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Abstract. In this paper we study the effects of small viscosity term and the

far-field boundary conditions for systems of convection-diffusion equations in

the zero viscosity limit. The far-field boundary conditions are classified and
the corresponding solution structures are analyzed. It is confirmed that the

Neumann type of far-field boundary condition is preferred. On the other hand,

we also identify a class of improperly coupled boundary conditions which lead
to catastrophic reflection waves dominating the inlet in the zero viscosity limit.

The analysis is performed on the linearized convection-diffusion model which

well describes the behavior at the far field for many physical and engineering
systems such as fluid dynamical equations and electro-magnetic equations. The

results obtained here should provide some theoretical guidance for designing

effective far field boundary conditions.

1. Introduction. The purpose of this paper is to study the effects of small viscos-
ity term and the far field boundary conditions for systems of convection-diffusion
equations and provide some theoretical guidance for designing effective far field
boundary conditions.

At far field, most physical quantities tend to constants. A common approach
in handling the far-field in computation is to cut off the far-field domain from
the computational domain and impose some far-field boundary conditions. The
domain is usually large enough so that the active near domain boundary becomes
insignificant and the background can be taken to be uniform and homogeneous.
The underlying physical systems can then be approximated by systems of linear
convection diffusion equations with constant coefficients. For simplicity, we take the
artificial far field boundary to be x = 0 and perform the characteristic decomposition
for the convection part and make the following simplifications: (1) We consider
the one-dimensional case only and ignore the transversal effects. (2) We take the
viscosity matrix to be identity; (3) We only consider two characteristic speeds, one
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positive and the other negative. Thus we have the following one-dimensional system
of convection-diffusion equations{

∂tu
ε + ∂xuε = ε∂2

xuε

∂tv
ε − ∂xvε = ε∂2

xvε
(1.1)

where ε > 0 represents the total dissipation which may arise from numerical viscos-
ity or physical mechanism and is usually very small.

Naturally we impose the boundary conditions at the far field x = 0 in terms of
the characteristic variables in the following general form:

D

(
uε

vε

)
(0, t) + E

(
∂xuε

∂xvε

)
(0, t) =

(
f1(t)
f2(t)

)
, t ≥ 0, (1.2)

where D and E are suitable 2 × 2 constant matrices with Rank(D,E) = 2. Addi-
tionally we prescribe for (1.1) the following initial condition

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ≥ 0. (1.3)

For fixed ε > 0 and smooth (and compatible) initial and boundary data, the
existence and uniqueness of solution to the IBVP (1.1)-(1.3) is well-known. Our
interest in this paper is to study the asymptotic solution structure and analyze the
effect of different boundary conditions for the IBVP (1.1)-(1.3) in the limit of small
viscosity, that is, ε → 0.

For small viscosity, (1.1) can be formally approximated by the following system
of inviscid equations {

∂tu + ∂xu = 0
∂tv − ∂xv = 0 (1.4)

Therefore one expects that as ε → 0, the solution (uε, vε) of (1.1)-(1.3) should
converge in some sense to an appropriate solution (u, v) of (1.4) (subject to certain
initial and boundary conditions). This should be so, for example, when (1.1) is
used as a numerical approximation to (1.4) and ε is the corresponding numerical
viscosity.

Note that for the inviscid hyperbolic equations, the solution for the outgoing
characteristic flow v(x, t) is completely determined by the initial data v(x, 0) and
therefore we can only prescribe one boundary condition for the incoming flow u(x, t).
As a result, in the zero viscosity limit, the solution (uε, vε) of the parabolic IBVP
(1.1)-(1.3) necessarily develops a boundary layer vb.l. in the outlet vε near x =
0. Although the boundary layer only exists in the vε component and its effect is
confined to a narrow range near x = 0, the coupling of boundary conditions can
make things much worse in that a further reflection wave can be induced in the inlet
uε. The strength of the reflection wave depends on the magnitude of the boundary
layer vb.l. and the degree of the coupling in the boundary conditions. In the worst
scenario, the reflection wave can dominate the inlet uε and grow at order ε−1, see
Theorem 1.3 below. As a matter of fact, the whole purpose of designing good far
field boundary conditions is to reduce the reflection wave.

