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Abstract. We derive an exact solution for Stokes flow in a channel with permeable walls.
At the channel walls, the normal component of the fluid velocity is described by Darcy’s law, and
the tangential component of the fluid velocity is described by the no slip condition. The pressure
exterior to the channel is assumed to be constant. Although this problem has been well studied,
typical studies assume that the permeability of the wall is small relative to other nondimensional
parameters; this work relaxes this assumption and explores a regime in parameter space that has
not yet been well studied. A consequence of this relaxation is that transverse velocity is no longer
necessarily small when compared with the axial velocity. We use our result to explore how existing
asymptotic theories break down in the limit of large permeability for channels of small length.
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1. Introduction. There is a great deal of interest in the analysis and simu-
lation of fluid flow along permeable tubes, in large part owing to the multitude of
applications. In engineering, examples include ultrafiltration membrane systems used
in water treatment. In biology, examples include glomerular filtration in the kidney,
dialysis machines, and capillary transport. Given the wide range of applications, much
effort has been dedicated to modeling and computing fluid flow along tubes or chan-
nels with porous walls. In a classic 1953 paper, perhaps one of the most frequently
cited analytical works in this area, Berman used perturbation methods to obtain solu-
tions to the Navier–Stokes equations that describe fluid flow in a rectangular slit with
two equally porous walls. The flow is assumed to be laminar, and the normal velocity
at the wall is assumed to be a known constant a priori and independent of position [1].
Berman’s result was later extended to a cylindrical geometry by Yuan and Finkelstein
[2], again with constant normal velocity at the walls, which was further expounded
upon by Terrill [3] and Terrill and Shrestha [4].

In membrane transport, the normal fluid velocity is frequently driven by hydro-
static pressure gradient. The classical assumption is that the outer and inner channel
pressures have the same gradient, leading to the assumption of a constant normal
velocity. In practice, however, this assumption is typically violated, and much work
has gone into changing the assumption on the pressure exterior of the channel to be
a constant along the axial direction, rather than having a similar gradient to the flow
in the channel. Enforcing Darcy’s law at the boundaries, this change in assumptions
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implies that the normal wall velocity is a function of the hydrostatic pressure. A
notable study of this new boundary condition is provided by Galowin, Fletcher, and
DeSantis [5], in which the flow profile for a semi-infinite pipe with a closed end wall
is considered with normal velocity described by Darcy’s law, and the external pres-
sure is assumed to be constant. This work was later expanded by Granger, Dodds,
and MIdoux [6], who assume one permeable and one impermeable wall, along with
parabolic inflow conditions at a certain point within the pipe. Indeed, much effort has
been devoted toward this topic. More recently, Haldenwang has studied the problem
in more detail. Nonetheless, this work still considers a channel or pipe of finite length
with prescribed inflow and outflow conditions [7, 8, 9]; the inflow condition in these
last set of papers is matched with the analytic solution by Berman [1] in which the
normal velocities at the wall are matched. In the work of Tilton et al. [11], the authors
relaxed the assumption of a finite length pipe and found a self similar profile in a pipe
of arbitrary length.

The works mentioned above assume either small permeability or a small ratio
between transverse and axial flow velocities. With these assumptions, leading order
asymptotic expansions result in parabolic profiles in the axial flow profile at vanishing
Reynolds number that are independent of permeability. There is, however, no analytic
result to assess the correctness of this result, and it is therefore valuable to ask if
and how the predicted Stokes flow of existing asymptotic studies breaks down as
permeability increases.

It has been noted throughout the literature [7, 8, 9] that as permeability grows, the
convective terms of the Navier–Stokes equations become important at smaller length
scales. This observation is attributable to the fact that the velocity profile grows
exponentially, and the rate of this exponential growth increases with permeability.
Hence, we expect an exact solution at zero Reynolds number to be physically reliable
only in a finite region that will depend both on the Reynolds number and permeability
of the wall. Nevertheless, such a solution would be valuable as it would (1) provide
a mechanism to determine the break down of the existing theory for zero Reynolds
number and (2) provide an analytic result with which to compare numerical studies
(provided that the Reynolds number remains small in the domain of interest).

Therefore, in the present work, we examine channel flow in the Stokes regime
in which at the channel walls the normal and tangential components of the fluid
velocity are described by Darcy’s law and the no slip condition, respectively. The
pressure exterior to the channel is assumed to be uniform and similarly to Tilton et
al. [11]; we do not assume the structure of an inlet flow and allow such structure
to arise from the equation solution. Also similar to much of the existing work in
this field, we assume a symmetric flow profile in the transverse direction (see, for
example, [7, 8, 9, 11]). These assumptions are consistent with previous problem
statements in this field, and for biological flows the porosity of the channels will be
due to orthogonal water channels making the no slip condition in the axial velocity
more robust. We determine an exact solution for this problem, compare our result
with the existing theory, and then numerically validate our result in a finite domain
of interest.

Although we have limited our study of high permeability to only consider the
zero Reynolds number regime, we note that this choice is well within the confines of
many applications in this field and, in particular, many of the biological applications
listed above occur at negligible Reynolds number. In Pozrikidis [12], for example,
the authors have analyzed a similar problem in modeling capillary blood flow in a
numerical study, in which the author assumes a region of impermeable pipe feeds
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into a permeable region and the flow is described by Stokes equations. Furthermore,
fluid flow in the collecting ducts of rat kidneys also occur at small Reynolds number,
occurring at most on the order of 10−4 (see [13, 14]). Thus, an exact solution at
zero Reynolds number is a valuable contribution to this field and may be used as a
comparison point in future asymptotic theory.

In section 2, we present and solve the system of equations described above. In
section 3, we then demonstrate the break down of existing asymptotic theories for
small permeability as the permeability grows. In section 4, we demonstrate that
there are regions of the parameter space in which our exact solution is significantly
more accurate than the existing theory even when inertial effects are considered. We
conclude with a discussion in section 5 and suggest a physical experiment that may
be preformed to validate our analysis.

The solution, presented in section 2, is computed using a nonstandard approach,
and thus we outline our method here. First, we nondimensionalize the system but
keep two free variables in the nondimensionalization. We next take an ansatz that
the pressure will satisfy a Robin boundary condition; keeping the two variables free in
the nondimensionalization allows us to scale this Robin condition in such a way that
incompressibility will be satisfied. The ansatz allows us to decouple the system and
first determine the pressure. We then use the pressure to find the velocity profile and
finally use the incompressibility constraint to restrict the two free parameters found
in the nondimensionalization.

