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SUMMARY

We are concerned with a coupled system describing the interaction between suspended particles and a
dense fluid. The particles are modeled by a kinetic equation of Vlasov–Fokker–Planck type, and the fluid
is described by the incompressible Navier–Stokes system, with variable density. The systems are coupled
through drag forces. High friction regimes lead to a purely hydrodynamic description of the mixture. We
design first and second order asymptotic-preserving schemes suited to such regimes. We extend the method
introduced in [Goudon T, Jin S, Liu JG, Yan B. Journal of Computational Physics 2013; 246:145-164] to
the case of variable density in compressible flow. We check the accuracy and the asymptotic-preserving
property numerically. We set up a few numerical experiments to demonstrate the ability of the scheme in
capturing intricate interactions between the two phases on a wide range of physical parameters and geometric
situations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is devoted to the numerical study of a disperse two-phase flow. It includes the dilute
particles and the surrounding fluid in which the particles are suspended. The particles are modeled
at the mesoscopic level, therefore described by a kinetic equation, the unknown of which is the
distribution function f .t; x; v/ defined in the phase space .x; v/ 2 RN �RN . The fluid is modeled
by the incompressible Navier–Stokes (INS) system, describing the evolution of the density �.t; x/,
velocity field u.t; x/, and pressure p.t; x/ of the dense phase. By contrast to the particle distribution
function, these unknowns only depend on the time and space variables. The mathematical model is
based on the following assumptions:

� The fluid is viscous and incompressible, with variable density.
� Both the fluid and particle phases are isothermal with temperature T D 1.
� We consider a single specie of particles, with given and fixed mass density. We assume that

particles are spherically shaped with a given and fixed radius. We neglect any coagulation and
break–up phenomena.
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� There is no mass exchange between the phases. The volume fraction occupied by the particles
does not influence significantly the fluid density. Each phase exerts an influence on the other
phase through drag forces. The Stokes formula is used: the drag force depends linearly on the
relative velocity .v � u/.
� Particles are subject to Brownian motion, which leads to diffusion with respect to the velocity

variable in the equation of the particle distribution function.

With these assumptions in hands, we can write down the equations for this system. The evolution of
the particle distribution function f obeys the Vlasov–Fokker–Planck type kinetic equation

@tf C v � rxf D
1

"
Luf Crxˆ � rvf; (1)

with the Fokker–Planck operator

Luf D rv � ..v � u/f Crvf / D rv �

�
Murv

�
f

Mu

��
: (2)

Here and later, we denote

Mu.v/ D
1

.2�/N=2
exp

�
�
jv � uj2

2

�

the (normalized) Maxwellian centered at u (that can be a function of t and x). The density �.t; x/
and velocity u.t; x/ of the fluid are governed by the INS system8̂<

:̂
@t�Crx � .�u/ D 0

@t .�u/Crx � .�u˝ u/Crxp �
1

Re
�xuC �rx‰ D

�

"

Z
.v � u/f dv;

rx � u D 0:

(3)

The pressure p.t; x/ is determined by the divergence free condition. The readers are referred to [1]
and the references therein for the projection methods on variable density INS system.

In (3), Re > 0 is the fluid Reynolds number. The coupling parameter is defined by � D N��P =�F ,
where N� is the (typical value of the) volume fraction of particles, and �F and �P are the (typical)
mass densities of the fluid and the particles, respectively. For most applications, �P is much bigger
than �F , but N� is very small under our assumptions, and we can neglect the fluid volume change
because of the presence of particles. Thus, � is the mass ratio between particles and fluid in a given
reference volume. We will assume that � is O.1/, so the influence from both phases to the other
are significant. The two phases are subject to external potentials ˆ and ‰. The external force might
be different for the two phases. For example in the case of gravity driven flows, the potentials are
given by ˆ D �Pge´ and ‰ D �F ge´, with e´ the unit downward vector and g the gravitational
acceleration. For the particles, the coefficient �P D .1 � �F =�P / accounts for the gravity and
buoyancy force. For the fluid, the coefficient is just �F D 1 because of the effect of gravity. Finally,
the scaling parameter 0 < "� 1 is the ratio of the Stokes settling time to the observation time. The
Stokes settling time is given by � D 2a2�P

9�
, with a the particle radius and 	 the fluid viscosity. In a

typical soot, � � 10�8 s. We refer to [2] for details.
Flows described by such models typically arise in combustion theory [3–6], for describing

pollutant dispersion [7, 8], or the dynamics or sprays with, for example, biomedical applications
[9, 10]. Here, the model belongs to the so-called thin sprays models [5]. As it is usual with
multiphase flows, several modeling assumptions might be questionable; however, any modification
can drastically impact both the mathematical properties of the models and their numerical treat-
ment, as pointed out in [11]. As we shall see later, regimes with 0 < " � 1 introduce relaxation
effects that drive the particle distribution function towards a Maxwellian state. In turn, the flow can
be described through macroscopic quantities depending only on time and space variables. We refer
to [2, 12–14] for details on the scaling issues and for further references on the analysis of such
asymptotic regimes.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 75:81–102
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Owing to the divergence free condition satisfied by u, we observe that the fluid density is constant
on the characteristic curves associated to the field u: as far as the velocity field is smooth enough,
let X.t; x/ be the solution of