The study of far field boundary conditions began with the pioneering work of
Engquist and Majda [1, 2] for multidimensional inviscid systems. Their elegant
recipe of design was through the expansion of the symbols in the pseudo-differential
operators. There have been many studies on the consistency and stability of numer-
ical boundary conditions either for hyperbolic systems (see for example, [4, 6, 16])
or for parabolic systems with fixed viscosity (see, for example, [11, 13, 17, 18]). In
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this paper, we focus on the small viscosity effect and study the solution structure
and the convergence of (1.1) to (1.4) in the limit of small viscosity under various
boundary conditions. We refer to [15] for the study of the convergence of (1.1)
to (1.4) and the underlying boundary layer behavior in the simpler scalar case in
which no reflection wave can occur. We note that several authors have also studied
related nonlinear problems with Dirichlet boundary conditions, see for example,
[3, 5, 8, 9, 10, 19]. Additionally we refer to [14, 20, 21, 22] for the study of the
boundary layer problem in kinetic equations and hyperbolic relaxation systems.

The boundary condition (1.2) is clearly unchanged upon left multiplying an in-
vertible 2×2 matrix. Depending on the value of Rank(E), it is customary to classify
the above boundary condition (1.2) into the following three cases:

Case I: Rank(E) = 2 (Neumann boundary conditions).
Case II: Rank(E) = 1 (Mixed boundary conditions).
Case III: Rank(E) = 0 (Dirichlet boundary conditions).

For mixed boundary conditions (Case II), we assume, without loss of generality,
e21 = e22 = 0. It is noted that in this case, for the boundary conditions (1.2)
to be meaningful, besides the condition Rank (D,E) = 2, it is also necessary that
(d11, d21) 6= 0 if e11 = 0, and (d12, d22) 6= 0 if e12 = 0. We distinguish the following
three sub-cases.

Case II(a): e12 = 0, e11 6= 0.
Case II(b): e12 6= 0, d21 6= 0.
Case II(c): e12 6= 0, d21 = 0.

When the boundary conditions in (1.2) are decoupled or can be made so by left
multiplying a 2×2 invertible matrix, the IBVP (1.1)-(1.3) is then equivalent to two
scalar IBVPs for uε and vε separately and the convergence results proved in [15]
can be applied. This is the case for Dirichlet (Case III) boundary conditions.

Theorem 1.1 (Dirichlet boundary conditions). For Dirichlet boundary conditions,
there exists a unique solution (u, v) of (1.4) such that for any T > 0, we have∫ T

0

∫ ∞

0

|uε(x, t)− u(x, t)|2 dxdt ≤ Cε2
(
‖F‖2H2 + ‖u0‖2H2

)
,∫ T

0

∫ ∞

0

|vε(x, t)− v(x, t)|2 dxdt ≤ Cε
(
‖F‖2L2 + ‖v0‖2H2

)
,

for some constant C = C(T ) > 0 independent of u0, v0, F and ε. Furthermore
there exists a boundary layer vb.l.(x/ε, t) such that∫ T

0

∫ ∞

0

∣∣vε(x, t)− v(x, t)− vb.l.(x/ε, t)
∣∣2 dxdt ≤ Cε2

(
ε‖F‖2H1 + ‖v0‖2H3

)
.

Note that in Theorem 1.1, the initial and boundary data are implicitly assumed to
satisfy certain regularity and compatibility conditions, namely, u0 ∈ H2, v0 ∈ H2,
F ∈ H2 with u0(0) = u′0(0) = 0, v0(0) = v′0(0) = 0, F (0) = F ′(0) = 0.

