), (ρ
ε
t , v

ε
t )) ≤ K̂

√
ε.

This result follows immediately from estimate (6.3) of Lemma 6.2. Expressed in terms of
couplings, using the transport plan that associates Xε(z, t) with Tt(z) given by the pushfor-
ward

πε = (Xε( · , t)× Tt)]ρ0 ,

the estimate (6.3) implies that for πε-a.e. (x, y), for all t ∈ [0, 1] we have

|x− y|+ |vε(x, t)− v(y, t)| ≤ K̂
√
ε .

Next we improve the conclusions of Proposition 6.3 by invoking the results of Proposi-
tion A.5 in the Appendix.

Proposition 6.6. Under the assumptions of Proposition 6.3, there exist transport maps S̄k

that push forward ρ0 to ρ̄k0 = 1Ωk0
, such that

‖ id−S̄k‖L∞(ρ0) → 0 as k →∞ , (6.19)

and for any such sequence of transport maps, the maps given by

S̄kt = T kt ◦ S̄k ◦ T−1
t

push forward ρt to ρ̄kt and satisfy, as k →∞,

sup
t∈[0,1]

∫
|x− S̄kt (x)|2 ρt(x) dx→ 0, (6.20)

sup
t∈[0,1]

∫
|vt(x)− v̄kt (S̄kt (x))|2 ρt(x) dx→ 0 , (6.21)

sup
t∈[0,1]

∫
|(vt ⊗ vt)(x)− (v̄kt ⊗ v̄kt )(S̄kt (x))| ρt(x) dx→ 0 . (6.22)

Proof. The existence of the maps S̄k follow from the fact that d∞(ρ0, ρ̄
k
0) → 0 as k → ∞,

and existence of optimal transport maps for these distances, see Theorem 3.24 of [45]. The
remaining statements follow from Proposition A.5 in the Appendix. �

By combining the last two results, we obtain the following improvement of the conclusions
of Theorem 1.5.

Theorem 6.7. Under the same hypotheses as Theorem 1.5, we have the following. Let ρk0,
S̄k be as in Proposition 6.6, and let (ρk, vk, pk) be solutions of the Euler system (1.13)–(1.14)
coming from the Euler sprays of Theorem 1.1, chosen as in the proof of Theorem 1.5. Define

Skt = Xk
t ◦ Sk ◦ T−1

t . (6.23)
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Then (Skt )](ρt dx) = ρkt dx, and

sup
t∈[0,1]

∫
|x− Skt (x)|2 ρt(x) dx→ 0 , (6.24)

sup
t∈[0,1]

∫
|vt(x)− vkt (Skt (x))|2 ρt(x) dx→ 0 , (6.25)

sup
t∈[0,1]

∫
|(vt ⊗ vt)(x)− (vkt ⊗ vkt )(Skt (x))| ρt(x) dx→ 0. (6.26)

Proof. Using Proposition 6.5, we can deduce that

sup
t∈[0,1]

∫
|Skt (x)− S̄kt (x)|2 ρt(x) dx→ 0, (6.27)

sup
t∈[0,1]

∫
|vkt (Skt (x))− v̄kt (S̄kt (x))|2 ρt(x) dx→ 0 , (6.28)

sup
t∈[0,1]

∫
|(vkt ⊗ vkt )(Skt (x))− (v̄kt ⊗ v̄kt )(S̄kt (x))| ρt(x) dx→ 0 . (6.29)

Combining these with the results of Proposition 6.6 finishes the proof. �

7. Relaxed least-action principles for two-fluid incompressible flow and
displacement interpolation

In a series of papers that includes [8, 10, 11, 12, 13, 14], Brenier studied Arnold’s least-
action principles for incompressible Euler flows by introducing relaxed versions that involve
convex minimization problems, for which duality principles yield information about minimiz-
ers and/or minimizing sequences.

In this section, we describe a simple variant of Brenier’s theories that provides a relaxed
least-action principle for a two-fluid incompressible flow in which one fluid can be taken as
vacuum. For this degenerate case we show that the displacement interpolant (Wasserstein
geodesic) provides the unique minimizer. Moreover, the concatenated Euler sprays that we
constructed to prove Theorem 1.3 provide a minimizing sequence for the relaxed problem.

We remark that Lopes Filho et al. [37] studied a variant of Brenier’s relaxed least-action
principles for variable density incompressible flows. As we indicate below, their formulation
is closely related to ours, but it requires fluid density to be positive everywhere.