PX.t; x/ D u.t; X.t; x//; X.0; x/ D x

so that the mass conservation relation implies

d

dt
�.t; X.t; x// D 0:

Consequently, assuming that the dense phase is initially homogeneous, it remains homogeneous
forever: if � jtD0 D N� > 0 is constant, then �.t; x/ D N�. This specific situation is investigated in
the companion paper [1]. However, the restriction to homogeneous fluid flows is unrealistic for
most of the applications of practical interest. For instance, inhomogeneities play a crucial role in
the comprehension of instabilities observed in fluidized beds, technical devices used in pebble bed
reactors, and many other industrial processes. The problem combines several technical difficulties.
On the one hand, the INS system couples transport and diffusion equations in a very intricate way,
together with the divergence free constraint. On the other hand, the coupling with the particles
should be incorporated consistently, taking into account the possible stiffness of the coupling force
terms. Addressing these difficulties is the object of the present work.

To start with, let us summarize a few remarkable properties of the system and describe formally
the behavior as " goes to 0. A key feature of the model relies on the following energy–entropy
dissipation property

d

dt

�
�

Z
RN�RN

f .1CˆC v2=2C ln.f // dv dx C
Z
RN

�.1C juj2=2C‰/ dx

�

C
1

Re

Z
RN
jrxuj

2 dx C
�

"

Z
RN�RN

j.v � u/
p
f C 2rv

p
f j2 dv dx 6 0:

(4)

For completeness, we give the proof in the Appendix. This relation also holds when the problem
is set on a bounded smooth domain 
 with suitable boundary conditions, for example assuming
no-slip of the fluid at the boundary

u
ˇ̌̌
@�
D 0 (5)

and specular reflection of the particles

��f .t; x; v/ D �Cf .t; x; v � 2v � O�.x/ O�.x//; (6)

where O�.x/ is the unit outer normal vector at x 2 @
 and �˙ are the trace operators on the set®
.t; x; v/ 2 .0;1/ � @
 �RN ; ˙v � O�.x/ > 0

¯
:

We refer to further comments in [13, 14].
By taking the moments of (1), one obtains

@tnCrx � J D 0; (7)

@tJ CrxP C nrxˆ D �
1

"
.J � nu/ (8)

where

n.t; x/ D

Z
RN

f .t; x; v/ dv;

J.t; x/ D

Z
RN

vf .t; x; v/ dv;

P .t; x/ D

Z
RN

v ˝ vf .t; x; v/ dv

(9)
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are the particle density, momentum, and pressure tensor, respectively. Combined with (3), one
arrives at

@t .�uC �J /Crx � .�u˝ uC �P /Crxp C �nrxˆC �rx‰ D
1

Re
�xu: (10)

The hydrodynamic limit of this system can now be derived. As "! 0, one can expect thatLuf (and
the dissipation term in (4)) vanishes, which means that f approaches to the Maxwellian centered at
the fluid velocity

f .t; x; v/! n.t; x/Mu.t;x/.v/; as "! 0:

In this regime, the behavior of the particles is therefore described through the evolution of the
velocity u and the macroscopic density n. Accordingly, J and P are asymptotically defined by the
moments of the Maxwellian nMu,

J ' nu; P ' nu˝ uC nI:

Inserting this ansatz into (10), one arrives at the fluid limit8̂̂̂
<̂
ˆ̂̂̂:

@t�Crx � .�u/ D 0;

@tnCrx � .nu/ D 0;

@t ..�C �n/u/Crx � ..�C �n/u˝ u/Crx.p C �n/C �nrxˆC �rx‰ D
1

Re
�xu;

rx � u D 0:

(11)

Up to the force terms, this system is the INS system for the composite variable density .� C �n/.
Observe that, even if the dense phase is homogeneous, the asymptotic model involves a variable
density in the momentum equation. Note that in general, the force term does not reduce to .� C
�n/rx‰. For example, for gravity driven flows, a discrepancy appear because of the buoyancy force
that acts on the particles only.

