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LONG TIME NUMERICAL SOLUTION OF THE NAVIER–STOKES
EQUATIONS BASED ON A SEQUENTIAL REGULARIZATION

FORMULATION∗

PING LIN† , JIAN-GUO LIU‡ , AND XILIANG LU§

Abstract. The sequential regularization method is a reformulation of the unsteady Navier–
Stokes equations from the viewpoint of constrained dynamical systems or the approximate Helmholtz–
Hodge projection. In this paper we study the long time behavior of the sequential regularization
formulation. We give a uniform-in-time estimate between the solution of the reformulated system
and that of the Navier–Stokes equations. We also conduct an error analysis for the temporal discrete
system and show that the error bound is independent of time. A couple of long time flow examples
are computed to demonstrate this method.
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1. Introduction. Consider nonstationary Navier–Stokes equations with a non-
slip boundary condition

ut + (u ·∇)u = ν∆u −∇p + f ,(1.1)

divu = 0,(1.2)

u|∂Ω = 0, u|t=0 = u0,(1.3)

in a smooth bounded domain Ω ∈ R2 over a long time. In estimating the error
of numerical methods the Gronwall inequality is used in dealing with the nonlinear
convection term and the pressure p term. Then a factor exp(Ct) (C > 0) usually
appears in the error bound. This is a difficulty in that usual analysis techniques
do not work in studying long time approximations of the Navier–Stokes equations.
Another computational difficulty of the Navier–Stokes equations is to maintain the
incompressibility constraint divu = 0 over a long time.

Various techniques have been developed to overcome some of the above difficul-
ties. The dissipative term ν∆u is usually used to control the nonlinear convection
term and the pressure term. Then the Reynolds number has to be restricted to be
quite low in order to have enough dissipation. The projection method may be a widely
used method in dealing with the incompressibility constraint. However, in the case
of a no-slip boundary only normal velocity is enforced in the projection formulation.
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LONG TIME NUMERICAL SOLUTION 399

The tangential velocity is not enforced in the formulation and may cause a slip error
in a long time simulation. Another method is to write the Navier–Stokes equations
to a first-order system and then derive a new formulation based on the least squares
minimization of its residual. However, quite a few new variables are introduced in the
formulation which complicate the problem and increase the computational cost. Other
formulations are available in dealing with the above difficulties, for example, a class of
pseudocompressibility methods, which include the penalty method, the artificial com-
pressibility method, etc. (cf. [13, 2, 7, 12, 18]). But the small parameter associated
with these methods introduces extra stiffness into the system, and the incompressibil-
ity constraint is not guaranteed over a long time. In [1, 7, 12], a sequential regulariza-
tion method (SRM) is introduced and analyzed to maintain the incompressibility con-
straint and to solve the unsteady Navier–Stokes equations. In this paper we would like
to study the long time behavior of the method because, in this method, many of the
above issues are resolved or improved. The incompressibility constraint is uniformly
under control in time, while there is no extra stiffness introduced due to the approx-
imate Hodge projection (to be explained in next section) or the built-in Baumgarte
stabilization [1, 7] for the incompressibility constraint. There is no slip error since the
no-slip boundary condition is fully enforced. The pressure term is eliminated/replaced
by a damping term, and then there is no need to control it in the analysis.

The method or formulation reads: given an initial guess p0 and a positive constant
α, for s = 1, 2, 3, . . . , find the solution (us, ps) of the following system:

(us)t + (us ·∇)us = ν∆us −∇ps + f ,(1.4)

(divus)t + divαus = ε(ps−1 − ps),(1.5)

us|∂Ω = 0, us|t=0 = u0.(1.6)

The method is developed from the viewpoint of constrained dynamical systems (cf.
[5, 7]). It is a combination of the penalty method (cf. [14, 15]) and the Baumgarte
time stabilization (cf. [1, 7]) for the constraint. It may be seen as an extension of the
augmented Lagrangian method or the iterative penalty method for unsteady Navier–
Stokes equations (cf. [3]). It may also be seen as an approximate Helmholtz–Hodge
projection, which will be explained later. Unlike the penalty method the parameter
ε is not necessarily very small, and thus the reformulated system is more stable or
less stiff (see [7, 12] or the convergence estimate (3.10) later). It approximates the
incompressibility constraint better than the penalty method. Roughly speaking we
expect from (1.5) and (3.10) that the divergence of the velocity us is of O(εs) and
the bound may be independent of the time. From the regularity point of view, the
method is a more natural formulation than the penalty formulation for the unsteady
Navier–Stokes equations (see [12] for more details). This method also decouples the
velocity and the pressure. We can eliminate ps from the system, solve an equation
only with unknown us, and then recover ps from (1.5). When we eliminate ps from
system (1.4)–(1.6), we obtain an equation only with the unknown us. Let us omit
the iteration index s and rewrite f −∇ps−1 as f ; the equation can be written in the
following form:

ut −
1

ε
∇div(ut + αu) − ν∆u + (u ·∇)u = f ,(1.7)

u|∂Ω = 0, u|t=0 = a.(1.8)

In [12], we consider (1.4)–(1.6) in a finite time interval [0, T ] and obtain the
existence and regularity of the solution as well as the error estimates of the SRM.
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For some flow problems, we need to compute the solution over a very long time, for
instance, the steady state solution of driven cavity flow. It is necessary to study the
long time behavior of this formulation and extend the results in [12] over a long time.

This paper will be organized as follows. We will relate the SRM to an approxi-
mate Helmholtz–Hodge projection and give another explanation/understanding of the
method in section 2. Some preliminaries such as notations and assumptions will be
given there as well. In sections 3 and 4, we establish energy inequalities and error esti-
mates for the continuous equations and the temporal discrete equations, respectively.
A couple of long time flow examples will be computed in section 5.

2. Approximate Helmholtz–Hodge projection and the SRM. The SRM
can be explained as an approximate Helmholtz–Hodge projection. Let P :
L2(Ω,RN ) → (∇H1(Ω))⊥ denote the Helmholtz–Hodge projection onto vector fields
that are divergence-free and have zero normal component on the boundary. In prin-
ciple we may define Pu = u − ∇φ, where φ satisfies ∆φ = divu, ∂u

∂n = u · n, and∫
Ω φdx = 0. One may apply P to both sides of (1.1) and obtain

(2.1) ut + P(u ·∇u − f) = νP∆u.

