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Abstract. This paper deals with the derivation and analysis of the the Hall

Magneto-Hydrodynamic equations. We first provide a derivation of this system
from a two-fluids Euler-Maxwell system for electrons and ions, through a set of

scaling limits. We also propose a kinetic formulation for the Hall-MHD equa-

tions which contains as fluid closure different variants of the Hall-MHD model.
Then, we prove the existence of global weak solutions for the incompressible

viscous resistive Hall-MHD model. We use the particular structure of the Hall

term which has zero contribution to the energy identity. Finally, we discuss
particular solutions in the form of axisymmetric purely swirling magnetic fields

and propose some regularization of the Hall equation.

1. Introduction. This paper deals with the derivation and analysis of the the Hall
Magneto-Hydrodynamic (Hall-MHD) equations. The Hall-MHD model currently
receives an increasing attention from plasma physicists. It is believed to be the
key for understanding the problem of magnetic reconnection. Indeed, space plasma
observations provide strong evidence for the existence of frequent and fast changes
in the topology of magnetic field lines, associated to violent events such as solar
flares [11]. However, magnetic reconnection cannot be described in the framework of
ideal MHD, due to the frozen-field effect. Indeed, in ideal MHD, due to the Faraday
equation and ideal Ohm’s law, the magnetic field is essentially passively transported
by the fluid velocity. Therefore, the topology of the magnetic field is preserved,
even in the magnetic field lines are deformed by the flow. In order to break this
passive magnetic field transport by the fluid flow, one is led to re-introduce the Hall
terms which was neglected in ideal MHD. In spite of its increasing importance for
physical applications, the Hall-MHD model has received very little attention from
the theoretical viewpoint (see e.g. [19, 21]) and the purpose of this paper is mainly
to propose a framework for the derivation and analysis of the Hall-MHD problem.
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We first provide a derivation of this system from a two-fluids isothermal Euler-
Maxwell system for electrons and ions, through a set of scaling limits. The two-fluids
model of plasma is known as Braginskii model [2] and was justified in [9] (see also
[5]) on the basis of a concurrent hydrodynamic and zero electron to ion mass ratio
limit. As usual in MHD models, zero electron to ion mass ratio limit, zero Debye
length limit and zero displacement current limits have to be taken. Then, the main
point is to examine the orders of magnitude of the various terms arising in the
generalized Ohm law (which is the electron momentum equation with zero inertia)
and in the current equation. Basically, Hall MHD is obtained when the electron and
ion velocities have difference of order unity and when this difference is introduced
inside the generalized Ohm law.

Then, we propose a kinetic formulation for the Hall-MHD equations which con-
tains as fluid closure different variants of the Hall-MHD model. The kinetic formula-
tion consists of a Fokker-Planck equation for the ions and a set of fluid equations for
the electrons coupled through quasineutrality. The Fokker-Planck operator models
electron-ion collisions and contributes to relaxation of the velocities and the tem-
peratures of both species to a common value. This kinetic model was in particular
justified in [7]. The MHD equations are obtained by taking the fluid moments of
the ion Fokker-Planck equation and closing the resulting equations by a Maxwellian
assumption. The resulting two-temperature resistive Hall MHD model consists of
conservation equations for the density, momentum, energy and magnetic field com-
bined with an evolution equation for the electron temperature and with the gener-
alized Ohm law. The proposed hybrid ion-kinetic, electron-fluid model bear strong
analogies with models used in the literature for numerical simulations such as [22],
but the purpose is to highlight its mathematical structures. Indeed, a particu-
larly interesting special case is when the electron and ion temperatures are equal
to the same constant value (isothermal single temperature resistive Hall MHD). In
this case, we can rephrase its kinetic formulation in the form of a coupled Fokker-
Planck Faraday system, which exhibits an entropy dissipation identity. Surprisingly
enough, the kinetic formulation of standard ideal MHD is deduced by neglecting
the Hall term in Faraday’s equation but keeping it in the kinetic equation.

The theoretical analysis focuses on the existence of global weak solutions for the
incompressible viscous resistive Hall-MHD model written as follows:

∂tu+ u · ∇u+∇p = (∇×B)×B + ∆u, (1)

∇ · u = 0, (2)

∂tB −∇× (u×B) +∇× ((∇×B)×B) = ∆B, (3)

∇ ·B = 0, (4)

where u(x, t) and B(x, t) are the fluid velocity and magnetic field, depending on the
spatial position x and the time t. The result is valid on a square domain Ω of R3

with periodic boundary conditions. We stress that the important contribution of
this work is the account of the last term of the left-hand side of (3), known as the
Hall effect term. The main theorem of this work is stated as follows:

Theorem 1.1. Let Ω = [0, 1]3. Assume that u0 ∈ (L2(Ω))3, B0 ∈ (L2(Ω))3 with
∇ · u0 = 0, ∇ ·B0 = 0. Then, there exists a global weak solution (u,B) for the Hall
MHD problem (1), (4). Moreover, we have (u,B) ∈ L∞((0, T ), L2(Ω)) ∩ L2((0, T ),

H1(Ω)) and ∂tu ∈ L
4
3 ((0, T ), H−1(Ω)), ∂tB ∈ L

4
3 ((0, T ), H−2(Ω)). Additionally,
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the following energy inequality holds:

d

dt
E(t) + ‖∇u‖2L2(Ω) + ‖∇B‖2L2(Ω) ≤ 0, (5)

with

E(t) =
1

2
‖u‖2L2(Ω) + ‖B‖2L2(Ω). (6)