For typical Neumann (Case I) and mixed (Case II) boundary conditions, the
boundary conditions will be genuinely coupled. In such cases, due to the presence
of the boundary layer vb.l.(x/ε, t) in the outlet vε, the existence of the ∂xvε(0, t)
term in the boundary condition (1.2) may yield a reduced boundary condition for
u at the order of ε−1. Consequently convergence results such as those in Theorem
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1.1 may no longer be true and the question can become very complicated. This is
indeed the case for Case II(c) boundary conditions. However, for all other types of
boundary conditions, similar results as Theorem 1.1 still hold since either the above
coupling mechanism is absent (case II(a)) or the boundary layer vb.l. turns out to
be weak (Case I and Case II(b)).

Our main results of this paper can be stated as follows:

Theorem 1.2 (Convergence with Optimal Error Estimates). Let u0(x), v0(x) and
F (t) be sufficiently smooth and compatible. Then there exists a unique solution
(u, v) of (1.4) such that for all T > 0, we have
Case I: Rank(E) = 2 (Neumann boundary condition)∫ T

0

∫ ∞

0

|uε(x, t)− u(x, t)|2 dxdt ≤ Cε2(‖u0‖2H2 + ‖v0‖2H2 + ‖F‖2H1)∫ T

0

∫ ∞

0

|vε(x, t)− v(x, t)|2 dxdt ≤ Cε2(‖u0‖2H2 + ‖v0‖2H2 + ε‖F‖2H1)

Case II(a): e12 = 0, e21 = e22 = 0∫ T

0

∫ ∞

0

|uε(x, t)− u(x, t)|2 dxdt ≤ Cε2(‖u0‖2H2 + ‖F‖2H2)∫ T

0

∫ ∞

0

|vε(x, t)− v(x, t)|2 dxdt ≤ Cε(ε2‖u0‖2H2 + ‖v0‖2H2 + ‖F‖2H1)

Furthermore, there exists a boundary layer vb.l.(x/ε, t) in this case such that∫ T

0

∫ ∞

0

|vε(x, t)− v(x, t)− vb.l.(x/ε, t)|2 dxdt

≤ Cε2(ε‖u0‖2H2 + ‖v0‖2H3 + ε‖F‖2H2),

Case II(b): e12 6= 0, d21 6= 0, e21 = e22 = 0∫ T

0

∫ ∞

0

|uε(x, t)− u(x, t)|2 dxdt ≤ Cε2(‖u0‖2H2 + ‖v0‖2H3 + ‖F‖2H2)∫ T

0

∫ ∞

0

|vε(x, t)− v(x, t)|2 dxdt ≤ Cε2(‖u0‖2H2 + ‖v0‖2H2 + ε‖F‖2H1)

Theorem 1.3 (Case II(c): Improper boundary conditions). Let e21 = e22 = 0,
e12 6= 0, d21 = 0 (and d22 6= 0). Then there exists a unique solution (u−1, v) of
(1.4) such that∫ T

0

∫ ∞

0

|uε(x, t)− ε−1u−1(x, t)|2 dxdt ≤ C(‖u0‖2H2 + ‖v0‖2H3 + ‖F‖2H2),∫ T

0

∫ ∞

0

|vε(x, t)− v(x, t)|2 dxdt ≤ Cε(‖v0‖2H2 + ε1/2‖F‖2L2),

Furthermore, there exists a boundary layer vb.l.(x/ε, t) such that∫ T

0

∫ ∞

0

|vε(x, t)− v(x, t)− vb.l.(x/ε, t)|2 dxdt ≤ Cε2(‖v0‖2H3 + ε‖F‖2H1)
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Remarks:
1. In Theorem 1.2, the inviscid limit (u, v) can be obtained by solving (1.4)

with initial condition u(x, 0) = u0(x), v(x, 0) = v0(x) and the following reduced
boundary condition for u(0, t):
Case I: (det(d1, e2))u(0, t)+(det E)∂xu(0, t) = (det(F (t), e2))−(det(d2, e2))v0(t)
Case II(a): (detD)u(0, t) + (det(e1, d2))∂xu(0, t) = det(F (t), d2)
Case II(b): u(0, t) = f2(t)/d21 − (d22/d21)v0(t)
where d1, d2 and e1, e2 are the column vectors of D and E respectively.