In this paper, we are interested in numerical approximation of the system (1)–(3). We will pay
particular attention to the scaling parameter ": the scheme should work on a wide range of values
of the parameter, capturing the expected asymptotic behavior without introducing restrictions that
would make small "’s simulations numerically prohibitive. This scheme consists in discretizing
implicitly the stiff terms within the equations, but it should be performed as simply as possible
because the inversion of the corresponding discrete systems will be the main source of numerical
cost. It requires to adapt the ideas in [1] in order to incorporate correctly the treatment of the fluid
density. We mention that a rigorous justification of the asymptotic limit is not available yet. We refer
to [15] and [13, 16, 17] where related questions are discussed.

The scheme we develop can capture the fluid dynamic limit (11) automatically when 
 ! 0. This
is the so-called asymptotic-preserving (AP) property, a term first introduced by Jin [18]. An AP
scheme is efficient in the fluid dynamic regime (
 � 1) because it allows one to capture the fluid
dynamic limit (11) without numerically resolving the small scale 
. We refer to [19] for a recent
review on the AP schemes and their applications. Different from [1], here, we need to develop the
scheme in the framework of projection method for variable density INS, which requires different
spatial discretization. The overall cost is comparable to solving one decoupled Vlasov–Fokker–
Planck equation, see [20], and an INS by the projection method independently.

This work is organized as follows. The AP schemes for the coupling system (1)–(3) are introduced
in Section 2. In Section 3, we give the numerical verification of accuracy and the AP property, as
well as some relevant applications, which bring out the inhomogeneities effects.

2. ASYMPTOTIC-PRESERVING SCHEMES FOR THE FLUID–PARTICLES SYSTEM

2.1. A first order asymptotic-preserving scheme

Following the first order scheme introduced in [1], the key principles to construct AP schemes can
be summarized as follows:

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 75:81–102
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� Combine the implicit–explicit technique and the pressureless step to update the macroscopic
quantities n; J; �; u; p by solving directly simple linear systems.
� Split the stiff coupling terms (i.e., 1=" terms) and distribute them to both the pressureless step

and the projection step.
� Solve the stiff terms fully implicitly.
� Apply the prediction–correction idea to update the distribution f , by solving implicitly the

Fokker–Planck operator.

We now give the details to update the numerical unknowns, having at hand �k; uk; pk; f k and thus
nk D

R
f kdv, J k D

R
vf kdv

Step 1: Advancing densities. Both the particles and fluid density are advanced by using the
following relations

1

�t

�
nkC1 � nk

�
D �

Z
v � rxf

k dv;

1

�t

�
�kC1 � �k

�
D �rx �

�
�kuk

�
:

(12)

Step 2: Updating moments. The macroscopic current J and the velocity field u are advanced by
considering the system made of (8) and the second equation of (3). The projection method is
applied to account for the divergence free constraint. In order to ensure the AP property, one
needs to impose the stiff coupling terms in both the pressureless and the projection steps. To this
end, we introduce a parameter 0 < ˛ < 1 and

Step 2.1: Pressureless step. Obtaining u� and J � by solving

1

�t

�
J � � J k

�
D �

Z
v ˝ vrxf

k dv � nkrxˆ �
1 � ˛

"

�
J � � nkC1u�

�
; (13a)

1

�t

�
�kC1u� � �kuk

�
�
1

Re
�xu

� D �rx �
�
�kuk ˝ uk

�
C
1 � ˛

"
�
�
J � � nkC1u�

�
:

(13b)

One is thus led to solve the following variable coefficient Helmholtz equation for u� 
�kC1

�t
C

1 � ˛

"C .1 � ˛/�t
�nkC1 �

1

Re
�x

!
u� D

�kuk

�t
� rx �

�
�kuk ˝ uk

�
C

.1 � ˛/�

"C .1 � ˛/�t

�

�
J k��t

Z
v ˝ vrxf

k dv��tnkrx

�̂
;

(14)
completed with the no-slip boundary condition

u� j@� D 0: (15)

The discrete Helmholtz operator gives a symmetric linear system that can be solved by the
Preconditioned Conjugate Gradient method, see [21]. Then, J � is updated from (13a).

Step 2.2: Projection step. Calculating J �� and ukC1 by the relation

1

�t

�
J �� � J �

�
D �

˛

"

�
J �� � nkC1ukC1

�
;

�kC1

�t

�
ukC1 � u�

�
Crxp

kC1 D
˛

"
�
�
J �� � nkC1ukC1

�
:

(16)

Eliminating J �� yields

ukC1 C
1
�t
C ˛

"

�kC1

�t
C ˛

"

�
�kC1 C �nkC1

��trxpkC1 D
�
1
�t
C ˛

"

�
�kC1u� C ˛

"
�J �

�kC1

�t
C ˛

"

�
�kC1 C �nkC1

� : (17)
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Taking the divergence on both sides, because ukC1 is divergence free, one arrives at

rx �

 
1

�kC1"

rxp
kC1

!
D

1

�t
rx �

 
�kC1

�kC1"

u� C
˛
"

1
�t
C ˛

"

�
J �

�kC1"

!
;

@pkC1

@ O�
j@� D 0; (18)

where we have set

�kC1" WD

�kC1

�t
C ˛

"

�
�kC1 C �nkC1

�
1
�t
C ˛

"

: (19)

The pressure pkC1 is obtained by solving the variable coefficient Poisson equation (18). Again,
its discretization can be solved by the Conjugate Gradient method. Then, ukC1 is obtained from
(17) and thus J �� by (16).

