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a b s t r a c t

This note studies the Monge–Ampère Keller–Segel equation in a periodic domain
Td(d ≥ 2), a fully nonlinear modification of the Keller–Segel equation where the
Monge–Ampère equation det(I + ∇2v) = u + 1 substitutes for the usual Poisson
equation ∆v = u. The existence of global weak solutions is obtained for this modified
equation. Moreover, we prove the regularity in L∞


0, T ;L∞ ∩W 1,1+γ(Td)


for

some γ > 0.
© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Keller–Segel (KS) model was firstly presented in 1970 to describe the chemotaxis of cellular slime molds [1].
The original model was considered in 2-dimension,

∂tu = △u+∇ · (u∇v), x ∈ R2, t > 0,
∆v = u(t, x),
u(0, x) = u0(x).

(1)

In the context of biological aggregation, u(t, x) represents the bacteria density, and v(t, x) represents the
chemical substance concentration.

In this note, we study the Monge–Ampère Keller–Segel (MAKS) model in a periodic domain Td = Rd/Zd

(d ≥ 2): 
∂tu = ∆u+∇ · (u∇v), x ∈ Td, t > 0,
det(I +∇2v) = u+ 1,
u(0, x) = u0(x).

(2)
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where I is the identity matrix. In the absence of ∆u term in (2), this model was introduced by Brenier
[2, (5.34), (5.36)] as a fully nonlinear version of popular models in chemotaxis theory, such as the celebrated
Keller–Segel model or similar models in astrophysics. We will prove the global existence of weak solutions
to MAKS model (2) in a weak sense, which is made precise in Section 2.

Monge–Ampère Keller–Segel system (2) is an approximation of the original KS system (1) in the following
re-scaling. Let us recast the equation (2) by introducing the new unknowns:

uδ(t, x) = 1
δ
u


t

δ
,
x√
δ


; vδ(t, x) = v


t

δ
,
x√
δ


.

Then we have

u(t, x) = δuδ(δt,
√
δx); v(t, x) = vδ(δt,

√
δx).

Moreover, these new unknowns should be governed by the following MAKS system
∂tu
δ = ∆uδ +∇ · (uδ∇vδ),

det(I + δ∇2vδ) = 1 + δuδ.
(3)

We formally linearize the determinant det(I + δ∇2vδ) around the identity matrix and obtain

1 + δuδ = det(I + δ∇2vδ) = 1 + δ∆vδ +O(δ2). (4)

Then the Monge–Ampère equation turns into the Poisson equation ∆vδ = uδ +O(δ), from which, when we
set O(δ) = 0, we recognize the MAKS system (3) as the original KS system showed in (1).

The density u in the original KS system (1) is driven by the gradient of Newtonian potential ∇v = ∇N ∗u,
where N is the fundamental solution of Laplacian equation, and potential v has the superposition principle
relation with u. Moreover, it has an important property: if 0 ≤ u ∈ L∞(Td), then ∇v is log-Lipschitz
continuous. However, for MAKS model (2), the Newtonian potential is replaced by a convex potential V [u]
discovered by Brenier [3]. The advantage is that ∇v = ∇V [u] − x is globally convex and has uniform L∞

bound if 0 ≤ u ∈ L1(Td). But the convex potential will lose the superposition principle relation with the
density.

There are many mathematical models involved substituting the fully nonlinear Monge–Ampère equation
for the Poisson equation. For example, the semigeotrophic equations in meteorology have a long history.
After suitable changes of variables, they can be reformulated as a coupled Monge–Ampère/transport
problem [4], which appear as a variant of the two-dimensional incompressible Euler equations in vorticity
form, where the Poisson equation that relates to the stream function and the vorticity field is replaced by
the Monge–Ampère equation [4–7]. Moreover, in [8], Brenier and Loeper studied the Vlasov–Monge–Ampère
system, a fully non-linear version of the Vlasov–Poisson system. Similarly, Brenier [9], by substituting the
Monge–Ampère equation for the linear Poisson equation to model gravitation, he introduced a modified
Zeldovich approximate model related to the early universe reconstruction problem.

2. The polar decomposition theorem

The polar factorization of maps has been discovered by Brenier [3]. It was later extended to the general
case of Riemannian manifolds by McCann in [10].

