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Summary. We study a continuum model for epitaxial growth of thin films in which the
slope of mound structure of film surface increases. This model is a diffusion equation for
the surface height profile h which is assumed to satisfy the periodic boundary condition.
The equation happens to possess a Liapunov or “free-energy” functional. This functional
consists of the term |�h|2, which represents the surface diffusion, and− log(1+|∇h|2),
which describes the effect of kinetic asymmetry in the adatom attachment-detachment.
We first prove for large time t that the interface width—the standard deviation of the
height profile—is bounded above by O(t1/2), the averaged gradient is bounded above
by O(t1/4), and the averaged energy is bounded below by O(− log t). We then consider
a small coefficient ε2 of |�h|2 with ε = 1/L and L the linear size of the underlying
system, and study the energy asymptotics in the large system limit ε→ 0. We show that
global minimizers of the free-energy functional exist for each ε > 0, the L2-norm of
the gradient of any global minimizer scales as O(1/ε), and the global minimum energy
scales as O(log ε). The existence of global energy minimizers and a scaling argument
are used to construct a sequence of equilibrium solutions with different wavelengths.
Finally, we apply our minimum energy estimates to derive bounds in terms of the linear
system size L for the saturation interface width and the corresponding saturation time.
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1. Introduction

In a typical layer-by-layer epitaxial growth that begins with a flat substrate, surface
morphological instabilities often occur as the film thickness reaches a critical value.
These instabilities manifest themselves as a sort of spinodal decomposition. As a result,
the nucleation of islands starts and many nuclei appear on the film surface. Such nuclei
evolve into mounds, and the mound structure coarsens. During the coarsening process,
the number of mounds decreases. Experiments and numerical simulations suggest that
the well-characterized lateral size of mounds, λ(t), increases as λ(t) ∝ tn , where t is the
time variable and n > 0 is a constant called the coarsening exponent. The interface width
w(t), which is the standard deviation of the height profile and measures the roughness
of the surface, also increases as w(t) ∝ tβ , where β > 0 is a constant called the growth
exponent. When the finite size of the underlying system becomes effective, the interface
width saturates, and the saturation value ws = ws(L) satisfies that ws(L) ∝ Lα , where
L is the linear size of the underlying system and α > 0 is a constant called the roughness
exponent. The corresponding saturation time ts = ts(L) satisfies the dynamic scaling
law ts(L) ∝ Lz , where z is a constant called the dynamic exponent. In general, z = α/β.
See Figure 1. These scaling laws are often experimentally measurable, and contain much
microscopic information. See [2], [3], [6], [8], [12], [16], [21], [23], [25]–[28], [32]–[37]
and the references therein.

To understand these interesting phenomena, we consider in this work the diffusion
equation

∂t h = −∇ ·
( ∇h

1+ |∇h|2
)
−�2h (1.1)

for the height profile h, measured in a co-moving frame, of a thin film in epitaxial growth.
We assume that the height profile h is spatially �-periodic, where � = (0, L)d ⊂ Rd is
a d-dimensional, open cube with d ≥ 1 an integer and L > 0 the linear size of the cube,
and � is the closure of �, i.e., � = [0, L]d .

For epitaxial growth, d = 2. In this case, the biharmonic term in (1.1) describes the
surface diffusion [10], [22]. The nonlinear, lower-order term in (1.1) was first proposed
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Fig. 1. Scaling laws in epitaxial growth.
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phenomenologically in [12] to model the Ehrlich-Schwoebel effect: Adatoms (adsorbed
atoms) must overcome a higher energy barrier to stick to a step from an upper rather than
from a lower terrace [5], [30], [31]. See also [17], [36] for issues related to the model
derivation. The equation describes a physical process that is far from equilibrium, and
is thus not associated with the free energy of the system in the usual sense.

However, (1.1) happens to possess the following Liapunov or “free-energy” func-
tional,

E(h) = −
∫
�

[
−1

2
log

(
1+ |∇h|2)+ 1

2
|�h|2

]
dx, (1.2)

where

−
∫
�

u dx = 1

|�|
∫
�

u dx

is the averaged integral over � of an integrable function u : � → R, and |�| = Ld is
the d-dimensional volume of �. This means that (1.1) is the gradient flow associated
with the energy functional (1.2) with a suitable constant mobility. Note that we consider
here, for convenience, the averaged integral in (1.2).

With the periodical boundary condition, any solution h of (1.1) satisfies

d

dt

∫
�

h(x, t) dx = 0,

i.e., the mass is conserved. For simplicity, we thus assume that the constant, spatial
mean-value of h over� is zero. In this case, the interface width of the profile h becomes

wh(t) =
√
−
∫
�

|h(x, t)|2dx .

If h is smooth and �-periodic, then we have by integration by parts that

∫
�

|�h|2dx =
∫
�

(
d∑

i=1

∂xi xi h

)2

dx =
d∑

i, j=1

∫
�

∂xi xi h ∂xj xj h dx

= −
d∑

i, j=1

∫
�

∂xi xi xj h ∂xj h dx =
d∑

i, j=1

∫
�

(
∂xi xj h

)2
dx . (1.3)

Thus, the term |�h|2 in the energy functional (1.2) can be replaced by
∑d

i, j=1 |∂xi xj h|2,
which has all the second-order derivatives. This property follows from the periodicity
along the coordinate directions, and does not imply that the surface diffusion is isotropic.

Using the identities

∇ ·
( ∇h

1+ |∇h|2
)
= 1− |∇h|2
(1+ |∇h|2)2�h + 2|∇h|3

(1+ |∇h|2)2 κ

and

�h = ∂2
‖h + |∇h|κ,
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where κ = ∇·( ∇h
|∇h|

)
is the mean curvature of level curves h = constants and ∂‖ = ∇h

|∇h| ·∇
denotes the derivative tangential to the surface, we can rewrite our underlying growth
equation (1.1) as

ht = |∇h|2 − 1

(1+ |∇h|2)2 ∂
2
‖h −

|∇h|
1+ |∇h|2 κ −�

2h. (1.4)

Thus, the nonlinear term in the equation describes the anisotropic diffusion in epitaxial
growth: The curvature term represents the diffusion in the transverse direction and the
∂2
‖h term represents the diffusion in the direction of the surface gradient.

