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CHARACTERIZATION AND REGULARITY FOR AXISYMMETRIC
SOLENOIDAL VECTOR FIELDS WITH APPLICATION TO

NAVIER–STOKES EQUATION∗

JIAN-GUO LIU† AND WEI-CHENG WANG‡

Abstract. We consider the vorticity-stream formulation of axisymmetric incompressible flows
and its equivalence with the primitive formulation. It is shown that, to characterize the regularity
of a divergence free axisymmetric vector field in terms of the swirling components, an extra set of
pole conditions is necessary to give a full description of the regularity. In addition, smooth solutions
up to the axis of rotation give rise to smooth solutions of primitive formulation in the case of the
Navier–Stokes equation, but not the Euler equation. We also establish a proper weak formulation
and show its equivalence to Leray’s formulation.
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1. Introduction. Axisymmetric flow is an important subject in fluid dynamics
and has become standard textbook material as a starting point of theoretical study for
complicated flow patterns. By means of Stoke’s stream function φ [1], an axisymmetric
divergence free vector field can be efficiently represented by two scalar components:

(1.1) u =
∂rφ

r
ex − ∂xφ

r
er + ueθ.

With the vector identities

(1.2) u ·∇u = (∇× u)× u+∇
(
|u|2

2

)

and

(1.3) ∇2u = ∇(∇ · u) −∇×∇× u,

one can recast the Navier–Stokes equation as

(1.4)
∂tu+ (∇× u)× u+∇p̃ = −ν∇×∇× u

∇ · u = 0,

where p̃ = p + |u|2
2 . Taking the swirling component from (1.4) and from the curl

of (1.4), one can eliminate the pressure term to get two scalar convection diffusion
equations:
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1826 JIAN-GUO LIU AND WEI-CHENG WANG

(1.5)
∂tu+ ux∂xu+ ur∂ru+ ur

r u = νL u,

∂tω + ux∂xω + ur∂rω − ur
r ω = 1

r∂x(u
2) + νL ω.

The system is closed by the vorticity-stream function relation ω = −Lψ, ux =
∂r(rψ)

r
, and ur = −∂xψ. Here ψ = φ

r and L u = ∂2
ru+ ∂ru

r + ∂2
xu− u

r2 .

This representation (1.5) has several advantages over the primitive formulation
(1.4). It needs only two dependent variables ψ and u defined on (x, r) ∈ (R × R+),
and it is free from Lagrangian multipliers and is automatically divergence free. These
advantages are particularly favorable in numerical computations.

A natural question is whether (1.5) is actually equivalent to the primitive formu-
lation (1.4), and in which solution classes are they equivalent? In this paper, we have
systematically investigated this issue for both classical and weak solutions. We start
in section 2 with the characterization of smoothness of axisymmetric divergence free
vector fields. It is shown that an additional pole condition of the form

(1.6) ∂j
ru(x, 0

+) = 0, ∂j
rψ(x, 0

+) = 0 for j even

is essential to characterize the smoothness of the vector field (1.1) in classical spaces
(see Lemma 2 for details). The construction of Sobolev spaces and the counterpart
of (1.6) are established in 2.2. We then apply this pole condition to derive regularity
and equivalence results in various solution spaces in section 3. Firstly, we show in
section 3.1 that there exists Ck(R×R+) solutions of the Euler equation with a genuine
singularity on the axis of rotation. In addition, this pole singularity will persist in time.
In contrast, we show in section 3.2 that if the solution to (1.5) is in Ck(R×R+), then
the pole condition (1.6) is automatically satisfied. Next, we consider weak formulation
of (1.5) and study its relation with the Leray’s weak solution in section 3.3. We end
this paper by showing that, when appropriately formulated, the weak solutions to (1.5)
are exactly the axisymmetric weak solutions obtained via Leray’s construction [11].

2. Function spaces for axisymmetric solenoidal vector fields.

2.1. Classical spaces and the pole condition. In this section, we establish
basic regularity results for axisymmetric vector fields. We will show that the swirling
component of a smooth axisymmetric vector field has vanishing even order derivatives
in the radial direction at the axis of rotation. This is done in Lemma 2 by a symmetry
argument.

Throughout this paper, we will be using the cylindrical coordinate system

(2.1) x = x, y = r cos θ, z = r sin θ,

where the x-axis is the axis of rotation. A vector field u is said to be axisymmetric
if ∂θux = ∂θur = ∂θuθ = 0. Here and throughout this paper, the subscripts of u are
used to denote components rather than partial derivatives.

The three basic differential operators in the cylindrical coordinate system are
given by

∇u = (∂xu)ex + (∂ru)er +

(
1

r
∂θu

)
eθ,(2.2)

∇ · u =
1

r
(∂x(rux) + ∂r(rur) + ∂θuθ) ,(2.3)

∇× u =
1

r

∣∣∣∣∣∣

ex er reθ
∂x ∂r ∂θ
ux ur ruθ

∣∣∣∣∣∣
.(2.4)
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Here ex, er, and eθ are the unit vectors in the x, r, and θ directions, respectively.
Lemma 1. Let u = uxex + urer + uθeθ ∈ Ck(R3, R3), k ≥ 0, then for any fixed

θ ∈ [0,π), ux(·, ·, θ), ur(·, ·, θ), uθ(·, ·, θ) ∈ Ck(R ×R+). Moreover,

∂j
rux(x, 0

+, θ) = (−1)j∂j
rux(x, 0

+, θ + π), 0 ≤ j ≤ k,(2.5)

∂j
rur(x, 0

+, θ) = (−1)j+1∂j
rur(x, 0

+, θ + π), 0 ≤ j ≤ k,(2.6)

∂j
ruθ(x, 0

+, θ) = (−1)j+1∂j
ruθ(x, 0

+, θ + π), 0 ≤ j ≤ k.(2.7)

Proof. Let u = ux(x, r, θ)ex + ur(x, r, θ)er + uθ(x, r, θ)eθ. Note that ex is a
smooth vector field, while er and eθ are discontinuous at the axis of rotation. More
specifically, on the cross section z = 0, y > 0, we have

ex(x, y, z=0)=ex(x, r= |y|, θ=0), ex(x,−y, z=0)=ex(x, r= |y|, θ=π),(2.8)

ey(x, y, z=0)=er(x, r= |y|, θ=0), ey(x,−y, z=0)=−er(x, r= |y|, θ=π),(2.9)

ez(x, y, z=0)=eθ(x, r= |y|, θ=0), ez(x,−y, z=0)=−eθ(x, r= |y|, θ=π).(2.10)

Consequently,

ux(x, y, z=0)=ux(x, r= |y|, θ=0), ux(x,−y, z=0)=ux(x, r= |y|, θ=π),(2.11)

uy(x, y, z=0)=ur(x, r= |y|, θ=0), uy(x,−y, z=0)=−ux(x, r= |y|, θ=π),(2.12)

uz(x, y, z=0)=uθ(x, r= |y|, θ=0), uz(x,−y, z=0)=−uθ(x, r= |y|, θ=π).(2.13)

Taking the limit y → 0+, it follows that (2.5–2.7) hold with θ = 0. The above
argument can be easily modified to prove for any other θ ∈ [0, 2π).

If u is axisymmetric, we immediately have the following direct consequence.
Corollary 1. Let u ∈ Ck(R3, R3) be an axisymmetric vector field, u =

ux(x, r)ex + ur(x, r)er + uθ(x, r)eθ. Then ux, ur, uθ ∈ Ck(R×R+) and

∂2$+1
r ux(x, 0

+) = 0, 1 ≤ 2(+ 1 ≤ k,(2.14)

∂2m
r ur(x, 0

+) = ∂2m
r uθ(x, 0

+) = 0, 0 ≤ 2m ≤ k.(2.15)

Denote by Ck
s the axisymmetric divergence free subspace of Ck vector fields as

follows.
Definition 1.

(2.16) Ck
s (R

3, R3) = {u ∈ Ck(R3, R3), ∂θux = ∂θur = ∂θuθ = 0, ∇ · u = 0}.

We have the following representation and regularity result for Ck
s .

Lemma 2.
(a) For any u ∈ Ck

s (R
3, R3), k ≥ 0, there exists a unique (u,ψ), such that

(2.17) u = ueθ +∇× (ψeθ) =
∂r(rψ)

r
ex − ∂xψer + ueθ, r > 0,

with

(2.18) u(x, r) ∈ Ck(R×R+), ∂2$
r u(x, 0+) = 0 for 0 ≤ 2( ≤ k,

and

(2.19) ψ(x, r) ∈ Ck+1(R×R+), ∂2m
r ψ(x, 0+) = 0 for 0 ≤ 2m ≤ k + 1.
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(b) If (u,ψ) satisfies (2.18) and (2.19) and u is given by (2.17) for r > 0, then
u ∈ Ck

s (R
3, R3) with a removable singularity at r = 0.