7.1. Kinetic energy and least-action principle for two fluids. We recall that a key idea
behind Brenier’s work is that kinetic energy can be reformulated in terms of convex duality,
based on the idea that kinetic energy is a jointly convex function of density and momentum.
In order to handle possible vacuum, we extend this idea in the following way. Let %̂ ≥ 0 be a
constant (representing the density of one fluid). We define K̂%̂ as the Legendre transform of
the indicator function of the paraboloid

P%̂ =
{

(a, b) ∈ R× Rd : a+ 1
2 %̂|b|

2 ≤ 0
}
, (7.1)

given for (x, y) ∈ R× Rd by

K̂%̂(x, y) = sup
(a,b)∈Pρ̂

ax+ b · y. (7.2)

We find the following.
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Lemma 7.1. Let %̂ ≥ 0 and define K̂ by (7.2). Then K̂%̂ is convex, and

K̂%̂(x, y) =


1

2

|y|2

%̂x
if y 6= 0 and %̂x > 0,

0 if y = 0 and x ≥ 0,

+∞ else.

(7.3)

In case %̂ > 0, we have the scaling property

K̂%̂(%̂x, %̂y) = K̂1(x, y). (7.4)

The proof of this lemma is a straightforward calculation based on cases that we leave to the
reader. We emphasize that %̂ = 0 is allowed. Indeed, for %̂ = 0, K̂0 reduces to the indicator
function for the closed half-line

{(x, y) : y = 0, x ≥ 0}.

Suppose c ∈ R represents the ‘concentration’ of one fluid and m ∈ Rd represents the
‘momentum’ of this fluid, at some point in the flow. If K̂%̂(c,m) < +∞, then c ≥ 0 and

m = %̂cv for some ‘velocity’ v ∈ Rd which satisfies

K̂%̂(c,m) =
1

2
%̂c|v|2. (7.5)

Next we begin to describe our relaxed least-action principle for two-fluid incompressible
flow. Consider fluid flow inside a large box for unit time, with

Ω = [−L,L]d , Q = Ω× [0, 1] .

Let %̂i, i = 0, 1, be constants representing the densities of two fluids, with %̂1 > %̂0 ≥ 0. (More
fluids could be considered, but we have no reason to do so at this point.) Next we let ci(x, t),
i = 0, 1, represent the concentration of fluid i at the point (x, t) ∈ Q. For classical flows, the
fluids should occupy non-overlapping regions of space-time, meaning that the concentrations
are characteristic functions ci = 1Qi with

Qi =
⋃

t∈[0,1]

Ωi,t × {t} , Q =
⊔
i

Qi . (7.6)

The requirement ci(x, t) ∈ {0, 1} will be relaxed, however, to the requirement ci(x, t) ∈ [0, 1].
This provides a convex restriction that heuristically allows ‘mixtures’ to form (by taking weak
limits, say).

Writing mi(x, t) for the momentum of fluid i at (x, t) ∈ Q, the action to be minimized is
the total kinetic energy

K(c,m) =
∑
i

∫
Q
K̂%̂i(ci,mi) dx dt , (7.7)

subject to three types of constraints—incompressibility, transport that conserves the total
mass of each fluid, and endpoint conditions. We require∑

i

ci = 1 a.e. in Q, (7.8)

%̂i∂tci +∇ ·mi = 0 in Q for all i, (7.9)

d

dt

∫
Ω
%̂ici = 0 for t ∈ [0, 1] for all i, (7.10)
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and fixed endpoint conditions at t = 0, 1:

ci(x, 0) = ci0(x) , ci(x, 1) = ci1(x) , (7.11)

where ci0, ci1 ∈ L∞(Ω, [0, 1]) are prescribed for each i in a fashion compatible with the con-
straints (7.8) and (7.10). For unmixed, classical flows, these data take the form of character-
istic functions:

ci0(x) = 1Ωi,0 , ci1(x) = 1Ωi,1 . (7.12)

The constraints above are more properly written and collected in the following weak form,
required to hold for all test functions p, φi in the space C0(Q) of continuous functions on Q,
having ∂tφi, ∇xφi also continuous on Q, for i = 0, 1:

0 =

∫
Q
p−

∑
i

∫
Q

(
(p+ %̂i∂tφi) ci +∇xφi ·mi

)
−
∑
i

%̂i

(∫
Ω
ci1(x)φi(x, 1) dx−

∫
Ω
ci0(x)φi(x, 0) dx

)
. (7.13)

Let us now describe precisely the set AK of functions (c,m) that we take as admissible for
the relaxed least-action principle. We require ci ∈ L∞(Q, [0, 1]). As we shall see below, it is
natural to require that the path

t 7→ ci(·, t) dx

is weak-? continuous into the space of signed Radon measures on Ω, and that mi = %̂icivi
with vi ∈ L2(Q, ci) if %̂i > 0. Then the action in (7.7) becomes

K(c,m) =
∑
i

∫
Q

1

2
%̂ici|vi|2 . (7.14)