As far as the first order method is concerned, ˛ can be chosen arbitrarily in .0; 1/; in practice,
we set ˛ D 1=2. As it is usual with variable density flows, pressure and velocity are obtained by
solving discrete Helmholtz or Poisson systems with variable coefficients. These matrices need to
be re-assembled at each time step.

Step 3: Kinetic equation. The particle distribution function f kC1 is calculated from the kinetic
equation (1), with a fully implicit treatment of the Fokker–Planck operator

f kC1 � f k

�t
C v � rxf

k � rxˆ � rvf
k D

1

"
LukC1f

kC1; (20)

where

LukC1f
kC1 D rv �

��
v � ukC1

�
f kC1 Crvf

kC1
�
:

We apply the technique introduced in [20] to solve this system: it allows to write the discrete
version of the Fokker–Planck operator as a symmetric linear system, which can thus be solved
with efficient methods.

2.2. A second order scheme

The accuracy with respect to the time variable can be improved to second order using backward
differentiation formula, following the technique introduced in [1].

Let us now detail what the scheme for the fluid–particles system becomes. We shall use the
shorthand notation a� D 2ak � ak�1:

Step 1: Advancing densities. The densities nkC1 and �kC1 are given by

1

2�t

�
3nkC1 � 4nk C nk�1

�
D �

Z
v � rxf

� dv;

1

2�t

�
3�kC1 � 4�k C �k�1

�
D �rx � .�u/

�:

(21)

Step 2: Updating moments. To ensure both the AP property and the second order accuracy, we
include the stiff terms in both the pressureless and the projection steps, but only O.�t/ of the
stiff terms are left to the projection step. We thus set

˛ D
�t

tmax
;

where tmax is the final time of simulation.
Step 2.1: Pressureless step.

1

2�t

�
3J � � 4J k C J k�1

�
D �

Z
v˝vrxf

� dv�n�rxˆ�
1 � ˛

"

�
J � � nkC1u�

�
; (22a)
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1

2�t

�
3�kC1u� � 4�kuk C �k�1uk�1

�
��xu

� Crxp
k D �rx � .�u˝ u/

�

C
1 � ˛

"
�
�
J � � nkC1u�

�
: (22b)

Step 2.2: Projection step. The pressure is obtained from the system

3

2�t

�
J �� � J �

�
D �

˛

"

�
J �� � nkC1ukC1

�
;

3

2�t

�
�kC1ukC1 � �kC1u�

�
Crx

�
pkC1 � pk

�
D
˛

"
�
�
J �� � nkC1ukC1

�
:

Step 3: Kinetic equation. Finally, solve

3f kC1 � 4f k C f k�1

2�t
C .v � rx � rxˆ � rv/

�
2f k � f k�1

�
D
1

"
LukC1f

kC1; (23)

and, then the moments nkC1 and J kC1 are obtained from definition (9).

We will check on numerical experiments the convergence order of the scheme (21)–(23) in
Section 3. This second order scheme is a multistep method. To compute the solutions at tkC1, one
needs the solutions from both tk and tk�1. Because the information is not available initially, one
should start at least for a single time step with the first order scheme.

2.3. The asymptotic-preserving property

Following the same argument as in [1], one can obtain, as "! 0, the following limit scheme from
the first order method (12)–(20):8̂̂

ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

1

�t

�
nkC1 � nk

�
D �rx �

�
nkuk

�
;

1

�t

�
�kC1 � �k

�
D �rx �

�
�kuk

�
;

1

�t

��
�kC1 C �nkC1

�
u� �

�
�k C �nk

�
uk
�
��xu

� D

� rx �
��
�kC1 C �nk

�
uk ˝ uk

�
� �rxn

k � �nkrxˆCO."/;

ukC1 C
1

�kC1 C �nkC1
�trxp

kC1 D u�;

rx � u
kC1 D 0:

(24)

It is exactly the first order projection step for the limiting system (11), which is mainly the INS
system with the space variable density .�C �n/.