Let us consider a mapping X : Rd → Rd such that for all −→p ∈ Zd, X(· + −→p ) = X + −→p . We use the
push-forward of Lebesgue measure of Rd by X, and it is denoted by u = X♯dx. Then u is a probability
measure on Td and we have the following theorem:

Theorem 1 (Theorem 1.2 [6]). Let X : Rd → Rd be described as above with u = X♯dx.
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1. Up to a constant, there exists a unique convex function V [u] such that V [u] − x2/2 is Zd-periodic (and
thus ∇V [u]− x is Zd-periodic), and

∀ϕ ∈ C0(Td),


Td
ϕ(∇V [u](x))dx =


Td
ϕ(x)du(x). (5)

2. Let V [u] be the Legendre transform of V [u]. If u is Lebesgue integrable, then V [u] is a convex function
satisfying that V [u]− x2/2 is Zd-periodic (and thus ∇V [u]− x is Zd-periodic), unique up to a constant,
and

∀ϕ ∈ C0(Td),


Td
ϕ(∇V [u](x))du(x) =


Td
ϕ(x)dx. (6)

Moreover we have the bound ∥∇V [u]− x∥L∞(Td) ≤
√
d/2.

Link with the Monge–Ampère equation. We can interpret (5) as a weak version of the Monge–
Ampère equation

u(∇V ) det∇2 V = 1, (7)

and (6) can be seen as a weak version of another Monge–Ampère equation

det∇2V = u. (8)

Moreover, we will also use the following result originally from [3]. The first one establishes the continuity
of the polar decomposition.

Theorem 2 (Theorem 2.6 [6]). Let un be a sequence of Lebesgue integrable positive measures on Td, such that
for all n,


Td dun ≤ C and let Vn = V [un], Vn = V [un] be as defined in Theorem 1. If for any ϕ ∈ C0(Td)

such that

ϕdun converges to


ϕdu, then the sequence Vn can be chosen in such a way that Vn converges

to V [u] uniformly on Td and strongly in W 1,1(Td), and Vn converges to V [u] uniformly on Td and strongly
in W 1,1(Td).

Theorem 1 allows us to recast MAKS equation (2) as

∂tu = ∆u+∇ · (u(∇V [u+ 1]− x)), x ∈ Td, t > 0, (9a)
u(0, x) = u0(x). (9b)

where V [u+ 1] is as defined in Theorem 1. For simplicity, we denote V [u+ 1] as V [u].

Remark 1. If u is continuous and satisfies 0 ≤ u ≤ C1, it has been proved in [11] that ∇V [u](x) is
log-Lipschitz continuous. The log-Lipschitz continuity usually ensures the uniqueness and stability in the
Wasserstein distance. Moreover, according to [8, Theorem 4.4], if u ∈ Cα(Td), α ∈ (0, 1), then V [u] is a
classical solution of

det∇2V [u] = u+ 1. (10)

3. Existence of global weak solutions

To begin this section, we give the following definition of the weak solution to the MAKS equation (9).
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Definition 1. Let initial data 0 ≤ u0 ∈ L1(Td). Then (u, V ) is a global weak solution to (9) if it satisfies for
any T > 0:

1. u ∈ L∞

0, T ;L1(Td)


∩ L2 0, T ;H1(Td)


and ∂tu ∈ L2 0, T ;H−1(Td)


.

2. ∀ ϕ ∈ C∞c

[0, T )× Td


, T

0


Td
u∂tϕdxdt =

 T
0


Td

(∇u∇ϕ+ u(∇V − x) · ∇ϕ)dxdt−


Td
u0ϕ(0, x)dx,

where V is defined as in Theorem 1.

The main result of this note is as follows:

Theorem 3. Let initial data 0 ≤ u0 ∈ L2(Td). Then the MAKS system (2) admits a global non-negative weak
solution (u, V ) in t ∈ [0, T ] for any T > 0. And the conservation of mass holds:


Td u(t, x)dx =


Td u0(x)dx.

Proof. We build a sequence of approximate solutions (uε, Vε)ε>0 by regularization and let ε goes to zero. To
do the limiting process, the non-linear term will be treated with the help of Theorem 2.