In fact, the main difficulty of this work is concentrated in the treatment of the
Hall term. So, we will show a preliminary result for the following Hall problem

∂tB +∇× ((∇×B)×B) = ∆B, (7)

∇ ·B = 0, (8)

and will provide a detailed proof. The proof uses the particular structure of the Hall
term which has zero contribution to the energy identity. The proof of the existence
for the coupled system is then a direct consequence of the energy inequality (5) and
will only be sketched. This result is up to our knowledge the first theoretical result
for Hall MHD. Global existence for standard viscous resistive incompressible MHD
has been previously proved by Duvaut & Lions [9]. A bifurcation analysis of the
Hall-MHD problem in view of the question of magnetic reconnection is performed
in [12]. Numerical methods for solving the Hall-MHD problems can be found e.g.
in [1, 4, 13, 14, 15]

Remark 1. In a general domain Ω, the physically relevant boundary condition is
the perfectly conducting wall boundary condition, which consists in assuming zero
normal component of the B field and zero tangential component of the electric field.
Here, the electric field is the quantity inside the curl operator, namely

E = (∇×B)×B +∇×B.
This leads to the nonlinear boundary conditions{

B · n = 0 on ∂Ω,

n× (∇×B) + n× ((∇×B)×B) = 0 on ∂Ω.

From these conditions, we deduce that

B · (∇×B) = 0,

which means that there is no helicity on the boundary. Because of the nonlinearity
of this boundary condition, the methods developed below do not apply.

Finally, we discuss particular solutions of the Hall problem in the form of ax-
isymmetric purely swirling magnetic fields and propose some regularization of the
Hall equation. For axisymmetric purely swirling magnetic fields, the Hall problem
reduces to a viscous Burger’s equation. By neglecting the resistivity, the resulting
inviscid Burger’s equation shows shock wave solutions which are known in physics
textbooks as KMC waves for Kingsep, Mokhov and Chukbar [16] (see also [3, 8]).
They only exist if the Hall term is present. This effect also generates boundary
layers which lead to nonlinear boundary conditions (see e.g. [20]). Focusing on the
non-resistive Hall problem itself, we propose a regularization consisting in restoring
the displacement current in the Ampere equation. We then provide two equivalent
formulations of this regularized problem which are obtained when either the current
or the electric fields are eliminated from the system.
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The organization of the paper is as follows. In Section 2, we propose a derivation
of the Hall-MHD model from the two-fluids Euler-Maxwell model under suitable
scaling hypotheses. Then, Section 3 is devoted to the presentation of the kinetic
formulation of the Hall-MHD problem. Section 4 is focuses on the proof of the
existence of global weak solutions for the incompressible viscous resistive Hall-MHD
equations. Section 5 discusses the particular case of axisymmetric purely swirling
magnetic fields and proposes a regularization of the Hall problem by means of a
re-introduction of the displacement current in the Ampere equation. Finally, a
conclusion is drawn in Section 6.

2. Derivation of the Hall-MHD equations from fluid equations. In this
section, we briefly motivate the derivation of the model we are considering. For
simplicity, we consider the compressible inviscid model and later on change to vis-
cous incompressible flow. We start from the two-fluid isothermal Euler-Maxwell
system for the electrons and ions, where we assume that the electron and ion tem-
peratures are the same given constant:

∂tne +∇ · (neue) = 0,

(9)

me(∂t(neue) +∇(neue ⊗ ue)) +∇(neT ) =

= −ene(E + ue ×B)− e2ηneni(ue − ui), (10)

∂tni +∇ · (niui) = 0,

mi(∂t(niui) +∇(niui ⊗ ui)) +∇(niT ) =

= eni(E + ui ×B)− e2ηnine(ui − ue),
c−2∂tE −∇×B = −µ0j,

ε0∇ · E = ρ,

∂tB +∇× E = 0 ,

∇ ·B = 0,

ρ = e(ni − ne),
j = e(niui − neue).

where ne and ni are the electron and ion densities, ue and ui, the velocities, T ,
the common electron and ion temperature, me and mi the masses. e denotes the
elementary positive charge, and we assume singly charged positive ions. η is the
resistivity due to the electron-ion collisions. E, B, ρ, j are respectively the electric
field, the magnetic field, the charge density and the current density. ε0, µ0 and c
are respectively the vacuum permittivity, the vacuum permeability and the speed
of light, related by the relation ε0µ0c

2 = 1. For simplicity, we assume monoatomic
perfect gas equations of states for both the electrons and ions. We make the Boltz-
mann constant equal to unity which means that we measure temperatures in units
of energy. The last terms at the right-hand sides of the second and fourth equations
are the contributions of the electron-ion collisions to the momentum equation of
each species. The two terms sum up to zero which expresses the conservation of
total momentum in such collisions.

We introduce scaling units n0, u0, E0, B0, x0, t0, ρ0, j0 for respectively the
densities, velocities, electric field, magnetic field, space, time, charge and current.
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We assume that these units are related by the following relations:

x0 = u0t0, u0 =

√
T

mi
, E0 = u0B0, ρ0 = en0.

The first relation means that we observe the system at the convection time scale.
The second relation states that the convection velocity is that of the ion thermal
speed. The third relation is typical of a MHD scaling and states that the main
contribution to the electric field is induction due to the motion of the charged fluid.
Finally, the last relation expresses the consistency between the density and charge
units.