The dissipation in (2.1) appears degenerate due to the fact that P annihilates gradi-
ents. So the analysis of (2.1) is usually restricted to a divergence-free space. How-
ever, for the stability of numerical computation, some additional damping effects to
the divergence need to be added [9]. In this formulation, solutions formally satisfy
∂t(divu) = 0. Consequently the divergence-free condition (1.2) needs to be imposed
only on the initial data. However, when a numerical perturbation applies, weak in-
stability to the divergence-free condition may occur. In addition, the projection P
may not be easily implemented numerically. To overcome these difficulties with the
projection, we can do the following.

We introduce an approximate/desingularized projection operator Pε by Pεu :=
u −∇φε, where φε satisfies ∆φε − εφε = divu and ∂φε

∂n = u · n. We can then verify

(2.2)

(
I − ∇div

ε

)
Pεu = u, Pεu · n|∂Ω = 0.

Thus we can denote P−1
ε = (I − ∇div

ε ), which is a local operator asking no additional
boundary conditions. Now, replacing P by Pε and taking the inverse operator yields
an approximate Navier–Stokes equation:

ut + Pε(u ·∇u − f) = νPε∆u

or
(
I − ∇div

ε

)
ut + u ·∇u = ν∆u + f .

It is then the SRM (1.7) if adding a damping term −α
ε ∇divu to the left-

hand side of above equation (accordingly to adding −P α
ε ∇divu = 0 to (2.1)). It

is (1.7), which will be discussed in this paper. From (1.5) the divergence of u will
not drift too much away from zero as the time goes. Therefore, this formulation has
better stability.

The divergence of the projected solution is uniformly controlled due to the fol-
lowing identity (obtained from (2.2)):

‖Pεu‖2 +
2

ε
‖divPεu‖2 +

1

ε2
‖∇divPεu‖2 = ‖u‖2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LONG TIME NUMERICAL SOLUTION 401

Here and in what follows we used notations ‖·‖ and ‖·‖m as the norms for L2 and Hm,
respectively. Unlike the penalty method, there is no additional time step restriction.
From the definition of P and Pε earlier, we can have

‖(P − Pε)u‖ ≤ Cε‖u‖,

which justifies the approximation to the Navier–Stokes equation as well. The approx-
imate Helmholtz projection can also be viewed as a regularization to the Helmholtz
projection. The Fourier symbol for P is represented by P̂ = I− %ξ%ξ!

‖%ξ‖2
, while the symbol

for Pε is a desingularized one:

P̂ε = I −
&ξ&ξ'

‖&ξ‖2 + ε
.

Simple computation shows that the symbol of its inverse is given by

P̂−1
ε = I +

&ξ&ξ'

ε
,

which again agrees with P−1
ε = I − ∇div

ε .
It is known that the solution of the Navier–Stokes equation is regular up to an

arbitrary time interval in a two-dimensional domain (cf. [16, 17]). More precisely,
consider two conditions:

‖u0‖1 ≤ N1,

∫ ∞

0
‖f(·, t)‖2dt ≤ N1, divu0 = 0,(2.3)

‖u0‖2 ≤ N2, sup
0<t<∞

‖f(·, t)‖ ≤ N2,

∫ ∞

0
‖ft‖2dt ≤ N2.(2.4)

If condition (2.3) holds, then there exists a constant M1 which depends on N1 such
that

(2.5) sup
0<t<∞

‖u‖2
1 +

∫ ∞

0

(
‖u‖2

2 + ‖∇p‖2 + ‖ut‖2
)
dt ≤ M1.

If conditions (2.3) and (2.4) hold, then there exists a constant M2 which depends on
N1 and N2 such that

(2.6) sup
0<t<∞

(‖u‖2 + ‖ut‖ + ‖∇p‖) ≤ M2.

For the sequential regularized reformulation, we have similar results for (1.7)–
(1.8); i.e., if we assume that (2.3) holds, then there exists a constant M1 such that

(2.7) sup
0<t<∞

‖u‖2
1 +

∫ ∞

0

(
‖ut‖2 +

1

ε2
‖∇divut‖2 +

1

ε2
‖∇divu‖2 + ‖u‖2

2

)
ds ≤ M1.

If (2.3) and (2.4) hold, then there exists a constant M2 such that

(2.8) sup
0<t<∞

(
1

ε2
‖∇divut‖2 +

1

ε2
‖∇divu‖2 + ‖u‖2

2 + ‖ut‖2

)
≤ M2.

Since the pressure can be recovered by divut+αdivu, the same bound for pressure
follows. The key part in the proof is Lemma 3.2, which is similar to Lemma 4.1 in [12]
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but holds uniformly in time. Based on these results, we can extend the error estimation
in [12] to any time interval. Therefore, this sequential regularization formulation is
suitable for long time computations. The numerical results in the last section will
also demonstrate this claim.

Next we introduce a few operators for the treatment of the nonlinear convection
term. Let

B(u,v) = (u ·∇)v, B̄(u,v) = B(u,v) +
1

2
(divu)v,

b(u,v,w) = (B(u,v),w), b̄(u,v,w) = (B̄(u,v),w).

One can easily check

b̄(u,v,w) =
1

2
{b(u,v,w) − b(u,w,v)} ∀u,v,w ∈ H1

0(Ω).

Therefore,

b̄(u,v,v) = 0 ∀u,v ∈ H1
0(Ω).

For the trilinear form b (or b̄), we can prove the following inequality by combination
of integration of parts, the Hölder inequality, and the Sobolev inequality (see, for
instance, [17])

(2.9) |b(u,v,w)| ≤ C






‖u‖1‖v‖1‖w‖1

‖u‖2‖v‖1‖w‖
‖u‖1‖v‖2‖w‖.

Moreover, if Ω ∈ R2, we have the following:

(2.10) |b(u,v,w)| ≤ C‖u‖ 1
2 ‖u‖

1
2
1 ‖v‖

1
2
1 ‖v‖

1
2
2 ‖w‖ ∀v ∈ H2 ∩ H1

0,u ∈ H1
0,w ∈ L2,

where the trilinear form b can be replaced by b̄. In what follows we will replace B by
B̄. Hence (1.7)–(1.8) become

ut −
1

ε
∇div(ut + αu) − ν∆u + B̄(u,u) = f ,(2.11)

u|∂Ω = 0, u|t=0 = u0.(2.12)

We remark here that we can also replace B by ω×u based on the identity (u ·∇)u =
ω×u +∇ |u|2

2 , where ω is the vorticity ∇×u and the second term on the right-hand
side may be absorbed into the pressure (see [10, 19]). Our analysis may be carried
out for this form as well.