The linearization of (1.4) around a flat surface h0(x) = m · x for a given vector
m = (m1,m2) ∈ R2 leads to the linearized equation of the growth equation (1.1) [18],
[29]

∂t h = |m|2 − 1

(1+ |m|2)2∂
2
‖mh − 1

1+ |m|2 ∂
2
⊥mh −�2h,

where ∂‖m = m · ∇/|m| and ∂⊥m = m⊥ · ∇/|m| with m⊥ = (−m2,m1) denote the
derivatives parallel and perpendicular to the tilt vector m, respectively. Clearly, a singular
surface (m = 0) is linearly unstable. The change of the sign in the coefficient of ∂2

‖mh
at |m| = 1 indicates the transition to step-flow growth. Since the coefficient of ∂2

⊥mh
is always negative, the step-flow growth is linearly unstable with respect to transverse
fluctuations [4], [18].

Heuristic scaling analysis with an assumption of the existence of scaling laws and
large-scale numerical simulations of this model suggest that the interface width w(t)
and the lateral size of mounds λ(t) grow as O(t1/2) and O(t1/4), respectively [8], [11],
[24], [28], [33]. Thus, the characteristic slope of mounds scales as O(t1/4) and becomes
unbounded. Moreover, this no-slope-selection model predicts that the saturation inter-
face width ws(L) ∝ L2. Consequently, the predicted growth, roughness, and dynamic
exponents are

β = 1

2
, α = 2, z = 4. (1.5)

In contrast to this model without slope selection, the model with slope selection is
governed by the (scaled) free energy

Ẽ(h) =
∫
�

[
1

4

(|∇h|2 − 1
)2 + 1

2
|�h|2

]
dx, (1.6)

where the first term selects the (scaled) mound slope 1. This model predicts the exponent
β = 1/3 [15], [16], [21], [23], [28]. Recently, Kohn and Yan [15] rigorously proved an
averaged version of a one-sided bound for this one-third law.

For both of the models, we showed in [20] a nonlinear morphological instability in the
rough-smooth-rough pattern that is experimentally observed [9] and the well-posedness
of the corresponding initial-boundary-value problems.

Setting ε = 1/L , we can rescale the “energy” to get

E(ĥ) = Eε(h), with h(x) = ĥ(x̂)/L and x̂ = Lx, (1.7)
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where

Eε(h) =
∫
�1

[
−1

2
log

(
1+ |∇h|2)+ ε2

2
|�h|2

]
dx, (1.8)

and �1 = (0, 1)d is the unit cube in Rd . The related gradient flow, which is the same as
the scaled (1.1), is

∂t h = −∇ ·
( ∇h

1+ |∇h|2
)
− ε2�2h. (1.9)

Our goal of this work is to understand the energetics, coarsening, and dynamic scaling
of the interfacial dynamics in epitaxial growth without the slope selection, and to justify
rigorously the scaling laws predicted by the underlying model.

Our main results are as follows:

(1) For any solution h of (1.1), we show for large time t that

wh(t) ≤ O(t1/2), (1.10)(
−
∫ t

t0

−
∫
�

|∇h(x, τ )|2dx dτ

)1/2

≤ O(t1/4), (1.11)

−
∫ t

t0

E(h(τ )) dτ ≥ O(− log t). (1.12)

See Section 2. All the bounds are independent of the dimension d and the system
size L . They are only one-sided. A two-sided bound is often not universally true.
For instance, an upper bound for the energy like E(h(t)) ≤ O(− log t) will not be
true for a steady-state solution h.

Note that our basic bounds lead to the O(−t1/2 log t) lower bound for E(h(t))wh(t).
This is different from a constant lower bound for the same quantity in the slope-
selection model, cf. [15].

(2) For any ε > 0, we show that global minimizers of the scaled energy Eε defined
in (1.8) exist. Here, a global minimizer is a height profile that has the least energy
among the class of smooth and periodic height profiles. For small ε > 0, we also
show that

‖∇mhε‖L2(�1) = O

(
1

ε

)
, (m = 0, 1, 2),

for any energy minimizer of Eε and that

min
h

Eε(h) ∼ log ε.

By a scaling argument, we can construct for each integer j ≥ 1 an equilibrium
solution hj of (1.1) with wavelength proportional to L/ j ; cf. Section 4.

To better understand the variational properties of the model, we present in Section 3
some heuristic calculations in a one-dimensional setting of the rescaled energy (1.8)
for a trial profile and of the local shape of an equilibrium solution of the rescaled
equation (1.9).
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(3) For any solution h of (1.1), any ξ ∈ R with 1/L < ξ < 1, and tξ > 0 such that
E(h(tξ )) = − log(ξL), we show for large t that

(
−
∫ t

tξ

[wh(τ )]
2 dτ

)1/2

≥ O(ξ 2L2).

Moreover, we show for any t > tξ that in fact

t ≥ O
(
(ξL)

4(σ−1)
σ

)
,

where σ = t /tξ . See Section 5.

Our approach is different from that in Kohn and Otto [14] and Kohn and Yan [15]: We
do not need an isoperimetric inequality, since the O(t1/2) upper bound on the interface
width can easily be obtained for the underlying model. Our analysis on the variational
problem of minimizing the energy helps us understand why the slope of mounds can
grow unboundedly. It also helps us determine a time scale for bounding the saturation
value of the interface width and the corresponding saturation time.

There are several important issues that we have not been able to address and resolve
in this work but that we wish to study further:

(1) An upper bound for the characteristic lateral size of mounds λ(t). For the slop-
selection model, this size λ(t) is of the same order as that of the height—the interface
width. Thus, there is no need to do extra work to bound λ(t). In general, a precise
mathematical concept that describes the lateral size λ(t) is needed.

(2) The optimality of bounds. For the slope-selection model, Ortiz, Repetto, and Si [23]
constructed a solution for the reduced dynamics that achieves the optimal bound. Can
one have a similar construction for the underlying model without slope selection?
The difficulty seems to lie in the fact that the energy (1.2) is not bounded below as
the system becomes larger and larger.