2. Stokes flow solution to channel with permeable boundaries. We ex-
amine the Stokes flow equation for a channel with arbitrarily large permeability at
the boundaries. We assume that the pressure outside of the channel is a constant
Po, and without loss of generality set this value to be zero. Let the channel walls be
separated by a distance 2r. Let x describe the location parallel to the axial position
and y describe the location in the transverse direction. The flow in each direction is
described by u(x, y) and v(x, y), respectively. We assume that at position x = x0, the
central pressure gradient β and the inner channel pressure at the wall are given by

p(x0,±r) = Ptm, β = px(x0, 0).(1)

Without loss of generality, we set x0 = 0. We will show below a one-to-one corre-
spondence between β and the average flow profile:

(2) Ū =
1

2r

∫ r

−r

u(x0, y)dy.

Although the latter is a more standard choice (see, for example, Tilton et al. [11]),
we elect to use the former for mathematical convenience.

Fluid flow between the interior and exterior of the channel is assumed to be driven
by the pressure difference across the two regions. In the physical case of filtration,
Darcy’s law is typically assumed in the normal direction at the wall and a no slip
condition is assumed in the tangential direction (see, for example, [9, 10, 11, 15]).
We also use these boundary conditions on the channel walls, using Darcy’s law with
coefficient κ = k/μh in the normal direction, where k is the permeability, μ is the
viscosity, and h is the width of the channel connecting the outer and inner fluids.
No slip conditions are used for the tangential component of the boundary. For the
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two-dimensional setting, the Stokes equations may then be written as

px = μΔu, py = μΔv,(3)

0 = ux + vy,(4)

u(x,±r) = 0, v(x,±r) = ±κp,(5)

where μ is the dynamic viscosity, and u and v are the velocity components in the
x and y directions, respectively. We note that this system of equation matches the
zeroth order term in an asymptotic expansion of the Navier–Stokes equations about
small Reynolds number (see [15]).

2.1. The nondimensional system. To derive a solution, we first nondimen-
sionalize and identify the important nondimensional parameter. We rescale by taking

x =
r

γ
x̃, y =

r

γ
ỹ, p =

βr

γ
p̃,(6)

u = βrαγ−ακ2−αμ1−αũ,(7)

v = βrαγ−ακ2−αμ1−αṽ,(8)

where γ, α ∈ R with γ > 0. Substituting the nondimensional rescaling into the original
system and dropping the tildes for convenience, we obtain

p(0,±γ) = B, px(0, 0) = 1,(9)

px = A2−αΔu, py = A2−αΔv,(10)

0 = ux + vy,(11)

u(x,±γ) = 0, v(x,±γ) = ±Aα−1p,(12)

where A = γμκ/r and B = Ptmγ/βr. We define a special case where γ = 1 as
A1 = μκ/r and B1 = Ptm/βr, which will be used below.

It is not standard to introduce γ and α, and values for these parameters are
typically chosen implicitly along with the nondimensionalization, the standard being
γ = 1 and α = 2. We note that the reason for leaving α free at the moment is that we
will take an ansatz that requires the ability to allow a ratio of arbitrary size between
A2−α and Aα−1, that is, we will require the ability to freely adjust the value A3−2α as
a function of α. The ability to scale this quantity may only be achieved if A �= 1, and
thus we introduce a second scaling parameter γ to rescale the nondimensional length.
We note then that if A = 1 for a given value of γ, we may simply assign a different
value to γ which will ensure A �= 1. Noting that there is a potential degeneracy in the
scaling with γ fixed and α free, it is reasonable to propose that we instead fix α and
leave γ free. Although this is possible, a priori it is unclear which value we should
assign to α. Below we will show that α = 1 is the proper choice, which is different
from the standard choice of α = 2.

2.2. Establishing the ansatz. Equations (9)–(12) form a complex and coupled
system. We may, however, attempt to decouple the pressure term from the velocity
equations by setting v̄ = v + py and assume v̄ vanishes at the boundaries. This as-
sumption requires that pressure satisfy a Robin boundary condition and the equations
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may be rewritten as

p(0,±γ) = B, px(0, 0) = 1,(13)

Δp = 0, ∂yp(x,±γ) = −Aα−1p(x,±γ),(14)

px = A2−αΔu, py = A2−αΔv̄,(15)

0 = ux + v̄y − pyy,(16)

u(x,±γ) = 0, v̄(x,±γ) = 0,(17)

which appears to be an overdetermined system. We note that a solution to this system
will provide a solution to the original set of equations (9)–(12). To see this, we note
that the boundary conditions at the channel walls for p and v are equivalent via (12)
and (14), which imply that

(18) v(x,±γ) = ∓∂yp(x,±γ) = ±Aα−1p(x,±γ).

The rest of the relationships are straightforward. A solution to the system given by
(13)–(17) provides a solution to the system given by (9)–(12). In attempting to solve
the new system, we note that the equation for pressure is decoupled, and thus we
may solve it without knowing the velocity profile. After solving for the pressure, we
may then solve the Poisson equations for the velocity u and the adjusted velocity v̄.
It is unclear, however, that (16) will be satisfied by this attempt to find a solution.
We note that we will find u and v̄ to be inversely proportional to A2−α. Having
left both γ and α free, we are free to scale these solutions so that ux + v̄y has the
possibility to become proportional to pyy. Although it is not obvious at the outset,
incompressibility will be shown to be satisfied with the correct scaling of α and γ.

In addition to the ansatz of a Robin boundary condition for pressure (and that
the resulting equations will remain incompressible), we also assume an axisymmetric
flow profile so that that v is odd in y and u and p are even in y.

For the remainder of this section, we show that the new problem statement allows
us to generate solutions for the Stokes equations for all values of A except for A = 1.
There is one exception to this statement in which solutions are defined for all values
of A at a special value of γ. We will show that the special choice of γ results in setting
α = 1.

2.3. Solving the system. We begin by solving for p using normal mode analy-
sis. Due to the symmetry assumption that p is even in y, the pressure can be written
as

(19) p(x, y) =

∞∑
n=0

p̂n(x) cos(λny)

with eigenvalues satisfying

(20) λn sin(λnγ) = Aα−1 cos(λnγ).