3. A priori estimations. We first assume that the solution of (2.11)–(2.12)
exists and then establish an a priori estimation. We will give a basic energy estima-
tion sup0<t<∞ ‖u‖2 +

∫∞
0 ‖u‖2

1dt and a strong solution estimation sup0<t<∞ ‖u‖2
1 +∫∞

0 ‖u‖2
2dt in Theorem 3.3 and then obtain a higher-order regularity estimation

sup0<t<∞ ‖u‖2
2 in Theorem 3.4.

Since we consider an arbitrary long time interval [0, T ], we need to improve the
solution estimates in [12] such that the choice of ε and the bound of solution do not
depend on the time length T . The following two Lemmas 3.1 and 3.2 play an essential
role in obtaining a time-independent estimation.
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Lemma 3.1. Let X be a Banach space, let f : (0,∞) → X be a vector value
function which satisfies

∫∞
0 ‖f(t)‖2dt < +∞, and let α be a positive constant; then

we have
∫ T

0

[∫ t

0
‖f(s)‖eα(s−t)ds

]2

dt ≤ 1

α2

∫ T

0
‖f(s)‖2ds,(3.1)

sup
0<t<T

[∫ t

0
‖f(s)‖eα(s−t)ds

]2

≤ 1

α2
sup

0<t<T
‖f(t)‖2.(3.2)

Proof. We apply the Cauchy–Schwarz inequality and change the integration order
to obtain

∫ T

0

[∫ t

0
‖f(s)‖eα(s−t)ds

]2

dt =

∫ T

0
e−2αt

[∫ t

0
‖f(s)‖eαs/2eαs/2ds

]2

dt

≤
∫ T

0
e−2αt

[∫ t

0
‖f(s)‖2eαsds

] [∫ t

0
eαsds

]
dt

≤ 1

α

∫ T

0
e−αt

∫ t

0
‖f(s)‖2eαsdsdt

=
1

α

∫ T

0
‖f(s)‖2eαs

∫ T

s
e−αtdtds

≤ 1

α2

∫ T

0
‖f(s)‖2ds

and

sup
0<t<T

[∫ t

0
‖f(s)‖eα(s−t)ds

]2

≤ sup
0<t<T

e−2αt

[∫ t

0
‖f(s)‖2eαsds

] [∫ t

0
eαsds

]

≤ sup
0<t<T

1

α
e−αt

∫ t

0
‖f(s)‖2eαsds

≤ sup
0<t<T

1

α
e−αt

∫ t

0

(
sup

0<s<t
‖f(s)‖2

)
eαsds

≤ sup
0<t<T

1

α2
sup

0<s<t
‖f(s)‖2

=
1

α2
sup

0<t<T
‖f(t)‖2.

Lemma 3.2. Define an operator Au = − 1
ε∇div(ut+αu)−ν∆u, where the initial

data u0 is divergence-free. Then there exist a ε0 and a constant C, only depending on
the domain Ω, α, and ν, such that ∀ε ≤ ε0, we have

∫ t

0

(
1

ε2
‖∇divut‖2 +

1

ε2
‖∇divu‖2 + ‖∆u‖2

)
dt ! C

∫ t

0
‖Au‖2dt,(3.3)

sup
0<t<T

(
1

ε2
‖∇divut‖2 +

1

ε2
‖∇divu‖2 + ‖∆u‖2

)
≤ C sup

0<t<T
‖Au‖2.(3.4)

Proof. Define w = Au, p = − 1
εdiv(ut +αu), and g = divu. First we solve g from

the ODE

gt + αg = −εp
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with initial condition g(0) = divu0 = 0. The solution is

g(t) = −ε

∫ t

0
p(s)eα(s−t)ds.

Let (u, p) satisfy the nonhomogeneous Stokes equation

−ν+u + ∇p = w,

divu = g.

Then using the estimation for the nonhomogeneous Stokes equation (cf. [16]), we have

(3.5) ‖u‖2
2 + ‖∇p‖2 ≤ C0(‖w‖2 + ‖∇g‖2),

where the constant C0 only depends on the domain Ω and ν. We now work out a few
inequalities between g and p by using Lemma 3.1:

∫ T

0
‖∇g‖2 ≤ ε2

∫ T

0

[∫ t

0
‖∇p(s)eα(s−t)‖ds

]2

dt ≤ ε2

α2

∫ T

0
‖∇p‖2dt,(3.6)

sup
0<t<T

‖∇g(t)‖2 ≤ ε2 sup
0<t<T

[∫ t

0
‖∇p‖eα(s−t)ds

]2

≤ ε2

α2
sup

0<t<T
‖∇p(t)‖2.(3.7)

Now we are ready to prove the results of this lemma. Take the integration from 0 to
T for the inequality (3.5), and we have

∫ T

0

(
‖u‖2

2 + ‖∇p‖2
)
dt ≤ C0

∫ T

0

(
‖w‖2 + ‖∇g‖2

)
dt

≤ C0

∫ T

0
‖w‖2dt + C0

ε2

α2

∫ T

0
‖∇p‖2dt.

Take the sup for both sides of the inequality (3.5), and we have

sup
0<t<T

(
‖u‖2

2 + ‖∇p‖2
)
≤ C0 sup

0<t<T

(
‖w‖2 + ‖∇g‖2

)
dt

≤ C0 sup
0<t<T

‖w‖2 + C0
ε2

α2
sup

0<t<T
‖∇p‖2.

Define ε0 = α√
2C0

, and then for all ε ≤ ε0, we have

∫ T

0

(
‖u‖2

2 + ‖∇p‖2
)
dt ≤ 2C0

∫ T

0
‖w‖2dt,

sup
0<t<T

(
‖u‖2

2 + ‖∇p‖2
)
≤ 2C0 sup

0<t<T
‖w‖2.

Then we notice that
∫ T

0

1

ε2
‖∇divu‖2ds =

∫ T

0

1

ε2
‖∇g‖2ds ≤ 1

α2

∫ T

0
‖∇p‖2ds,

∫ T

0

1

ε2
‖∇divut‖2ds =

∫ T

0

1

ε2
‖∇gt‖2ds =

∫ T

0

1

ε2
‖ε∇p + α∇g‖2ds ≤ 4

∫ T

0
‖∇p‖2ds,

sup
0<t<T

1

ε2
‖∇divu‖2 = sup

0<t<T

1

ε2
‖∇g‖2 ≤ 1

α2
sup

0<t<T
‖∇p‖2,

sup
0<t<T

1

ε2
‖∇divut‖2 = sup

0<t<T

1

ε2
‖∇gt‖2 ≤ sup

0<t<T

1

ε2
‖ε∇p + α∇g‖2 ≤ 4 sup

0<t<T
‖∇p‖2.