(3) The limiting dynamics as ε → 0. This is a nontrivial problem that is related to the
singular perturbation, or regularization, of a conservation law, cf. (1.9). From the
viewpoint of energy minimization, one may try to calculate the related �-limit and
gradient flow of such a limit to obtain the reduced dynamic law, as is done in [23]
for the slope-selection model. But, again, the difficulty is the unboundedness of the
energy.

(4) The mathematical analysis and interpretation of the phase-ordering method. This
method is used to predict the underlying scaling laws (1.5) assuming a priori scaling
laws with certain exponents [8]. Mathematically, we understand little about such a
method. It would be interesting to explore such a method with the rigorous analysis
presented in Kohn and Otto [14], Kohn and Yan [15], and this work.

(5) Rigorous analysis of evolution equation models for epitaxial growth that do not pos-
sess any Liapunov functionals. Some good and important examples are the Kardar-
Parisi-Zhang and Lai-Das Sarma-Villain equations [13], [19], [36]. We expect that
such analysis can be more difficult and that a new framework is needed.
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2. Bounds on the Interface Width, Gradient, and Energy

Let C∞per (�) be the set of all restrictions onto � of all real-valued, �-periodic, C∞-

functions on Rd . For any integer m ≥ 0, let H m
per (�) be the closure of C∞per (�) in the

usual Sobolev space W m,2(�) [1], [7]. Let

H(�) =
{

h ∈ H 2
per (�) : −

∫
�

h dx = 0

}
.

It is clear thatH(�) is a closed subspace of H 2
per (�). Throughout the paper, we denote by

‖·‖ the L2-norm for an underlying domain. We also write a function u : �×[0, T ]→ R,
which is in a function space X for each t as a mapping u = u(t) : [0, T ]→ X .

Let T > 0 and h : [0, T ] → L2(�). The interface width for h is defined for any
t ∈ [0, T ] by

wh(t) =
√
−
∫
�

|h(x, t)− h̄(t)|2dx, with h̄(t) = −
∫
�

h(x, t) dx . (2.1)

In particular,

wh(t) =
√
−
∫
�

|h(x, t)|2dx, ∀ h ∈ H(�).

Theorem 2.1 (bounds on the interface width, gradient, and energy). Let h(·): [0,∞)→
H(�) be a weak solution of (1.1) on (0, T ) for any T > 0 [20]. Let t0 ≥ 0.

(1) An upper bound on the interface width. We have

wh(t) ≤
√

2(t − t0)+ [wh(t0)]2, ∀ t ≥ t0. (2.2)

(2) Upper bounds on the gradients. We have

−
∫ t

t0

−
∫
�

|�h(x, τ )|2dxdτ ≤ 1+ [wh(t0)]2

2(t − t0)
, ∀ t > t0, (2.3)

and

−
∫ t

t0

−
∫
�

|∇h(x, τ )|2dxdτ ≤
(

1+ [wh(t0)]2

2(t − t0)

)1/2 (
t + t0 + [wh(t0)]

2
)1/2

, ∀ t > t0.

(2.4)
(3) A lower bound on the energy. We have

−
∫ t

t0

E(h(τ ))dt ≥ −1

2
log

(
1+
√

3t
)
, ∀ t > t0 + [wh(t0)]

2. (2.5)

Note that, for large t , the bounds in (2.2), (2.4), and (2.5) are exactly those in (1.10),
(1.11), and (1.12), respectively.
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Proof of Theorem 2.1. (1) By the definition of a weak solution [20], we have (see [28])

d

dt
[wh(t)]

2 = 2−
∫
�

hht dx = 2−
∫
�

( |∇h|2
1+ |∇h|2 − |�h|2

)
dx ≤ 2, ∀ t > 0. (2.6)

Thus, integrating from t0 to t > t0 and then taking the square root, we obtain (2.2).
(2) It follows from (2.6) that

1

2

d

dt
[wh(t)]

2 +−
∫
�

(�h)2dx = −
∫
�

|∇h|2
1+ |∇h|2 dx ≤ 1.

Thus, we have for any t > t0 that

−
∫ t

t0

−
∫
�

|�h(x, τ )|2dxdτ ≤ 1+ 1

t − t0

(
1

2
[wh(t0)]

2 − 1

2
[wh(t)]

2

)
,

leading to (2.3).
Now, it follows from an integration by parts, the Cauchy-Schwarz inequality, (2.2),

and (2.3) that for any t > t0,

−
∫ t

t0

−
∫
�

|∇h(x, τ )|2dxdτ = −
∫ t

t0

−
∫
�

[−h(x, τ )]�h(x, τ ) dxdτ

≤
(
−
∫ t

t0

−
∫
�

|h(x, τ )|2dxdτ

)1/2 (
−
∫ t

t0

−
∫
�

|�h(x, τ )|2dxdτ

)1/2

≤
(
−
∫ t

t0

(
2(τ − t0)+ [wh(t0)]

2
)

dτ

)1/2 (
1+ [wh(t0)]2

2(t − t0)

)1/2

≤ (
t + t0 + [wh(t0)]

2
)1/2

(
1+ [wh(t0)]2

2(t − t0)

)1/2

.

This proves (2.4).
(3) If t > t0 + [wh(t0)]2, then

[wh(t0)]2

2(t − t0)
≤ 1

2
and t + t0 + [wh(t0)]

2 ≤ 2t. (2.7)

Since − log is a convex function, we obtain by Jensen’s inequality, (2.4), and (2.7) that

−
∫ t

t0

E(h(τ )) dτ ≥ −1

2
log

(
1+−

∫ t

t0

−
∫
�

|∇h(x, τ )|2dxdτ

)

≥ −1

2
log

(
1+

(
1+ [wh(t0)]2

2(t − t0)

)1/2 (
t + t0 + [wh(t0)]

2
)1/2

)

≥ −1

2
log

(
1+
√

3t
)
,

proving (2.5).
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3. Heuristic Calculations of Energetics and Equilibria

In this section, we assume the space dimension is d = 1 and consider the energy
functional (1.8) and the related gradient flow (1.9). We first calculate simple height
profiles that have low energies. We then determine the local shape of equilibria. Detailed
one-dimensional analysis on the scaling laws can be found in [24].