2. In Theorem 1.3, (u−1, v) satisfies (1.4) with initial condition u−1(x, 0) = 0,
v(x, 0) = v0(x) and the following reduced boundary condition
Case II(c): d11u−1(0, t) + e11∂xu−1(0, t) = (e12/d22)f2(t))− e12v0(t)

3. The occurrence of an ε−1u−1 term in the inlet uε in Theorem 1.3 originates
from the boundary layer effect in the outlet vε and the amplification by the ∂xvε

term in the boundary condition. It is not hard to see that for larger systems
with n negative characteristic speeds and m zero characteristic speeds, through
certain successive couplings in boundary conditions, an incoming wave can exhibit
a singular growth term at order ε−(n+m/2) as ε → 0.

The proof of the above theorems will be carried out in the following sections.
The plan is as follows. To motivate, we will first apply the method of matched
asymptotic expansions to the IBVP (1.1)-(1.3) and formally derive the leading as-
ymptotic behavior of the solution (uε, vε). Next in Section 3, we solve the viscous
IBVP (1.1)-(1.3) explicitly by Laplace transform. The solution is then compared
with its leading asymptotic behavior formally derived through matched asymptotic
expansions and, by using Parseval’s identity and careful asymptotic analysis, the
desired convergence estimates are obtained in Section 4 and Section 5 for zero and
nonzero initial data cases respectively.

2. Matched Asymptotic Expansions. In order to identify the limiting behavior
and the boundary layer structures of the solution for the viscous IBVP (1.1)-(1.3)
as ε → 0, we assume the following uniformly valid expansions in terms of ε:{

uε(x, t) = ε−1u−1(x, t) + u(x, t) + εu1(x, t) + · · ·
vε(x, t) = (v(x, t) + vb.l.(x/ε, t)) + ε(v1(x, t) + vb.l.

1 (x/ε, t)) + · · ·
(2.1)

with the localized boundary layers vb.l.(y, t) and vb.l.
1 (y, t) exponentially decaying

as y = x/ε → +∞.
Plugging the above expansions into (1.1) and matching the orders of ε, we obtain

the following

∂tu−1 + ∂xu−1 = 0, ∂tu + ∂xu = ∂2
xu−1,

∂tv − ∂xv = 0, ∂tv1 − ∂xv1 = ∂2
xv, (2.2)

∂2
yvb.l. = −∂yvb.l., ∂2

yvb.l.
1 = −∂yvb.l.

1 + ∂tv
b.l..

On the other hand, by matching (2.1) with the initial condition (1.3), we have

u−1(x, 0) = 0, u(x, 0) = u0(x),
v(x, 0) = v0(x), v1(x, 0) = 0, (2.3)

vb.l.(y, 0) = 0, vb.l.
1 (y, 0) = 0.

The above equations can be solved recursively. For convenience, we represent the
solutions in terms of Laplace transform [7, 12]. Recall that the Laplace transform



272 HUEY-ER LIN, JIAN-GUO LIU AND WEN-QING XU

f̃(x, ξ) of a function f(x, t) is defined as

f̃(x, ξ) =
∫ ∞

0

e−ξtf(x, t)dt (2.4)

and satisfies

∂̃tf(x, ξ) = ξf̃(x, ξ)− f(x, 0) = ξf̃(x, ξ)− f0(x) (2.5)

Throughout this paper we choose ξ = α + iβ with α = Re ξ > 0 sufficiently large
and fixed.

Applying Laplace transform on (2.2), we obtain, at the leading order,

∂xũ−1 + ξũ−1 = 0, ∂xṽ − ξṽ = −v0(x), ∂2
y ṽb.l. = −∂y ṽb.l. (2.6)

and therefore

ũ−1(x, ξ) = ũ−1(0, ξ)e−ξx,

ṽ(x, ξ) =
∫ ∞

x

e−ξ(η−x)v0(η) dη, (2.7)

ṽb.l.(y, ξ) = ṽb.l.(0, ξ)e−y

where ũ−1(0, ξ) and ṽb.l.(0, ξ) are the Laplace transform of appropriate boundary
data u−1(0, t) and vb.l.(0, t) and remain to be determined.