We note, and will later use, that (20) implies

(21) π(n+ 1/2)/γ > λn > πn/γ

for A > 0.
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Substituting into (14) and solving, we find

(22) p(x, y) =

∞∑
n=0

(cn sinh(λnx) + dn cosh(λnx)) cos(λny).

The unknowns cn and bn satisfy

px(0, 0) =

∞∑
n=0

cn = 1,(23)

p(0,±γ) =

∞∑
n=0

dn cos(λnγ) = B.(24)

We note that in the case that κ = A = 0, we have λ0 = 0 and the solution for pressure
will change to

p(x, y) = c0x+

∞∑
n=1

cn sinh(λnx) cos(λny)

+ d0 +
∞∑

n=1

dn cosh(λnx) cos(λny).(25)

The typical assumption that leads to Poiseuille flow is that cn = 0 for n > 0, which
ensures a linear growth in the pressure as x goes to ±∞. Indeed, we can see that as
κ approaches 0 from above, λn approaches πn/γ from the right.

In the limit of κ → 0, we expect to locally recover Poiseuille flow, meaning that
for small values of κ the pressure should be linear about a growing neighborhood of
x. To achieve this, we must have that for all n > 0, cn → 0 and dn → 0 as κ → 0.
Although it may be possible to have higher order modes appear in a formal solution
for the pressure, here we focus on the zeroth order mode and assume that cn = 0 and
dn = 0 for n > 0. We will see below that this assumption is necessary for our theory
to be consistent with the existing theory in the literature.

We therefore write an expression for the nondimensional pressure to be

(26) p(x, y) =

⎧⎪⎨
⎪⎩

x+ B, λ0 = 0,
1
λ0

sinh(λ0x) cos(λ0y)

+ B
cos(λ0γ)

cos(λ0y), λ0 > 0.

We note that the exponential growth of the pressure in the axial direction is well
known, and we compare growth coefficients to earlier work in section 3.1.

We now have a simple equation for u and v̄ for κ �= 0

(
cosh(λ0x) +

Bλ0 sinh(λ0x)

cos(λ0γ)

)
=

A2−αΔu

cos(λ0y)
,(27)

−
(
sinh(λ0x) +

Bλ0 cosh(λ0x)

cos(λ0γ)

)
=

A2−αΔv̄

sin(λ0y)
,(28)

where v̄ = v + py with boundary conditions located at ±γ and given in (17). We use
normal mode analysis to solve both equations below.
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2.3.1. Solution for u. As we have assumed u to be even in y, we substitute a
Fourier series of the form

∞∑
n=0

ûn(x) cos(ωny), ωn =

(
1

2
+ n

)
π/γ(29)

into (27) to solve the Poisson equation. Solving the orthogonal mode equations gives

ûn(x) = −
dn

(
cosh(λ0x) +

Bλ0

cos(λ0γ)
sinh(λ0x)

)
A2−α(ω2

n − λ2
0)

+ aun cosh(ωnx) + bun sinh(ωnx),(30)

where the aun’s and bun’s are unknowns and are solutions to the homogenous flow
equations where β = Ptm = 0. The coefficients dn arise from Fourier expanding
cos(λ0y) given by

dn =

∫ γ

−γ
cos(ωny) cos(λ0y)dy∫ γ

−γ
cos(ωny)2dy

=
2(−1)nωn cos(λ0γ)

γ(ω2
n − λ2

0)
.(31)

We expect that there is no flow when the pressure gradient β and the pressure across
the channel B (∝ Ptm) go to zero meaning that the homogenous solutions are zero
and aun = bun = 0 for all n in this limit. The nondimensional parameter A does not
depend either on β or Ptm, and thus we set aun = bun = 0.

2.3.2. Solution for v̄. As we have assumed v to be even in y, we expand it in
a Fourier series of the form

∞∑
n=0

v̂n(x) sin(ω̄ny), ω̄n = nπ/γ,(32)

into (28) to solve the Poisson equation. Solving the orthogonal mode equations gives

ˆ̄vn(x) =
d̄n

(
sinh(λ0x) +

Bλ0

cos(λ0γ)
cosh(λ0x)

)
A2−α(ω̄2

n − λ2
0)

+ avn sinh(ω̄nx) + bvn sinh(ω̄nx),(33)

where the avn’s and bvn’s are unknowns that are solutions to the homogenous flow
equations where β = Ptm = 0. The coefficients d̄n arise from Fourier expanding
cos(λ0y) given by

d̄n =

∫ γ

−γ
sin(ω̄ny) sin(λ0y)dy∫ γ

−γ sin(ω̄ny)2dy
=

2(−1)n+1ω̄n sin(λ0γ)

γ(ω̄2
n + λ2

0)
.(34)

Similarly as for u, we set avn = bvn = 0 for all n.

2.3.3. Enforcing incompressibility. To enforce that (30) and (33) provide a
solution to the original nondimensional equations (9) and (11), we must check that
the flow field is divergence free given a proper choice of α and γ. Taking partial
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derivatives, we find

ux = −
(
λ0 sinh(λ0x) +

Bλ2
0

cos(λ0γ)
cosh(λ0x)

)
A2−α

∞∑
n=0

dn
ω2
n − λ2

0

cos(ωny),(35)

vy =

(
λ0 sinh(λ0x) +

Bλ2
0

cos(λ0γ)
cosh(λ0x)

)
A2−α

∞∑
n=0

d̄nω̄n

ω̄2
n − λ2

0

cos(ω̄ny)(36)

+

(
λ0 sinh(λ0x) +

Bλ2
0

cos(λ0γ)
cosh(λ0x)

)
cos(λ0y).(37)

Incompressibility requires that

(38) A2−α =

∞∑
n=0

(
dn

ω2
n − λ2

0

cos(ωny)

cos(λ0y)
− d̄nω̄n

λ0(ω̄2
n − λ2

0)

cos(ω̄ny)

cos(λ0y)

)
,

which will only have a solution if the right-hand side of the equation has no dependence
on y. This condition is shown to be satisfied in Proposition 1 in Appendix A. In the
proposition, we also simplify (38) to read

A2−α =
1

2

(
γ

sin(λ0γ) cos(λ0γ)λ0
− 1

λ2
0

)
≡ C(λ0),(39)

where we have used (A7). We can further simplify this expression by dividing (39)
with (20) to eliminate α and relate A to λ0, which yields

(40) A =
1

2

(
γ

cos2(λ0γ)
− sin(λ0γ)

λ0 cos(λ0γ)

)
.