Combining the above inequalities together, we can easily conclude the lemma.
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Remark 3.1. Comparing with a similar lemma in [12], the improvement here is
that the choice of ε and the constant of the bound do not depend on the time interval
T , which implies that we may fix ε in advance and then compute the solution to any
arbitrarily large time.

Next we will consider the modified SRMs (2.11)–(2.12).
Theorem 3.3. For (2.11)–(2.12), we assume (2.3). Then there exist two con-

stants M1 and M2, which only depend on the domain and N1, such that

sup
0<t<∞

(
‖u‖2 +

1

ε
‖divu‖2

)
+

∫ ∞

0

(
1

ε
‖divu‖2 + ‖u‖2

1

)
ds ≤ M1,

sup
0<t<∞

‖u‖2
1 +

∫ ∞

0

(
‖ut‖2 +

1

ε2
‖∇divut‖2 +

1

ε2
‖∇divu‖2 + ‖u‖2

2

)
ds ≤ M2.

Proof. Multiplying u for both sides of (2.11), we have

1

2

d

dt
‖u‖2 +

1

2ε

d

dt
‖divu‖2 +

α

ε
‖divu‖2 + ν‖∇u‖2 = (f ,u).

Using the Young inequality and integrating for both sides, we can obtain

‖u‖2 +
1

ε
‖divu‖2 +

∫ t

0

(
1

ε
‖divu‖2 + ‖u‖2

1

)
ds ≤ C1

(
‖u0‖2 +

∫ t

0
‖f‖2

−1ds

)
,

where the constant C1 only depends on the domain Ω, α, and ν. Since the above
inequality holds true for any time t and C1 does not depend on t, it is indeed a
uniform-in-time estimation. We denote M1 = C1(‖u0‖2 +

∫∞
0 ‖f‖2

−1ds) and simplify
the inequality

(3.8) sup
0<t<∞

(
‖u‖2 +

1

ε
‖divu‖2

)
+

∫ ∞

0

(
1

ε
‖divu‖2 + ‖u‖2

1

)
ds ≤ M1.

Then let us fix a time interval (0, T ), where T is arbitrarily chosen. Recall the defini-
tion of operator A in Lemma 3.2. We multiply Au on both sides of (2.11),

1

ε
‖divut‖2 +

α

2ε

d

dt
‖divu‖2 +

ν

2

d

dt
‖∇u‖2 + ‖Au‖2 + b̄(u,u, Au) = (f , Au).

Since we consider the 2D case, we have

b̄(u,u, Au) ≤ C‖u‖1/2‖u‖1‖u‖1/2
2 ‖Au‖ ≤ Cδ‖u‖2‖u‖4

1 + 0.5
(
‖Au‖2 + δ‖u‖2

2

)
.

Define y(t) = 1
ε ‖divu(t)‖2 + ‖∇u(t)‖2 and k(t) = Cδ‖u‖2‖u‖2

1, and obtain

1

ε
‖divut‖2 +

dy

dt
+ ‖Au‖2 ≤ 4‖f‖2 + δ‖u‖2

2 + k(t)y(t).

Then we can obtain by the technique of the Gronwall lemma (letting K(t) =
∫ t
0 k(s)ds)

e−K(t) 1

ε
‖divut‖2 +

de−K(t)y

dt
+ e−K(t)

(
‖Au‖2 − δ‖u‖2

2

)
≤ 4e−K(t)‖f‖2,

y(T ) +

∫ T

0
eK(T )−K(t)

(
‖Au‖2 − δ‖u‖2

2

)
dt ≤ eK(T )

(
4

∫ T

0
‖f‖2dt + y(0)

)
.
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Then noticing that eK(T )−K(t) is monotonically decreasing, choosing δ to be a constant
such that

∫ t
0 ‖Au‖2ds ≥

∫ t
0 2δ‖u‖2

2ds is true for any t (we can choose δ = 1
2C , where

C is the constant in Lemma 3.2), defining G(t) =
∫ t
0 (‖Au‖2 − δ‖u‖2

2)ds, and doing
integration by parts, we have

∫ T

0
eK(T )−K(t)

(
‖Au‖2 − δ‖u‖2

2

)
dt = eK(T )−K(t)G(t)|T0 +

∫ T

0
G(t)eK(T )−K(t)K

′
(t)dt

≥
∫ T

0

(
‖Au‖2 − δ‖u‖2

2

)
dt

≥ 0.5

∫ T

0
‖Au‖2dt.

Let M2 = eC2M
2
1 (
∫∞
0 ‖f(t)‖2dt+ ‖u(0)‖2

1), where C2 only depends on the choice of δ.
Hence

(3.9)
1

ε
‖divu‖2 + ‖u‖2

1 +

∫ T

0
‖Au‖2dt ≤ M2.

Since the choice of δ is uniform for t ∈ (0,∞) and due to (3.8), the above inequality
is uniform-in-time as well. Then we multiply ut on both sides of (2.11) and obtain

‖ut‖2 + (Au,ut) + b̄(u,u,ut) = (f ,ut).

By applying the Young inequality, Lemma 3.2, and inequality (3.9), we can prove this
theorem.

The error between the solutions of the sequential regularization formulation and
the Navier–Stokes equations can be estimated uniformly in time by using Theorem
3.3 and following the technique in [7, 12]. We simply state the result here:

(3.10) sup
0<t<∞

‖u − us‖2
1 +

∫ ∞

0
(‖ut − (us)t‖2 + ‖u − us‖2

2 + ‖∇(p− ps)‖2)dt

≤ (Mε)2s
∫ ∞

0
‖∇(p− p0)‖2dt,

where M is a constant which depends on Ω, ν, α, u0, f , and p0. The proof is exactly
the same as Theorem 2.5 in [12], by noticing that all of the constants in the proof are
uniform in time.

Theorem 3.4. For (2.11)–(2.12), we assume (2.3)–(2.4). Then there exists a
constant M3, which depends on N1 and N2, such that

sup
0<t<∞

(
1

ε2
‖∇divut‖2 +

1

ε2
‖∇divu‖2 + ‖u‖2

2 + ‖ut‖2

)
≤ M3.

Proof. Multiplying ut on both sides of (2.11), we have

(3.11) ‖ut‖2 +
1

ε
‖divut‖2 −

(α

ε
∇divu,ut

)
− (ν∆u,ut) + b̄(u,u,ut) = (f ,ut).