Then, six dimensionless parameters appear:

ε2 =
me

mi
, α2 =

eE0x0

T
, β =

e2ηn0u0x0

T

γ =
u0

c
, λ2 =

ε0T

e2n0x2
0

, η =
j0

en0u0
.

which have the following interpretation. ε2 is the electron to ion mass ratio and is
very small. α2 is the ratio of the electric energy to the thermal energy. β measures
the relaxation frequency of the electron and ion velocities due to collisions. γ is
the ratio of the fluid velocity to the speed of light. λ is the scaled Debye length
and measures the closedness to quasi-neutrality. η is the ratio of the charge current
scale to the electron or ion current scales. Since the charge current is the difference
of these two particle currents, it may be much smaller than any of them due to
charge neutrality. Therefore, the scale ratio η may be either O(1) or � 1 according
to the situations.

The dimensionless two-fluids Euler-Maxwell system is written:

∂tne +∇ · (neue) = 0,

ε2(∂t(neue) +∇(neue ⊗ ue)) +∇(neT ) =

= −α2ne(E + ue ×B)− βneni(ue − ui),
∂tni +∇ · (niui) = 0,

∂t(niui) +∇(niui ⊗ ui) +∇(niT ) =

= α2ni(E + ui ×B)− βnine(ui − ue),

γ2∂tE −∇×B = − γ2η

α2λ2
j,

α2λ2∇ · E = ρ,

∂tB +∇× E = 0 ,

∇ ·B = 0,

ρ = ni − ne,

j =
1

η
(niui − neue).

The compressible MHD equation corresponds to the simultaneous independent
four limits

1. ε2 → 0: this corresponds to the neglect of the convection term in the electron
momentum equation. The resulting equation is usually referred to as the
generalized Ohm’s law.
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2. λ2 → 0. This gives rise to quasineutrality, i.e. the fact that the local electron
and ion densities are everywhere the same. We now denote by n their common
value: ne = ni = n.

3. γ2 → 0 while keeping γ2η
α2λ2 = 1. This leads to the neglect of the displacement

current in Ampere’s equation and gives rise to the standard magnetostatic
Ampere law.

The resulting system is the so-called compressible isothermal resistive Hall-MHD
equations. Denoting by u the ion velocity, this system is written

∂tn+∇ · (nu) = 0,

∂t(nu) +∇(nu⊗ u) +∇(2nT ) = α2 η j ×B, (11)

∇×B = j,

∂tB +∇× E = 0,

∇ ·B = 0,

j =
1

η
n(u− ue), (12)

E + u×B = − T

α2
∇(lnn) + η

j ×B
n

+
βη

α2
j, (13)

where we highlight the momentum conservation eq. (11), the current equation (12)
and generalized Ohm’s law (13). Note that the T ∇lnn term at the right-hand side
of (13) has no contribution since the curl operator in the Faraday equation cancels
it. However, this cancellation is no more true in the general gas dynamics case
because ∇pen may not be a gradient in general, where pe is the electron pressure.

In all what follows, we assume α2η = 1 in order to keep the Lorentz force term
in (11) of order 1 in all the various scalings below. Then, eqs. (11), (12) and (13)
are written :

∂t(nu) +∇(nu⊗ u) +∇(2nT ) = j ×B, (14)

1

α2
j = n(u− ue), (15)

E + u×B =
1

α2

[
−T∇(lnn) +

j ×B
n

]
+

β

α4
j, (16)

the other equations being unchanged. There are only two dimensionless parameters
left: 1

α2 and β
α4 and they only appear in (15) and in (16). So, the various types of

MHD model correspond to the various choices of scalings for these two parameters.
In particular, we have

1. If both 1
α2 → 0 and β

α4 → 0, then the generalized Ohm’s law reduces to
the standard ideal Ohm’s law while the electron and ion velocities become
identical:

E + u×B = 0, ue = u.

This yields ideal MHD.
2. If 1

α2 → 0 but β
α4 → 1, then the resistive term in the generalized Ohm’s law

is kept but the electron and ion velocities are still identical:

E + u×B = j, ue = u.

This gives rise to resistive MHD.
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3. If 1
α2 → 1 but β

α4 → 0, then, the ion and electron velocities differ and addi-
tionally, the generalized Ohm’s law has the form:

E + u×B = −T ∇(lnn) +
j ×B
n

.

As already mentioned, the first term at the right-hand side has no contribu-
tion. The second one is the Hall term. This gives rise to the Hall MHD.

4. Finally, if both 1
α2 → 1, β

α4 → 1, then, the ion and electron velocities differ
and both the Hall and resistive terms appear.

E + u×B = −T ∇(lnn) +
j ×B
n

+ j.

Our study takes place in the context of the last regime, where both the resistive
and Hall terms are equally important. Additionally, we assume incompressible
viscous fluid motion. In this case, the Hall MHD system can be written according
to (1)-(4).

We note that it is easy to extend this system to the viscous isentropic resistive
compressible Hall MHD as follows (assuming all the physical constants equal to 1
except the viscosity here denoted by ν):

∂tn+∇ · (nu) = 0, (17)

∂t(nu) +∇(nu⊗ u) +∇p(n) = (∇×B)×B + ν∇ · (∇u+ (∇u)T ), (18)

∂tB +∇×
(
B × u+

(∇×B)×B
n

)
= −∇× (∇×B), (19)

For this system, we have the following magneto-helicity conservation relation:

d

dt

∫
R3

B ·Adx+ 2

∫
R3

B · (∇×B) dx = 0, (20)

where A such that B = ∇×A is any vector potential of B. To prove this relation,
we note, using Green’s formula, that

d

dt

∫
R3

B ·Adx = 2

∫
R3

A ·Bt dx.