When %̂0 = 0, we require m0 = 0 a.e., since this condition is necessary to have K(c,m) <∞
in (7.7). In this case we have

K(c,m) =

∫
Q

1

2
%̂1c1|v1|2 , (7.15)

and the constraints on c0 from (7.13) reduce simply to the requirement that c0 = 1− c1.
We let AK denote the set of functions (c,m) that have the properties required in the

previous paragraph and satisfy the weak-form constraints (7.13). Our relaxed least-action
two-fluid problem is to find (c̄, m̄) ∈ AK with

K(c̄, m̄) = inf
(c,m)∈AK

K(c,m). (7.16)

A formal description of classical critical points of the action in (7.16), subject to the con-
straints in (7.13), and with each ci a characteristic function of smoothly deforming sets as in
(7.6), will lead to classical Euler equations for two-fluid incompressible flow, along the lines
of our calculation in section 3, which applies in the case %̂0 = 0.

We will discuss in subsection 7.3 below how the least-action problem (7.16) is equivalent
to a weaker formulation in which (ci,mi) are only taken to be signed Radon measures on Q.
When %̂0 > 0, this weaker formulation may be compared directly to the variant of Brenier’s
least-action principle for variable-density flows, as treated by Lopes Filho et al. [37], in the
two-fluid special case.
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7.2. Wasserstein geodesics are minimizers of relaxed action. We focus now on the
case %̂0 = 0, and take %̂1 = 1 for convenience.

Theorem 7.2. Suppose %̂0 = 0, and ρ0, ρ1 : Rd → [0, 1] are measurable with compact support
and equal integrals in (−L,L)d. Then the relaxed least-action problem in (7.16), with endpoint
data determined by c10 = ρ0, c11 = ρ1, has a unique solution (c̄, m̄) given inside Q by

c̄1 = ρ, m̄1 = ρv, c̄0 = 1− ρ, m̄0 = 0, (7.17)

in terms of the displacement interpolant (ρ, v) (described in section 2 and (6.15),(6.16)) be-
tween the measures µ0 and µ1 with densities ρ0 and ρ1.

Proof. It is clear from the pushforward description of (6.15)–(6.16) that (c̄, m̄) as defined in
(7.17) belongs to the admissible set AK , due to the facts that (i) 0 ≤ ρ ≤ 1 by the last
assertion of Proposition 6.3 and (ii) the support of (ρ, v) is compactly contained in Ω due to
(2.1) and (6.16). We then have, since %̂0 = 0,

K(c̄, m̄) =

∫
Q

1

2
ρ|v|2 =

∫ 1

0

∫
Rd

1

2
ρ|v|2 dx dt

because the pair (ρ, v) is defined on Rd × [0, 1] and is zero outside Q. But similarly, for any
admissible pair (c,m) ∈ AK , if we extend (c1, v1) by zero outside Q, we have

K(c,m) =

∫ 1

0

∫
Rd

1

2
c1|v1|2 dx dt

and (c1, v1) determines a narrowly continuous path of measures t 7→ µt = c1 dx on Rd with
v ∈ L2(µ) that satisfies the continuity equation. It is known that (ρ, v) minimizes this
expression over this wider class of paths of measures, due to the characterization of Wasserstein
distance by Benamou and Brenier [6], see [51, Thm. 8.1]. By consequence we obtain that
(c̄, m̄) as defined by (7.17) is indeed a minimizer of the relaxed least-action problem (7.16).

Because the Wasserstein minimizing path is unique (as discussed in section 2), it follows
that any minimizer in (7.16) must be given as in (7.17). �

Proposition 7.3. The family of incompressible flows (concatenated Euler sprays) given for
all small ε > 0 by Theorem 1.3(b) determine a minimizing family (cε,mε) for the relaxed
least-action principle (7.16) according to

cε1 = ρε, mε
1 = ρεvε, cε0 = 1− ρε, mε

0 = 0.

That is, (cε,mε) ∈ AK and limε→0K(cε,mε) = infAK K(c,m).

We remark that in case the endpoint data are classical (unmixed) as in (7.12), we are
not able to use the individual Euler sprays that we construct for the proof of Theorem 1.1
to obtain a similar result. The reason is that the target set Ω1,1 = Ω1 is not hit exactly
by our Euler sprays, and this means that the corresponding concentration-momentum pair
(cε,mε) /∈ AK because it would not satisfy the constraint (7.13) as required. We conjecture,
however, that for small enough ε > 0, Euler sprays can be constructed that hit an arbitrary
target shape Ω1 (up to a set of measure zero). If that is the case, these Euler sprays would
similarly provide a minimizing family for the relaxed least-action principle (7.16).
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7.3. Extended relaxed least-action principle. In this subsection we discuss an extenstion
of the least-action principle (7.16) which facilitates comparison with previous works. Our
extension involves expanding the class of admissible concentration-momentum pairs, and is a
kind of hybrid of Brenier’s ‘homogenized vortex sheet’ formulation in [11] and the variable-
density formulation in [37] for geodesic flow in the diffeomorphism group. The extended
formulation reduces, however, to the formulation in (7.16) whenever the action is finite—see
Proposition 7.5 below.