3.1. Energy of a Trial Profile

Let j ≥ 1 be an integer. Divide the interval [0, 1] into 2 j small intervals of the same
length 1/2 j . Let k > 0 and δ > 0 be real numbers with 2δ < 1/2 j . Define a trial function
h ∈ C1[0, 1] by

h(x) =




kx, if 0 ≤ x < 1
4 j − δ,

− k
2δ

(
x − 1

4 j

)2
+ k

(
1

4 j − δ
2

)
, if 1

4 j − δ ≤ x < 1
4 j + δ,

−k
(

x − 1
2 j

)
, if 1

4 j + δ ≤ x < 3
4 j − δ,

k
2δ

(
x − 3

4 j

)2
− k

(
1

4 j − δ
2

)
, if 3

4 j − δ ≤ x < 3
4 j + δ,

k
(

x − 1
j

)
, if 3

4 j + δ ≤ x ≤ 1
j ,

and

h

(
x + 1

j

)
= h(x) ∀ x ∈

(
(i − 1)

j
,

i

j

]
, i = 2, . . . , j.

This function is quadratic in each “transition region” (ci − δ, ci + δ) with ci = 1
2

[(i − 1)/2 j + i /2 j] (i = 1, . . . , 2 j) and linear with the slope k or −k elsewhere. See
Figure 2.

δ

h

-kk

δ1/4j+1/4j- 1/j 1
xO

Fig. 2. A trial height profile.
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Straightforward calculations lead to

Eε(h) =
∫ 1

0

[
−1

2
log(1+ h′2)+ ε

2

2
h′′2
]

dx

=
(∫

nontransition regions
+
∫

transition regions

)[
−1

2
log(1+h′2)+ ε

2

2
h′′2
]

dx

= −1

2
log(1+ k2)+ 2 jδ f (k)+ 2 jε2k2

δ
,

where

f (k) = log(1+ k2)−
∫ 1

0
log(1+ k2s2) ds

=
∫ 1

0
log

(
1+ k2

1+ k2s2

)
ds = 1

k

∫ k

0
log

(
1+ k2

1+ s2

)
ds.

It is not difficult to see that f increases on (0,∞) from 0 to 2 and f (k) ∼ 2k2/3 as
k → 0+.

Fix k. The energy Eε(h) is minimized at δ = εk/
√

f (k). At this value of δ, the energy
becomes

Eε(h) = −1

2
log(1+ k2)+ 4 jεk

√
f (k).

With varying k, this is minimized at k = g(k)/( jε), where

g(k) = k2√ f (k)

2(1+ k2)[2 f (k)+ k f ′(k)]
> 0.

We have g(k) > 0, since f (k) > 0 and f ′(k) > 0. Moreover, g(k)→√2/8 as k →∞,
since

k f ′(k) = 2k2

1+ k2

∫ 1

0

1− s2

1+ k2s2
ds → 0, as k →∞.

Thus, if 0 < jε � 1, the optimal value of slope k has the asymptotics

k = O

(
1

jε

)
, for k � 1. (3.1)

With this k, the size of each transition region is

δ = g(k)

j
√

f (k)
= O

(
1

j

)
, for k � 1, (3.2)

and the minimum energy is

Eε(h) ∼ log( jε), as ε→ 0+. (3.3)

Our calculations indicate that the size of each transition region is of the same order
as that of the base of a mound, and in particular, it is independent of ε. Moreover, in
the large system limit ε→ 0, the mound slope of a global minimizer is proportional to
the linear size of the underlying system. Finally, the minimum energy scales as log ε for
small ε > 0. All these properties are quite different from those of the slope selection
model.
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O-a a x

h

Fig. 3. The local shape of an equilibrium solution.

3.2. The Local Shape of an Equilibrium

We now consider the one-dimensional steady-state equation

(
h′

1+ h′2

)′
+ ε2h(4) = 0, on (0, 1), (3.4)

with the periodic boundary condition, cf. (1.9). We assume an equilibrium solution h is a
profile that consists of hills and valleys, similar to that shown in Figure 2. To understand
the local shape of such an equilibrium solution, we assume without loss of generality
that h is an even and convex function on [−a, a] for some real number a > 0. We also
assume that h′(±a) = ±k for some constant k > 0 and h′′(±a) = 0. See Figure 3.

Set g = h′ and integrate both sides of (3.4) to get

g

1+ g2
+ ε2g′′ = c1,

for some constant c1. Clearly, c1 = 0, since g(0) = g′′(0) = 0. Thus,

g

1+ g2
+ ε2g′′ = 0.

Multiply both sides of this equation by 2g′ and integrate to get

log(1+ g2)+ ε2g′2 = c2,

where c2 is a constant. Since g(a) = k and g′(a) = 0, we obtain that c2 = log(1+ k2).
Consequently,

log

(
1+ g2

1+ k2

)
+ ε2g′2 = 0. (3.5)

Now solving (3.5) with g′ = dg/dx and only considering x ∈ [0, a], we get

x = x(g) = ε
∫ g

0

dg√
log

(
1+k2

1+g2

) .
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Let 0 < σ < 1. With the change of variables g = kz, we obtain that

x(σk) = ε
∫ σk

0

dg√
log 1+k2

1+g2

= ε
∫ σ

0

kdz√
log 1+k2

1+k2z2

.

Here, σ represents the ratio of the profile slope at the position x and the far-field slope
k. Clearly,

x(σk)→ 0, as σ → 0+. (3.6)

Moreover, since (1 + k2)/(1 + k2z2) ≤ 1/z2 for z ∈ (0, 1), we get by changing the
variable y = 1/z that

x(σk)≥kε
∫ σ

0

dz√
log 1

z2

=kε
∫ ∞

1/σ

dy

y2
√

2 log y
→kε

∫ ∞
1

dy

y2
√

2 log y
, as σ→1.(3.7)

The last integral on [1,∞) is finite and independent of ε and k. It follows from (3.6) and
(3.7) that the size of the transition region is O(kε). This agrees with (3.1) and (3.2).