Step 1: Construction of a sequence of approximate solutions. We consider a mollifier ψ(x) ∈
C∞c (Rd) such that ψ(x) ≥ 0,


Td ψ(x)dx = 1 and ψε(x) = ε−dψ(x/ε). And we can define the mollification

as ψε ∗ u0 :=


Td ψε(x− y)u0(y)dy. Then we study solutions to the following approximate problem

∂tuε = ∆uε +∇ · (uε(∇Vε(x)− x)) , x ∈ Td, t > 0, (11a)
uε,0(x) = ψε ∗ u0(x), (11b)
Vε(x) = ψε ∗ V [uε]. (11c)

Since Vε given by (11c) is bounded in Hk(Td) for any k and ε > 0, the estimate for Eq. (11a) for any fixed
ε > 0 is basically same as that for the heat equation. Hence, the solvability of the regularized problem (11)
can be obtained by using the technique in Majda and Bertozzi [12, Section 3.2.2], where it proved the global
existence of the solution to a regularization of the Euler and Navier–Stokes equation by using the Picard
theorem and continuation property of ODEs on a Banach space. We omit the detail here.

Step 2: Weak convergence of uε and ∇uε. Multiplying Eq. (11a) by 2uε and integrating over Td, we
obtain

d

dt
∥uε∥22 + 2 ∥∇uε∥22 = −


Td
uε(∇Vε − x) · ∇uεdx ≤ ∥∇uε∥22 + C∥uε∥22. (12)

where we have used ∥∇Vε − x∥∞ ≤
√
d/2.

Hence for any T > 0, the following estimates hold

∥uε∥L∞(0,T ;L2(Td)) ≤ CT , ∥∇uε∥L2(0,T ;L2(Td)) ≤ CT . (13)

According to the above estimates, there is a subsequence (still denote uε), such that as ε→ 0, the following
weak convergence results hold

uε
∗−⇀ u in L∞


0, T ;L2(Td)


, ∇uε ⇀ ∇u in L2 0, T ;L2(Td)


. (14)

Step 3: Strong convergence of ∇Vε(t, ·) a.e. t. We claim that for any p ∈ [1,∞),

∇Vε(t, ·)→ ∇V (t, ·) in Lp(Td), a.e. t ∈ [0, T ]. (15)



30 H. Huang, J.-G. Liu / Applied Mathematics Letters 61 (2016) 26–34

Indeed, such strong convergence of ∇Vε follows from Theorem 2 provided that we have for a.e. t ∈ [0, T ],
Td
ϕ(x)uε(t, x)dx→


Td
ϕ(x)u(t, x)dx, (16)

for any ϕ ∈ C0(Td). To verify (16), we need to prove that there is a subsequence (still denote uε)

uε → u in L2(Td) a.e. t ∈ [0, T ], as ε→ 0. (17)

Indeed, it is easy to check that ∥∂tuε∥L2(0,T ;H−1(Td)) ≤ CT , which leads to

uε → u in L20, T ;L2(Td)

, as ε→ 0, (18)

by using Aubin–Lions lemma as H1(Td) ↩→↩→ L2(Td) ↩→ H−1(Td). Then (17) follows from (18), which
completes the proof of (15).

Step 4: Existence of a global weak solution. Next, we will show that (u, V [u]) is a weak solution to
(9). The weak formulation for uε is that for any test function ϕ ∈ C∞c


[0, T )× Td


, T

0


Td
uε∂tϕdxdt =

 T
0


Td

(∇uε∇ϕ+ uε(∇Vε − x) · ∇ϕ)dxdt−


Td
uε,0ϕ(0, x)dx. (19)

Recall that (14), (15), (18) and ∥∇Vε − x∥∞ ≤
√
d/2. Then by using the dominant convergence theorem,

one concludes that by passing limit ε→ 0 in (19) T
0


Td
u∂tϕdxdt =

 T
0


Td

(∇u∇ϕ+ u(∇V − x) · ∇ϕ)dxdt−


Td
u0ϕ(0, x)dx. (20)

We finished the proof of the existence of global weak solutions.

Step 5: Positivity preserving. By using Lemma 7.6 in [13], if we define the negative part of the function
u as u− := min{u, 0}, then one can easily prove that

d

dt
∥u−∥22 + 2 ∥∇u−∥22 = −


Td
u−(∇V − x) · ∇u−dx ≤ ∥∇u−∥22 + C∥u−∥22. (21)

Applying Gronwall’s inequality to

d

dt
∥u−∥22 ≤ C∥u−∥22; ∥u0−∥22 = 0, (22)

one has ∥u−∥22 ≡ 0, which leads to u(t, x) ≥ 0.