Choosing the time t = 0, applying the Young inequality, and noting that divu(0) = 0,
u(0) ∈ H2, and f ∈ L∞(L2), we have

(3.12) ‖ut(0)‖2 +
1

ε
‖divut(0)‖2 ≤ C1.
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Then differentiating (2.11) with respect to time t, we have

(3.13) utt −
1

ε
∇div(utt + αut) − ν∆ut + B̄(u,ut) + B̄(ut,u) = ft.

Multiplying ut on both sides of (3.13) yields

1

2

d

dt
‖ut‖2+

1

2ε

d

dt
‖divut‖2+

α

ε
‖divut‖2+ν‖∇ut‖2+b̄(ut,u,ut)+b̄(u,ut,ut) = (ft,ut).

Using
∣∣b̄(ut,u,ut)

∣∣ ≤ C2‖u‖2
2‖ut‖2 +

ν

4
‖∇ut‖2,

b̄(u,ut,ut) = 0,

(ft,ut) ≤
1

ν
‖ft‖2

−1 +
ν

4
‖∇ut‖2,

and defining y(t) = ‖ut‖2 + 1
ε ‖divut‖2, we have

dy

dt
+

1

ε
‖divut‖2 + ‖∇ut‖2 ≤ C3

(
‖u‖2

2y(t) + ‖ft‖2
−1

)
.

Applying the Gronwall inequality, we obtain

y(t) +

∫ t

0

(
1

ε
‖divut‖2 + ‖ut‖2

1

)
dt ≤ C4

(∫ t

0
‖ft‖2

−1dt + y(0)

)
.

Using inequality (3.12) to control the right-hand side of the above inequality, we have
the estimation for ‖ut‖2, i.e.,

(3.14) ‖ut‖2 +
1

ε
‖divut‖2 +

∫ t

0

(
1

ε
‖divut‖2 + ‖ut‖2

1

)
dt ≤ C4 ∀ t ∈ (0,∞).

Then multiplying Au on both sides of (2.11), we have

(3.15) (ut, Au) + ‖Au‖2 + b̄(u,u, Au) = (f , Au).

Since

|(ut, Au)| ≤‖ ut‖2 +
1

4
‖Au‖2,

(f , Au) ≤ ‖f‖2 +
1

4
‖Au‖2,

|b(u,u, Au)| ≤ Cδ‖u‖6
1 + δ‖u‖2

2 +
1

4
‖Au‖2,

we have

1

4
‖Au‖2 ≤ ‖ut‖2 + Cδ‖u‖6

1 + δ‖u‖2
2 + ‖f‖2.

We can choose δ = 1
2C , where C is the constant in Lemma 3.2, and then take the sup

for both sides of the above inequality. Using Lemma 3.2 and noticing that ‖u‖1, ‖f‖,
and ‖ut‖ are bounded, we have

(3.16) sup
0<t<∞

‖Au‖ ≤ M3,

where the constant M3 is uniform-in-time. Finally applying Lemma 3.2, we obtain
the estimation of each term in the lemma.
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4. Time discretization. Let us consider the time discretization of (2.11) by
the semi-implicit scheme:

un+1 − un

+t
− 1

ε
∇ div

(
un+1 − un

+t
+ αun+1

)

−ν+un+1 + B̄
(
un,un+1

)
= fn+1,(4.1)

u|∂Ω = 0, u0 = u0,(4.2)

where tn = n+t and fn = 1
*t

∫ tn+1

tn
f(τ)dτ .

Lemma 4.1. Let an and bn be two sequences in a Banach space which satisfy

(1 + αh)an − an−1 = hbn, a0 = 0,

where α and h are two positive constants. We have the inequalities

N∑

n=1

‖an‖2 ≤ 1

α2

N∑

n=1

‖bn‖2,

sup
1≤n≤N

‖an‖2 ≤ 1

α2
sup

1≤n≤N
‖bn‖2

for all integers N > 0.
Proof. First we express an in terms of bi by induction:

an =
h

1 + αh
bn +

1

1 + αh
an−1 =

n∑

i=1

hbi
(1 + αh)n+1−i

.

By the Holder inequality

‖an‖2 =
h2

(1 + αh)2n+2

∥∥∥∥∥

n∑

i=1

bi(1 + αh)i

∥∥∥∥∥

2

≤ h2

(1 + αh)2n+2

n∑

i=1

‖bi‖2(1 + αh)i
n∑

i=1

(1 + αh)i

≤ h

α(1 + αh)n+1

n∑

i=1

‖bi‖2(1 + αh)i.

Hence

N∑

n=1

‖an‖2 ≤
N∑

n=1

n∑

i=1

h

α(1 + αh)n+1
‖bi‖2(1 + αh)i

=
N∑

i=1

N∑

n=i

h

α(1 + αh)n+1
‖bi‖2(1 + αh)i

≤
N∑

i=1

1

α
‖bi‖2

∞∑

n=1

(
1

1 + αh

)n

=
1

α2

N∑

i=1

‖bi‖2,
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and

‖an‖2 ≤ h

α(1 + αh)n+1

n∑

i=1

(1 + αh)i sup
1≤i≤n

‖bi‖2

≤ 1

α2
sup

1≤i≤N
‖bi‖2.

Then this lemma follows by taking the sup for both sides of the inequality.
Lemma 4.2. Assume that the time step is +t. Let N be any positive integer.

Define Aun+1 = − 1
ε∇div(un+1−un

*t + αun+1) − ν+un+1, n = 1, 2, 3, . . . , and u0 =

u(0). Then there exist a constant ε0, which depends on Ω, α and ν, such that, when
ε ≤ ε0, we have

+t
N∑

n=1

(
‖un‖2

2 +
1

ε2
‖∇divun‖2 +

1

ε2

∥∥∥∥∇div
un − un−1

+t

∥∥∥∥
2
)

≤ C+t
N∑

n=1

‖Aun‖2,

sup
1≤n≤N

(
‖un‖2 +

1

ε
‖∇divun‖ +

1

ε

∥∥∥∥∇div
un − un−1

+t

∥∥∥∥

)
≤ C sup

1≤n≤N
‖Aun‖,

where the constant C does not depend on the choice of ε and N .
Proof. Define wn = Aun, pn = − 1

εdiv(un−un−1

*t + αun), and gn = divun; then

−ν+un + ∇pn = wn,

divun = gn,

and

(1 + α+t)gn − gn−1 = −ε+tpn.

We have the inequality for the Stokes equations (see (3.5))

(4.3) ‖un‖2
2 + ‖∇pn‖2 ≤ C0

(
‖wn‖2 + ‖∇gn‖2

)
.