Proof. Part (a). Since u is axisymmetric, we can write u = ux(x, r)ex +
ur(x, r)er+uθ(x, r)eθ for r > 0. Rename uθ by u, and (2.18) follows from Corollary 1.

Next, we derive the representation (2.17). Since u is divergence free, (2.3) gives

∂x(rux) + ∂r(rur) = 0.

We know from standard argument that there exists a potential φ(x, r), known as
Stokes’ stream function, such that

(2.20) ∂xφ = −rur, ∂rφ = rux.

On the cross section z = 0, y > 0, we have

ux(x, r) = ux(x, y = r, z = 0), ur(x, r) = uy(x, y = r, z = 0),(2.21)

uθ(x, r) = uz(x, y = r, z = 0).

From (2.20) and (2.21), it is clear that φ(x, r) ∈ C1(R×R+) ∩Ck+1(R×R+). Since
∂xφ(x, 0+) = 0, we may, without loss of generality, assume that φ(x, 0+) = 0. This
also determines φ uniquely. Next, we define

(2.22) ψ(x, r) =
φ(x, r)

r
, r > 0.

It is easy to see that ψ(x, r) ∈ Ck+1(R ×R+), ψ(x, 0+) = ∂rφ(x, 0+) = 0, and (2.17)
follows for r > 0.

Moreover, limr→0+ ∂j
rψ(x, r) = limr→0+ ∂j

r
φ(x,r)

r . It follows from straightforward
calculation with l’Hospital’s rule and (2.20) that

(2.23) ∂j
rψ(x, 0

+) =
j

j + 1
∂j−1
r ux(x, 0

+)

and therefore ψ(x, r) ∈ Ck+1(R × R+). In addition, (2.19) follows from (2.14) and
(2.23).

Part (b). Conversely, we now show the regularity of u = ueθ +∇× (ψeθ) when
(u,ψ) satisfies (2.18) and (2.19). Since u is axisymmetric, it suffices to check the
continuity of the derivatives of u on a cross section, say θ = 0, or z = 0, y ≥ 0.

It is clear from (2.17) and (2.21) that ux(x, y, 0), uy(x, y, 0), and uz(x, y, 0) have
continuous x derivatives up to order k on y ≥ 0. It remains to estimate the y-, z-,
and mixed derivatives.

From

∂y = cos θ∂r −
sin θ

r
∂θ,(2.24)

∂z = sin θ∂r +
cos θ

r
∂θ(2.25)

we can derive the following.
Proposition 1.
(i)

(2.26) ∂j
yF (x, r, θ) = cosjθ ∂j

rF (x, r, θ) + sin θG(x, r, θ),

where G consists of the derivatives of F .
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(ii)

(2.27) ∂2m
z (f(x, r) cos θ) = y

m∑

$=0

a$,mz2$
(
1

r
∂r

)$+m (
f

r

)
,

(2.28) ∂2m+1
z (f(x, r) cos θ) = y

m∑

$=0

b$,mz2$+1

(
1

r
∂r

)$+m+1 (f

r

)
,

(2.29) ∂2m
z (g(x, r) sin θ) =

m∑

$=0

c$,mz2$+1

(
1

r
∂r

)$+m (g
r

)
,

(2.30) ∂2m−1
z (g(x, r) sin θ) =

m∑

$=0

d$,mz2$
(
1

r
∂r

)$+m−1 (g
r

)
,

for some constants a$,m, b$,m, c$,m, and d$,m.
Proof. Part (i) follows straightforwardly from (2.24) and the following identity:

(2.31)(
cos θ∂r −

sin θ
r

∂θ

)
(F1+sin θG1) = (cos θ ∂rF1)+sin θ

(
cos θ ∂rG1 −

∂θ(F1 + sin θ G1)
r

)
.

For part (ii), equations (2.27)–(2.30) result from substituting cos θ = y
r , sin θ = z

r ,
followed by straightforward calculations. We omit the details.

Now we proceed to show that all the mixed derivatives of orders up to k are also
continuous on y ≥ 0. For simplicity of presentation, we consider mixed derivatives
performed in the following order ∂j

y∂
q
z∂

i
x. We start with ∂j

y∂
q
z∂

i
xux and analyze for q

even and odd separately.
When q = 2m+ 1, we derive from (2.25) and (2.29) that

(2.32)

∂j
y∂

2m+1
z ∂i

xux(x, y, 0)

= ∂j
y∂

2m
z (sin θ ∂r∂i

xux(x, r))
∣∣
θ=0,r=y

= ∂j
y

(
m∑

$=0

c$,mz2$+1

(
1

r
∂r

)$+m(
∂r∂i

xux(x, r)

r

)) ∣∣
z=0,r=y

= 0.

Next, when q = 2m, it follows from (2.25), (2.26), (2.30), (2.20), and (2.22) that

(2.33)

∂j
y∂

2m
z ∂i

xux(x, y, 0)

= ∂j
y∂

2m−1
z (sin θ ∂r∂i

xux(x, r))|θ=0,r=y

=
(
∂j
r∂

2m−1
z (sin θ ∂r∂i

xux) + sin θG
)
|θ=0,r=y

= ∂j
r

m∑

$=0

d$,m(r sin θ)2$
(
1

r
∂r

)$+m−1(∂r∂i
xux(x, r)

r

) ∣∣
θ=0,r=y

= d0,m∂j
r

(
1
r∂r

)m
∂i
xux(x, r)|r=y

= d0,m∂j
r

(
1
r∂r

)m+1 (
r∂i

xψ(x, r)
)
|r=y.
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From Lemma 2 and Taylor’s theorem, we have

ψ(x, r) = a1(x)r + a3(x)r
3 + · · ·+ a2m−1(x)r

2m−1 +R2m+1(ψ),

where

a$(x) =
1

(!
∂$
rψ(x, 0

+)

and

R2m+1(ψ) =

∫ r

0
∂2m+1
s ψ(x, s)

(r − s)2m

(2m)!
ds.

From direct calculation, we have

(
1

r
∂r

)m+1 (
r∂i

xψ(x, r)
)
=

(
1

r
∂r

)m+1 (
r∂i

xR2m+1(ψ)
)
.

In addition, for j ≥ 1, we can write

R2m+1(ψ) = a2m+1(x)r
2m+1 + · · ·+ a2m+2n+1(x)r

2m+2n+1 +R2m+j+1(ψ),

where n is the largest integer, such that 2n < j. The remainder term R2m+j+1 satisfies

∂$
rR2m+j+1(ψ)(x, 0

+) = 0, 0 ≤ ( ≤ 2m+ j,(2.34)

∂2m+j+1
r R2m+j+1(ψ)(x, 0

+) = ∂2m+j+1
r ψ(x, 0+).

Thus, for j ≥ 0, we have

∂j
r

(
1

r
∂r

)m+1

(r∂i
xψ(x, r)) = ∂j

r

(
1

r
∂r

)m+1

(r∂i
xR2m+j+1(ψ))(2.35)

=
m+j+1∑

$=0

C$,m
∂$
r∂

i
xR2m+j+1(ψ)

r2m+1−$+j

for some constants C$,m.
From (2.34), (2.35), and l’Hospital’s rule we conclude that

(2.36)

∂j
r

(
1

r
∂r

)m+1

(r∂i
xψ)(x, 0

+) =

(
m+1∑

$=0

j∑

p=0

C$,m

(2m+ 1− (+ j − p)!

)
∂2m+1+j
r ∂i

xψ(x, 0
+).

Since ψ ∈ Ck+1(R × R+), it follows from (2.33), (2.36), and (2.32) that
∂j
y∂

q
z∂

i
xux(x, y, 0) is continuous and bounded up to y = 0+ for j + q + i ≤ k.

Next, we consider the mixed derivatives of uy and uz. It suffices to calculate
∂j
y∂

q
z∂

i
x(f(x, r) cos θ + g(x, r) sin θ)|θ=0,r=y, where f and g are either ±∂xψ or ±u.

When q = 2m, it follows from (2.27) and (2.29) that

∂j
y∂

2m
z ∂i

x(f(x, r) cos θ + g(x, r) sin θ)|θ=0,r=y

= ∂j
y∂

2m
z (∂i

xf(x, r) cos θ + ∂i
xg(x, r) sin θ)|θ=0,r=y

= a0,m∂j
r

(
r
(
1
r∂r

)m (
∂i
xf
r

))
|r=y.
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From (2.18–2.19), both −∂xψ(x, r) and u(x, r) have local expansions of the form

b1(x)r + b3(x)r
3 + · · ·+ b2m−1(x)r

2m−1 +R2m+1.

Following the same argument above, we can show that both ∂j
y∂

2m
z ∂i

xuy and
∂j
y∂

2m
z ∂i

xuz are continuous and bounded up to y = 0+ for j + 2m + i ≤ k. The
calculations for ∂j

y∂
2m+1
z ∂i

xuy and ∂j
y∂

2m+1
z ∂i

xuz are similar. This completes the proof
of part (b) of Lemma 2.