Then, taking the scalar product of (19) with 2A easily gives the result.

Remark 2. The viscosity term at the right-hand side of (18) involves the rate of
strain tensor σ(u) = ∇u+(∇u)T . In usual gas dynamics, the viscosity term involves
the traceless rate of strain tensor σ0(u) = ∇u+ (∇u)T − (2/3)(∇ · u)Id. However,
a careful computation of the viscosity in the case of isothermal gas dynamics shows
that, in this case, the right tensor is the full rate-of-strain tensor σ(u) and not its
trace-free counterpart σ0(u).

3. Derivation of the Hall-MHD equations from kinetic equations. In this
section, we provide a kinetic formulation of the Hall MHD problem. We start from
a kinetic equation for the ion distribution function f(x, v, t) of the plasma, where x
is the position, v the velocity and t the time. This distribution function is a solution
of the following kinetic equation

∂tf + v · ∇xf +
e

m
(E + v ×B) · ∇vf = Q(f) , (21)

where e is the positive ion charge, supposed equal to the absolute value of the
elementary charge, m is their mass, E(x, t) and B(x, t) are the electric and magnetic
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fields, and Q(f) is the collision operator for electron-ion collisions. We respectively
introduce the ion density n, mean velocity u and energy W by

n =

∫
f dv , nu =

∫
f v dv , W =

∫
f m
|v|2

2
dv,

and the temperature by

3

2
nT = W − 1

2
n|u|2 =

∫
f m
|v − u|2

2
dv.

We assume that the electrons are described by their fluid quantities, namely
their density ne(x, t), their fluid velocity ue(x, t) and their temperature Te(x, t).
The use of a fluid model for the electrons while the ions are treated kinetically can
be justified by the small electron to ion mass ratio. A formally rigorous justification
of this can be found e.g. in [7]. The electron density is supposed equal to the ion
density by quasineutrality:

ne = n . (22)

The electron momentum conservation equation, when the transport term is ne-
glected due to their small mass, gives rise to the generalized Ohm’s law (see (10)
where all terms in factor of me are set to zero):

∇x(nTe) + en(E + ue ×B) = eηnj , (23)

where me is the electron mass, j is the current density and η is the resistivity. The
current density is given by:

j = en(u− ue) . (24)

Since the electron mass is neglected and assuming monoatomic gas equation of state,
the electron energy We can be expressed in terms of the electron temperature Te by

We =
3

2
nTe.

For the same reason, the mass is neglected in the electron energy flux, which reads
5
2nTeue.

For simplicity, we consider a model electron-ion collision operator as follows:

Q(f) =
e2ηn

m
∇v · ((v − ue)f +

Te
m
∇vf) . (25)

The first term expresses the relaxation of the ion velocity to the electron one, while
the second one expresses the relaxation of the ion temperature to the electron one.
More realistic expressions of the electron-ion collision operator can be found in
the literature (see e.g. [2]), but this model is chosen for the sake of simplicity of
exposition. The rate of change of the ion momentum is given by:∫

Q(f)mv dv = −eηnj,

and is the opposite of the right-hand side of (23), which is consistent with the total
momentum conservation of the electron-ion collisions. The rate of change of the ion
energy is given by∫

Q(f)
m|v|2

2
dv = −eηnj · u+ 3

e2ηn2

m
(Te − T ).
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By total energy conservation in electron-ion collisions, the rate of change of the elec-
tron total energy is the opposite. Then, the electron energy conservation equation
reads:

∂t

(
3

2
nTe

)
+∇x ·

(
5

2
nTeue

)
= −enue · E + eηnj · u+ 3

e2ηn2

m
(T − Te). (26)

In this equation, the first term of the right-hand side is the work done by the
electrons in the Lorentz force, while the last two terms are due to the electron-ion
collisions. Taking the scalar product of (23) by ue and subtracting it to (26) leads
to

(∂t + ue · ∇x)

(
3

2
nTe

)
+

5

2
nTe∇x · ue = η|j|2 + 3

e2ηn2

m
(T − Te). (27)

The first term of the right-hand side is Joule heating of the electrons, while the
second term is the electron temperature relaxation to the ion temperature.

The magnetic field evolves according to the Faraday equation

∂tB +∇x × E = 0 , (28)

and the current is linked to the magnetic field by Ampere’s law:

∇x ×B = µ0j , (29)

As in the previous section, the displacement current has been neglected.
As a summary, the considered kinetic model is as follows:

∂tf + v · ∇xf +
e

m
(E + v ×B) · ∇vf =

e2ηn

m
∇v · ((v − ue)f +

Te
m
∇vf) , (30)

∇x(nTe) + en(E + ue ×B) = eηnj , (31)

(∂t + ue · ∇x)

(
3

2
nTe

)
+

5

2
nTe∇x · ue = η|j|2 + 3

e2ηn2

m
(T − Te) , (32)

∂tB +∇x × E = 0 . (33)

∇x ×B = µ0j , (34)

j = en(u− ue) , (35)

n =

∫
f dv , nu =

∫
f v dv ,

3

2
nT =

∫
f m
|v − u|2

2
dv. (36)