Since un satisfies the homogeneous Dirichlet boundary condition, we can choose the
Banach space as H1∩L2

0 with the norm ‖∇f‖2, and notice that u(0) is divergence-free;
then we apply Lemma 3.1,

N∑

n=1

‖∇gn‖2 ≤ ε2

α2

N∑

n=1

‖∇pn‖2,

sup
1≤n≤N

‖∇gn‖2 ≤ ε2

α2
sup

1≤n≤N
‖bn‖2.

Sum up inequality (4.3),

+t
N∑

n=1

(
‖un‖2

2 + ‖∇pn‖2
)
≤ C0+t

N∑

n=1

(
‖wn‖2 + ‖∇gn‖2

)

≤ +t
N∑

n=1

(
C0‖wn‖2 +

C0ε2

α2
‖∇pn‖2

)
,
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and take the sup of (4.3),

sup
1≤n≤N

(
‖un‖2

2 + ‖∇pn‖2
)
≤ C0 sup

1≤n≤N

(
‖wn‖2 + ‖∇gn‖2

)

≤ C0 sup
1≤n≤N

(
‖wn‖2 +

C0ε2

α2
sup

1≤n≤N
‖∇pn‖2

)
.

Let ε0 = α
2
√
C0

. Then ∀ε ≤ ε0, we have

+t
N∑

n=1

(
‖un‖2

2 + ‖∇pn‖2
)
≤ 2C0+t

N∑

n=1

‖wn‖2,

sup
1≤n≤N

(
‖un‖2

2 + ‖∇pn‖2
)
≤ 2C0 sup

1≤n≤N
‖wn‖2.

Notice that

+t
N∑

n=1

1

ε2
‖∇divun‖2 = +t

N∑

n=1

1

ε2
‖∇gn‖2 ≤ +t

α2

N∑

n=1

‖∇pn‖2,

+t
N∑

n=1

1

ε2

∥∥∥∥∇div

(
un − un−1

+t

)∥∥∥∥
2

= +t
N∑

n=1

∥∥∥
α

ε
∇divun + ∇pn

∥∥∥
2
≤ 4+t

N∑

n=1

‖∇pn‖2,

sup
1≤n≤N

1

ε2
‖∇divun‖2 = sup

1≤n≤N

1

ε2
‖∇gn‖2 ≤ sup

1≤n≤N

1

α2
‖∇pn‖2,

sup
1≤n≤N

1

ε2

∥∥∥∥∇div

(
un − un−1

+t

)∥∥∥∥
2

= sup
1≤n≤N

∥∥∥
α

ε
∇divun + ∇pn

∥∥∥
2
≤ 4 sup

1≤n≤N
‖∇pn‖2.

Combining all of the above inequalities together, we have the lemma.
Lemma 4.3. For (4.1), if we assume (2.3)–(2.4), then there exist constants M1,

which depends on N1, and M2, which depends on N1 and N2, such that

sup
n

‖un‖2
1 + +t

∞∑

1

(
‖ui‖2

2 + ‖∇divui‖2 +

∥∥∥∥∇div
ui − ui−1

+t

∥∥∥∥
2

+

∥∥∥∥
ui − ui−1

+t

∥∥∥∥
2
)
≤ M1,

sup
n

‖un‖2 ≤ M2.

Proof. We will follow the proof of Lemmas 3.3 and 4.5 of [12]. First we notice
that conditions (2.3)–(2.4) imply

+t
∞∑

n=0

‖fn‖2 ≤ N1, sup
0≤n<∞

‖fn‖2 ≤ N2, +t
∞∑

n=0

∥∥∥∥
fn+1 − fn

+t

∥∥∥∥
2

≤ N2.

Multiplying un+1 on both sides of (4.1) and using identity (b−a, b) = 1
2 (‖b‖2−‖a‖2 +

‖b− a‖2), we obtain

(4.4) ‖un‖2 +
1

ε
‖divun‖2 + +t

∞∑

0

(
1

ε
‖divun‖2 + ‖un‖2

1

)
≤ C1.

Then we multiply Aun+1 on both sides of (4.1), define yn = 1
ε ‖divun‖ + ‖un‖2

1,
kn = ‖un‖2‖un+1‖2

1, and we have

yn+1 − yn

+t
+
∥∥Aun+1

∥∥2 ≤ δ
∥∥un+1

∥∥2

2
+ Cδ

(
knyn +

∥∥fn+1
∥∥2

)
.
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We let δ be suitably small such that δ
∑N

1 ‖u‖2
2 ≤ 0.5

∑N
1 ‖Aun‖2 holds for all N (one

choice is δ = 1
2C , where C is constant in Lemma 4.2) and denote Kn = Πn

0 (1+Cδ+tki),
an = 0.5+t‖Aun‖2, bn = +t(0.5‖Aun‖2 − δ‖u‖2

2), and dn = Cδ+t‖fn‖2. Then we
can rewrite the above inequality as

yn+1 + an+1 + bn+1 ≤ Kn

Kn−1
yn + dn+1.

By eliminating y1, y2, . . . , yn from above the inequalities, we obtain

yn+1 +
n+1∑

1

ai + Kn
n+1∑

1

bi

Ki−1
≤ Kny0 + Kn

n+1∑

1

di.

Using identity

n+1∑

1

bi

Ki−1
=

1

Kn

n+1∑

i=1

bi +
n∑

i=2




(

1

Ki−1
− 1

Ki

) i∑

j=1

bj



 +
b1

K1

and noticing that Kn is monotone increasing,
∑i

j=1 b
j ≥ 0, we conclude that

(4.5)
1

ε
‖divun‖2 + ‖u‖2

1 + +t
N∑

1

‖Aun‖2 ≤ M1.

Multiplying un+1−un

*t on both sides of (4.1), applying Lemma 4.2 and the above in-
equality, and noticing that the choice of N does not affect the constant on the right-
hand side, we have

(4.6)

sup
n

‖un‖2
1++t

∞∑

1

(
‖un‖2

2 + ‖∇divun‖2+

∥∥∥∥∇div
un − un−1

+t

∥∥∥∥
2

+

∥∥∥∥
un − un−1

+t

∥∥∥∥
2
)
≤ M1.

Finally, the proof of the second inequality ‖u‖2 ≤ M2 can be similarly done (cf.
Lemma 4.5 of [12]).

In addition the existence and uniqueness of the solution to (2.11)–(2.12) can be
shown after we obtain a priori estimates for the time discrete solution (i.e., Lemma
4.3). We ignore the proof here since the steps are similar to those in [12] for the finite
time case.