In view of Lemma 2, we now introduce the following function space.
Definition 2.

Ck
s (R ×R+) = {f(x, r) ∈ Ck(R×R+), ∂2j

r f(x, 0+) = 0, 0 ≤ 2j ≤ k}.

We can recast Lemma 2 as follows.
Lemma 2′. For k ≥ 0,

(2.37) Ck
s (R

3, R3) = {ueθ +∇× (ψeθ) |u ∈ Ck
s (R×R+), ψ ∈ Ck+1

s (R ×R+)}.

In the following sections, we will construct natural Sobolev spaces for axisymmet-
ric divergence free vector fields, derive the counter part of Lemma 2 in these Sobolev
spaces, and establish various regularity and equivalence results. These results rely
heavily on the expression and pole condition in Lemma 2. We list below a few related
lemmas which will be used in later sections.

Lemma 3. Suppose u ∈ Ck
s (R

3, R3) is given by the representation u = ueθ +∇×
(ψeθ) with u ∈ Ck

s (R × R+) and ψ ∈ Ck+1
s (R × R+). Then (∇×)$u ∈ Ck−$

s (R3, R3)
and

(∇×)2mu = (−1)m
(
(L mu)eθ +∇×

(
(L mψ)eθ

))
if 2m ≤ k,

(∇×)2m+1u = (−1)m+1(L m+1ψ)eθ + (−1)m∇×
(
(L mu)eθ

)
if 2m+ 1 ≤ k,

where

L := ∇2 − 1

r2
=

(
∂2
r +

1

r
∂r + ∂2

x

)
− 1

r2
.

Moreover,

L mu ∈ Ck−2m
s (R× R+) if 2m ≤ k,

L m+1ψ ∈ Ck−1−2m
s (R×R+) if 2m+ 1 ≤ k.

Proof. For any φ ∈ Ci
s(R × R+), we have φeθ ∈ Ci

s from Lemma 2 (b). With a
straightforward calculation using (2.4), it is easy to verify that for i ≥ 2,

(2.38) ∇×∇× (φeθ) = −(L φ)eθ.

On the other hand, it is clear that

∇×∇× (φeθ) ∈ Ci−2
s

and therefore from Lemma 2 (a),

(2.39) L φ ∈ Ci−2
s (R ×R+).
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The lemma then follows from (2.38) and (2.39).
Lemma 4. If v ∈ Ck(R×R+) and v(x, 0+) = 0, then

(2.40) lim
r→0+

j∂j−1
r

(
v(x, r)

r

)
= ∂j

rv(x, 0
+), 1 ≤ j ≤ k.

Proof. Since v ∈ Ck(R×R+), we have

(2.41) v(x, r) = a1(x)r + a2(x)r
2 + · · ·+ ak−1(x)r

k−1 +Rk(v)

from Taylor’s theorem. Here

a$(x) =
1

(!
∂$
rv(x, 0

+),

Rk(v) =

∫ r

0
∂k
r v(x, s)

(r − s)k−1

(k − 1)!
ds

and

(2.42) ∂$
rRk(v)(x, 0

+) = 0, 0 ≤ ( ≤ k − 1, ∂k
rRk(v)(x, 0

+) = ∂k
r v(x, 0

+).

From (2.41), it follows that

(2.43) ∂k−1
r

(
v(x, r)

r

)
= ∂k−1

r

(
Rk(v)

r

)
=

k−1∑

$=0

C$
k−1(−1)$(!

∂k−$−1
r Rk(v)

r$+1
.

The assertion (2.40) is obvious for j < k. For j = k, from (2.42), (2.43), and
l’Hospital’s rule, we can easily derive

lim
r→0+

∂k−1
r

(
v(x, r)

r

)
=

(
k−1∑

$=0

C$
k−1(−1)$

1

(+ 1

)
∂k
r v(x, 0

+) =
1

k
∂k
r v(x, 0

+).

This completes the proof of Lemma 4.
Lemma 5. If v ∈ C2m(R×R+) ∩ C2m−2

s (R ×R+), then

(2.44) ∂2m−2
r L v(·, 0+) ≡ 0 if and only if ∂2m

r v(·, 0+) ≡ 0.

Proof. From
(
∇2 − 1

r2

)
v =

(
∂2
xv + ∂2

rv + ∂r
(v
r

))
,

we have

∂2m−2
r L v =

(
∂2
x∂

2m−2
r v + ∂2m

r v + ∂2m−1
r

(v
r

))
.

Since v ∈ C2m−2
s (R×R+), it follows from Lemma 4 that

∂2m−2
r L v(x, 0+) =

2m+ 1

2m
∂2m
r v(x, 0+)

and the assertion follows.
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2.2. Sobolev spaces. In this section, we will construct a family of Sobolev
spacesHk

s (R×R+) and show a counterpart for (2.37) in these Sobolev spaces: A weak
solenoidal axisymmetric vector field admits the representation (2.17) with u(x, r) and
ψ(x, r) in Hk

s . Moreover, both u and ψ, together with certain even order derivatives,
have vanishing traces on r = 0+.

We start with the following identity for general solenoidal vector fields.
Lemma 6. If u ∈ Ck(R3, R3) ∩Hk(R3, R3) and ∇ · u = 0, k ≥ 0, then

(2.45) ‖u‖2Hk(R3,R3) =
k∑

$=0

‖(∇×)$u‖2L2(R3,R3).

Proof. We prove (2.45) for ( even and odd separately.
Since ∇ · u = 0, it follows that ∇×∇× u = −∇2u. Thus, if ( = 2m is even, we

can write

(2.46) ‖(∇×)2mu‖L2(R3,R3) = ‖(∇2)mu‖L2(R3,R3).

When m = 1 and u ∈ Ck(R3), we can integrate by parts to get

∫

R3

|∇2u|2 =

∫

R3

(
3∑

i1=1

∂2
i1u

)2

=

∫

R3

3∑

i1,i2=1

∂2
i1u∂

2
i2u =

∫

R3

3∑

i1,i2=1

(∂i1∂i2u)
2.

Similarly, when m = 2,

∫

R3

|(∇2)2u|2 =

∫

R3




(

3∑

i=1

∂2
i

)2

u




2

=

∫

R3

3∑

i1,i2,i3,i4=1

(∂2
i1∂

2
i2u)(∂

2
i3∂

2
i4u)

=
3∑

i1,i2,i3,i4=1

∫

R3

(∂i1∂i2∂i3∂i4u)
2.

It is, therefore, easy to see that

∫

R3

|(∇2)mu|2 =
3∑

i1,...,i2m=1

∫

R3

(∂i1 · · ·∂i2mu)2

and consequently for u ∈ Ck(R3, R3), 2m ≤ k,

(2.47) ‖(∇2)mu‖2L2(R3,R3) =
3∑

i1,...,i2m=1

‖(∂i1 · · ·∂i2m)u‖2L2(R3,R3).

On the other hand, if ( = 2m+ 1 is odd, we first write

(∇×)2m+1u = ∇× (−(∇2))mu = (−1)m∇× (∇2)mu,

then apply the identity

‖∇v‖2L2(R3,R3×3) = ‖∇ × v‖2L2(R3,R3) + ‖∇ · v‖2L2(R3)
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to get

(2.48) ‖(∇×)2m+1u‖L2(R3,R3) = ‖∇× (∇2)mu‖L2(R3,R3) = ‖(∇2)m∇u‖L2(R3,R3)

and from (2.47),

(2.49)

‖(∇2)m∇u‖2L2(R3,R3) =
3∑

i,j=1

‖(∇2)m∂iuj‖2L2(R3)

=
3∑

i,j=1

3∑

i1,...,i2m=1

∫

R3

(∂i1 · · · ∂i2m∂iuj)
2

=
3∑

i1,...,i2m+1=1

‖
(
∂i1 · · · ∂i2m+1

)
u‖2L2(R3,R3).

It follows from (2.46), (2.47), (2.48), and (2.49) that

‖u‖2Hk(R3,R3) =
k∑

$=0

3∑

i1,...,i!=1

‖∂i1 · · · ∂i!u‖2L2(R3,R3) =
k∑

$=0

‖(∇×)$u‖2L2(R3,R3).

This completes the proof of Lemma 6.
In Lemma 7 below, we will derive an equivalent representation of the Sobolev

norms for axisymmetric solenoidal vector fields. We first introduce the following
weighted Sobolev space for axisymmetric solenoidal vector fields. Let a, b ∈ C0(R ×
R+), and we define the weighted L2 inner product and norm

(2.50) 〈a, b〉 =
∫ ∞

−∞

∫ ∞

0
a(x, r)b(x, r) rdxdr, ‖a‖20 = 〈a, a〉,

and for a, b ∈ C1
s (R×R+), we define the weighted H1 inner product and norm

(2.51) [a, b] = 〈∂xa, ∂xb〉+ 〈∂ra, ∂rb〉+
〈
a

r
,
b

r

〉
, |a|21 = [a, a],

and we define

(2.52) ‖a‖21 = ‖a‖20 + |a|21.