The formulations of [11, 12, 37] were designed to make it possible to establish existence
of minimizers through convex analysis. The key is to express kinetic energy through duality.
We start with the space C0(Q) of continuous functions on Q = [−L,L]d × [0, 1], whose dual
is the space M(Q) of signed Radon measures. The duality pairing is

〈F, c〉 =

∫
Q
F dc for F ∈ C0(Q), c ∈M(Q).

Similarly we write 〈G,m〉 =
∫
QG · dm for G ∈ C0(Q)d and m ∈M(Q)d.

Next, let %̂ ≥ 0 be a constant representing fluid density. We let

Ê = C0(Q)× C0(Q)d, Ê∗ =M(Q)×M(Q)d,

and define K̂%̂ : Ê∗ → R as the Legendre transform of the indicator function of the parabolic
set

P%̂ = {(F,G) ∈ E : F +
1

2
ρ̂|G|2 ≤ 0 in Q}, (7.18)

given for (c,m) ∈ Ê∗ by

K̂%̂(c,m) = sup
(F,G)∈P%̂

〈F, c〉+ 〈G,m〉. (7.19)

(To compare with [37, eq. (3.8)] it may help to note %̂P%̂ = P1 when %̂ > 0.)
The following result follows from [11, Proposition 3.4] in the case %̂ > 0, and is straightfor-

ward to show in the case %̂ = 0, when the conclusion entails m = 0.

Proposition 7.4. Let %̂ ≥ 0, and let (c,m) ∈ Ê∗. If K̂%̂(c,m) <∞, then c is a nonnegative
measure and m is absolutely continuous with respect to c, with Radon-Nikodým derivative %̂v
where v ∈ L2(Q, c), and

K̂%̂(c,m) =

∫
Q

1

2
%̂|v|2 dc.

Our reformulated least-action problem may now be specified, as follows. Let %̂1 > %̂0 ≥ 0.
For (c,m) ∈ E∗ = Ê∗ × Ê∗ we write

c = (c0, c1), m = (m0,m1),

and we define
K(c,m) =

∑
i

K%̂i(ci,mi). (7.20)

We introduce the class ÂK of admissible pairs (c,m) ∈ E∗ that satisfy the same weak-form
constraints (7.13) as before (with ci, mi replaced respectively by dci, dmi). The extended

relaxed least-action problem is to find (ĉ, m̂) ∈ ÂK such that

K(ĉ, m̂) = inf
(c,m)∈ÂK

K(c,m). (7.21)

This form of the relaxed least-action problem may be compared rather directly with the
homogenized vortex sheet model of Brenier [11] and with the variable-density model of Lopes
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Filho et al. [37]. Both of these models deal with the endpoint problem for diffeomorphisms
rather than mass distributions as is done here. Brenier’s model involves a sum over ‘phases’
as in our model (7.20), but the fluid density in each phase is the same. The variable-density
model of [37] allows for mixture density (called c, corresponding to %̂c here) to depend upon
both Eulerian and Lagrangian spatial coordinates (called x and a respectively), similar to the
formulation in [12].

In both [11] and [37] as well as related works for relaxed least-action principles formulated in
a space of measures, the existence of minimizers is established by using the Fenchel-Rockafellar
theorem from convex analysis. One expresses the objective function corresponding to K(c,m)
as a sum of Legendre transforms of indicator functions of two sets, corresponding here to the
set P%̂ in (7.18) and to another set that accounts for the constraints in (7.13). We do not
pursue this analysis as it is outside the scope of this paper. In any case, for the degenerate
case %̂0 = 0 that is most relevant to the rest of this paper, existence of a unique minimizer
follows from Theorem 7.2 above and Proposition 7.5 below.

We claim that the relaxed least-action problem (7.21) always reduces to the previous prob-
lem (7.16), due to the following fact.

Proposition 7.5. Suppose (c,m) ∈ ÂK and K(c,m) < ∞. Then for some (c̄, m̄) ∈ AK we
have K(c,m) = K(c̄, m̄) and

dci = c̄i dx dt, dmi = m̄i dx dt, i = 0, 1. (7.22)

Consequently, the infimum in (7.21) is the same as that in (7.16).