Step 6: Conservation of mass. Integrating (9a) over Td and using the fact that ∇u, ∇V − x are
periodic, one has

d

dt


Td
udx =


Td

∆udx+


Td
∇ · (u(∇V − x))dx = 0. (23)

Thus, we conclude that 
Td
u(t, x)dx =


Td
u0(x)dx. � (24)

4. Regularity in L∞(0, T ;L∞ ∩W 1,1+γ(Td))

Theorem 4. Let initial data 0 ≤ u0 ∈ L∞(Td) and ∇u0 ∈ L1+γ(Td) for some γ > 0. Suppose (u, V ) be a
weak solution to MAKS equation (9), then for any T > 0 and t ∈ [0, T ],

u(t, x) ∈ L∞

0, T ;L∞ ∩W 1,1+γ(Td)


. (25)
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Proof. First we will prove that

∥u(·, t)∥∞ ≤ C(T, d,A0), (26)

with A0 = max{1, ∥u0∥L1(Td), ∥u0∥L∞(Td)}. Multiplying (9a) with pup−1, p ≥ 2 and integrating over Td, we
have

d

dt
∥u∥pp + 4(p− 1)

p

∇u p2 2

2
= −(p− 1)


Td

(∇V − x)∇updx = −2(p− 1)


Td
(∇V − x)u

p
2∇u

p
2 dx

≤ C
u p2 

2

∇u p2 
2
≤ 2(p− 1)

p

∇u p2 2

2
+ C∥u∥pp. (27)

Then the L∞ bound can be obtained directly by the standard Moser iteration after getting (27). For example,
one can check the paper by Alikakos [14], formula (3.20) and the computation afterwards. For completeness,
we put these detail computation in Appendix.

From Theorem 3, we know that u is positivity preserving and the conservation of mass hold:

u ≥ 0; ∥u(t, x)∥1 = ∥u0∥1, for t ∈ [0, T ]. (28)

By the construction of V in Theorem 1, one concludes that
1 ≤ det(∇2V ) ≤ ∥u∥∞ + 1,
V convex,
V − x2/2 periodic.

(29)

Recall the result in [15, P.16], for some γ > 0 we have

∥∇2V ∥1+γ ≤ C(T, d, ∥u∥∞). (30)

The heat semigroup operator et∆ defined by et∆u := H(t, x) ∗ u, where H(t, x) = 1
(4πt)d/2


k∈Zd e

− |x+k|2
4t

is the periodic heat kernel. It follows immediately from Young’s inequality for the convolution that

∥et∆u∥p ≤ Ct−
d
2 ( 1
q−

1
p )∥u∥q, ∥∇et∆u∥p ≤ Ct−

1
2−

d
2 ( 1
q−

1
p )∥u∥q, (31)

for any 1 ≤ q ≤ p ≤ +∞, u ∈ Lp(Td) and all t > 0. Here C is constant dependent of p, q.

By the fundamental solution representation of the heat equation, the solution to the MAKS equation can
be represented as

u = et∆u0 +
 t

0
e(t−s)∆(∇ · (u(∇V − x)))ds, (32)

for any T > 0, 0 < t < T .

By choosing q = p = 1 + γ in (31), a simple computation leads to

∥∇u∥1+γ ≤ C∥∇u0∥1+γ +
 t

0
(t− s)−1/2∥∇ · (u(∇V − x))∥1+γds. (33)

From Theorem 1, we have that ∥∇V − x∥∞ ≤
√
d/2 and moreover ∥∇2V ∥1+γ ≤ C(T, d, ∥u∥∞), then we

conclude

∥∇ · (u(∇V − x))∥1+γ ≤
√
d/2∥∇u∥1+γ + C


T, d, ∥u∥∞, |Td|


. (34)

Hence we have

∥∇u∥1+γ ≤ C1 + C2

 t
0

(t− s)−1/2∥∇u∥1+γds. (35)
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Applying a generalized Gronwall’s inequality with weak singularities [16, Lemma 7.1.1], we have

∥∇u∥1+γ ≤ C (T, d, ∥∇u0∥1+γ , ∥u0∥∞) , (36)

which concludes the proof. �
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Appendix. The proof of L∞ estimate in Theorem 4

Proof. Using Gronwall’s inequality in (27), one concludes that

∥u(·, t)∥pp ≤ eCt∥u0∥pp ≤ C(T, d,A0). (A.1)