When a ∈ C1
s (R×R+) and b ∈ C1

s (R×R+)∩C2(R×R+), we also have the following
identity from integration by parts:

〈a,L b〉 = −[a, b].

If u = ueθ +∇× (ψeθ), with u ∈ C0(R × R+) and ψ ∈ C1
s (R × R+), it is easy

to see that

(2.53) ‖u‖2L2(R3,R3) = ‖u‖20 + |ψ|21.

Higher order Sobolev norms can be defined similarly in terms of u and ψ.
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Definition 3. For a ∈ Ck
s (R×R+) and u = ueθ +∇× (ψeθ) ∈ Ck

s (R
3, R3), we

define

‖a‖2H2m
s (R×R+) :=

m−1∑

"=0

‖L "a‖21 + ‖L ma‖20, 2m ≤ k,

‖a‖2
H2m+1

s (R×R+)
:=

m∑

"=0

‖L "a‖21, 2m+ 1 ≤ k,

‖u‖2H2m
s (R×R+,R3) := |ψ|21 +

m−1∑

"=0

‖L "u‖21 +
m∑

"=1

‖L "ψ‖21 + ‖L mu‖20, 2m ≤ k,

‖u‖2H2m+1
s (R×R+,R3)

:= |ψ|21 +
m∑

"=0

‖L "u‖21 +
m∑

"=1

‖L "ψ‖21 + ‖L m+1ψ‖20, 2m+ 1 ≤ k.

When k = 0, we denote ‖a‖L2
s(R×R+) = ‖a‖H0

s (R×R+) and ‖u‖L2
s(R×R+,R3) =

‖u‖H0
s(R×R+,R3) by convention. In view of Lemma 2, Lemma 3, Lemma 6, and (2.53),

we have proved the following.
Lemma 7. If u ∈ Ck

s (R
3, R3), k ≥ 0, then

‖u‖Hk(R3,R3) = ‖u‖Hk
s (R×R+,R3).

We can now define the Sobolev spaces for axisymmetric solenoidal vector fields
following standard procedure. Denote by C0 the space of compactly supported func-
tions, and we define the following.

Definition 4.

L2
s(R ×R+) := completion of C0

s (R ×R+) ∩ C0(R×R+), with respect to ‖ ·‖ 0,

Ĥ1
s (R ×R+) := completion of C1

s (R ×R+) ∩ C0(R×R+), with respect to | · |1,
Hk

s (R ×R+) := completion of Ck
s (R×R+) ∩ C0(R ×R+), with respect to ‖ · ‖Hk

s (R×R+),

Hk
s (R×R+, R3) := completion of Ck

s (R
3, R3) ∩ C0(R

3, R3), with respect to ‖ · ‖Hk
s (R×R+,R3).

With the spaces introduced above, it is easy to see that a necessary and sufficient
condition for a ∈ Hk

s (R ×R+), k ≥ 1 is

{ L $a ∈ H1
s (R×R+) for all 0 ≤ 2( ≤ k − 1;

L ma ∈ L2
s (R×R+) for all 2 ≤ 2m ≤ k.

As a consequence, we have the following characterization for the divergence free
Sobolev spaces Hk

s (R ×R+, R3).
Lemma 8. The following statements are equivalent:
1. u ∈ Hk

s (R×R+, R3),
2. u ∈ Hk(R3, R3), ∇ · u = 0 and u is axisymmetric,
3. u = ueθ +∇× (ψeθ), with u ∈ Hk

s (R×R+), ψ ∈ Ĥ1
s (R×R+) and, if k ≥ 1,

Lψ ∈ Hk−1
s (R ×R+).

When the above statements hold, we have

(2.54) ‖u‖Hk(R3,R3) = ‖u‖Hk
s (R×R+,R3).

Lemma 8 follows from Lemma 3, Lemma 7, and standard density argument. We
omit the details.

Finally, the counterpart of (2.18) and (2.19), for u ∈ Hk
s (R × R+, R3), is given

the following trace Lemma and Corollary.
Lemma 9. If v ∈ Ĥ1

s (R×R+), then the trace of v on r = 0 vanishes.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1836 JIAN-GUO LIU AND WEI-CHENG WANG

Proof. For any v ∈ C1
(
R×R+

)
∩C0

(
R×R+

)
, we have

∫

R
|v(x, 0)|2 dx = −2

∫ ∫

R×R+

v∂rv dx dr ≤
∫ ∫

R×R+

(
v2

r2
+ (∂rv)

2

)
r dx dr ≤ ‖v‖21.

Since v(x, 0) = 0 for v ∈ C1
s (R × R+), the lemma follows from standard density

argument.
Using the same density argument, we have the following.
Corollary 2.
(i) If v ∈ Hk

s (R×R+), then the trace of L $∂n
x v on r = 0 vanishes provided

2(+ n ≤ k − 1.
(ii) If v ∈ Hk

s (R×R+), then the trace of ∂2$
r v on r = 0 vanishes provided 2( ≤

k − 1.
Example 1. Take u = ueθ with u = r2e−r. Note that u = O(r2) near the axis.

Similar functions can be found in literature as initial data in numerical search for finite
time singularities. Although u ∈ C∞(R × R+) and u may appear to be a smooth
vector field, it is easy to verify that L u(x, 0+) -= 0. Thus, from Lemma 2, Lemma 8,
and Lemma 9, u is neither in C2(R3, R3) nor in H3(R3, R3).

3. Axisymmetric Navier–Stokes equations and equivalence results. The
axisymmetric Navier–Stokes equation (1.5) can be formally derived from (1.4). From
Lemma 2, a smooth solution of (1.4) gives rise to a smooth solution of (1.5). However,
it is not clear whether smooth solutions of (1.5) also give rise to smooth solutions of
(1.4). For example, take ν = 0 in (1.5) and consider the Euler equation

(3.1)

∂tu+ ux∂xu+ ur∂ru+ ur
r u = 0,

∂tω + ux∂xω + ur∂rω − ur
r ω = 1

r∂x(u
2),

ω = −Lψ.

It is easy to see that

(3.2)
{ u = ueθ, u(t, x, r) = f(r),

ω = ψ ≡ 0

gives rise to an exact stationary solution to (3.1) for any function f(r) ∈ Ck(R×R+),
including the one given in Example 1. In other words, it is possible to have a solution
in the class

(3.3)

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1

(
R×R+

))
,

u(t;x, r) ∈ C1
(
0, T ;Ck

(
R ×R+

))
,

ω(t;x, r) ∈ C1
(
0, T ;Ck−1

(
R×R+

))

with a genuine singularity on r = 0 as described in Example 1. This singularity is
invisible to the Ck(R×R+) norm. In addition, it may well persist in time. In section
3.1, we will show that the persistence of the pole singularity is indeed generic for the
Euler equation.

3.1. Propagation and persistence of pole singularity. In Euler (3.1), both
u and ω transport with the velocity (ux, ur) = (∂rψ + ψ

r ,−∂xψ). The equation for ψ
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is elliptic and one needs to impose one boundary condition for ψ. This is naturally
given by

(3.4) ψ(x, 0) = 0

in view of Lemma 2. Consequently, the r component of the velocity field ur = −∂xψ
vanishes on the boundary r = 0 and turns it into a characteristic boundary. As a
result, the values of both u and ω on r = 0+ are completely determined by the value of
initial data on r = 0+ and the dynamics. Neither u nor ω should be imposed on r = 0.
In the following theorem, we will show that the pole singularity will propagate and
remain on the boundary r = 0. Moreover, we will show that the order of singularity
will persist in time as illustrated in the special example mentioned above.

Theorem 1. Let (ψ, u,ω) be a solution to the axisymmetric Euler equation (3.1)
in the class

(3.5)

ψ(t;x, r) ∈ C0
(
[0, T );Ck+1

(
R×R+

))
,

u(t;x, r) ∈ C0
(
[0, T );Ck

(
R×R+

))
,

ω(t;x, r) ∈ C0
(
[0, T );Ck−1

(
R×R+

))

with k ≥ 2 and

u = ∇× (ψeθ) + ueθ.

Then for 0 < t < T , 0 ≤ j ≤ k,

(3.6) u(t, ·) ∈ Cj
s(R

3, R3) if and only if u(0, ·) ∈ Cj
s(R

3, R3).

Proof. From Lemma 3 and (3.5), it suffices to show that, for 0 < t ≤ T , 0 ≤ j ≤ k,

(3.7){
∂2"
r u(t; ·, 0+) ≡ 0 for all 2$ ≤ j,

∂2n
r ψ(t; ·, 0+) ≡ 0 for all 2n ≤ j + 1

if and only if

{
∂2"
r u(0, ·, 0+) ≡ 0 for all 2$ ≤ j,

∂2n
r ψ(0, ·, 0+) ≡ 0 for all 2n ≤ j+1.