Proof. To prove this result, we first invoke Proposition 7.4 to infer that ci is a nonnegative
measure and mi is absolutely continuous with respect to ci for i = 0, 1. Next we note that∑

i ci = 1 by taking φi = 0 and p arbitrary in (7.13). Hence the representation in (7.22) holds
with c̄i ∈ L∞(Q, [0, 1]) and mi = %̂ic̄ivi with vi ∈ L2(Q, c̄i).

Finally, we claim t 7→ c̄i(·, t) is weak-? continuous into M(Q). By choosing p = 0 and φi
to depend only on t in (7.13) we infer that

∫
Ω c̄i(x, t) dx is independent of t. Thus, because Ω

is compact, we can invoke Lemma 8.1.2 of [3] to conclude that t 7→ c̄i(·, t) is narrowly, hence
weak-?, continuous.

It is clear that the infimum in (7.16) is greater or equal to that in (7.21), because the

admissible set AK is naturally embedded in ÂK, and the two are equal if either is finite.
Recalling that inf ∅ = +∞, equality follows in general. �

Remark 7.6. As a last comment, we note that for variable-density flow with strictly positive
density, the relaxed least-action problem studied by Lopes et al. [37] was shown to be consistent
with the classical Euler equations, in the sense that classical solutions of the Euler system
induce weak solutions of relaxed Euler equations, and for sufficiently short time the induced
solution is the unique minimizer of the relaxed problem. In the case that we consider with ρ̂0 =
0, however, this consistency property cannot hold in general when the space dimension d > 1,
for the reason that in general we can expect the Wasserstein density ρ < 1 in Theorem 7.2
(see Theorem 1.4), while necessarily ρ ∈ {0, 1} for any classical solution of the incompressible
Euler equations.
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8. A Schmitzer-Schnörr-type shape distance without volume constraint

Theorem 1.2 establishes that restricting the Wasserstein metric to paths of shapes of fixed
volume does not provide a new notion of distance on the space of such shapes. Namely it
shows that for paths in the space of shapes of fixed volume, the infimum of the length of paths
between two given shapes is the Wasserstein distance.

Volume change. It is of interest to consider a more general space of shapes in order to
compare shapes of different volumes. In particular, the Schmitzer and Schnörr [46] considered
a space that corresponds to the set of bounded, simply connected domains in R2 with smooth
boundary and arbitrary positive area. To each such shape Ω one associates as its corresponding
shape measure the probability measure having uniform density on Ω, denoted by

UΩ =
1

|Ω|
1Ω. (8.1)

We consider here this same association between sets and shape measures, but allow for more
general shapes. Namely for fixed dimension d, let us consider shapes as bounded measurable
subsets of Rd with positive volume. Let C be the set of all shape measures corresponding to
such shapes. Thus C is the set of all uniform probability distributions of bounded support.

One can formally consider C as a submanifold of the space of probability measures of finite
second moment, endowed with Wasserstein distance. Then we define a distance between
shapes as we did in (1.5), requiring

dC(Ω0,Ω1)2 = inf A , A =

∫ 1

0

∫
Rd

ρ|v|2 dx dt , (8.2)

where ρ = (ρt) is now required to be a path of shape measures in C, with endpoints

ρ0 = UΩ0 , ρ1 = UΩ1 , (8.3)

and transported according to the continuity equation (1.2) with a velocity field v ∈ L2(ρ dx dt).
Because the characteristic-function restriction (1.3) is replaced by the weaker requirement

that ρt has a uniform density, for any two shapes of equal volume scaled to unity for conve-
nience, it is clear that

ds(Ω0,Ω1) ≥ dC(Ω0,Ω1) ≥ dW (Ω0,Ω1). (8.4)

Then as a direct consequence of Theorem 1.2, we have

dC(Ω0,Ω1) = dW (Ω0,Ω1) . (8.5)

By a minor modification of the arguments of section 5, in general we have the following.

Theorem 8.1. Let Ω0 and Ω1 be any two shapes of positive volume. Then

dC(Ω0,Ω1) = dW (UΩ0 ,UΩ1).

Proof. By a simple scaling argument, we may assume min{|Ω0|, |Ω1|} ≥ 1 without loss of
generality, so that both ρ0, ρ1 ≤ 1. Then the concatenated Euler sprays provided by The-
orem 1.3(b) supply a path of shape measures in C (actually shape densities), with action
converging to dW (UΩ0 ,UΩ1)2. �

Smoothness. For dimension d = 2, Theorem 8.1 does not apply to describe distance in the
space of shapes considered by Schmitzer and Schnörr in [46], however, for as we have men-
tioned, they consider shapes to be bounded simply connected domains with smooth boundary.

One point of view on this issue is that it is nowadays reasonable for many purposes to
consider ‘pixelated’ images and shapes, made up of fine-grained discrete elements, to be valid
approximations to smooth ones. Thus the microdroplet constructions considered in this paper,
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which fit with the mathematically natural regularity conditions inherent in the definition of
Wasserstein distance, need not be thought unnatural from the point of view of applications.