Define pk := 2k + 2 with k ≥ 0. For k = 0, p0 = 3, from (A.1) we have

∥u(·, t)∥p0
p0
≤ C(T, d,A0). (A.2)

For k ≥ 1, take pkupk−1 as a test function in (9a), one has

d

dt
∥u∥pkpk = −4(pk − 1)

pk

∇u pk2 2

2
− (pk − 1)


Td

(∇V − x)∇upkdx

≤ −2Cpk
∇u pk2 2

2
+ pk

u pk2 
2

∇u pk2 
2
. (A.3)

Now, we focus on estimating the term ∥u
pk
2 ∥2∥∇u

pk
2 ∥2u pk2 

2

∇u pk2 
2
≤
u pk2 θ

2d
d−2

u pk2 1−θ

r

∇u pk2 
2
≤ Sθd

∇u pk2 1+θ

2

u pk2 1−θ

r
, (A.4)

with pk2 r = pk−1, θ =
1
r−

1
2

1
r−

d−2
2d

, where we have used the Sobolev inequality ∥u∥ 2d
d−2
≤ Sd∥∇u∥2. The Young’s

inequality tells that

d

dt
∥u∥pkpk ≤ −Cpk

∇u pk2 2

2
+ C(σ)pq2k S

θq2
d ∥u∥

pk
pk−1

, (A.5)

where σ = Cpk , q2 = 2
1−θ ≤ d+ 2.

On the other hand,

∥u∥pkpk =
u pk2 2

2
≤ S2θ1

d

∇u pk2 2θ1

2

u pk2 2(1−θ1)

r
, (A.6)

where r is the same as before and θ1 =
1
r−

1
2

1
r−

d−2
2d

. Similar to (A.5), we have

∥u∥pkpk ≤ σ
∇u pk2 2

2
+ C(σ)S2θ1ℓ2

d ∥u∥pkℓ2(1−θ1)
pk−1

, (A.7)

where ℓ2 = 1
1−θ1

.
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Hence from (A.5) and (A.7), we deduce

d

dt
∥u∥pkpk ≤ −∥u∥

pk
pk

+ C(σ)pq2k S
θq2
d ∥u∥

pk
pk−1

+ C(σ)S2θ1ℓ2
d ∥u∥pkpk−1

. (A.8)

Define

C1(pk) := C(σ)Sθq2d ; C2(pk) := C(σ)S2θ1ℓ2
d .

It is easy to know that C1(pk) and C2(pk) is uniformly bounded for any k ≥ 1. So, we let C(d) > 1 be a
common upper bound of C1(pk) and C2(pk), we obtain the following inequality

d

dt
∥u∥pkpk ≤ −∥u∥

pk
pk

+ C(d)pq2k ∥u∥
pk
pk−1

. (A.9)

Solving the inequality (A.9), we get

(et∥u∥pkpk)
′ ≤ C(d)pq2k ∥u∥

pk
pk−1

et ≤ 2C(d)4d+22k(d+2) sup
t≥0
∥u∥pkpk−1

et, (A.10)

where the last inequality used 1 < q2 ≤ d+ 2.

Notice that ∥u0∥pkpk ≤ ∥u0∥1∥u0∥pk−1
∞ , so we have

max{∥u0∥pkpk , 1} ≤ A
pk , (A.11)

where constant A > 1 is independent of k but depends on ∥u0∥1 and ∥u0∥∞. Let ak := 2C(d)4d+22k(d+2) > 1
and integrate (A.10), then one has

∥u∥pkpk ≤ ak sup
t≥0
∥u∥pkpk−1

(1− e−t) + ∥u0∥pkpke
−t ≤ akmax


sup
t≥0
∥u∥pkpk−1

, Apk

. (A.12)

Taking the power 1
pk

to above inequality, then

∥u∥pk ≤ a
1/pk
k max


sup
t≥0
∥u∥pk−1 , A


. (A.13)

After some iterative steps, we have

∥u∥pk ≤ a
1/pk
k a

1/pk−1
k−1 · · · a1/p1

1 max


sup
t≥0
∥u∥p0 , A


≤ (2C(d)4d+2)1− 1

2k (2d+2)2− 1
2k−1−

k

2k max


sup
t≥0
∥u∥p0 , A


. (A.14)

Recall ∥u∥p0
p0
≤ C(T, d,A0), then the L∞ estimate is obtained by passing to the limit k →∞ in (A.14). �
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