We will prove (3.7) by induction on j using Lemma 10 below. We first prove the
case j = 0 in part (i) of Lemma 10. The induction from j = 2m to j = 2m + 1
and from j = 2m + 1 to j = 2m + 2 are given by parts (ii) and (iii) of Lemma 10,
respectively.

Lemma 10.
(i) If (3.5) holds and

(3.8) ψ ∈ C0
(
[0, T ), C1

s

(
R×R+

))
,

then for 0 < t ≤ T ,

u(t, ·, ·) ∈ C0
s (R×R+) if and only if u(0, ·, ·) ∈ C0

s (R×R+).

(ii) If 2m+ 1 ≤ k, (3.5) holds and

(3.9) ψ ∈ C0
(
[0, T ), C2m

s (R×R+)
)
, u ∈ C0

(
[0, T ), C2m

s (R×R+)
)
,

then for 0 < t ≤ T ,

ψ(t, ·, ·) ∈ C2m+2
s (R×R+) if and only if ψ(0, ·, ·) ∈ C2m+2

s (R ×R+).
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(iii) If 2m+ 2 ≤ k, (3.5) holds and

(3.10) ψ ∈ C0
(
[0, T ), C2m+2

s (R ×R+)
)
, u ∈ C0

(
[0, T ), C2m

s (R ×R+)
)
,

then for 0 < t ≤ T ,

u(t, ·, ·) ∈ C2m+2
s (R×R+) if and only if u(0, ·, ·) ∈ C2m+2

s (R×R+).

Proof. Part (i). From the boundary condition (3.4) we know that ur(t, x, 0+) =
0. From Lemma 4, we also have limr→0+

ur
r = −∂r∂xψ(t, x, 0+) and ux(t, x, 0+) =

2(∂rψ|r=0+). Therefore, the first equation of (3.1) on r = 0+ reads

∂tu+ 2(∂rψ|r=0+)∂xu− (∂r∂xψ|r=0+)u = 0.

This is a first order linear hyperbolic equation with continuous coefficients in (t, x) ∈
(0, T )×R for u(t, x, 0+). Hence, for 0 < t ≤ T ,

u(t, ·, 0+) ≡ 0 if and only if u(0, ·, 0+) ≡ 0.

Part (ii). From Lemma 5 we see that

(3.11) ω ∈ C0
(
[0, T ), C2m−2

s (R×R+)
)
.

Let v(t, x) = ∂2m
r ω(t, x, 0+), and we can derive a linear hyperbolic equation for v(t, x)

by applying ∂2m
r to the terms in the second equation of (3.1) as follows:

(3.12)

∂2m
r (ux∂xω)

∣∣
r=0+

=
2m∑

$=0

C$
2m∂$

r

(
∂rψ +

ψ

r

) ∣∣
r=0+

∂x∂
2m−$
r ω|r=0+

=
2m∑

$=0

(
1 +

1

(+ 1

)
C$

2m∂$+1
r ψ

∣∣
r=0+

∂x∂
2m−$
r ω

∣∣
r=0+

,

(3.13) ∂2m
r (ur∂rω)

∣∣
r=0+

= −
2m∑

$=0

C$
2m∂$

r(∂xψ)
∣∣
r=0+

∂r∂
2m−$
r ω

∣∣
r=0+

,

∂2m
r

(
− ur

r
ω

)
|r=0+ =

2m∑

$=0

C$
2m∂$

r

(
∂x

ψ

r

)
|r=0+∂

2m−$
r ω|r=0+(3.14)

=
2m∑

$=0

1

(+ 1
C$

2m∂x∂
$+1
r ψ|r=0+∂

2m−$
r ω|r=0+ ,

∂2m
r

(
u

r
∂xu

)
|r=0+ =

2m∑

$=0

C$
2m∂$

r

(u
r

)
|r=0+∂x

(
∂2m−$
r u

)
|r=0+(3.15)

=
2m∑

$=0

1

(+ 1
C$

2m∂$+1
r u|r=0+∂x∂

2m−$
r u|r=0+ .

In (3.12)–(3.15), we have used Lemma 4 to get

(3.16) ∂$
r

(ψ
r

)
|r=0+ =

1

(+ 1
∂$+1
r ψ|r=0+ .
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Next, from (3.9)

(3.17) ∂2$
r ψ|r=0+ = 0, ∂2$

r u|r=0+ = 0 for ( ≤ m

and from (3.11)

(3.18) ∂2$
r ω|r=0+ = 0 for ( ≤ m− 1.

It follows that all the terms on the right-hand side of (3.12)–(3.15) vanish except ( = 0
in (3.12, 3.14) and ( = 1 in (3.13). In summary, we have

∂2m
r (ux∂xω)

∣∣
r=0+

= 2(∂rψ
∣∣
r=0+

)∂xv,(3.19)

∂2m
r (ur∂rω)

∣∣
r=0+

= −2j(∂r∂xψ
∣∣
r=0+

)v,(3.20)

∂2m
r

(
−ur

r
ω

)∣∣
r=0+

= (∂r∂xψ
∣∣
r=0+

)v,(3.21)

∂2m
r

(u
r
∂xu

) ∣∣
r=0+

= 0.(3.22)

Thus, we end up with a first order hyperbolic equation with smooth coefficients for v

∂tv + 2(∂rψ
∣∣
r=0+

)∂xv − (2m− 1)(∂r∂xψ
∣∣
r=0+

)v = 0.

It follows that for 0 < t ≤ T ,

(3.23) ∂2m
r ω(t, ·, 0+) ≡ 0 if and only if ∂2m

r ω(0, ·, 0+) ≡ 0,

that is, in view of Lemma 5 and (3.9),

∂2m+2
r ψ(t, ·, 0+) ≡ 0 if and only if ∂2m+2

r ψ(0, ·, 0+) ≡ 0

for 0 < t ≤ T .
Part (iii). Let z(t, x) = ∂2m+2

r u(t, x, 0+). Following a similar calculation as in
part (ii), we have
(3.24)

∂2m+2
r (ux∂xu)

∣∣
r=0+

=
2m+2∑

$=0

C$
2m+2(∂

$
rux)

∣∣
r=0+

∂x(∂
2m+2−$
r u)

∣∣
r=0+

= 2(∂rψ
∣∣
r=0+

)∂xz

∂2m+2
r (ur∂ru)

∣∣
r=0+

=
2m+2∑

$=0

C$
2m+2

(
∂$
rur

) ∣∣
r=0+

(
∂2m+3−$
r u

) ∣∣
r=0+

(3.25)

= −(2m+ 2)(∂r∂xψ
∣∣
r=0+

)z

and

(3.26)

∂2m+2
r

(ur

r
u
) ∣∣

r=0+
=

2m+2∑

$=0

C$
2m+2∂

$
r

(
−∂xψ

r

) ∣∣
r=0+

∂2m+2−$
r u = −(∂r∂xψ

∣∣
r=0+

)z.

We, therefore, obtain a first order linear hyperbolic equation with smooth coefficients
for z

∂tz + 2(∂rψ
∣∣
r=0+

)∂xz − (2m+ 3)(∂r∂xψ
∣∣
r=0+

)z = 0.

Therefore, we have proved that for 0 < t ≤ T ,

∂2m+2
r u(t, ·, 0+) ≡ 0 if and only if ∂2m+2

r u(0, ·, 0+) ≡ 0.

This completes the proof of part (iii) and hence the proof of Theorem 1.
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3.2. Classical solutions of axisymmetric Navier–Stokes equations. The-
orem 1 reveals the subtlety of the pole singularity. In the case of the Navier–Stokes
equation,

(3.27)

∂tu+ ux∂xu+ ur∂ru+ ur
r u = νL u,

∂tω + ux∂xω + ur∂rω − ur
r ω = 1

r∂x(u
2) + νL ω,

ω = −Lψ,

with ν > 0, and we have an elliptic-parabolic system on a semibounded region {r > 0}.
We expect a certain regularizing effect to take place. In the case where the swirling
velocity u is zero, there exists a unique global smooth solution [10, 20]. However, with
the swirl velocity, whether or not initially smooth data develops singularity in finite
time, is still a major open problem. A fundamental regularity result concerning the
solution of the Navier–Stokes equation is given in the pioneering work of Caffarelli,
Kohn, and Nirenberg [3]: The one-dimensional Hausdorff measure of the singular set
is zero. As a consequence, the only possible singularity for axisymmetric Navier–
Stokes flows would be on the axis of rotation. Further results on partial regularity
for axisymmetric flow can be found in [2, 17, 4, 9, 5]. A recent breakthrough con-
cerning the subtle behavior of the axisymmetric Navier–Stokes equation can be found
in [8].