Similarly, the limit of the second order scheme (21)–(23), as "! 0, formally gives8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂ˆ̂̂̂̂̂
ˆ̂̂̂:

1

2�t

�
3nkC1 � 4nk C nk�1

�
D �rx �

�
nkuk

��
;

1

2�t

�
3�kC1 � 4�k C �k�1

�
D �rx �

�
�kuk

��
;

1

2�t

�
3
�
�kC1 C �nkC1

�
u� � 4

�
�k C �nk

�
ukC

�
�k�1 C �nk�1

�
uk�1

�
��xu

� Crxp
kD

� rx � ..�C �n/u˝ u/
� � �rxn

� � �n�rxˆ;

3
�
ukC1 � u�

�
2�t

C
1

�kC1 C �nkC1
rx

�
pkC1 � pk

�
D 0;

rx � u
kC1 D 0;

(25)
which is a second order projection method for the limiting system (11).

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 75:81–102
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Remark 2.1
The second order projection methods for the INS system with variable fluid density have been
studied in [22], which used a combination of midpoint method and Crank–Nicolson method in time
discretization. Here, we derive a different method that is based on a backward differentiation formula
type discretization in time. However both methods are natural generalizations of the projection
method because the problem is reformulated such that one only needs the Helmholtz solvers for u
and a variable coefficient Poisson solver for p.

2.4. Full discretization and general comments

We refer to the relevant sections in [1] for the details on space and velocity discretization, as well as
the inversion of the Fokker–Planck operator.

The mass conservation for the fluid (the first equation in (3)) is not include in [1]. In the present
situation, it turns out to be natural to use a kinetic scheme, as we did in [2] when dealing with com-
pressible flows. A consequence of this is that, in the limit system, the mass conservation equations
for the particles and the dense phase are discretized with the same method. Namely, we solve

�kC1 � �k

�t
D �

Z
RN

v � rx

�
�ke�jv�u

k j2=2
� dv

.2�/N=2
;

and for space discretization, we approximate the convection operator v �rx dimension-by-dimension
by upwind techniques (at first order or with second order MUSCL methods including slope limiters,
see [23]). The momentum equations for the fluid are solved by using a second order central
difference on the transport part. We can use a kinetic scheme as well for the convection terms of
the fluid momentum equation: the limiting scheme would be exactly the kinetic scheme for the
limiting system (11). In this case, note that the second moment

R
RN v v �rx

�
�kejv�u

k j2=2
�

dv
.2�/N=2

introduces a pressure term, proportional to �k .
We point out that, owing to the divergence free condition, the fluid density � (and the two

macroscopic densities n and � for the limit problem) fulfills the maximum principle: if 0 < � 6
�.0; x/ 6 N� <1 initially, then 0 < � 6 �.t; x/ 6 N� <1 holds for any positive time. Here, in the
Cartesian grids, we use Finite Difference approximation so that these discretization described above
are enough to guarantee this property. However, working on general tessellations might require
more refined methods in order to preserve the natural estimates on the fluid density: for such intri-
cate coupling, violating the maximum principle on � might compromise the stability of the whole
simulation, see for further details [24] on these delicate issues.

The scheme can be interpreted as a predictor–corrector method: the momentum of particles is
first predicted by J � and J ��, then corrected to J kC1 after f kC1 is solved. We point out that the
main computational cost consists precisely in updating f kC1 because the equation involves both
x and v variables (one needs to invert a system in v at each x). With the prediction–correction
trick however, we determine first macroscopic quantities, and the Fokker–Planck system has to be
solved only once per time step. The remarkable feature of this multiphase scheme is the fact that
the overall cost corresponds to solving two single phase systems and even for the second order
scheme only need to invert once the single phase Fokker–Planck equation. The stability analysis of
the complete problem is beyond the scope of this paper. However, we can expect, and as confirmed
by our numerical observations, that the only constraint on the time step is the CFL condition coming
from the transport part of the kinetic equation (1), that is�t 6 �x

max jvj , with�x the space mesh size.

Remark 2.2
An alternative treatment of the Fokker–Planck operator is presented in [25, Chap. 12]. This scheme
relies on a tricky combination of spectral analysis with a well-balanced treatment of the convection
term. It leads to a suitable definition of the numerical fluxes corresponding to v � rxf . (Note that
this step needs the inversion of a certain linear system.) In turn, an efficient scheme for the Fokker–
Planck equation is obtained, which is stable under the usual transport stability condition. This idea
is adapted in [25, Section 12.4] to deal with a simple 1D fluid-particle problem where the fluid is
supposed homogeneous and the velocity obeys the Burgers equation. The well-balanced fluxes are
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then obtained by decoupling the two phases. It would be interesting to discuss the ability of this
method to handle stiff drag forces and to extend it to more complex multidimensional flows.