Multiplying both sides of (3.4) by h and integrating by parts, we get

∫ 1

0
ε2h′′2dx =

∫ 1

0

h′2

1+ h′2
dx ≤ 1.

This, together with (3.5) which is generally satisfied by g = h′ everywhere in (0, 1),
leads to

Eε(h) =
∫ 1

0

[
−1

2
log(1+ g2)+ ε

2

2
g′2
]

dx

=
∫ 1

0

[
−1

2
log(1+ k2)+ ε2g′2

]
dx

∼ − log k, as k →∞.

This agrees with our previous calculations of the energetics; cf. (3.1) and (3.3).

4. Energy Minimization

In this section, we study the variational problem of minimizing the scaled energy (1.8)
defined on �1 = (0, 1)d . Our main result is the following theorem, which is a rigorous
version of the basic properties we obtained from our heuristic calculations:

Theorem 4.1 (energy minimization).

(1) For any ε > 0, there exists hε ∈ H(�1) such that

Eε(hε) = min
h∈H(�1)

Eε(h).
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(2) Denote eε = minh∈H(�1) Eε(h). There exists a constant C1 > 0 such that

eε ≤ log ε + C1, ∀ ε > 0. (4.1)

Moreover,

eε ∼ log ε, as ε→ 0. (4.2)

(3) There exist two constants C2 > 0 and C3 > 0 such that for any ε ∈ (0, e−C1 /
√

2)
and any global minimizer hε ∈ H(�1) of Eε : H(�1)→ R,

C2

ε
≤ ‖∇mhε‖ ≤ C3

ε
, m = 0, 1, 2, (4.3)

where ∇0h = h, ∇1h = ∇h, ∇2h = �h, and ‖ · ‖ is the L2(�1)-norm.

A direct consequence of the existence of global minimizers is the following result
of the existence of a sequence of equilibrium solutions hj ( j = 1, . . .) of the original
equation (1.1) over � = (0, L)d with each hj being �L/ j -periodic, where �L/ j =
(0, L/ j)d :

Corollary 4.1. For any integer j ≥ 1, there exists hj ∈ H(�) that satisfies the following
properties:

(1) The function hj is �L/ j -periodic. Moreover, if h ∈ H(�) is �L/ j -periodic, then

E(hj ) ≤ E(h). (4.4)

In particular, for any integer I ≥ 0, we have

E(h2I ) ≥ · · · ≥ E(h2i ) ≥ E(h2i−1) · · · ≥ E(h1) = min
h∈H(�)

E(h). (4.5)

(2) The function hj is an equilibrium solution of (1.1), i.e.,

∇ ·
( ∇hj

1+ |∇hj |2
)
+�2hj = 0, in �. (4.6)

Proof. Fix j . Let h̃ j ∈ H(�) be a global energy minimizer of Ej : H(�)→ R, where

Ej (h̃) = −
∫
�

[
−1

2
log

(
1+ |∇h̃|2

)
+ j2

2
|�h̃|2

]
dx, ∀ h̃ ∈ H(�).

Now, define hj (x) = (1/ j)h̃ j ( j x) for any x ∈ Rd . One easily verifies that hj is �L/ j -
periodic, and that (4.4) holds true, since for any h ∈ H(�) that is �L/ j -periodic,

E(h) = 1

j d
Ej (h̃) ≥ 1

j d
Ej (h̃ j ) = E(hj ),

where h(x) = (1/ j)h̃( j x) for any x ∈ Rd . This proves (4.4), which in turn implies (4.5)
directly. Part (1) is proved.
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Since h̃ j ∈ H(�) is a global energy minimizer of Ej : H(�) → R, it is a critical
point, i.e., a weak solution of

∇ ·
( ∇hj

1+ |∇hj |2
)
+ j2�2hj = 0, in �. (4.7)

Equivalently,

j2�(�hj ) = −∇ ·
( ∇hj

1+ |∇hj |2
)
, in �.

Thus, by a simple argument using the regularity theory of elliptic equations and the fact
that hj is periodic, we see that hj is smooth and satisfies (4.7) pointwise. Consequently,
(4.6) follows from the scaling hj (x) = (1/ j)h̃ j ( j x).

To prove Theorem 4.1, we need several lemmas. For the first lemma, see Figure 4.

Lemma 4.1. (1) If µ ≥ 1, then

log(1+ s) < µs, ∀ s > 0. (4.8)

(2) If µ ∈ (0, 1), then there exists a unique sµ ∈ (0,∞) such that

log(1+ sµ) = µsµ, (4.9)

and that

log(1+ s) > µs, if s ∈ (0, sµ),
log(1+ s) < µs, if s ∈ (sµ,∞). (4.10)

(3) As a function of µ, sµ defined above increases from 0 to∞ as µ decreases from 1
to 0. Moreover,

lim
µ→0+

log(1+ sµ)

log 1
µ

= 1. (4.11)

Proof. (1) This follows from the fact that

1+ s < es ≤ eµs ∀ s > 0.

(2) Fixµ ∈ (0, 1). Let f (s) = log(1+s)−µs (s > −1) and s0 = 1/µ−1 > 0. Then,
f ′(s0) = 0. We have that f (s) > 0 on (0, s0), since f ′(s) > 0 on (0, s0) and f (0) = 0.
Similarly, f ′(s) < 0 on (s0,∞), and f (s0) = µ−logµ−1. This is a decreasing function
of µ ∈ (0, 1), since the derivative with respect to µ ∈ (0, 1) is negative. Moreover, its
value at µ = 1 is 0. Thus, f (s0) > 0. Also, f (s)→−∞ as s →∞. Thus, there exists
a unique sµ ∈ (s0,∞) that satisfies (4.9) and (4.10).