Nevertheless one may ask whether the infimum of path length in the space of smooth
simply connected shapes is still the Wasserstein distance, as in Theorem 8.1. Our proof of
Theorem 1.2 in Section 5 does not provide paths in this space because the union of droplets is
disconnected. However, the main mechanism by which we efficiently transport mass, namely
by “dividing” the domain into small pieces (droplets) which almost follow the Wasserstein
geodesics, is still available. In particular, by creating many deep creases in the domain it
might be effectively ‘divided’ into such pieces while still remaining connected and smooth.
Thus we conjecture that even in the class of smooth sets considered in [46], the geodesic
distance is the Wasserstein distance between uniform distributions as in Theorem 8.1.

Geodesic equations. It is also interesting to compare our Euler droplet equations from
subsection 3.1 with the formal geodesic equations for smooth critical paths of the action A
in the space C of uniform distributions. These equations correspond to equation (4.12) of
Schmitzer and Schnörr in [46].

These geodesic equations may be derived in a manner almost identical to the treatment
in subsection 3.1 above. The principal difference is that due to (3.4), the divergence of the
Eulerian velocity may be a nonzero function of time, constant in space:

∇ · v = c(t),

and the same is true of virtual displacements ṽ. The variation of action now satisfies

δA
2

=

∫
Ωt

v · ṽ ρ dx
∣∣∣∣
t=1

−
∫ 1

0

∫
Ωt

(∂tv + v · ∇v) · ṽ ρ dx dt. (8.6)

Now, the space of vector fields orthogonal to all constant-divergence fields on Ωt is the space
of gradients ∇p such that p vanishes on the boundary and has average zero in Ωt, satisfying

p = 0 on ∂Ωt,

∫
Ωt

p dx = 0. (8.7)

Because ρ is spatially constant and ṽ can be (locally in time) arbitrary with spatially constant
divergence, necessarily u = −(∂tv + v · ∇v) is such a gradient. The remaining considerations
in section 3.1 apply almost without change, and we conclude that v = ∇φ where

∂tφ+
1

2
|∇φ|2 + p = 0, ∆φ = c(t), (8.8)

where c(t) is spatially constant in Ωt.
These fluid equations differ from those in section 3.1 in that φ gains one degree of freedom

(a multiple of the solution of ∆φ = 1 in Ωt with Dirichlet boundary condition) while the
pressure p loses one degree of freedom (as its integral is constrained).

They have elliptical droplet solutions given by displacement interpolation of elliptical
Wasserstein droplets as in subsection 3.4, because pressure vanishes and density is indeed
spatially constant for these interpolants. Because they are Wasserstein geodesics, these par-
ticular solutions are also length-minimizing geodesics in the shape space C.

We remark that unlike in the case of Euler sprays, disjoint superposition will not yield a
geodesic in general. This is because the requirement of spatially uniform density leads to a
global coupling between all shape components. It seems likely that length-minimizing paths
in C will not generally exist even locally, but we have no proof at present.
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Appendix A. TLp convergence and stability of Wasserstein geodesics

Here we recall the notion of TLp convergence as introduced in [29], which provides a more
precise comparison between Wasserstein geodesics than the notion of weak convergence does
alone. We recall some of the basic properties, establish new ones and use them to prove
the convergence of Wasserstein geodesics considered as weak solutions to pressureless Euler
equation.

The TLp metric provides a natural setting for comparing optimal transport maps between
different probability measures. Let Pp(Rd) be the space of probability measures on Rd with

finite p-th moments. On the space TLp(Rd), consisting of all ordered pairs (µ, g) where
µ ∈ Pp(Rd) and g ∈ Lp(µ), the metric is given as follows: For 1 ≤ p <∞,

dTLp((µ0, g0), (µ1, g1)) = inf
π∈Π(µ0,µ1)

(∫
|x− y|p + |g0(x)− g1(y)|p dπ(x, y)

)1/p

,

and

dTL∞((µ0, g0), (µ1, g1)) = inf
π∈Π(µ0,µ1)

ess sup
π

(|x− y|+ |g0(x)− g0(y)|) ,

where Π(µ0, µ1) is the set of transportation plans (couplings) between µ0 and µ1.
The following result estabilishes a stability property for optimal transport maps, as a

consequence of a known general stability property for optimal plans.

Proposition A.1. Let µ, µk ∈ Pp(Rd) be probability measures absolutely continuous with

respect to Lebesgue measure, and let ν, νk ∈ Pp(Rd), for each k ∈ N. Assume that

dp(µk, µ)→ 0 and dp(νk, ν)→ 0 as k →∞.