Now, we link this system to Hall-MHD by taking the moments of the ion kinetic
equation. Integrating (30) with respect to v after premultiplying it successively

by 1, mv or m |v|
2

2 , we get the following ion mass, momentum and energy balance
equations:

∂tn+∇x · (nu) = 0 , (37)

m (∂t(nu) +∇x · (nu⊗ u)) +∇x · P = en(E + u×B)− eηnj , (38)

∂tW +∇x · (Wu+ Pu+ q) = enE · u− eηnj · u+ 3
e2ηn2

m
(Te − T ) , (39)

where P and q are the stress tensor and heat flux vector, given by:

P = m

∫
f (v − u)⊗ (v − u) dv, q =

m

2

∫
f (v − u)|v − u|2 dv . (40)



910 M. ACHERITOGARAY, P. DEGOND, A. FROUVELLE AND J.-G. LIU

By combining (38) with the generalized Ohm law (31), we obtain the total fluid
momentum balance

m

(
∂

∂t
(nu) +∇x · (nu⊗ u)

)
+∇x · (P + nTeId) = j ×B . (41)

Using Ampere’s equation (34), the fact that ∇x · B = 0 and the vector identity
(∇x×B)×B = ∇x · (B⊗B)−∇x(|B|2/2), the total fluid momentum balance can
be written in conservative form:

∂

∂t
(mnu) +∇x · (mnu⊗ u−

1

µ0
B ⊗B + Ptot) = 0 , (42)

where the total pressure tensor Ptot is written

Ptot = P + (nTe +
|B|2

2µ0
)Id . (43)

Similarly, by adding the energy conservation equations (26 ) and (39), we get, for
the total fluid energy Wf = W +We:

∂

∂t
Wf +∇x · ((We + pe)ue +Wu+ Pu+ q) = E · j . (44)

The Faraday equation (33) implies that

∂

∂t

(
|B|2

2µ0

)
+

1

µ0
B · (∇x × E) = 0 . (45)

By adding (44) and (45) and using Ampere’s law (34), the total energy (which is the

sum of the total fluid energy and the magnetic energy) Wtot = Wf + |B|2
2µ0

satisfies

the following conservation law:

∂

∂t
Wtot +∇x · ((We + pe)ue +Wu+ Pu+ q +

1

µ0
E ×B) = 0 , (46)

The MHD equations are obtained through the closure assumptions that P =
nT Id, q = 0, which can be justified e.g. by a Maxwellian closure, i.e. assuming
that f = Mn,u,T with

Mn,u,T =
n(

2πT
m

)3/2 exp

(
−m|v − u|

2

2T

)
. (47)

The Maxwellian closure itself can be justified if ion-ion collisions are strong enough
to relax the distribution f quickly to Mn,u,T . However, in many instances, the
Maxwellian closure is used in spite of not being fully justified. In this case, we
obtain the 2-temperature, Hall, resistive compressible MHD equations which are as
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follows:

∂tn+∇x · (nu) = 0 , (48)

∂t(mnu) +∇x · (mnu⊗ u−
1

µ0
B ⊗B + (n(Te + T ) +

|B|2

2µ0
)Id) = 0 , (49)

∂t

(
W +

3

2
nTe +

|B|2

2µ0

)
+∇x · (Wu+ nTu+

5

2
nTeue +

1

µ0
E ×B) = 0 , (50)

∂tB +∇x × E = 0 , (51)

∇x(nTe) + en(E + ue ×B) = eηnj , (52)

(∂t + ue · ∇x)

(
3

2
nTe

)
+

5

2
nTe∇x · ue = η|j|2 + 3

e2ηn2

m
(T − Te) , (53)

∇x ×B = µ0j , (54)

j = en(u− ue). (55)

The first four equations are the basic conservation laws of mass, total momentum,
total energy and magnetic field. Eq. (52) is the generalized Ohm law and provides
the expression for E. Eq. (53) provides the evolution equation for Te. Finally,
Ampere’s eq. (54) defines j and (55) defines ue. The fact that ue 6= u gives rise to
the Hall term. Now, if T = Te, then, eq. (53) can be removed and one gets the single
temperature Hall resistive compressible MHD equations. Another simplification is
to suppose that the common ion and electron temperatures are constant (isothermal
assumption). In this case, the total energy equation (50) is a consequence of the
Faraday and momentum eqs. (51), (49) and can be removed. Then, we find the
model of section 2.

A kinetic formulation of the model considered in section 2 is also obtained from
the kinetic model (30)-(36) by supposing that the electron and ion temperatures
are the same constant T . This kinetic model is written below:

∂tf + v · ∇xf +
e

m
(E + v ×B) · ∇vf =

e2ηn

m
∇v · ((v − ue)f +

T

m
∇vf) , (56)

T∇xn+ en(E + ue ×B) = eηnj , (57)

∂tB +∇x × E = 0 , (58)

∇x ×B = µ0j , (59)

j = en(u− ue) . (60)

By eliminating E, j and ue respectively using (57), (59), (60), and after some easy
algebra, we find the following coupled Fokker-Planck Faraday system for f and B:

∂tf + v · ∇xf +
e

m

[
(v − u)×B +

1

µ0en
(∇x ×B)×B − T

e
∇xlnn

]
· ∇vf =

=
e2ηn

m
∇v · ((v − u)f +

T

m
∇vf) , (61)

∂tB +∇x ×
(
B × u+

1

µ0en
(∇x ×B)×B

)
= − η

µ0
∇x × (∇x ×B) . (62)
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For the kinetic eq. (61), we have the following entropy dissipation identity associated
to the entropy H(f):

dH(f)

dt
+
e2η

T

∫
(x,v)∈R3×R3

n

∣∣(v − u)f + T
m∇vf

∣∣2
f

dx dv = 0,

H(f) =

∫
(x,v)∈R3×R3

f ln f dx dv.