3. NUMERICAL SIMULATIONS

Let us now check the performances of the method through a set of numerical experiments. We
propose simulations on the two-dimensional setting: from now on, we denote x D .x; y/ the position
variable, v D .v1; v2/ the velocity variable, u D .u1; u2/ the fluid velocity, and up D .up1; up2/ D
J=n the macroscopic particle velocity. Unless otherwise specified, simulations are performed under
the following numerical conditions:

� The computational domain is defined by x 2 Œ0; 1�2. For the velocity variable, we use the
truncated domain v 2 Œ�vmax; vmax�

2, with vmax D 6. As in [1], we use a regular and symmetric
velocity grid. We work with Nx D 128 grid points in each space direction and Nv D 32 grid
points in each velocity direction.
� We make use of the following boundary conditions

Specular reflection for particles f;
No-slip for the fluid velocityu;
Neumann boundary condition for the pressurep:

When necessary, a Neumann-like boundary condition is applied on the fluid density �.
� We apply the second order method described in Section 2.2. The van Leer type slope limiter

(see [26]) is applied on the discretization of the advection operators.
� The time step is determined by �t D �x

5vmax
, which guarantees the stability.

� The initial particle distribution function is defined by

f .0; x; v/ D n.0; x/Mup.0;x/;

with various expressions for the macroscopic density n.0; x/. Notice that it is not an
equilibrium state when up ¤ u and thus Luf ¤ 0 in (2).
� For the coupling parameter, we take � D 2 throughout the simulations. We point out that we

made a couple of runs with far larger values of �, without encountering any difficulty.
� The gravity is taken into account: it points downwards and we set g D 1. The Reynolds number

is set to Re D 1000.

The first question is to determine whether or not the treatment of fluid inhomogeneities degrades
the accuracy of the scheme reported for the homogeneous case and to check the AP property. Hence,
we work with initial data defined as in [1], up to fluid homogeneities (�.0; x/ D 1 in [1]), namely

n.0; x/ D 10�10 C exp
�
�80.x � 0:5/2 � 80.y � 0:5/2

�
;

up.0; x/ D
�

sin2.�x/ sin.2�y/
� sin2.�y/ sin.2�x/

�
;

�.0; x/ D 1C exp
�
�40.x � 0:5/2 � 40.y � 0:5/2

�
;

u.0; x/ D up.0; x/:

(26)

We vary the mesh size: we set�x D 1
Nx

withNx D 16; 32; 64; and128, respectively, and useNv D
32. Denote f�x , ��x , and u�x the corresponding numerical solution. Given a discrete quantity ',
at the final time tmax D 0:025, we evaluate the relative error in `p norm

e�x.'/ D max
t2.0;tmax/

jj'�x.t/ � '2�x.t/jjp

jj'2�x.0/jjp
: (27)

We bear in mind that the stability constraint imposes�t D O.�x/. We shall say that the numerical
scheme is of order k if e�x 6 C�xk holds. Here, simulations are performed with the Reynolds
number Re D 1 (higher values can not be resolved on the coarse gridNx D 16). Evaluation of the `1

norm of the particle distribution f and of the `2 norm of the fluid density � and velocity u is reported
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Figure 1. Convergence order of the second order method with the initial data (26): l1 errors (27) of the
particle distribution f (a), l2 errors of fluid density � (b), and fluid velocity u (b) with different ".
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Figure 2. Time evolution of jjf � nMujj1 with different ", starting with the initial data (28).

in Figure 1. We obtain the second order accuracy: on the one hand, the fluid density is captured with
the required accuracy, and on the other hand, taking into account fluid inhomogeneities does not
affect the quality of the results in comparison to the constant case, reported in [1].

Next, we turn to the AP property, comparing simulations by varying the scaling parameter ".
Again, we choose conditions similar to those of [1], by considering the following volcano like initial
data

n.0; x/ D
�
0:5C 100

�
.x � 0:5/2 C .y � 0:5/2

��
exp

�
�40.x � 0:5/2 � 40.y � 0:5/2

�
;

up.0; x/ D
�
� sin.2�.y � 0:5//
sin.2�.x � 0:5//

�
exp

�
�20.x � 0:5/2 � 20.y � 0:5/2

�
;

u.0; x/ D 0:

(28)

Now, the fluid density is assumed inhomogeneous initially

�.0; x/ D 1:0C exp.�40.x � 0:5/2 � 40.y � 0:5/2/:

The evolution of the norm jjf � nMujj1 where Mu is a Maxwellian centered at the fluid velocity u
is depicted in Figure 2. The result verifies the AP property f � nMu D O."/ after one time step.