Define the error function en = un − u(tn); then en satisfies

(4.7)

en+1 − en

+t
− 1

ε
graddiv

(
en+1 − en

+t
+ αen+1

)
− ν+en+1

+ B̄(un,un+1) − B̄(u(tn+1),u(tn+1)) = rn+1,

where initial data e0 = 0 and the remainder term

rn+1 =
1

+t

∫ tn+1

tn

(η − tn)

[
utt(η) − 1

ε
graddivutt(η)

]
dη.

To obtain the full first-order error estimation, we need the remainder to be bounded;
i.e.,

(4.8)
∞∑

1

‖rn‖2 ≤ C+t2.
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Theorem 4.4. Assume conditions (2.3)–(2.4) and (4.8); we can obtain error
estimates of en,

sup
0≤n<∞

‖en‖2
1 + +t

∞∑

0

(
1

ε2
‖∇diven‖2 + ‖en‖2

2

)
≤ C+t2.

Proof. Since the proof is almost same as Theorem 4.6 of [12], we give a sketch
here. Due to the bilinear property of B̄, we have

B̄
(
un,un+1

)
− B̄(u(tn+1),u(tn+1))

= B̄
(
un − un+1,un+1

)
+ B̄

(
un+1, en+1

)
+ B̄

(
en+1,u(tn+1)

)
.

Then multiplying en+1 on both sides of (4.7), we obtain

sup
0≤n<∞

‖en‖2 + +t
∞∑

0

(
1

ε
‖diven‖2 + ‖en‖2

1

)
≤ C1+t2.

Then we multiply Aen+1 on both sides of (4.7) and notice ‖u(t)‖2 and ‖un‖2 to be
uniformly bounded; we can conclude the result.

Remark 4.1. By the same proof of Lemma 4.3 in [12], we can extend the result
to a large time interval; i.e., with the same condition (we will simplify the condition
(∗)g = f(0) + ν+u0 − B̄(u0,u0) ∈ H1 later) of Lemma 4.3 in [12], we have

(4.9) sup
0<t<∞

‖ut‖2
1 +

∫ ∞

0

1

ε2
‖∇divutt‖2 + ‖ut‖2

2 + ‖utt‖2dt ≤ C.

From the above estimation and Remark 4.1 in [12], we know that the condition (∗)
and inequality (4.8) are true when the global compatibility condition holds (cf. [6]).
For simplicity, we just assume this global compatibility holds.

Now we can compare the time discrete solution for the sequential regularization
formulation with the solution for the Navier–Stokes equations. We denote s as the
SRM index and n as the time index (see the detail of this implementation in sec-
tion 5.1). We combine inequality (3.10) with Theorem 4.4 and obtain the following
estimation.

Theorem 4.5. Assume conditions (2.3)–(2.4) and the global compatibility con-
dition at t = 0. Let ui

s and u be the solutions to the time discrete sequential regular-
ization reformulation and the original Navier–Stokes equation, respectively. Then we
have

‖un
s − u(tn)‖2

1 + +t
n∑

0

(
1

ε2
∥∥∇div

(
ui
s − u(ti)

)∥∥2
+
∥∥ui

s − u(ti)
∥∥2

2

)

≤ C
(
+t2 +

(
Mε2

)s)
.

Proof. We only need to check if all of the conditions for inequality (3.10) and
Theorem 4.4 are satisfied. Since the sequential regularization formulation replaces
the external force f by f −∇ps at the (s+ 1)st step of the SRM iteration, we need to
check the following inequalities:

∫ ∞

0
‖∇ps‖2dt ≤ Cs,(4.10)

sup
0<t<∞

‖∇ps‖ +

∫ ∞

0
‖∇(ps)t‖2dt ≤ Cs,(4.11)
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where Cs is a constant which does not depend on ε. The case of s = 0 is not a problem
since we can choose p0 freely. When s = 1, 2, 3, . . . , we have ps = ps−1 − 1

ε (div(us)t +
αdivus) from (1.5). Hence we just need to show that

∫ ∞

0

∥∥∥∥
1

ε
∇div(us)t

∥∥∥∥
2

+

∥∥∥∥
1

ε
∇divus

∥∥∥∥
2

dt ≤ Cs,(4.12)

sup
0<t<∞

(∥∥∥∥
1

ε
∇div(us)t

∥∥∥∥ +

∥∥∥∥
1

ε
∇divus

∥∥∥∥

)

+

∫ ∞

0

∥∥∥∥
1

ε
∇div(us)tt

∥∥∥∥
2

+

∥∥∥∥
1

ε
∇div(us)t

∥∥∥∥
2

dt ≤ Cs.(4.13)

By mathematical induction, inequality (4.12) is simply a corollary of Theorem 3.3,
and inequality (4.13) is a corollary of Theorem 3.4 and estimation (4.9).

Remark 4.2. The analysis in this chapter is based on a semi-implicit scheme.
In practice we are also interested in the fully explicit treatment of the nonlinear
convection term. If ‖un‖ is uniformly bounded for n, the theorem in this chapter is
also true for the fully explicit treatment of the nonlinear convection term. Without
any specific assumption, ‖un‖ only remains bounded in a short time interval (see
Lemma 3.5 in [12]). But in practice, the velocity of many flow problems is stably
away from blow up. And since the fully explicit treatment is easier to implement, we
will use it in the next chapter. For other schemes, for example, the Crank–Nicolson
scheme, there is no essential difference for analysis, and the accepted order can be
achieved by assuming enough regularity of the solution (see the discussion in [12, 11]).

5. Numerical examples. In this section, we will present results of numerical
experiments of long time simulation of two-dimensional viscous flows.

5.1. Implementation. Let Vh be the finite element space; the full discrete
scheme of SRM can be represented as follows: given an initial guess pn0 , where n =
0, 1, 2, . . . , for s = 1, 2, . . . , we solve (un+1

s , pn+1
s ) from the system

(
un+1
s − un

s

+t
,v

)
+

1

ε

(
div

un+1
s − un

s

+t
,divv

)
+

α

ε

(
divun+1

s ,divv
)

+ν
(
∇un+1

s ,∇v
)

+ b̄ (un
s ,u

n
s ,v) =

(
fn+1
s ,v

)
−
(
pn+1
s−1 ,divv

)
∀v ∈ Vh,

pn+1
s =

1

ε

(
div

un+1
s − un

s

+t
+ αdivun+1

s

)
.