Particle-in-Cell simulations of this model can be found in [6]. Now, taking the
first two moments of (61) and using the Maxwellian closure assumption (47) with
the same constant temperature T , we get the isothermal resistive Hall MHD model
which was written in dimensionless form at (17)-(19) (taking ν = 0 and p(n) = 2Tn).
It is interesting to note that in order to get a kinetic model for the standard resistive
isothermal MHD equations, we need to neglect the Hall term 1

µ0en
(∇x × B) × B

in the Faraday eq. (62), but we must retain the corresponding term in the kinetic
equation (61). Therefore, a kinetic formulation for standard resistive isothermal
MHD is as follows:

∂tf + v · ∇xf +
e

m

[
(v − u)×B +

1

µ0en
(∇x ×B)×B − T

e
∇xlnn

]
· ∇vf =

=
e2ηn

m
∇v · ((v − u)f +

T

m
∇vf) , (63)

∂tB +∇x × (B × u) = − η

µ0
∇x × (∇x ×B) . (64)

We can also get a kinetic formulation for the ideal isothermal MHD equations by
neglecting the resistive term η

µ0
∇x× (∇x×B) at the right-hand side of the Faraday

eq. (64). The collision term at the right-hand side of (63) has no contribution in
the mass and momentum conservation equations and can be either kept or removed
without modifying the corresponding balance equations.

4. Existence result for the incompressible, viscous, resistive Hall-MHD.
In the paper, we use the function spaces

Hper(Ω) = {B ∈ (H1(Ω))3 | ∇ ·B = 0 on Ω with periodicity conditions}.
We use 〈A,B〉 =

∫
Ω
A ·B dx, for any pair A,B ∈ (L2(Ω))3. We remark that

‖∇B‖(L2(Ω))9 = ‖∇ ×B‖(L2(Ω))3 . (65)

To prove theorem 1.1, we just focus on the Hall problem itself. The extension to
the full Hall-MHD problem is explained at the end of the section. So, our goal is
now to prove the following existence theorem for the Hall problem. We introduce
the following weak formulations of the Hall MHD problem:

Find B ∈ L∞(0, T, L2(Ω)) ∩ L2((0, T ), Hper(Ω)) such that for any A ∈ Hper(Ω):

〈A, ∂tB〉+ 〈∇ ×A, (∇×B)×B〉+ 〈∇ ×A,∇×B〉 = 0. (66)

Theorem 4.1. Assume that B0 ∈ (L2(Ω))3 with ∇ · B0 = 0. Then, there exists
a global weak solution B for the Hall problem (7), (8). Moreover, we have B ∈
L∞((0, T ), L2(Ω)) ∩ L2((0, T ), Hper(Ω)) and ∂tB ∈ L

4
3 ((0, T ), H−2(Ω)).

The proof is based on the construction of an approximate solution by Galerkin’s
method. Uniform a priori bounds on these approximate solutions will allow us to
pass to the limit thanks to standard compactness arguments.
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We define the Fourier basis (ϕk)k∈Z3 , with ϕk = e2πik·x. We denote by |k| =
|k1|+ |k2|+ |k3|. The Fourier basis provides a complete orthonormal basis of L2(Ω).
We denote by PN the projection onto the Fourier basis with index |i| ≤ N . We
define an approximate solution BN : (0, T ) 7→ Hper(Ω) of problem (1), (3) of the
form:

BN (t) =
∑

i∈Z3, |i|≤N

BNi (t)ϕi (67)

with the divergence free constraint i ·BNi (t) = 0, satisfying

〈
AN , ∂tB

N (t)
〉

+
〈
∇×AN , (∇×BN (t))×BN (t)

〉
+
〈
∇×AN ,∇×BN (t)

〉
= 0, (68)

for all AN of the form

AN =

N∑
i=1

ANi ϕi, i ·ANi = 0,

and with initial condition BN (0) = PNB0.

Lemma 4.2. There exists a global in time solution BN (t) of (68) which is uniformly
(independently of N) bounded in L∞((0, T ), L2(Ω)) ∩ L2((0, T ), H1(Ω)) such that

∂tB
N is uniformly bounded in L

4
3 ((0, T ), H−2(Ω)).

Proof. Throughout the proof, C denotes a generic constant. We take A = BN in
(68) and get: 〈

BN , ∂tB
N
〉

+ ‖∇ ×BN‖2(L2(Ω))3 = 0. (69)

Thus, we have:

‖BN (t)‖2L2(Ω) + 2

∫ t

0

‖∇BN (s)‖2(L2(Ω))9 ds = ‖BN0 ‖2L2(Ω). (70)

This shows the uniform bound of BN in L∞((0, T ), L2(Ω)) ∩ L2((0, T ), H1(Ω)).
To show the time regularity, we take A ∈ H2(Ω)3, such that ∇ ·A = 0 and take

AN = PNA. Then:〈
A, ∂tB

N
〉

=
〈
AN , ∂tB

N
〉

= −
〈
∇×AN , (∇×BN )×BN

〉
−
〈
∇×AN ,∇×BN

〉
. (71)

We recall that

(∇×B)×B = ∇ · (B ⊗B)−∇
(
|B|2

2

)
. (72)

Introducing (72) into (71) and noting that, by Green’s formula, a gradient and a
curl are orthogonal in L2, we find〈

A, ∂tB
N
〉

=
〈
∇×AN ,∇ · (BN ⊗BN )

〉
+
〈
∇×AN ,∇×BN

〉
. (73)

To estimate the first term at the right-hand side of (73), we use Green’s formula
and get: 〈

∇×AN ,∇ · (BN ⊗BN )
〉

= −
〈
BN , (BN · ∇)∇×AN

〉
.