In contrast to the case of the Euler equation, the equivalence theorem that we
present below rules out the possibility of persistence of the pole singularity for solu-
tions which are smooth up to the boundary r = 0. From standard PDE theory, we
need to assign boundary values for (ψ, u,ω). The leading order pole conditions (2.18),
(2.19) would suffice:

(3.28) ψ(x, 0) = u(x, 0) = ω(x, 0) = 0.

It is, therefore, a natural question to ask if a smooth solution of (3.27), (3.28) in the
class

(3.29)

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1

(
R×R+

))
,

u(t;x, r) ∈ C1
(
0, T ;Ck

(
R ×R+

))
,

ω(t;x, r) ∈ C1
(
0, T ;Ck−1

(
R×R+

))

will give rise to a smooth solution of (3.27) in the class

(3.30)

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1

s

(
R×R+

))
,

u(t;x, r) ∈ C1
(
0, T ;Ck

s

(
R ×R+

))
,

ω(t;x, r) ∈ C1
(
0, T ;Ck−1

s

(
R×R+

))
.

In other words, are the pole conditions (2.18), (2.19) automatically satisfied if only
(3.28) is imposed?

The answer to this question is affirmative. We will show in Theorem 2 that (3.30)
and (3.29) are indeed equivalent for solutions of (3.27), (3.28). The proof is based on
local Taylor expansion. We decompose the proof into several lemmas.
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Lemma 11. If 2m ≤ k − 2 and

(3.31)

ψ ∈ Ck+1
(
R×R+

)
∩ C2m

s

(
R×R+

)
,

u ∈ Ck
(
R ×R+

)
∩ C2m

s

(
R×R+

)
,

ω ∈ Ck−1
(
R×R+

)
∩C2m

s

(
R×R+

)
,

then the nonlinear terms in (3.27), that is,

(3.32) ux∂xu, ur∂ru,
ur

r
u,

and

(3.33) ux∂xω, ur∂rω,
ur

r
ω,

1

r
∂x(u

2)

are all in C2m
s (R ×R+).

Proof. We start with the terms in (3.33). The proof is very similar to that of
Lemma 10, where the identities (3.12)–(3.15) together with the condition (3.9) lead to
(3.19)–(3.22). Here with the same identities (3.12)–(3.15) and the assumption (3.31),
it is easy to see that for j ≤ m,

∂2j
r (ux∂xω)

∣∣
r=0+

= ∂2j
r (ur∂rω)

∣∣
r=0+

= ∂2j
r

(ur

r
ω
) ∣∣

r=0+
= ∂2j

r

(
1

r
∂x

(
u2

)) ∣∣
r=0+

= 0.

The procedure is quite similar, so we omit the details. In summary, we have shown
that

(3.34) ux∂xω, ur∂rω,
ur

r
ω,

1

r
∂x(u

2) ∈ C2m
s (R×R+).

Similarly, with the same argument as in (3.12)–(3.18), we also have for j ≤ m,

∂2j
r (ux∂xu)

∣∣
r=0+

=
2j∑

$=0

C$
2j

(
∂$
rux

) ∣∣
r=0+∂x

(
∂2j−$
r u

)∣∣
r=0+

,

∂2j
r (ur∂ru)

∣∣
r=0+

=
2j∑

$=0

C$
2j

(
∂$
rur

) ∣∣
r=0+

(
∂2j−$
r u

)∣∣
r=0+

,

∂2j
r

(
ur
r u

) ∣∣
r=0+

=
2j∑

$=0

C$
2j∂

$
r

(
−∂xψ

r

) ∣∣∣∣
r=0+

∂2j−$
r u.

From the assumption (3.31), it follows that for j ≤ m,

∂2j
r (ux∂xu)

∣∣∣∣
r=0+

= ∂2j
r (ur∂ru)

∣∣∣∣
r=0+

= ∂2j
r

(ur

r
u
) ∣∣∣∣

r=0+
= 0.

Thus,

(3.35) ux∂xu, ur∂ru,
ur

r
u ∈ C2m

s (R×R+),

completing the proof of Lemma 11.
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Theorem 2. Let (ψ, u,ω) be a solution to (3.27), (3.28) in the class (3.29) with
k ≥ 3. Then

(3.36)

ψ ∈ Ck+1
s (R× R+),

u ∈ Ck
s (R ×R+),

ω ∈ Ck−1
s (R×R+)

for 0 < t < T .
Proof. Let j∗ be the largest integer such that 2j∗ ≤ k − 1. We first show that on

0 < t < T ,

(3.37)

∂2$
r ψ(t, x, 0+) = 0,

∂2$
r u(t, x, 0+) = 0,

∂2$
r ω(t, x, 0+) = 0

for 0 ≤ ( ≤ j∗.
This is done by induction on (. When ( = 0, (3.37) is given by the boundary

condition (3.28). Suppose that (3.37) is verified for ( = j with j + 1 ≤ j∗. We apply
∂2j−2
r |(x,0+) on both sides of (3.27) and conclude that, in view of Lemma 11,

ν∂2j
r

(
∇2 − 1

r2

)
u(x, 0+) = 0,

ν∂2j
r

(
∇2 − 1

r2

)
ω(x, 0+) = 0,

∂2j
r

(
∇2 − 1

r2

)
ψ(x, 0+) = 0.

Applying Lemma 5 to ∂2j
r ψ, ∂2j

r u, ∂2j
r ω, and one has ∂2j+2

r ψ(x, 0+) = ∂2j+2
r u(x, 0+) =

∂2j+2
r ω(x, 0+) = 0; thus, (3.37) is verified for ( = j + 1.

We can continue the induction until (3.37) is verified for ( = j∗ to get

(3.38)

ψ ∈ Ck+1(R×R+) ∩C2j∗
s (R ×R+),

u ∈ Ck(R×R+) ∩ C2j∗
s (R×R+),

ω ∈ Ck−1(R ×R+) ∩ C2j∗
s (R×R+).

To complete the proof, we proceed with k odd and even separately.
If k is odd, say k = 2m+ 1, then j∗ = m and (3.38) can be written as

ψ ∈ C2m+2(R ×R+) ∩ C2m
s (R ×R+), u ∈ C2m+1

s (R ×R+),(3.39)

ω ∈ C2m
s (R×R+).

Apply Lemma 5 to ∂2m
r ψ, and one has that ∂2m+2

r ψ(x, 0) = 0; therefore, ψ ∈
C2m+2

s (R ×R+).
Similarly, if k = 2n, then j∗ = n− 1, and we have from (3.38)

ψ ∈ C2n+1(R ×R+) ∩ C2n−2
s (R×R+),

u ∈ C2n(R×R+) ∩C2n−2
s (R×R+),

ω ∈ C2n−1
s (R×R+).

Since 2n− 2 = k− 2, the assumption in Lemma 11 is satisfied. Therefore, we can
continue the induction for u to get ∂2n

r u(x, 0+) = 0; thus, u ∈ C2n
s (R ×R+).
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Finally, apply Lemma 5 to ∂2n−2
r ψ, and we conclude that ∂2n

r ψ(x, 0+) = 0 and
ψ ∈ C2n+1(R × R+) ∩ C2n

s (R × R+) = C2n+1
s (R × R+). This completes the proof of

Theorem 2.
The equivalence of (1.4) and (3.27) in terms of regularity of classical solutions is

given by the following.
Theorem 3.
(I) Suppose (u, p̃) is an axisymmetric solution to Navier–Stokes equation (1.4)

with u ∈ C1
(
0, T ; Ck

s

)
, p̃ ∈ C0

(
0, T ;Ck−1(R3)

)
, and k ≥ 3. Then there is a

solution (ψ, u,ω) to (3.27) in the class

ψ(t, x, r) ∈ C1
(
0, T ;Ck+1

s (R×R+)
)
,

u(t, x, r) ∈ C1
(
0, T ;Ck

s (R ×R+)
)
,

ω(t, x, r) ∈ C1
(
0, T ;Ck−1

s (R ×R+)
)

and u = ueθ +∇× (ψeθ).
(II) Let (ψ, u,ω) be a solution to (3.27), (3.28) in the class

ψ(t, x, r) ∈ C1
(
0, T ;Ck+1(R×R+)

)
,

u(t, x, r) ∈ C1
(
0, T ;Ck(R ×R+)

)
,

ω(t, x, r) ∈ C1
(
0, T ;Ck−1(R ×R+)

)

with k ≥ 3. Then

u = ueθ +∇× (ψeθ) ∈ C1(0, T ; Ck
s ),

and there is an axisymmetric scalar function p̃ ∈ C0(0, T ;Ck−1(R3)), such
that (u, p̃) is a solution to Navier–Stokes equation (1.4).

Proof. Part (I). Since u ∈ C1
(
0, T ; Ck

s

)
is a solution to (1.4), with k ≥ 3, it

follows that

ω = ∇× u = ωeθ +∇× (ueθ) ∈ C1
(
0, T ; Ck−1

s

)

is also an axisymmetric solution to the Navier–Stokes equation in vorticity form

(3.40) ∂tω +∇× (ω × u) = −ν∇×∇× ω.