The right-hand side of this equation is positive and increasing for λ0 ∈ (0, π(2γ)−1)
and has range (0,∞) (see Proposition 2 in the appendix and Figure 1). Therefore,
there is a one-to-one correspondence between λ0 ∈ (0, π(2γ)−1) and A ∈ (0,∞). To

Fig. 1. A1 and γ̄ as functions of λ. Note that there is a bijection between A1 and λ and
between γ̄ and λ.
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find the necessary value of α to enforce incompressibility, we substitute the above
expression for A into (20), which leads to an expression for α:

(41) α =
log (λ0 tan(λ0γ))

log(A)
+ 1.

Although we have found a solution to the original nondimensional problem (equations
(9)–(12)), there is a potential singularity in α for A = 1. This should not be surprising
as we lose the ability to scale the left-hand side of (39) in this case. We next simplify
α to eliminate the potential singularity.

2.3.4. Simplifying α. We begin by letting λ = λ0γ so that λ ∈ (0, π/2), and
we will use A1 = A/γ = μκ/r, as it is defined above. Equation (20) may then be
rewritten as

(42) λ sin(λ) = Aα−1
1 γα cos(λ),

(40) as

(43) A1 =
1

2

(
1

cos2(λ)
− sin(λ)

λ cos(λ)

)
,

and (41) as

(44) α =
log (λ tan(λ)) + log(A1)

log(γ) + log(A1)
,

from which we can derive an equation for γ in terms of α as

(45) γ =
(
λ tan(λ)A1−α

1

)1/α
.

Equation (43) demonstrates that the rate of pressure gain per unit channel length
will be independent of γ, as expected. Equation (44) demonstrates that there will be
an essential singularity in α located at γ = 1/A1 (corresponding to A = 1). A natural
way to handle this issue is to set

(46) α = 1,

which implies

(47) γ = λ tan(λ)

and avoids the issue of the singularity within the nondimensionalized problem. We
denote this special value of γ

(48) γ̄ ≡ λ tan(λ).

We remark again that it is not known a priori that α = 1 leads to a convenient
nondimensionalization and have thus left it free until this point. We further remark
that we could have chosen α to be any other fixed value and obtain the expression
form (45); however, this equation also makes it clear that α = 1 is the aesthetically
pleasing choice. This choice would not have been obvious had we chosen α from the
start. We plot A1 and γ̄ versus λ in Figure 1.
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Fig. 2. Streamlines of channel flow for the rescaled solution presented in (50)–(51) in the
domain (x, y) ∈ [−2, 2] × [−1, 1]; in this system, λ = π/4 (corresponding to A1 = 0.36338) and
B1 = 0.

Taking into account the above simplifications, we rescale x and y by γ̄−1 and write
the full nondimensional solution in terms of B1 (defined above as B1 = Ptm/βr),λ, x,
and y as

p(x, y) =

(
tan(λ) sinh(λx) +

B1λ tan(λ)

cos(λ)
cosh(λx)

)
cos(λy),(49)

u(x, y) =
32λ2 sin(λ)

(
cosh(λx) + B1λ

cos(λ) sinh(λx)
)

π3 (λ sec2(λ) − tan(λ))
,

∞∑
n=0

(−1)n+1(1 + 2n)(
(1 + 2n)2 − (

2λ
π

)2)2 cos

(
(1 + 2n)π

2
y

)
,(50)

v(x, y) =
4λ2 cos(λ) sin2(λ)

(
sinh(λx) + B1λ

cos(λ) cosh(λx)
)

π3 (λ− sin(λ) cos(λ))
,

∞∑
n=1

(−1)n+1n(
n2 − (

λ
π

)2)2 sin (πny) +

(
sinh(λx) +

B1λ

cos(λ)
cosh(λx)

)
sin(λy).(51)

The domain of the rescaled y is now (−1, 1). We remark again that we have a
bijection between A1 and λ through a transcendental equation so that knowing A1

will provide us with the correct choice for λ. This solution represents a closed form
solution for Stokes flow through a channel with uniformly permeable walls but having
arbitrarily large permeability. This is the major result of the paper in that all other
results presented below are simple corollaries that arise from it. We demonstrate the
streamlines of this solution for λ = π/4 with B1 = 0 in Figure 2.

As a tool for predicting fluid flow, our result is exact within the Stokes regime.
We note that in nature and physical application, permeability (i.e., A1 or λ) is typi-
cally small and there has been a great deal of asymptotic work done in the parameter
regime for small permeability. The present solution provides an analytic tool to de-
termine the error in the asymptotic theory. We also note that our solution contains
exponential increase in the axial direction for both the velocity and pressure profiles,
which is consistent with known results (see, for example, [7, 10, 11]). This means
that convective terms will become important over finite length scales; our solution
should then be understood as an accurate approximation of the Navier–Stokes equa-
tion within some finite region of a channel. We do not, however, have a prediction for
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which approximation to the Navier–Stokes is more accurate depending on the length
of the channel, A1 and B1, so we examine this numerically below in section 4.

Finally, we remark on the relationship between the average flow velocity through
x = 0 and the point gradient of the pressure β. Given A1 (and hence λ), the dimen-
sionalized flow profile at x = 0 may be written as

(52) u(0, y) =
βrκ

λ tan(λ)
f(y;λ),

where f is the nondimensionalized flow profile for u at x = 0 and y ∈ [−r, r] is now
back to dimensional units. We note, and will give evidence below, that the flow profile
is sign definite for all values of λ, and thus f averaged over y from [−r, r] is nonzero.
This implies a one-to-one correspondence between the average flow profile across the
x = 0 plane and the pressure gradient at (0, 0) given by

(53) Ū = − βκ

2λ tan(λ)

∫ r

−r

f(y;λ)dy

for all κ, μ > 0 (and hence λ ∈ (0, π/2)). The above results are used below to demon-
strate how asymptotic theories for small permeability developed in the literature break
down, as this parameter can no longer be considered small.