The above scheme is as follows: starting from s = 0 for each n, find un
1 and pn1 at

time tn, and then repeat this procedure to find un
2 , pn2 , and so on. Since we need to

store the values of un
1 and pn1 for all n time steps before the next SRM iteration, the

storage may be very expensive since we compute the solution to a very long time.
It is not what we do in practice. This difficulty can be overcome by an equivalent
implementation.

We make an observation: the solution (un+1
s , pn+1

s ) only depends on un
s and pn+1

s−1 .
Now fix the number of iterations in advance according to the accuracy requirement
(numerical experiments indicate that s = 3 or 4 may be enough in most cases). Since
the initial guess pn0 and the initial data u0

s are known, we can rearrange the order of
the computation as follows. Starting from n = 1, find (u1

1, p
1
1) by using information

p1
0 and u0

1, and find (u1
2, p

1
2) by using information p1

1 and u0
2, . . . , up to (u1

s, p
1
s). Save

all the data (u1
s, p

1
s), and move to n = 2. Compute (u2

1, p
2
1) by using p2

0 and u1
1 up
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Fig. 5.1. Implementation instruction.

to (u2
s, p

2
s). We can repeat this procedure at all time steps until the terminal time

is reached (cf. [8]). The procedure is illustrated in Figure 5.1. The original SRM is
to do the computation row by row, and the practical one is to do the computation
column by column. It solves the storage problem since we only need to store (un

1 , p
n
1 ),

. . . , (un
s , p

n
s ) with s = 3 or 4 for computations at the next time step n + 1.

At every time step and SRM iteration, we need to solve a PDE of the form

u − 1 + α+t

ε
∇divu − ν+t∆u = g.

Due to the noncommutativity of ∇div and ∆, the fast Poisson solver does not apply
here. We will solve it by a direct solver. Since the equation does not depend on the
time step n and SRM index s, we can discrete this PDE into matrix form and do the
LU or the Choleski factorization at the initial time. This factorization at the later
time would be the same as that of the initial time, and thus we simply do backward
and forward substitutions in computations of all other time steps except the initial
time. This implementation could save a lot of computational time. In our numerical
examples, we will use the P2 finite element for the spatial discretization. Let Ω be a
convex polygon and Th be a quasi-regular triangulation of Ω, where h represents the
maximal diameters of the triangles in the triangulation. Define

Vh =
{
v ∈ C0,v = 0 on ∂Ω, v|Ti is a polynomial of degree ≤ 2

}
.

5.2. Cavity flow. The first example is lid-driven cavity flow in a unit square.
To find out the steady state solution, we use time-dependent Navier–Stokes equations
and compute them to a long time. The external force is f = 0, and the boundary
condition is u = (1, 0) at the top side of the square u = 0 at the other three sides. We
choose α = 1, +t = 0.005, ε = 0.01, s = 3, and the P2 element on a 13748 triangular
mesh. We do the computation for Reynolds numbers Re = 1000 and Re = 5000,
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Fig. 5.2. Streamline, Re = 1000.
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−1e−001e
−0

06

1e
−0

05

5e
−0

05

0.00010.
00

02
5

0.
00

05

0.
00

1

−1e−005
−0.0001

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 5.4. Right eddy, Re = 1000.

respectively. We will compare the computational results with the benchmark solution
in [4] as well.

• Re = 1000. The solution approaches the steady state around T = 100. Figure
5.2 is the streamline profile. There are three eddies in the streamline figure.
We zoom in on the left and the right eddies in Figures 5.3 and 5.4 and depict
the value of the velocity u at vertical line x = 0.5 and v at horizontal line
y = 0.5 in Figures 5.5 and 5.6, respectively.

• Re = 5000. When Reynolds number is larger, we must compute the solution
to a longer time T to ensure that the flow approaches steady state. Meanwhile
we need to choose a smaller time step +t to maintain the stability. It increases
the computational cost. We can use the steady state solution at a smaller
Reynolds number as our initial condition to reduce the computational time.
Figure 5.7 is the streamline profile. There are four eddies in the streamline
figure. Figures 5.8, 5.9, and 5.10 are zoomed figures of the left bottom eddy,
right bottom eddy, and left top eddy, respectively. Figures 5.11 and 5.12
depict the value of u at vertical line x = 0.5 and v at horizontal line y = 0.5,
respectively.

5.3. Flow past a cylinder. The second example is flow past a cylinder. The
domain is unbounded. It is not possible to do numerical computation in an infinite
domain, so we must do a truncation. The computational domain is a rectangle exclud-
ing a disk (the cross section of the cylinder) inside. The x coordinate of the rectangle
is from 0 to 50, the y coordinate is from −4 to 4, and the disk is centered at (4, 0)
with diameter 1. The boundary condition can be represented as follows: the inflow
at the left side has a constant velocity which is parallel to the x-axis (u = (1, 0));
the flow at the upper and lower boundaries is parallel to the x-axis, and its velocity
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Fig. 5.5. u(0.5, y), Re = 1000.
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Fig. 5.6. v(x, 0.5), Re = 1000.
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Fig. 5.7. Streamline, Re = 5000.
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Fig. 5.8. Right eddy, Re = 5000.
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Fig. 5.9. Top eddy, Re = 5000.
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Fig. 5.10. Left eddy, Re = 5000.
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Fig. 5.11. u(0.5, y), Re = 5000.
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Fig. 5.12. v(x, 0.5), Re = 5000.
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Fig. 5.13. Flow past disk: geometry and boundary conditions.
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Fig. 5.14. Re = 40, T = 10.
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Fig. 5.15. Re = 100, T = 35.

does not change along the y-direction ( ∂u
∂n = 0, v = 0); the boundary of the disk is a

solid wall with a no-slip boundary condition (u = 0); the outflow at the right side is
imposed by a natural boundary condition (homogeneous Neumann boundary condi-
tion, ∂u

∂n = ∂v
∂n = 0). Figure 5.13 is a diagram for the computational domain and the

boundary conditions. It is well known that the Reynolds number plays a crucial role
in this problem. We will compute the solution with two different Reynolds numbers
(Re = 40 and Re = 100).

• Re = 40. In this case, the flow approaches steady state after a certain time.
Figure 5.14 depicts the streamline after the flow reaches its steady state.
There are two symmetric eddies behind the disk.

• Re = 100. When Re = 100, the flow does not have a steady state. Figures
5.15–5.17 depict the streamlines at different times. From these figures, we
can see how the flow separates.

All of our computational results are pretty close to existing results.
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Fig. 5.16. Re = 100, T = 45.
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Fig. 5.17. Re = 100, T = 60.
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