(3) Notice that µ = s−1 log(1+ s) defines a continuously differentiable function for
s ∈ (0,∞) with µ′(s) < 0, and µ(s)→ 1 as s → 0+ and µ(s)→ 0 as s →∞. Thus,
by the inverse function theorem, s = s(µ) defines a function of µ ∈ (0, 1). Obviously,
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s

µ

µ

y = log(1+s)

y = 

s s

y

O

Fig. 4. The meaning of sµ in Lemma 4.1.

s(µ) = sµ as defined in (4.9). Moreover, since s ′(µ) = 1/µ′(s) < 0, sµ increases from 0
to∞ as µ decreases from 1 to 0. Finally, taking the logarithmic functions of both sides
of (4.9) and dividing them further by log sµ, we get

log log(1+ sµ)

log sµ
= logµ

log sµ
+ 1 = logµ

log(1+ sµ)
· log(1+ sµ)

log sµ
+ 1. (4.12)

Since sµ→∞ as µ→ 0+,

log log(1+ sµ)

log sµ
= log log(1+ sµ)

log(1+ sµ)
· log(1+ sµ)

log sµ
→ 0, as µ→ 0+. (4.13)

Now, (4.11) follows from (4.12) and (4.12).

We recall that ‖�h‖ is exactly the seminorm |h|H 2(�1) for any h ∈ H 2
per (�1), i.e.,

‖�h‖2 =
d∑

i, j=1

‖∂xi xj h‖2, ∀ h ∈ H 2
per (�1), (4.14)

cf. (1.3). We also recall the following Poincaré inequalities for the unit cell �1 =
(0, 1)d [7]:

‖h‖ ≤ C4‖∇h‖, ∀ h ∈ H(�1), (4.15)

‖∇h‖ ≤ C5‖�h‖, ∀ h ∈ H(�1), (4.16)

where C4 > 0 and C5 > 0 are constants. The first inequality follows from the fact that
any h ∈ H(�1) has zero mean. The second inequality follows from the fact that the
mean of any first-order partial derivative of h ∈ H(�1) over �1 vanishes.

Lemma 4.2 (lower bound). Let ε > 0 and µ = ε2/(2C2
5) > 0. Let s(ε) = 0 if µ ≥ 1

and s(ε) = sµ ∈ (0,∞), as defined in Lemma 4.1, if 0 < µ < 1. We have

Eε(h) ≥ −1

2
log(1+ s(ε))+ ε

2

4

∫
�1

(�h)2dx, ∀ h ∈ H(�1).
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Proof. Fix h ∈ H(�1). We have by Lemma 4.1 and the Poincaré inequality (4.16) that

Eε(h) = −1

2

∫
{x∈�1:|∇h|2≤s(ε)}

log(1+ |∇h|2) dx

−1

2

∫
{x∈�1:|∇h|2>s(ε)}

log(1+ |∇h|2) dx + ε
2

2

∫
�1

(�h)2dx

≥ −1

2
log(1+ s(ε))− ε2

4C2
5

∫
�1

|∇h|2dx + ε
2

2

∫
�1

(�h)2dx

≥ −1

2
log(1+ s(ε))+ ε

2

4

∫
�1

(�h)2dx,

as desired.

Lemma 4.3 (upper bound). For each ε > 0, there exists h̃ε ∈ H(�1) such that

Eε(h̃ε) ≤ log ε + C6, ∀ε > 0,

where C6 > 0 is a constant independent of ε.

Proof. To better illustrate the idea, we prove the result for the case d = 2. The general
case can be treated similarly.

Define as before a 1-periodic, C1-function φε : R→ R by

φε(s) =




ks, if 0 ≤ s < 1
8 ,

−4k
(
s − 1

4

)2 + 3k
16 , if 1

8 ≤ s < 3
8 ,

−k
(
s − 1

2

)
, if 3

8 ≤ s < 5
8 ,

4k
(
s − 3

4

)2 − 3k
16 , if 5

8 ≤ s < 7
8 ,

k(s − 1), if 7
8 ≤ s ≤ 1,

where k = 1/
√
ε. Note that we choose the slope k to be proportional to 1/

√
ε not 1/ε,

cf. (3.1). This is because the constructed profile will be a product of two such one-
dimensional trial functions. Note also that we choose the size of a “transition region” to
be δ = 1/8. It is easy to verify that ∫ 1

0
φ(s) ds = 0,

|φε(s)| ≥ k

8
, ∀ s ∈

[
1

8
,

3

8

]
∪
[

5

8
,

7

8

]
, (4.17)

and

|φε(s)| ≤ 3k

16
, |φ′ε(s)| ≤ k, |φ′′ε (s)| ≤ 8k, a.e. s ∈ R. (4.18)

Define

h̃ε(x) = φε(x1)φε(x2), ∀ x = (x1, x2) ∈ R2.

Clearly, h̃ε ∈ H(�1).
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We now calculate and estimate the energy

Eε(h̃ε) =
∫
�1

[
−1

2
log(1+ |∇h̃ε|2)+ ε

2

2
(�h̃ε)

2

]
dx .

The second term in the energy Eε(h̃ε) is easy to bound by (4.18) and the fact that
k = 1/

√
ε:

ε2

2

∫
�1

(�h̃ε)
2 dx = ε2

2

∫
�1

[
φ′′ε (x1)φε(x2)+ φε(x1)φ

′′
ε (x2)

]2
dx

≤ ε2
∫
�1

[|φ′′ε (x1)|2|φε(x2)|2 + |φε(x1)|2|φ′′ε (x2)|2
]

dx

≤ 9

2
. (4.19)

For the first term in the energy Eε(h̃ε), we have by the symmetry and (4.17) that∫
�1