3. The break down of asymptotic approximations at large permeability.
We begin by analyzing the break down of the axial pressure profile, continue by
analyzing the consequence of large permeability on the transverse profiles in u and v,
and conclude by discussing the error associated with the nondimensional transition
between crossflow reversal and axial flow exhaustion as well as analyze the error
associated with the predicted location at which these behaviors occur.

Throughout this section, we will use the leading order behavior of λ as a function
of A1, which may be found by noting that as permeability decreases A1, γ̄, and λ all
go to zero. This may be shown via the definition of A1 and (43) and (47). In this
limit, we can approximate A1 and γ̄ by Taylor expanding (43) and (47)

A1 =
λ2

3
+O(λ4),(54)

γ̄ = λ2 +O(λ4).(55)

3.1. Axial pressure profile. We first compare the pressure profile along the
axial direction with several other studies in the literature. We note that in the limit
of small permeability, λ → 0, and thus the pressure profile appears to be constant in
y as the leading order of cos(λy) is 1. This agrees with the results of Haldenwang [7],
Karode [10], Tilton et al. [11], and Regirer [15] to leading order. Each of these works
shows a similar profile in x to the pressure profile we have presented, namely, a linear
combination of a hyperbolic sine and cosine. The scale of the arguments of these
hyperbolic trig functions presented in [10] and [11] is

√
3A1, which we have shown

is roughly λ in the limit of small permeability (equation (54)). The nondimensional
approximation for the pressure profile is in agreement in Karode [10] and Tilton et
al. [11] and is given as

P (x, y) =
√
3A1 sinh(

√
3A1x) + 3A1B1 cosh(

√
3A1x),(56)

where we will use a capital P to denote the asymptotic approximation. In Regirer
[15], a solution for pipe rather than channel flow is performed, but we have confirmed
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Fig. 3. We plot the relative error between the exponential scaling λ and
√
3A1. The latter

result is a prediction of the asymptotic theory and is seen to be the first order term in a Taylor
expansion for λ about λ = 0.

that an identical result is found when the methodology is applied to channel flow. To
see this quickly, we note that Regirer [15] performs an asymptotic expansion about
small Reynolds number in which the permeability is assumed to be small, and we
discuss this further below. We also note that Haldenwang [7] develops the solution of
Regirer [15] before extending the work to nonzero transverse Reynolds number, and
therefore we have a similar result for all four works.

Equation (56) can be shown to approximate (49) in the limit of small permeability
by applying (54) and Taylor expanding tan(λ) and cos(λ) about λ = 0. To assess
the extent to which the prediction for axial pressure increase is approximated in the
limit of small permeability (given that we will have exponential increase like exp(λx)
rather than exp(

√
3A1x)), we examine the difference between λ and

√
3A1. We plot

the relative error

|λ−√
3A1|

λ
(57)

in Figure 3. We numerically determine the linear behavior of the relative error about
A1 = 0 via a linear regression and find that for small A1 the relative error is roughly
1.124A1. The error in the asymptotic limit for large x may then be approximated as
the difference between exponentials, and thus the relative error between the asymp-
totic approximation and the actual solution at zero Reynolds number is given as

|p(x, y)− P (x, y)|
|p(x, y)| ≤ C1|1− exp(−1.124A1x)|(58)

for x large and A1 small. This estimate is novel.
We note that there is a great deal of interest in the length of a pipe over which

a solution may be valid. Our result suggests that the existing asymptotic expansion
about small Reynolds number and our theory will only agree over axial domains that
have length significantly less than (−1.124A1)

−1 in nondimensional units, but we note
the caveat that the Reynolds number may not continue to be small within this regime.
The magnitude of the velocity in v and u along the axial direction is directly related
to that of the pressure, and thus a similar statement may be made for the relative
error in these profiles.
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In the present solution, the fields grow asymptotically with increasing x like
C exp(λx), which will give a new estimate for the neighborhood of x for which the
velocity profile is below some threshold, thus ensuring convective terms may be ig-
nored. Note that λ is a convex function of A1 and that λ <

√
3A1 for all λ. This

means that the neighborhood of validity in x for Stokes flow, where convective terms
will not be important, is larger than the neighborhood predicted by the previous the-
ory which predicts a faster asymptotic growth rate of the profiles in axial given by
C exp(

√
3A1x) .

3.2. Transverse velocity profile. We note that in the previous works, lead-
ing order behavior in the profiles for u(0, x) and v(0, x) are given by parabolic and
polynomial expressions, respectively. The solution for u described in (50) may also
be seen to be parabolic in y to the leading order. This may be achieved by Taylor
expanding each term in the infinite sum about λ = 0 and noting that to the leading
order (O(λ0)) the coefficients are a Fourier expansion of (1− y2) in the y coordinate.
Similarly, we may find that the leading order profile in v depends on y as (y3 − 3y),
which may be found by noting that the two terms (the sum and sin(λy)) may be
found in the leading order to be

v(x, y) ≈ G(x)λ(y − y3) + 2G(x)λy = λ(3y − y3),(59)

where G(x) is some function of x. We further remark that this is precisely the leading
order expression found in Berman [1] and Tilton et al. [11].

Next, we seek to better understand how the asymptotic approximation breaks
down in the transverse velocity profiles u(·, y) and v(·, y). We note that both the
solution presented in the present work and the solutions to the asymptotic approxi-
mations in the literature provide self similar profiles so that we may concern ourselves
purely with the prediction of the shape in the profile.

We begin with the profile in u which is proportional to the profile

u(·, y) ∝
∞∑

n=0

(−1)n+1(1 + 2n)(
(1 + 2n)2 − (

2λ
π

)2)2 cos
(πy

2
+ πny

)
.(60)

We may then examine the relative error between our predicted profile and a parabolic
profile global error in the following sense. First, we set B = 1/u(0, 0) and scale u by
B so that the profiles agree at y = 0. Next, we calculate the relative error between
(1− y2) and B × u(0, y) via

εp(λ) ≡ ||(1 − y2)−B × u(0, y)||p
||B × u(0, y)||p ,(61)

where ||·||p is the Lp([−1, 1]) norm; we consider the error for p ∈ {2,∞} (see Figure 4).
In the L∞ and L2 norms, we find that the relative error increases to over 5% and
0.3% in the limit of large permeability, respectively (see Figure 4). We also note that
our error bounds could be even tighter if we redefine the relative error to be

(62) εlp(λ) ≡ inf
B

||(1− y2)−B × u(0, y)||p
||B × u(0, y)||p .