Next, we express each term of (3.40) in the cylindrical coordinate as

(3.41) ∂tω = ∂tωeθ +∇× (∂tueθ),

(3.42) −∇×∇× ω =

((
∇2 − 1

r2

)
ω

)
eθ +∇×

((
∇2 − 1

r2

)
ueθ

)
,

and

(3.43) ∇× (ω × u) =
(
J
(ω
r
, rψ

)
− J

(u
r
, ru

))
eθ +∇×

(
1

r2
J (ru, rψ) eθ

)
.

From (3.41)–(3.43), we can rewrite (3.40) as

(3.44) aeθ +∇× (beθ) = 0,
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where

a = ∂tω + J
(ω
r
, rψ

)
− J

(u
r
, ru

)
− ν

(
∇2 − 1

r2

)
ω

and

b = ∂tu+
1

r2
J (ru, rψ)− ν

(
∇2 − 1

r2

)
u.

From (3.44), it follows that a(x, r) ≡ 0 and rb(x, r) is a constant. Since b(x, 0+) = 0
from Lemma 11 and Lemma 2, we conclude that b(x, r) ≡ 0 as well. Expanding the
Jacobians in the two equations above, we get exactly (3.27). This completes the proof
of part (I).

Part (II). From Theorem 2, we know that (ψ, u,ω) satisfies (3.36). Therefore,
Lemma 2 applies and we have

u = ueθ +∇× (ψeθ) ∈ C1(0, T ; Ck
s ).

Next we define ω = ∇ × u. From (3.41)–(3.43), we see that ω satisfies the Navier–
Stokes equation in vorticity formulation (3.40). That is,

∇× (∂tu+ ω × u+ ν∇× ω) = 0.

Thus, there exists a function p̃ : (0, T ) → Ck−1(R3), such that

(3.45) ∂tu+ ω × u+ ν∇× ω = −∇p̃.

In other words, (u, p̃) satisfies Navier–Stokes equation (1.4). Since u ∈ C1(0, T ; Ck
s ),

it follows from (3.45) that ∇p̃ ∈ C0(0, T ; Ck−2
s ). In addition, we can further assign

p̃(t) on a reference point (x0, r0) so that p̃ ∈ C0(0, T ;Ck−1(R3)).
By construction, the left-hand side of (3.45) is axisymmetric and therefore so is

∇p̃. In particular,

∂θ(∇p̃ · eθ) = ∂θ
(1
r
∂θ p̃

)
= 0.

Therefore,

p̃ = a(x, r)θ + b(x, r).

Since p̃ is continuous and single-valued, we conclude that a = 0. In other words, p̃ is
axisymmetric. This completes the proof of theorem.

3.3. Weak formulation and Leray solution. The Navier–Stokes equation in
vorticity formulation for axisymmetric flows (3.27) can be recast as following in terms
of Jacobians [14]

(3.46)

ut +
1
r2J (ru, rψ) = νL u ,

ωt + J
(
ω
r , rψ

)
− J

(
u
r , ru

)
= νL ω ,

ω = −Lψ .
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The expression of the nonlinear terms in (3.46) in terms of Jacobians are equivalent to
the usual expression (1.5) for strong solutions. Accompanied with the Jacobians is a
set of permutation identities which leads naturally to an energy and helicity preserving
numerical scheme and plays a key role in the convergence proof of the scheme [14, 15].

We propose the following formulation for weak solution.
Find u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1

s ), ψ ∈ L∞(0, T ;H1
s ), and ω ∈ L2(0, T ;L2),

such that

(3.47)

〈∂tu, v〉+ 〈 v
r2 , J(ru, rψ)〉 + ν[u, v] = 0,

[∂tψ,φ] + 〈 ω
r2 , J(rψ, rφ)〉 − 〈 u

r2 , J(ru, rφ)〉 + ν〈ω,L φ〉 = 0,

〈ω, ξ〉 = [ψ, ξ]

for all v ∈ H1
s (R× R+), φ ∈ H1

s ∩H2(R×R+), and ξ ∈ H1
s (R×R+).

Note that the viscous term in (3.47) is not treated the same way in standard
variational formulation. In addition, only u = 0 and ψ = 0 are imposed on the
boundary r = 0. One can regard (3.47) as a variational formulation of the fourth
order PDE for ψ, where the boundary condition ω = 0 is imposed implicitly. Al-
though we have shown equivalence of the Navier–Stokes equation in vorticity-stream
formulation and primitive formulation for the classic solutions which are smooth up
to the boundary r = 0, it is still not clear a priori how (3.47) is related to the weak
solutions of (1.4) as constructed in Leray’s seminal work [11]. To answer this ques-
tion, we will show in Theorem 4 that (3.47) can be recast in standard 3D notations
as follows.

Find u ∈ L∞ (
0, T ;L2(R×R+, R3)

)
∩ L2

(
0, T ;H1

s(R×R+, R3)
)
, such that

(3.48) 〈v, ∂tu+ ω × u〉+ ν〈∇ × v,∇× u〉 = 0 for all v ∈ H1
s(R×R+, R3).

Now we recall Leray’s definition of weak solution as follows.
Find u ∈ L∞ (

0, T ;L2(R3, R3)
)
∩ L2

(
0, T ;H1(R3, R3)

)

(3.49) 〈v, ∂tu+ω ×u〉+ ν〈∇× v,∇×u〉 = 0 for all v ∈ C1
0 (R

3, R3), ∇ · v = 0.

Upon comparing (3.48) and (3.49), we see that the key point in establishing
the equivalence result lies in a proper decomposition of a general divergence free test
function into two parts; one is axisymmetric and the other has mean zero components.
This is given by the following lemma.

Lemma 12. Let v ∈ C1(R3, R3), ∇·v = 0, then there exists a vsym ∈ C1
s (R

3, R3),
with

(3.50) vx(x, r, θ) = vsymx (x, r), vr(x, r, θ) = vsymr (x, r), vθ(x, r, θ) = vsymθ (x, r),

where

f(x, r) =
1

2π

∫ 2π

0
f(x, r, θ)dθ.

Proof. Since v ∈ C1(R3, R3), ∇ · v = 0, there exists φ = φxex + φrer + φθeθ ∈
C2(R3, R3), such that ∇× φ = v. We then define

vsym = ∇× (φθeθ) + vsymθ eθ, vsymθ = ∂xφr − ∂rφx.
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It follows that vsym is divergence free and satisfies (3.50). In addition, φx(·, ·, θ),
φr(·, ·, θ),φθ(·, ·, θ) ∈ C2(R×R+) for any fixed θ in view of Corollary 1. We, therefore,
conclude from the bounded convergence theorem that

lim
r→0+

1

2π

∫ 2π

0
∂i
x∂

j
r




φx(x, r, θ)
φr(x, r, θ)
φθ(x, r, θ)



 =
1

2π

∫ 2π

0
lim

r→0+
∂i
x∂

j
r




φx(x, r, θ)
φr(x, r, θ)
φθ(x, r, θ)



 ,(3.51)

0 ≤ i+ j ≤ 2.

In other words, φx,φr,φθ ∈ C2(R × R+). Moreover, (2.14), (2.15) imply that φθ ∈
C2

s (R×R+), vsymθ ∈ C1
s (R ×R+) and therefore vsym ∈ C1

s .
We are now ready to show the following equivalence result.
Theorem 4. Let u = ueθ + ∇ × (ψeθ) and ω = Lψ. The following three

statements are all equivalent:
(i) (ψ, u,ω) is a weak solution (3.47).
(ii) u is a axisymmetric weak solution defined by (3.48).
(iii) u is a Leray weak solution as defined in (3.49).
Proof. We first show that (i) and (ii) are equivalent. Let u be an axisymmetric

weak solution (3.48) and let the test function be given by v = veθ+∇×(φeθ). Simple
calculation gives

(3.52) 〈∂tu,v〉 = 〈∂tu, v〉+ [∂tψ,φ],

(3.53) 〈∇ × u,∇× v〉 = 〈ω,L φ〉+ [u, v],

〈ω×u,v〉 =
∫

R3

ωeθ×(∇× (ψeθ)) ·(∇× (φeθ))−
∫

R3

ueθ×(∇× (ueθ)) ·(∇× (φeθ))

+

∫

R3

veθ × (∇× (ueθ)) · (∇× (ψeθ)) .

In cylindrical coordinates, we can write
∫

R3

aeθ × (∇× (beθ)) · (∇× (ceθ)) =

∫

R×R+

a

r
(∂x(rb)∂r(rc)− ∂r(rb)∂x(rc)) drdx

= 〈 a
r2

, J(rb, rc)〉.

Hence,

(3.54) 〈ω × u,v〉 =
〈 ω

r2
, J(rψ, rφ)

〉
−
〈 u

r2
, J(ru, rφ)

〉
+
〈 v

r2
, J(ru, rψ)

〉
.