Let Tk and T be the optimal transportation maps between µk and νk, and µ and ν, respectively.
Then

(µk, Tk)
TLp−→ (µ, T ) as k →∞.

Proof. The measures πk = (id×Tk)]µk and π = (id×T )]µ are the optimal transportation
plans between µk and νk, and µ and ν, respectively. By stability of optimal transport plans
(Proposition 7.1.3 of [3] or Theorem 5.20 in [52]) the sequence πk is precompact with respect
to weak convergence and each of its subsequential limits is an optimal transport plan between
µ and ν. Since π is the unique optimal transportation plan between µ and ν the sequence πk
converges to π. Furthermore, by Theorem 5.11 of [45] or Remark 7.1.11 of [3],

lim
k→∞

∫
|x|p + |y|p dπk(x, y) = lim

k→∞

∫
|x|p dµk +

∫
|y|p dνk

=

∫
|x|p dµ+

∫
|y|p dν =

∫
|x|p + |y|p dπ(x, y).

By Lemma 5.1.7 of [3], it follows the πk have uniformly integrable p-th moments, therefore

dp(πk, π)→ 0 as k →∞,

by Proposition 7.1.5 in [3]. Hence there exists (optimal) γk ∈ Π(π, πk) such that∫
|x− x̃|p + |y − ỹ|p dγk(x, y, x̃, ỹ)→ 0 as k →∞. (A.1)

Since π-almost everywhere y = T (x) and πk-almost everywhere ỹ = Tk(x̃) and the sup-
port supp γk of γk is contained in suppπ × suppπk, we conclude that γk-almost everywhere
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(x, y, x̃, ỹ) = (x, T (x), x̃, Tk(x̃)). Therefore∫
|x− x̃|p + |T (x)− Tk(x̃)|p dγk(x, y, x̃, ỹ)→ 0 as k →∞.

Finally let θk be the projection of γk to (x, x̃) variables. By its definition θk ∈ Π(µ, µk) and
by above ∫

|x− x̃|p + |T (x)− Tk(x̃)|p dθk(x, x̃)→ 0 as k →∞. (A.2)

Thus (µk, Tk)
TLp−→ (µ, T ). �

We now consider the convergence of Wasserstein geodesics between measures µk and νk as
in the Lemma A.1, treating only the case p = 2. We recall that particle paths along these
geodesics are given by

Tk,t(x) = (1− t)x+ tTk(x) .

The displacement interpolation between µk and νk, and particle velocities (in Eulerian vari-
ables) along the geodesics, are given by (cf. (6.15)–(6.16))

µk,t = Tk,t]µk , vk,t = (Tk − id) ◦ T−1
k,t , t ∈ [0, 1).

If νk is absolutely continuous with respect to Lebesgue measure, then t = 1 is allowed. We
also recall that ∫

|vk,t(z)|2dµk,t(z) =

∫
|vk,0(x)|2dµk(x) = d2

2(µk, νk).

Furthermore it is straightforward to check that t 7→ (µk,t, vk,t) is Lipschitz continuous into

TL2(Rd), satisfying for 0 ≤ s < t < 1

(t− s)d2(µk, νk) = d2(µk,t, µk,s) ≤ dTL2((µk,t, vk,t), (µk,s, vk,s)) ≤ (t− s)d2(µk, νk). (A.3)

Proposition A.2. Under the assumptions of Proposition A.1 for the case p = 2, as k →∞
we have

sup
t∈[0,1]

d2(µk,t, µt)→ 0, (A.4)

sup
t∈[0,1)

dTL2((µk,t, vk,t), (µt, vt))→ 0, (A.5)

sup
t∈[0,1)

dTL1((µk,t, vk,t ⊗ vk,t), (µt, vt ⊗ vt))→ 0. (A.6)

If the measures νk and ν are absolutely continuous with respect to Lebesgue measure then the
convergence in (A.5) and (A.6) hold also for t ∈ [0, 1].

Proof. Let π ∈ Π(µ, ν), πk ∈ Π(µk, νk), and γk ∈ Π(π, πk) be as in the proof of Proposition
A.1. Similarly to θk, we define θk,t = (zt × zt)]γk where

zt(x, y) = (1− t)x+ ty and (zt × zt)(x, y, x̃, ỹ) = (zt(x, y), zt(x̃, ỹ)).