The result is that we have shown how the existing theory for small permeability breaks
down once permeability can no longer considered small. Although the error is small,
flow profile is not parabolic for nonzero permeability.



STOKES FLOW IN A CHANNEL WITH PERMEABLE BOUNDARIES 2259

Fig. 4. The relative error defined by (61) is plotted as a function of λ for the transverse profiles
of u and v (top). The flow profiles in u are compared between parabolic flow and the present work for
large permeability (bottom). The solid dashed line corresponds to the high permeability profile where
we have set λ = 0.9999 × π/2, or, equivalently, A1 = 2 × 107. The error is plotted for comparison
as the dot-dash line.

Next, we wish to examine the profile in v by analyzing the self similar profile
v(·, y). In order to show the difference between the asymptotic approximation and
our solution, we again consider the relative error between the asymptotic profile and
our profile, rescaling so that the velocity at the channel wall, described by the Darcy
condition, is equivalent in each case; this is to say we compare (3y − y3)/2 with
v(·, y)/v(·, 1). We then analyze the relative error and plot the results in Figure 4.
We find that the error achieves a maximum not in the limit of large permeability
but at an intermediate permeability corresponding to λ = 1.0105 or A1 = 0.98. The
maximum relative error is 8% and 0.8%, respectively, in the infinity and two norms
which is larger than the error in the profile for u.

3.3. Axial flow exhaustion and crossflow reversal. Two important flow
behaviors that occur in channels and pipes with permeable walls are axial flow ex-
haustion and crossflow reversal. Axial flow exhaustion occurs when the axial velocity
profile (u) changes sign in the axial direction (i.e., at some position x). This occurs
because flow is either being injected or suctioned out of the channel with high enough
pressure difference (i.e., large B1) to break down axial flow through the channel at a
point. This corresponds to a position in x, denoted xAFE , such that u(xAFE , y) = 0.
Crossflow reversal is described by a change of sign in the normal velocity along the
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channel wall. Physically, this is described by the channel walls transitioning from
fluid suction to fluid injection or vice versa and occurs when B1 is small. The axial
position where cross flow reversal occurs will be denoted xCFR, and at this position
v(xCFR, y) = 0. In this section, we compare the predictions of where and whether
axial flow exhaustion or crossflow reversal occurs by comparing the leading order
asymptotic analysis of Tilton et al. [11] with our solution. By setting u(xAFE , y) = 0
we may solve to find the following two predictions for the asymptotic theory and the
present work, respectively:

xAFE =
1√
3A1

arctanh

(
− 1

B1

√
3A1

)
,(63)

xAFE =
1

λ
arctanh

(
−cos(λ)

B1λ

)
.(64)

We can also determine the location of cross flow reversal by setting v(xCFR, y) = 0
and find the following two predictions for the asymptotic theory and the present work,
respectively:

xCFR =
1√
3A1

arctanh
(
−B1

√
3A1

)
,(65)

xCFR =
1

λ
arctanh

(
− B1λ

cos(λ)

)
.(66)

As is noted in Haldenwang [7], the two regimes are mutually exclusive. This can be
seen by noting that the arguments of the arctanh function for xAFE and xCFR are
reciprocals in both theories; that is, when xAFE is real, xCFR is imaginary and vice
versa. We may then ask where in the parameter space does the solution transition
from exhibiting cross flow reversal to axial flow exhaustion. This will occur when the
argument of the arctanh function is ±1, or rather when

∣∣∣∣ 1

B1

√
3A1

∣∣∣∣ = 1,

∣∣∣∣cos(λ)B1λ

∣∣∣∣ = 1(67)

in the respective theories. We can then examine the relative error in the predicted
transition between axial flow exhaustion and crossflow reversal within the parameter
space. To do this, we analyze the predicted transition value for B1 as a function of λ
which we can define in the respective theories as

BT
1 = ±

∣∣∣∣ 1√
3A1

∣∣∣∣ , BT
1 = ±

∣∣∣∣cos(λ)λ

∣∣∣∣ = 1.(68)

We define the relative error in the two predicted transition values for B1 as

(69)
| cos(λ)/λ −√

3A1|
| cos(λ)/λ| ,

which we display in Figure 5. We find that the relative error for the cutoff condition
on B1 grows with λ and that for permeability the error grows to be over 25%. Finally,
we examine the error in the prediction for the location of xAFE and xCFR at a fixed
value of B1. We note that as B1 approaches the transition value, the location of
xAFE and xCFR goes to infinity in both the asymptotic and our prediction. To
make a demonstrative comparison, we set B1 = −1/2 and compare the predictions
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Fig. 5. The relative error in the predicted transition value for B1 between axial flow exhaustion
and no axial flow exhaustion is plotted as a function of λ (top). Next, we fix B1 = −1/2 and show
the predicted location of xAFE as a function of λ (bottom).

of xAFE and xCFR in Figure 5. We find that for large values of λ, the error is of
order 1 near the transition regions, which further demonstrates the break down of the
asymptotic prediction. We remark that when λ is small, we expect that B1 must be
large in order for axial flow exhaustion to occur, which corresponds either to large
values of transmembrane pressure Ptm or small values of the pressure gradient β or,
equivalently, average axial velocity profile Ū .

4. Numerical experiment comparison for short channels with convec-
tive effects. It has been shown that as permeability increases, the convective terms
of the Navier–Stokes equations become more important at shorter axial length scales
(see [7, 9, 11]). We will assess the extent to which the convection terms affect the
accuracy of our solution and determine parameter regimes for which our solution is
more accurate than the existing asymptotic theory of Tilton et al. [11].