3.1. Some applications

In this section, our schemes are extended to more complicated circumstances. We deal with a couple
of situations to demonstrate the ability of the method to reproduce desired physical phenomena. We
show that the model exhibits interesting structure formation, because of the interaction between the
two phases, with phenomena specifically related to fluid inhomogeneities.
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3.1.1. Dust eruption. The first test is concerned with the simulation of dust eruption, a toy model
for the eruption of volcanic ash. Particles are injected from the bottom with constant velocity. The
fluid is assumed initially at rest and linearly stratified, with a density decaying as altitude increases.
More specifically, the initial conditions are given by

n.0; x/ D 10�10;

�.0; x/ D
3

2
�
y

2
;

up.0; x/ D u.0; x/ D 0:

(29)

The injection domain �b is defined by

�b D ¹.x; 0/j0:45 6 x 6 0:55º;
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Figure 3. The time evolution of dust eruption. From left to right: the particle density, streamlines of particles
velocities, fluid density, and streamlines of velocities of fluid. The Reynolds number is Re D 1000. (a) " D 1.
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and we modify the specular reflection law on �b by imposing the following incoming flux

f .t; x; v/ D 126v263; if x 2 �b

where v2 is the second component of v. The system is simulated with several values of ".
Figure 3(a) gives the time evolution of this system with " D 1. The first column shows the

snapshots of the particle density at different time. The injected particles reach the top of the box
after a short time, then fall down and accumulate at the bottom because of the gravity effect. The
third column shows the snapshots of the fluid density. The heavier fluid, which stays near the ground
at beginning, goes up with the incoming particles and falls down because of gravity, thus exhibiting
the typical mushroom shape, which is well captured by the scheme. The second and fourth columns
give the streamlines of particles and fluid, respectively. They are quite different because the drag
force between the two phases is not significant. The behavior turns out to be significantly different
as " decreases.
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Figure 3. (Continued). (b) " D 10�2.
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Figure 3. (Continued). (c) " D 10�6.
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Figure 4. The x-dependent function ".x/ given by (30), with "0 D 10�5.
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Figure 5. The time evolution of dust eruption problem in mixing regime. From left to right are the particle
density, the fluid density, and the difference in their velocities jup � uj.

Figure 3(b) gives the time evolution of this system with " D 10�2. In this case, the drag force is
stronger. The injected particles are slowed down by the fluid. Most particles fall back to the ground
before reaching the top of the domain. The heavier fluid, which is blown away from the ground, can
hardly go higher. The discrepancies between the streamlines of the particles and fluid are clearly
reduced compared to the previous case.

Figure 3(c) gives the time evolution of this system with " D 10�6. The incoming particles stop
moving up immediately because of the strong drag force and the gravity. A small portion of particles
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spreads on the ground. The heavier fluid always stays near the ground. The streamlines of the par-
ticles and fluid are quite similar to each other. We observe a clear splitting in the computational
domain, with recirculation effects on the bottom and flat streamlines on the top.

3.1.2. Dust eruption in mixing regime. One of the advantages of AP schemes is that they can
capture the solution behaviors automatically as " varies in space. Using an example from [27], we
consider a mixing regime problem, with an x-dependent ".x/,

".x; y/ D "0 C
1

2

�
tanh

�
10 � 80

�
x �

1

2
�
1

4
sin.2�y/

��

C tanh

�
10C 80

�
x �

1

2
�
1

4
sin.2�y/

���
:

(30)
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Figure 6. The time evolution of exhaust emission problem. From left to right: the particle density, stream-
lines of particles velocities, fluid density, and streamlines of velocities of fluid. The Reynolds number is

Re D 1000. (a) " D 1.
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Figure 6. (Continued). (b) " D 10�2.

Here, "0 � 1 is a constant. ".x/ varies from "0 to O.1/ smoothly, as shown in Figure 4 with
"0 D 10

�5.
Now, we study the dust problem in this mixing regime. We use exactly the same physical and

numerical parameters as in Section 3.1.1, except ".x/. Similar to [1], we only discuss (30) as an
evidence of feasibility, without diving into the discussion of the physical relevancy of working with
spatially variable "’s.

Figure 5 shows several snapshots of the time evolution of the particle density, the fluid velocity,
and the discrepancy of the two velocities jup � uj. Compared with Figure 3, the behaviors of both
phases are clearly influenced by the spatially variable ".x/. The difference of the velocities of two
phases jup � uj shows an S-shape profile, which is consistent to ".x/ in Figure 4. This suggests that
the fluid limit of this two-phase system is achieved automatically in the strong interaction regime
where "� 1. While in the weak interaction regimes where " D O.1/, the two phases behave quite
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Figure 6. (Continued). (c) " D 10�6.

differently. Besides, jup � uj decays as time evolves, which suggests that eventually the two-phase
system approaches the global equilibrium (except in the region close to the entrance).