Since v and φ are independent, it follows from (3.52), (3.53), (3.54), and (3.48) that

(3.55) 〈∂tu, v〉+
〈 v

r2
, J(ru, rψ)

〉
+ ν[u, v] = 0,

(3.56) [∂tψ,φ] +
〈 ω

r2
, J(rψ, rφ)

〉
−
〈 u

r2
, J(ru, rφ)

〉
+ ν 〈ω,Lφ〉 = 0

together with the weak formulation for the relation ω = Lψ:

(3.57) [ψ, ξ] = 〈ω, ξ〉 for all ξ ∈ H1
s (R ×R+).
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Hence, (ψ, u,ω) is a weak solution to (3.47). The converse is also true by reversing
the calculations above. This proves the equivalence between (i) and (ii).

Since C1
s (R

3, R3) ∩ Cc(R3, R3) is a subspace of {v ∈ C1
0 (R

3, R3),∇ · v = 0}, and
is dense in H1

s(R×R+, R3), (iii) implies (ii).
It remains to show that (ii) implies (iii). Let u be an axisymmetric weak solution

of (3.48). From Lemma 12, for any test function v ∈ C1
0 (R

3, R3) with ∇ · v = 0, we
can construct vsym ∈ C1

s (R
3, R3) ∩C0(R3, R3), such that

(3.58)

∫ 2π

0
(v − vsym)(x, r, θ)dθ = 0 for all (x, r) ∈ (R×R+).

For any w ∈ L2
s(R

3, R3), one has

(3.59)

∫ 2π

0
(v − vsym) ·w(x, r, θ)dθ = 0 for all (x, r) ∈ (R×R+)

and

(3.60)

∫ 2π

0
∇× (v − vsym) ·w(x, r, θ)dθ = 0 for all (x, r) ∈ (R×R+).

Hence,

(3.61) 〈v, ∂tu+ω×u〉+ν〈∇×v,∇×u〉 = 〈vsym, ∂tu+ω×u〉+ν〈∇×vsym,∇×u〉.

But now vsym ∈ C1
s (R

3, R3)∩C0(R3, R3) ⊂ H1
s(R×R+, R3) is a test function for the

axisymmetric weak solution (3.48), so the right-hand side of (3.61) is zero. Therefore,
u is a Leray solution. This completes the proof of this theorem.

Corollary 3.
(i) For any initial data u0 ∈ L2(R × R+),ψ0 ∈ Ĥ1

s (R × R+), there is a global
weak solution (ψ, u,ω) to (3.47), and u = ueθ+∇×(ψeθ) is an axisymmetric
Leray solution of the Navier–Stokes equation (1.4).

(ii) If in addition,

(3.62) u0 ∈ Hk
s (R×R+), ψ0 ∈ Ĥ1

s (R×R+), Lψ0 ∈ Hk−1
s (R×R+),

with k ≥ 1, then there exists a T0 > 0, such that the solution satisfies

(3.63)
u ∈ C0

(
0, T0;Hk

s (R ×R+)
)
∩ L2

(
0, T0;Hk+1

s (R ×R+)
)

ω ∈ C0
(
0, T0;Hk−1

s (R ×R+)
)
∩ L2

(
0, T0;Hk

s (R ×R+)
)
,

and it corresponds to the unique strong solution of Navier–Stokes equation
(1.4).

(iii) If k ≥ 3 in (3.62), then the solution is classical:

(3.64)
u ∈ C0

(
0, T0;Ck−2

s (R ×R+)
)
∩ C1

(
0, T0;Ck−3(R×R+)

)

ψ ∈ C0
(
0, T0;Ck−1

s (R×R+)
)
∩C1

(
0, T0;Ck−2(R ×R+)

)
.

Proof. From an initial data u0 ∈ L2(R×R+),ψ0 ∈ Ĥ1
s (R×R+), one can construct

an axisymmetric vector field u0 = u0eθ +∇× (ψ0eθ) ∈ L2
s(R

3, R3), and then a global
weak solution of (3.49) using Leray’s method with initial data u0. The weak solution is
constructed from a family of approximate solutions obtained via (radially symmetric)
mollifiers. See [11, 16] for details. Since the symmetry with respect to the axis of
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rotation is preserved under the action of convolution with the mollifiers, the resulting
limit is also axisymmetric. From Theorem 4, it corresponds to a global weak solution
(ψ, u,ω) of (3.47). This shows part (i).

If in addition, u0 ∈ Hk
s (R × R+), Lψ0 ∈ Hk−1

s (R × R+), k ≥ 1, then u0 ∈
Hk

s (R×R+, R3). Hence, by classical theory of the Navier–Stokes equation [18], there
exists a T0 > 0 depending only on ν and ‖u0‖Hk(R3,R3), and a unique solution (u, p̃)
in (0, T0) to (1.4), with regularity

(3.65) u ∈ H1
(
0, T0;H

k−1(R3, R3)
)
∩ L2

(
0, T0;H

k+1(R3, R3)
)
,

(3.66) ∇p̃ ∈ L2
(
0, T0;H

k−1(R3, R3)
)
.

From [6, p. 288], (3.65) implies

(3.67) u ∈ C0
(
0, T0;H

k(R3, R3)
)
.

Consequently, any global weak solution of (3.47) coincides with the strong solution
(3.65) in (0, T0), and therefore the strong solution is also axisymmetric. It follows
from Lemma 8 that u ∈ L∞ (

0, T0;Hk
s (R×R+)

)
∩ L2

(
0, T0;Hk+1

s (R×R+)
)
, ω ∈

L∞ (
0, T0;Hk−1

s (R ×R+)
)
∩ L2

(
0, T0;Hk

s (R×R+)
)
. This shows part (ii).

Since H2(R3, R3) ⊂ C0(R3, R3), it follows from (3.67) that, when k ≥ 3,

(3.68) u ∈ C0
(
0, T0;C

k−1
s (R3, R3)

)
.

Since ∂tu is the Leray projection of ν∇2u− (∇× u)× u, it follows that

(3.69) ∂tu ∈ C0
(
0, T0;C

k−3
s (R3, R3)

)
.

This gives (3.64) and proves (iii).
From well-known regularity results of the 3D Euler equation, the counterpart of

Corollary 3 for the Euler equation can be obtained using a similar argument. We state
it without proof.

Corollary 4. For any initial data u0 ∈ Hk
s (R×R+),ψ0 ∈ Ĥ1

s (R×R+),Lψ0 ∈
Hk−1

s (R × R+), k ≥ 3, there exists a unique local-in-time classical solution (ψ, u,ω)
to the Euler equation (3.1) with

(3.70)

u ∈ C0
(
0, T0;Ck−2

s (R×R+) ∩Hk
s (R×R+)

)

∩C1
(
0, T0;Ck−3(R×R+) ∩Hk−1

s (R ×R+)
)

ψ ∈ C0
(
0, T0;Ck−1

s (R ×R+) ∩Hk+1
s (R×R+)

)

∩C1
(
0, T0;Ck−2(R×R+) ∩Hk

s (R ×R+)
)
.

As remarked earlier, the weak formulation (3.47) is not standard, and it only
imposes the boundary condition ω = 0 in an implicitly way. In fact, if the solution
is regular enough, then one recovers this boundary condition and the usual weak
formulation follows. This becomes more clear as we recast part (ii) of Corollary 3 as
follows.

Corollary 5. Let (ψ, u,ω) be a weak solution of (3.47) and u = ∇× (ψeθ) +
ueθ). If

u ∈ L∞
loc

(
(0, T );H1

s(R×R+, R3)
)
,
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then

u ∈ L2
loc

(
(0, T );H2

s(R×R+, R3)
)
.

In particular, the trace of ω = Lψ on r = 0+ vanishes almost everywhere
on (0, T ).

Remark 1. The standard variational formulation for (1.5) is as follows.
Find u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1

s ), ψ ∈ L∞(0, T ;H1
s ), and ω ∈ L2(0, T ;H1

s ),
such that

(3.71)

〈∂tu, v〉+ 〈 v
r2 , J(ru, rψ)〉 + ν[u, v] = 0

[∂tψ,φ] + 〈 ω
r2 , J(rψ, rφ)〉 − 〈 u

r2 , J(ru, rφ)〉 − ν[ω,φ] = 0

〈ω, ξ〉 = [ψ, ξ]

for all v ∈ H1
s (R× R+), φ ∈ H1

s (R ×R+), and ξ ∈ H1
s (R×R+).

The main difference between (3.47) and (3.71) is the viscous term of the vorticity
equation. The formulation (3.71) is natural for a standard C0 finite element setting.
The regularity requirement for (3.71) lies between weak solution (3.47) and the strong
solution (3.65). The well posedness of (3.71), including uniqueness and local existence
of solution for initial data u0 ∈ L2

s(R×R+), ω0 ∈ L2
s(R×R+), is still unclear.
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