The Navier–Stokes equations, under the assumption of laminar flow, are nondi-
mensionalized as above with α = 1 and the spatial variables are rescaled so that the
half width of the channel is one. The resulting system of equations is

p(x0,±1) = B1, px(x0, 0) = γ,(70)

Rec(uux + vuy) = −px +A1Δu,(71)

Rec(uvx + vvy) = −py +A1Δv,(72)

0 = ux + vy ,(73)

u(x,±1) = 0, v(x,±1) = ±p,(74)
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where Rec = ρκ2βr/γ, and ρ is the density of the fluid. The nondimensional constant
Rec is a rescaled value of the Reynolds number, where the Reynolds number is defined
as Re = ρŪ2r/μ. There is a one-to-one correspondence betweenRe and Rec. Utilizing
(53), we obtain the linear scaling

Re =
Rec
A1

∫ r

−r
f(y;λ)

r
dy.(75)

For the remainder of this section, we will present our results in terms of Re rather
than Rec to remain consistent with previous work (e.g., [11]). We also note that we
may use the Stokes flow solution of the current work to be the zeroth order term of
an asymptotic expansion about low Reynolds number as is done by Regirer [15] and
Bernales and Haldenwang [9]. Our solution is different than these pervious works in
that we do not assume that the permeability is negligible in the zeroth order term.

It is reasonable to conjecture that our solution will be more accurate than the
existing theory at high permeability and bounded channel length. The idea is that
pervious theory will break down as permeability increases, whereas the present theory
will not provided that the left-hand sides of (71) and (72) remain relatively small.
Due to the exponential increase in the velocity profiles, the left-hand sides of (71)
and (72) will only remain small so long as either the channel length is small or Rec
is small. Increasing the length of the channel will require smaller values for Rec for
the present work to accurately approximate solutions to the Navier–Stokes equations.
Despite the requirement that Rec is small, we still expect to find regions in the
parameter space in which the current solution outperforms the existing theory at
high permeability, independent of the channel size. Because we are interested solely
in numerically validating the above ideas, we examine a channel with small length,
setting the length to be five times the half width. We then analyze the parameter
space by examining the parameter values log10(A1) = {i}4i=−1 and B1 = 1. The code
is run on a MAC grid, and we use the Newton–Krylov method found in the “optimize”
package of scipy. Inlet and outlet conditions are assumed to agree with the present
theory (see (49)–(51)). Spatial resolution is taken to be 26 divisions per unit of space
on a MAC grid. This resolution was chosen because the relative error between the
analytic solution found in the present work and the numerical result at Stokes flow
was bounded by a relative error of less than 5 × 10−4 over all permeabilities. At
each nondimensional permeability, we increase the Reynolds number to determine
the relative error as a function of Re and A1, which is defined as

εj(Re,A1) ≡ max (err2, err∞) ,(76)

where j ∈ {c, p} for maximum relatives errors between numerical simulations found
between the current and previous work, respectively,

erri = max

( ||uT − uN ||i
||uT ||i ,

||vT − vN ||i
||vT ||i ,

||pT − pN ||i
||pT ||i

)
,(77)

uT , vT , pT represent field variables determined from theory, and uN , vN , pN represent
field variables determined from numerical experiment. In Figure 6, we plot the 5%,
10%, and 20% level set curves of εc(Re,A1). Below and to the left of each threshold
line, the relative error between the Navier–Stokes numerical solution and the predic-
tions from the current work are below the relative error threshold.

We would like next to determine subregions where our work outperforms the ex-
isting theory of Tilton et al. [11]. A natural way to do this is to repeat the above nu-
merical experiment using inlet/outlet conditions that are consistent with the solution
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Fig. 6. Level set curves of εc equal to 5%, 10%, and 20% relative errors are presented for the
present work when compared to numerical solutions of the Navier–Stokes equations (black lines with
circles, diamonds, and squares, respectively). We display grey lines, above which εp is greater than
5%, 10%, and 20% (grey lines in decreasing thickness). We display regions in which the current
work outperforms the pervious work in the parameter space with light grey (5%), grey (10%), and
dark grey (20%) colorations.

of [11] so that we do not bias our result and then determine regions in the parameter
space for which the relative error is below x percent for the current work and above
x percent for the previous work. However, such an experiment would double the
computational cost of the numerical scheme listed above, and this scheme is already
expensive since we are sweeping over many values in the (Re,A1) parameter space.

To avoid this large expense, we note instead that the work of Tilton et al. [11]
presents an asymptotic expansion about low Reynolds number. This means that the
maximum relative error at zero Reynolds number is less than the maximum relative
error at nonzero Reynolds number for fixed A1, which is to say

εp(0,A1) ≤ εp(Re,A1) ∀A1, Re.(78)

With this observation, and noting again that we are only interested in demonstrating
the existence of regions with enhanced performance in the present theory, we deter-
mine εp(0,A1) for the values of A1 listed above (log10(A1) = {i}4i=−1). We then
determine the values of A1 for which εp(0,A1) is equal to 5%, 10%, and 20%. The
intersection of the regions where εp(0,A1) > x and where εc < x is a region in which
the present work outperforms the previous work. We plot the regions in Figure 6 for
x ∈ {5%, 10%, 20%} and in all cases find nonempty regions where the current work
outperforms the previous theory. We have examined the numerical results for other
values of B1 and find qualitatively similar results.

5. Discussion. We have considered Stokes flow through an infinite channel with
permeable walls, such that fluid may be driven by pressure differences across the chan-
nel wall to enter or exit the channel. The normal flux component is given by Darcy’s
law, whereas the tangential component is assumed to be zero (i.e., no slip boundary
condition). The novel element to our work is that the permeability may be of arbitrary
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Fig. 7. Theoretical microscopic detail of a membrane with potentially large permeability. Cylin-
ders rotate with passing fluid and act as lubricating elements to avoid the issue of no slip condition
though the microscopic permeable pathways linking the exterior and interior of the channel.

magnitude. Such a solution allows us to directly and analytically test the break down
of existing asymptotic theories at small Reynolds number, and we have demonstrated
how the theory breaks down in terms of the axial magnitude of the pressure and
the transverse velocity profiles and as a predictive tool for axial flow exhaustion and
crossflow reversal. We note that our solution is equivalent to examining the case in
which transverse velocity is no longer negligible when compared to the axial velocity
profile. We have also contextualized our work in terms of an asymptotic expansion
about small Reynolds number. Although we have not attempted to determine the
higher order corrections, we note that if such corrections could be made, the theory
of Regirer [15] would be extended to a far broader region of the nondimensionalized
parameter space.