We note that θk,t ∈ Π(µt, µk,t) and hence, for all t ∈ [0, 1],

d2(µt, µk,t)
2 ≤

∫
|z − z̃|2dθk,t(z, z̃)

=

∫
|(1− t)(x− x̃) + t(y − ỹ)|2dγk(x, y, x̃, ỹ)

≤ 2

∫
|x− x̃|2 + |y − ỹ|2dγk(x, y, x̃, ỹ) ,
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which by (A.1) converges to 0 as k →∞.
We use the same coupling θk,t to compare the velocities. Using that γk-almost everywhere

(x, y, x̃, ỹ) = (x, T (x), x̃, Tk(x̃)), for any t ∈ [0, 1) we obtain∫
|vt(z)− vk,t(z̃)|2 dθk,t(z, z̃)

=

∫
|vt((1− t)x+ ty)− vk,t((1− t)x̃+ tỹ)|2 dγk(x, y, x̃, ỹ)

=

∫
|v(Tt(x))− vk,t(Tk,t(x̃))|2 dθk(x, x̃)

=

∫
|v0(x)− vk,0(x̃)|2 dθk(x, x̃)

≤ 2

∫
|x− x̃|2 + |T (x)− Tk(x̃)|2 dθk(x, x̃) ,

which converges to 0 as k →∞, as in (A.2).
The convergence in (A.6) is a straightforward consequence through use of Cauchy-Schwarz

inequalities. �

Remark A.3. If the target measure νk is not absolutely continuous with respect to Lebesgue
measure, then Tk may fail to be invertible on the support of νk and (µk,t, vk,t) may fail to

converge as t→ 1 to some point in TL2(Rd) due to oscillations in velocity. However, if νk and
ν are absolutely continuous with respect to Lebesgue measure, then the curves t 7→ (µk,t, vk,t),
t 7→ (µt, vt) extend as continuous maps into TL2 for all t ∈ [0, 1], and the uniform convergences
in (A.5)–(A.6) hold on [0, 1].

A number of properties of the TLp metric are established in Section 3 of [29] for measures
supported in a fixed bounded set One useful characterization of TLp-convergence in this case
is stated in Proposition 3.12 of [29], which implies the following.

Proposition A.4. Let D ⊂ Rd be open and bounded, and let µ and µk (k ∈ N) be probability
measures on D, and suppose µ is absolutely continuous with respect to Lebesgue measure. Call
a sequence of transport maps (Sk) that push forward µ to µk (satisfying Sk]µ = µk) stagnating
if

lim
n→∞

∫
D
|x− Sk(x)| dµ(x) = 0 . (A.7)

Then the following are equivalent, for 1 ≤ p <∞.

(i) (µk, fk)
TLp−→ (µ, f) as k →∞.

(ii) µk converges weakly to µ and for every stagnating sequence (Sk) we have∫
D
|f(x)− fk(Sk(x))|p dµ(x)→ 0 as k →∞. (A.8)

Moreover, for (ii) to hold it suffices that (A.8) holds for any single stagnating sequence (Sk).

This result together with Proposition A.2 yields the following.

Proposition A.5. Make the same assumptions as in Proposition A.2, and assume all mea-
sures µk, µ, νk, ν are absolutely continuous with respect to Lebesgue measure and have support
in a bounded open set D. Then for any stagnating sequence of transport maps (Sk) that push
forward µ to µk, with the notation

Sk,t = Tk,t ◦ Sk ◦ T−1
t
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the sequence (Sk,t) pushes forward µt to µk,t and is stagnating, and as k →∞,

sup
t∈[0,1]

∫
|x− Sk,t(x)|2 dµt(x)→ 0 , (A.9)

sup
t∈[0,1]

∫
|vt(x)− vk,t(Sk,t(x))|2 dµt(x)→ 0 , (A.10)

sup
t∈[0,1]

∫
|(vt ⊗ vt)(x)− (vk,t ⊗ vk,t)(Sk,t(x))| dµt(x)→ 0 . (A.11)

Proof. First we note that indeed

µk,t = (Tk,t)]µk = (Tk,t ◦ Sk)]µ = (Sk,t)]µt.

Next, fix any t ∈ [0, 1]. Because d2(µk,t, µt) → 0 by (A.4) and Tk,t is the optimal transport
map pushing forward µk to µk,t, by Proposition A.1 we have d2((µk, Tk,t), (µ, Tt))→ 0. Now
by Proposition A.4, because (Tt)]µ = µt we have∫

|x− Sk,t(x)|2 dµt(x) =

∫
|Tt(z)− Tk,t(Sk(z))|2 dµ(z)→ 0 . (A.12)

We infer that (Sk,t) is stagnating and the convergence in (A.9) holds pointwise in t. But now,
the middle quantity in (A.12) is a quadratic function of t, so the uniform convergence in (A.9)
holds.

Next, we note that the quantity in (A.10) is actually independent of t. We have∫
|vt(x)− vk,t(Sk,t(x))|2 dµt(x) =

∫
|v0(z)− vk,0(Sk(z))|2 dµ(z)→ 0 ,

due to Proposition A.4. The proof of (A.11) is similar. �
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