−1

2
log(1+ |∇h̃ε|2) dx

= −8
∫
(0,1/4)×(0,1/4)

log(1+ |∇h̃ε|2) dx

= −8
∫
(0,1/4)×(0,1/4)

log
[
1+ |φ′ε(x1)|2|φε(x2)|2 + |φε(x1)|2|φ′ε(x2)|2

]
dx

= −8
∫
(0,1/8)×(0,1/8)

log
[
1+ k4(x2

1 + x2
2)
]

dx

−8
∫
(1/8,1/4)×(0,1/8)

log
[
1+ |φ′ε(x1)|2|φε(x2)|2 + k2|φε(x1)|2

]
dx

−8
∫
(0,1/8)×(1/8,1/4)

log
[
1+ k2|φε(x2)|2 + |φε(x1)|2|φ′ε(x2)|2

]
dx

−8
∫
(1/8,1/4)×(1/8,1/4)

log
[
1+ |φ′ε(x1)|2|φε(x2)|2 + |φε(x1)|2|φ′ε(x2)|2

]
dx

≤ −8
∫
(0,1/8)×(0,1/8)

log
[
k4
(
x2

1 + x2
2

)]
dx

−8
∫
(1/8,1/4)×(0,1/8)

log
[
k2|φε(x1)|2

]
dx

−8
∫
(0,1/8)×(1/8,1/4)

log
[
k2|φε(x2)|2

]
dx

−8
∫
(1/8,1/4)×(1/8,1/4)

log
[|φ′ε(x1)|2|φε(x2)|2 + |φε(x1)|2|φ′ε(x2)|2

]
dx

≤ −1

8
log k4 − 8

∫
(0,1/8)×(0,1/8)

log
(
x2

1 + x2
2

)
dx

−1

8
log

(
k4

64

)
− 1

8
log

(
k4

64

)

−8
∫
(1/8,1/4)×(1/8,1/4)

log

{[
8k

(
x1− 1

4

)]2 (k

8

)2

+
(

k

8

)2 [
8k

(
x2− 1

4

)]2
}

dx

= log ε + C7,
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where

C7 = 3

2
log 2− 8

∫
(0,1/8)×(0,1/8)

log
(
x2

1 + x2
2

)
dx

−8
∫
(1/8,1/4)×(1/8,1/4)

log

[(
x1 − 1

4

)2

+
(

x2 − 1

4

)2
]

dx

is a finite number. This, together with (4.19), leads to the desired estimate with C6 =
C7 + 9/2.

Lemma 4.4 (equidistribution of energy). If hε ∈ H 2
per (�1) is a critical point of Eε :

H 2
per (�1)→ R, then

∫
�

ε2(�hε)
2dx =

∫
�

|∇hε|2
1+ |∇hε|2 dx .

Proof. If hε ∈ H 2
per (�1) is a critical point of Eε : H 2

per (�1)→ R, then

δEε(hε)(g) =
∫
�

(
− ∇hε · ∇g

1+ |∇hε|2 + ε
2�hε�g

)
dx = 0, ∀ g ∈ H 2

per (�1).

Choosing g = hε, we obtain the desired identity.

Proof of Theorem 4.1. (1) Fix ε > 0. By Lemma 4.2, we have eε = infh∈H(�1) Eε(h) >
−∞. Let {hj }∞j=1 be an infimizing sequence of Eε: H(�1) → R. It follows from
Lemma 4.2, the Poincaré inequalities (4.15) and (4.16), and the identity (4.14) that
{hj }∞j=1 is bounded in H 2

per (�1). Thus, up to a subsequence, hj ⇀ hε in H 2(�1) for
some hε ∈ H 2

per (�1). In particular, �hj ⇀ �hε in L2(�1) and, up to a further subse-
quence if necessary, hj → hε in H 1(�1) as j →∞. Thus, hε ∈ H(�1). Moreover, by
(4.8) with µ = 1 and the Cauchy-Schwarz inequality,∣∣∣∣
∫
�1

[
log(1+ |∇hj |2)− log(1+ |∇hε|2)

]
dx

∣∣∣∣ =
∣∣∣∣
∫
�1

log

(
1+ |∇hj |2 − |∇hε|2

1+ |∇hε|2
)

dx

∣∣∣∣
≤

∫
�1

log

(
1+

∣∣∣∣ |∇hj |2 − |∇hε|2
1+ |∇hε|2

∣∣∣∣
)

dx

≤
∫
�1

∣∣∣∣ |∇hj |2 − |∇hε|2
1+ |∇hε|2

∣∣∣∣ dx

≤ (‖∇hj‖ + ‖∇hε‖)‖∇hj − ∇hε‖
→ 0, as j →∞.

Further, since for each j ≥ 1, (�hj )
2 + (�hε)2 ≥ 2�hj�hε in �1, we have

lim inf
j→∞

∫
�1

(�hj )
2 dx ≥ lim inf

j→∞

[
2
∫
�1

�hj�hε dx −
∫
�1

(�hε)
2 dx

]
=
∫
�1

(�hε)
2 dx .



Epitaxial Growth without Slope Selection 447

Therefore,

eε = lim inf
j→∞

Eε(hj ) ≥
∫
�1

[
−1

2
log(1+ |∇hε|2)+ ε

2

2
(�hε)

2

]
dx = Eε(hε) ≥ eε.

This implies that hε is a global minimizer of Eε inH(�1).
(2) The estimate (4.1) follows from Lemma 4.3 with C1 = C6. It follows from

Lemma 4.2, the definition of s(ε) (cf. Lemma 4.2), and (4.11) in Lemma 4.1 that

lim inf
ε→0+

eε
log ε

= lim inf
ε→0+

Eε(hε)

log ε
≥ lim inf

ε→0+

− 1
2 log(1+ s(ε))

log ε
= 1. (4.20)

By Lemma 4.3,

lim sup
ε→0+

eε
log ε

≤ lim sup
ε→0+

log ε + C6

log ε
= 1. (4.21)

Now, the desired asymptotics (4.2) follows from (4.20) and (4.21).
(3) Let hε ∈ H(�1) be a global minimizer of Eε : H(�1)→ R. Clearly, hε is also a

global minimizer of Eε : H 2
per (�1)→ R. Thus, hε is a critical point of Eε : H 2

per (�1)→
R. Consequently, we have by Lemma 4.4 that

ε2
∫
�1

(�hε)
2dx =

∫
�2

|∇hε|2
1+ |∇hε|2 ≤ 1. (4.22)

Noting that the negative logarithmic function is convex, we have by Jensen’s inequality
that

eε = Eε(hε) ≥ −1

2
log

(
1+

∫
�1

|∇hε|2dx

)
.