Using Hölder’s inequality, and remarking that ‖AN‖H2(Ω) ≤ ‖A‖H2(Ω), we get

|
〈
BN , (BN · ∇)∇×AN

〉
| ≤ C‖BN‖2L4(Ω)‖A

N‖H2(Ω)

≤ C‖BN‖2L4(Ω)‖A‖H2(Ω). (74)
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By Gagliardo-Nirenberg’s inequality [10],

‖BN‖2L4(Ω) ≤ C‖∇B
N‖

3
2

L2(Ω) (‖BN‖
1
2

L2(Ω) + 1),

and using the uniform L2 bound, we can write:

|
〈
BN , (BN · ∇)∇×AN

〉
| ≤ C‖∇BN‖

3
2

L2(Ω)‖A‖H2(Ω).

The second term is simply estimated by using Cauchy-Schwartz inequality:

|
〈
∇×AN ,∇×BN

〉
| ≤ C ‖∇BN‖L2(Ω) ‖AN‖H1(Ω) ≤ C ‖∇BN‖L2(Ω) ‖A‖H1(Ω)

Collecting these estimates, we obtain:

|
〈
A, ∂tB

N
〉
| ≤ C

[
‖∇BN‖

3
2

L2(Ω) ‖A‖H2(Ω) + ‖∇BN‖L2(Ω) ‖A‖H1(Ω)

]
≤ C

[
‖∇BN‖

3
2

L2(Ω) + 1
]
‖A‖H2(Ω).

Therefore,

‖∂tBN‖H−2(Ω) ≤ C
[
‖∇BN‖

3
2

L2(Ω) + 1
]
.

Thus:

‖∂tBN‖
4
3

H−2(Ω) ≤ C
[
‖∇BN‖2L2(Ω) + 1

]
.

Thanks to (70), the right-hand side is integrable on (0, T ) and we get∫ T

0

‖∂tBN‖
4
3

H−2(Ω)dt ≤ C, (75)

which ends the proof of Lemma 4.2. �
Thanks to this Lemma, we can proceed to the

Proof of Theorem 4.1. According to Lemma 4.2, the sequence (BN )N∈N is
uniformly bounded in L2((0, T ), H1(Ω)) with (∂tB

N )N∈N uniformly bounded in

L
4
3 ((0, T ), H−2(Ω)). Consequently, by virtue of Lions-Aubin Lemma [17], (BN )N∈N

is compact in L2((0, T ), L2(Ω)). Therefore, there exists a subsequence (BNk)k∈N and

a function B in L2((0, T ), H1(Ω)) with ∂tB in L
4
3 ((0, T ), H−2(Ω)), such that:

BNk ⇀ B weak star in L∞((0, T ), L2(Ω))

BNk ⇀ B weakly in L2((0, T ), H1(Ω))

BNk → B strongly in L2((0, T ), L2(Ω))

∂tB
Nk ⇀ ∂tB weakly in L

4
3 ((0, T ), H−2(Ω))

(76)

We take A ∈ H3(Ω)3, such that ∇ · A = 0, take ANk = PNkA in (68) and
integrate it with respect to time. We have:〈

ANk , BNk(t)
〉
−
〈
ANk , BNk(0)

〉
+

∫ t

0

〈
∇×ANk , (∇×BNk)×BNk

〉
ds+

+

∫ t

0

〈
∇×ANk ,∇×BNk

〉
ds = 0.

Thanks to the Sobolev imbedding in dimension 3, ∇ × A ∈ L∞(Ω)3 and ∇ ×
ANk → ∇×A strongly in L∞(Ω)3. Now, thanks to the convergences (76), we can
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take the limit Nk →∞ and get that B satisfies

〈A,B(t)〉 − 〈A,B(0)〉+

∫ t

0

〈∇ ×A, (∇×B)×B〉 ds+

+

∫ t

0

〈∇ ×A,∇×B〉 ds = 0,

which is a weak solution of the Hall problem. �

Proof of theorem 1.1. We apply the same Galerkin construction (uN , BN ) for
the coupled system (1), (3) as we did for the Hall system and use the energy identity
for the Galerkin approximation:

‖uN (t)‖2L2(Ω) + ‖BN (t)‖2L2(Ω) +

+2

∫ t

0

(‖∇uN (s)‖2(L2(Ω))9 + ‖∇BN (s)‖2(L2(Ω))9) ds =

= ‖uN0 ‖2L2(Ω) + ‖BN0 ‖2L2(Ω).