3.1.3. Exhaust emission/sewage outfall. In this simulation, particles are injected from the center of
the left boundary with constant velocity. This can be seen as a toy model to simulate the exhaust
emission from vehicles or the sewage outfall into the river/lake/sea. Initial and boundary conditions
are the same as in (29) except that the boundary condition for the particles is now given by

f .t; x; v/ D 126v163; if x 2 �l ; (31)

where v1 is the first component of v and the injection domain �l is

�l D ¹.0; y/j0:45 6 y 6 0:55º:
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Figure 6(a) gives the time evolution of this system with " D 1. The pictures from left to
right give the particle density, the streamlines of particles velocities, the fluid density, and the
streamlines of velocities of fluid, respectively. The injected particles reach the right end of the
box after a short time, then fall down and accumulate at the right corner on the bottom because
of the gravity effect. The circulation of the fluid is triggered. The upper half and lower half of
the density evolve separately and behave like a typical cavity problem in both domains. Again,
the streamlines of particles and fluid are quite different because the drag force between them
is weak.

Figure 6(b) gives the time evolution of this system with " D 10�2. The incoming particles fall on
the ground shortly after entering the box and then march on the ground. The fluid near the entrance
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Figure 7. The time evolution of cavity problem. From left to right: the particle density, streamlines of
particles velocities, fluid density, and streamlines of velocities of fluid. The Reynolds number is Re D 1000:

(a) " D 1.
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Figure 7. (Continued). (b) " D 10�8.

moves together with the particles, and later, the fluid in the whole domain gets mixed. Again, the
streamlines of the particles and fluid are becoming similar.

Figure 6(c) gives the time evolution of this system with " D 10�6. Now, the drag force is very
strong. The incoming particles move much slower so that they cannot reach the right end easily. The
streamlines of the particles and fluid are almost the same.

In comparison to a similar test reported in [1], both the effect of gravity and the interplay between
phases inhomogeneities modify significantly the features of the flow.
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3.1.4. The lid driven cavity problem. The last application is the lid driven cavity problem. The flow
is driven by the lid, which moves to the right with a constant velocity. More specifically, the initial
and boundary conditions are given by

n.0; x/ D 10�10 C 106x60:5;06x60:5;

�.0; x/ D
3

2
�
y

2
;

up.0; x/ D u.0; x/ D 0;

u.t; x/ D 0; if x 2 @
n�u;

u.t; x/ D .2; 0/T ; if x 2 �u;

(32)

where �u is the top–boundary

�u D ¹.x; 1/º:

The specular boundary condition for f is applied. The system is also simulated with different ".
Figure 7(a) gives the time evolution of this system with " D 1. The particles spread to the right end

because of the gravity and cover the bottom in a short time. The fluid circulates in the box because
pdf the moving lid. The interaction between the two phases are not significant. The streamlines of
particles and fluid are quite different.

Figure 7(b) gives the time evolution of this system with " D 10�8. The profiles of the two phases
are much more complicated, because of the strong drag force. The streamlines of particles and fluid
are exactly the same, suggesting that the two phases are moving together.

APPENDIX

Here, we prove the entropy dissipation inequality (4). Multiplying (1) by 1 C ˆ C v2=2 C ln.f /
and integrating over RN �RN , one obtains

d

dt

�
�

Z
RN�RN

f
�
1CˆC v2=2C ln.f /

�
dv dx

�
C

Z
RN�RN

�̂
v � rxf �

v2

2
rxˆ � rvf

�
dvdx

D
1

"

Z
RN�RN

�
v2

2
C lnf

�
Luf dvdx:

(A.1)
One can drop the second integration becauseZ
RN�RN

�̂
v �rxf �

v2

2
rxˆ � rvf

�
dvdxD

Z
RN�RN

�
rx � .ˆvf / �rv �

�
v2

2
rx f̂

��
dvdx D 0:

Next, multiplying the mass equation in (3) by ‰ and integrating over RN , one obtains,

d

dt

Z
RN

�‰ dx �
Z
RN
rx‰ � .�u/ dx D 0: (A.2)

Multiplying the momentum equation in (3) by u and integrating over RN , one obtains,

d

dt

Z
RN

1

2
�juj2 dx C

1

Re

Z
RN
jrxuj

2dx C
Z
RN
rx‰ � .�u/dx

D
�

"

Z
RN�RN

u
p
f
�
.v � u/

p
f C 2rv

p
f
�

dvdx;
(A.3)

where we have applied the incompressibility property of u.
Note that the Fokker–Planck operator (2) can be rewritten as

Luf D rv �
�p

f
�
.v � u/

p
f C 2rv

p
f
��
:
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With integration by parts, one hasZ
RN

v2

2
Luf dv D

Z
RN
�v
p
f
�
.v � u/

p
f C 2rv

p
f
�

dv;Z
RN

lnfLuf dv D
Z
RN
�
rvf

f

p
f
�
.v � u/

p
f C 2rv

p
f
�

dv

D

Z
RN
�2rv

p
f
�
.v � u/

p
f C 2rv

p
f
�

dv:

(A.4)

Then, (4) is proved by adding up (A.1)–(A.4).
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