This, together with the upper bound (4.1), leads to

log ε + C1 ≥ −1

2
log

(
1+

∫
�1

|∇hε|2dx

)
.

Hence, ∫
�1

|∇hε|2dx ≥ e−2C1

2ε2
, if ε ∈

(
0,

1√
2

e−C1

)
. (4.23)

From (4.23), we have by an integration by parts, the Cauchy-Schwarz inequality, and
(4.22) that

e−2C1

2ε2
≤
∫
�1

|∇hε|2dx =
∫
�1

(−hε)�hεdx

≤
(∫

�1

|hε|2dx

)1/2 (∫
�1

|�hε|2dx

)1/2

≤ 1

ε

(∫
�1

|hε|2dx

)1/2

,

leading to ∫
�1

|hε|2dx ≥ e−4C1

4ε2
. (4.24)

Now all the estimates in (4.3) follow from (4.22), (4.24), the Poincaré inequalities
(4.15) and (4.16), and the equivalence of norms (4.14).
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5. Bounds on the Saturation Interface Width and Saturation Time

We now consider the free energy (1.2) that is defined with� = (0, L)d . By Theorem 4.1
and the change of variables in (1.7), we have that

EL := min
h∈H(�)

E(h) ∼ − log L , as L →∞,

and for L ≥ √2eC1 that

C2L4−2m ≤ −
∫
�

|∇mhL |2dx ≤ C3L4−2m, m = 0, 1, 2, (5.1)

where hL ∈ H(�) is any minimizer of E : H(�) → R, and C2 and C3 are the same
constants as in (4.3).

It is reasonable to think that the profile will be near a global minimizer after the
saturation of the interface width. Recall from Theorem 2.1 that the interface width is
bounded above by O(t1/2). This, together with (5.1) with m = 0, then sets the saturation
time ts = O(L4), and hence the saturation interface width ws(L) = O(t1/2

s ) = O(L2).
These are exactly the predicted scaling laws, cf. (1.5). The following result is a rigorous
justification of some forms of these scaling laws.

Theorem 5.1. Let h(·) : [0,∞)→ H(�) be a weak solution of (1.1) on (0, T ) for any
T > 0. Let L >

√
2 and ξ ∈ (√2/L , 1). Let tξ > 0 be such that

E(h(tξ )) = − log(ξL). (5.2)

(1) If t ≥ 2tξ + (1/2)[wh(0)]2, then

(
−
∫ t

tξ

[wh(τ )]
2dτ

)1/2

≥ ξ 2

√
8

L2. (5.3)

(2) If t > max(tξ , 1/3, [wh(0)]2), then in fact

t ≥ 1

12
e−

4
σ

E(h(0))(ξL)
4(σ−1)
σ , (5.4)

where σ = t /tξ .

We remark that the time tξ approximates the saturation time. In general, tξ is larger
when the parameter ξ is closer to 1. The inequality (5.3) gives a lower bound, in an
averaged version, for the saturation interface width. The inequality (5.4) is an asymptotic,
lower bound for the saturation time: As ξ is closer to 1 and σ becomes very large, the
bound becomes O(L4). The assumption for this lower bound is that the time t is larger
than tξ , which is the time at which the energy of a profile h reaches nearly the minimum
value.
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Proof of Theorem 5.1. (1) It is easy to verify from the energy (1.2) and (1.1) that

d

dt
E(h(t)) = −−

∫
�

h2
t dx ≤ 0, ∀ t > 0. (5.5)

Thus, the energy decays. Consequently, we have by (5.2) that

E(h(t)) ≤ E(h(tξ )) = − log(ξL), ∀ t ≥ tξ . (5.6)

This and Jensen’s inequality imply that

− log(ξL) = −
∫ t

tξ

E(h(tξ )) dτ

≥ −
∫ t

tξ

E(h(τ )) dτ

≥ −
∫ t

tξ

−
∫
�

[
−1

2
log

(
1+ |∇h(x, τ )|2)] dxdτ

≥ −1

2
log

[
1+−

∫ t

tξ

−
∫
�

|∇h(x, τ )|2dxdτ

]
.

Therefore, applying an integration by parts and the Cauchy-Schwarz inequality, we
obtain by (2.3) that

(ξL)2 ≤ 1+−
∫ t

tξ

−
∫
�

|∇h(x, τ )|2dxdτ

= 1+−
∫ t

tξ

−
∫
�

[−h(x, τ )]�h(x, τ ) dxdτ

≤ 1+
(
−
∫ t

tξ

−
∫
�

|h(x, τ )|2dxdτ

)1/2 (
−
∫ t

tξ

−
∫
�

|�h(x, τ )|2dxdτ

)1/2

≤ 1+
(
−
∫ t

tξ

[wh(τ )]
2dτ

)1/2 (
1+ [wh(tξ )]2

2(t − tξ )

)1/2

. (5.7)

Now, if t ≥ 2tξ + (1/2)[wh(0)]2, then by (2.2),

1+ [wh(tξ )]2

2(t − tξ )
≤ 1+ 2tξ + [wh(0)]2

2(tξ + 1
2 [wh(0)]2)

= 2. (5.8)

Combining (5.7), (5.8), and the assumption that ξL ≥ √2, we obtain (5.3).
(2) Setting t0 = 0 in (2.5), by (5.6) and (5.2), we have for any t > [wh(0)]2 that

−1

2
log

(
1+
√

3t
)
≤ −
∫ t

0
E(h(τ )) dτ

= 1

t

∫ tξ

0
E(h(τ )) dτ + 1

t

∫ t

tξ

E(h(τ )) dτ

≤ tξ
t

E(h(0))− t − tξ
t

log(ξL).
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Consequently, if t = σ tξ with σ > 1, then

−1

2
log

(
1+
√

3t
)
≤ 1

σ
E(h(0))− σ − 1

σ
log(ξL).

Thus, for t ≥ 1/3,

2
√

3t ≥ 1+
√

3t ≥ e−
2
σ

E(h(0))(ξL)
2(σ−1)
σ .

This leads to (5.4).
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