In addition, our solution also extends the known analytic results for a wider class
of parameters than has been originally explored. The utility of such an exploration
is, as of yet, to be seen, as most values for A1 found in nature may be considered to
be significantly less than one. We do, however, note that our result may be useful in
setting inlet and outlet boundary conditions for numerical studies. In the numerical
study by Pozrikidis [12], the author studies fluid loss in capillaries. Boundary condi-
tions are set by proposing a parabolic profile and then allowing a region of pipe with
zero permeability to transition into a region with nonzero permeability. It was shown
that the pressure profile spikes upon this transition, and thus in a study involving
the concentration of a secondary passive scalar we may see unphysical loss at these
regions. Furthermore, there is added computational expense involved in setting these
boundary conditions, as there is a required transition region from permeable to imper-
meable wall. As a potential remedy, our flow profiles may act as inlet/outlet profiles
that do not cause unrealistic spikes in the pressure profiles and may also reduce the
number of grid points needed at a boundary.

In practice, the nondimensional permeability is typically small, but we propose a
theoretical framework in which it may be considered to be arbitrarily large. The idea
is to imagine the channel wall to be a series of coupled cylinders with small spacing,
as pictured in Figure 7. A pressure difference across the channel would then cause
flow across the membrane, which would rotate the cylinders; a frictional coefficient on
the cylinders would determine the relationship between the pressure and the outward
velocity that would be significantly larger than if the cylinders were fixed due to the
fact that we circumvent the frictional restrictions of the zero slip condition. Such a
physical set up may allow for novel filtration applications in engineering where one
desires filtration within a small channel.

Appendix A.
Proposition 1. The quantity

(A1)

∞∑
n=0

(
dn

ω2
n − λ2

0

cos(ωny)

cos(λ0y)
− d̄nω̄n

λ0(ω̄2
n − λ2

0)

cos(ω̄ny)

cos(λ0y)

)
,

from (38), is independent of y for all values of λ0 ∈ (0, π/2), given by (21).
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To prove Proposition 1, we first let

(A2) F (λ0, y) =
∞∑
n=0

(
dn

ω2
n − λ2

0

cos(ωny)− d̄nω̄n

λ0(ω̄2
n − λ2

0)
cos(ω̄ny)

)
,

We then claim that F (λ0, y) = C(λ0) cos(λ0y), which will demonstrate the loss of y
dependence. To show this, we demonstrate the equivalence of the Fourier modes by
finding the correct scaling C(λ0). This is equivalent to showing

(A3) 〈cos(kπy), F (λ0, y)〉 = C(λ0) 〈cos(kπy), cos(λ0y)〉

for k ∈ N, with the inner product defined as usual to be

(A4) 〈f(y), g(y)〉 =
∫ γ

−γ

f(y)g(y)dy.

For (A3) to be true, the k = 0 case implies that we must have

(A5)

∞∑
n=0

32γ2 cos(λ0γ)

π4

(
(1 + 2k)2 −

(
2λ0γ
π

)2
)2 = C(λ0)

sin(λ0γ)

λ0γ
,

which we have derived by integrating (A3). We simplify the left-hand side via the
identity

(A6)

∞∑
n=0

1

((1 + 2k)2 − x2)
2 =

π2 sec2
(
πx
2

)
16x2

− π tan
(
πx
2

)
8x3

and then solve for C(λ0), which leads to the condition

(A7) C(λ0) =
1

2

(
γ

sin(λ0γ) cos(λ0γ)λ0
− 1

λ2
0

)
.

For k > 0, we are left to verify that

2(−1)kk2π2γ sin(λ0γ)

λ0(k2π2 − γ2λ2
0)

2
+

∞∑
n=0

64(−1)k(1 + 2n)2γ2 cos(λ0γ)

π4 ((1 + 2n)2 − 4k2)

(
(1 + 2n)2 −

(
2λ0γ
π

)2
)2 ,

= C(λ0)
2(−1)kλ0γ sin(λ0γ)

−k2π2 + λ2
0γ

2
,(A8)

where we have again used (A3) to derive this formula. The sum on the left-hand side
may be reduced via the identity

π2λ
2

(
4k2 − λ2

)
sec

(
πλ
2

)2
+ π

(
4k2 + λ2

)
tan

(
πλ
2

)
8λ (λ2 − 4k2)

2

=

∞∑
n=0

(1 + 2n)2

(4k2 − (1 + 2n)2) ((1 + 2n)2 − λ2)2
(A9)
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by substituting λ = 2λ0γ
π . This leads to an algebraic expression that we have verified

to be valid, but we have omitted the details as it leads to a lengthy reduction. This
completes the proof of Proposition 1.

Proposition 2. The relationship between A and λ0, given in (40),

(A10) f(λ0) =
1

2

(
γ

cos2(λ0γ)
− sin(λ0γ)

λ0 cos(λ0γ)

)

with f : (0, π(2γ)−1) → (0,∞), is bijective.
To prove this, we first note that the function f is continuous in λ0. We then need

to show that

lim
λ0→0

f(λ0) = 0,(A11)

lim
λ0→π(2γ)−1

f(λ0) = ∞(A12)

and that f is monotonically increasing. The first limit can be seen by noting that
limλ0→0 sin(λ0γ) = λ0γ. In the second limit, the first term of f dominates and is
unbounded from above. To show that the function is monotonically increasing, we
first let λ0γ = λ and then show that

df(λ)

dλ
> 0,(A13)

where

2

γ

df(λ)

dλ
= 2 sec2(λ) tan(λ)

+ tan(λ)λ−2 − sec2(λ)λ−1,(A14)

which will be true so long as

2 sec2(λ) tan(λ)λ2 + tan(λ) − sec2(λ)λ > 0,

2 tan(λ)λ2 + sin(λ) cos(λ) > λ.(A15)

In the limit as λ → 0, both sides of the inequality presented in (A15) approach zero.
Therefore, it suffices to show that

d(2 tan(λ)λ2 + sin(λ) cos(λ))

dλ
>

dλ

dλ
,

1− 2 sin2(λ) + 4λ tan(λ) + 2λ2 > 1,

2λ sin(λ) cos(λ) + λ2 > sin2(λ) cos2(λ),(A16)

which is true since

2λ sin(λ) cos(λ) + λ2 > λ2,(A17)

λ2 > sin2(λ) cos2(λ)(A18)

for λ ∈ (0, π/2). This completes the proof of Proposition 2.
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