Then the same proof can be reproduced. We just note that the time regularity of u
can be improved because there is no Hall term in the velocity equation. Therefore,
we find ut ∈ L

4
3 ((0, T ), H−1(Ω)) while Bt ∈ L

4
3 ((0, T ), H−2(Ω)). �

5. Axisymmetric flows, KMC waves and Maxwell regularization of the
non-resistive Hall problem. In this section, we assume axisymmetric B field.
Let x = (x, y, z) a coordinate system, where x is the symmetry axis. Axisymmetry
about the x-axis means that, given any rotation R about this axis, the field B
satisfies: B(Rx) = RB(x). We use (x, r, θ) the cylindrical coordinates of x and
(ex, er, eθ) as associated local basis. Then, using a representation of axisymmetric,
divergence-free fields given in [18], we can write

B = beθ +∇× (ψeθ),

where the scalar functions b and ψ are functions of (x, r). We note the simple
formulas [18]:

∇×B = −Lψeθ +∇× (beθ), L = ∇2
(x,r) −

1

r2
,

∇× (∇×B) = −Lb+∇× (jeθ), j = −Lψ,

∇× ((∇×B)×B) =

({
j

r
, rψ

}
x,r

−
{
b

r
, rb

}
x,r

)
eθ +

+∇×
((

1

r2
{rb, rψ}x,r

)
eθ

)
,

where the Poisson Bracket {a, b}x,r = ∂xa ∂rb− ∂xb ∂ra.

In these coordinates, the Hall problem (7), (8) is written:

ψt +
1

r2
{rb, rψ} = Lψ,

bt +

{
j

r
, rψ

}
−
{
b

r
, rb

}
= Lb.
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If initially ψ0 = 0 (which means that the B field is purely swirling), then ψ ≡ 0 at
all times and the b equation reduces to the simple viscous Burger’s equation

bt −
2

r
b bx = Lb.

In the inviscid case, the Burger’s equation has solutions in the form of propagating
shock waves. In the context of Hall MHD, these waves are known as the KMC
waves, for Kingsep, Mokhov and Chukbar [16] (see also [3]). They only exist if the
Hall term is present.

Here, we focus on the non-resistive Hall problem and formulate it as a limit of a
so-called Maxwell regularization. The non-resistive Hall problem is written

∂tB +∇× E = 0,

∇×B = j,

E = j ×B.
In the case of axisymmetric purely swirling B-fields, this yields the inviscid Burger’s
equation as seen above. We now consider a regularization of this problem by restor-
ing the displacement current in the Ampere equation. This yields the problem

∂tB +∇× E = 0, (77)

−ε∂tE +∇×B = j, (78)

E = j ×B, (79)

where ε � 1 is the Maxwell regularization parameter. We now investigate two
formulations of the Maxwell-regularized problem.

1. The (B, j) formulation. This formulation consists in classically eliminating E
for j and gives

∂tB +∇× (j ×B) = 0,

−ε∂t(j ×B) +∇×B = j.

When ε→ 0, it clearly tends to the non-resistive Hall problem.

2. The (B,E) formulation. This formulation consists in eliminating j for E. From
(79), we can write

j =
B × E
|B|2

+ λB,

where λ is a priori unknown. However, we also have the geometric constraint

E ·B = 0, (80)

and λ can be viewed as a Lagrange multiplier of this constraint. Indeed, from

−ε∂tE +∇×B =
B × E
|B|2

+ λB.

and taking the scalar product of this equation with B, we get

−ε(∂tE) ·B + (∇×B) ·B = λ|B|2.
But, differentiating the constraint (80) gives

(∂tE) ·B = −(∂tB) · E = (∇× E) · E.
Therefore,

λ =
1

|B|2
(−ε(∇× E) · E + (∇×B) ·B).
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Finally, the Maxwell-regularized Hall problem in the (E,B) formulation reads

∂tB +∇× E = 0,

−ε∂tE +∇×B =
1

|B|2
(B × E + (−ε(∇× E) · E + (∇×B) ·B)B).

In this system, the constraint (80) is satisfied as soon as it is satisfied at t = 0. The
fact that the limit ε → 0 of this problem leads to the Hall problem is no more so
obvious. Indeed, the limit ε→ 0 leads to the following problem:

∂tB +∇× E = 0,

∇×B =
1

|B|2
(B × E + ((∇×B) ·B)B),

∂t(E ·B) = 0.

The second equation is equivalent to

B × [(∇×B)×B − E] = 0.

If (E · B)|t=0 = 0, then E · B ≡ 0 for all times; Then, we can invert this equation
into

E = (∇×B)×B,
and recover the Hall problem as the formal limit of the Maxwell-regularized system.
It is an interesting problem to determine if this limit can be made rigorous.

6. Conclusion. In this paper, we have derived and analyzed the Hall-MHD model.
First, the model has been derived from a scaling limit of a two-fluids Euler-Maxwell
system, under suitable scaling assumptions. Then, a derivation of the Hall-MHD
from a kinetic model consisting of a Fokker-Planck equation for the ions coupled
with fluid electrons has been realized. In the analysis section, we have proved the
existence of global weak solutions for the incompressible viscous resistive Hall-MHD
problem. The proof relies strongly on the skew-symmetric structure of the Hall term,
which does not affect the energy estimate. This work shows that maintaining this
structure is crucial for the well-posedness of the problem and is likely to be crucial
as well for the derivation of stable numerical approximations. The question of the
perfectly conducting boundary condition will be also investigated in future work.
In the last section, we have reviewed some aspects of axisymmetric, purely swirling
magnetic fields and proposed a regularization of the Hall problem by reintroducing
the displacement current in Ampere’s equation. Future work will be devoted to
the analysis of the axisymmetric case and to the Maxwell regularization of the Hall
problem, as well as to the investigation of the kinetic formulations of the Hall-MHD
problem.
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