Similarly at the next order, we have

∂xũ + ξũ = u0(x) + ∂2
xũ−1 = u0(x) + ξ2ũ−1(0, ξ)e−ξx (2.8)

∂2
y ṽb.l.

1 = −∂y ṽb.l.
1 + ξṽb.l. = −∂y ṽb.l.

1 + ξṽb.l.(0, ξ)e−y (2.9)

With appropriate boundary data ũ(0, ξ) and ṽb.l.
1 (0, ξ), the solutions to (2.8)-(2.9)

can be found to be

ũ(x, ξ) = ũ(0, ξ)e−ξx +
∫ x

0

e−ξ(x−η)u0(η) dη + xξ2ũ−1(0, ξ)e−ξx (2.10)

ṽb.l.
1 (y, ξ) = ṽb.l.

1 (0, ξ)e−y − yξṽb.l.(0, ξ)e−y (2.11)

We now match the boundary conditions and derive the appropriate boundary
data u−1(0, t), u(0, t), vb.l.(0, t) and vb.l.

1 (0, t). This is achieved by substituting (2.1)
into the boundary condition (1.2) and separating the powers of ε:

d1u−1 + e1∂xu−1 + e2∂yvb.l.
∣∣
x=0

= 0 (2.12)

d1u + e1∂xu + d2(v + vb.l.) + e2(∂xv + ∂yvb.l.
1 )

∣∣
x=0

= F (t) (2.13)

Before we solve for the desired boundary data u−1(0, t), u(0, t), vb.l.(0, t), etc., we
observe that

∂xũ−1(0, ξ) = −ξũ−1(0, ξ), ∂xũ(0, ξ) = −ξũ(0, ξ) + ξ2ũ−1(0, ξ) (2.14)

∂y ṽb.l.(0, ξ) = −ṽb.l.(0, ξ), ∂y ṽb.l.
1 (0, ξ) = −ṽb.l.

1 (0, ξ)− ξṽb.l.(0, ξ) (2.15)

Furthermore, we have

ṽ(0, ξ) = ṽ0(ξ) =
∫ ∞

0

e−ξηv0(η) dη, ∂xṽ(0, ξ) = ξṽ0(ξ). (2.16)

Taking the Laplace transform of (2.12)-(2.13) and using the above relations, we
now obtain

(d1 − ξe1)ũ−1 − e2ṽ
b.l.

∣∣
x=0

= 0 (2.17)
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(d1 − ξe1)ũ− e2ṽ
b.l.
1 + e1ξ

2ũ−1 + (d2 − ξe2)ṽb.l.
∣∣
x=0

(2.18)

= F̃ (ξ)− (d2 + ξe2)ṽ0(ξ)

Case I: detE 6= 0.
In this case, by taking Re ξ = α > 0 sufficiently large, we have

det(d1 − ξe1,−e2) = ξ detE − det(d1, e2) 6= 0 (2.19)

and (2.17)-(2.18) can be solved easily

ũ−1(0, ξ) = 0, ṽb.l.(0, ξ) = 0, (2.20)

ũ(0, ξ) = det(F̃ (ξ),e2)
det(d1−ξe1,e2)

− det(d2,e2)
det(d1−ξe1,e2)

ṽ0(ξ), (2.21)

and

ṽb.l.
1 (0, ξ) = −det(d1 − ξe1, F̃ (ξ))

det(d1 − ξe1, e2)
+

det(d1 − ξe1, d2 + ξe2)
det(d1 − ξe1, e2)

ṽ0(ξ). (2.22)

Case II(a): e11 6= 0, e12 = e21 = e22 = 0.
In this case, we have det(d1 − ξe1,−e2) = 0 and the linear system (2.17)-(2.18)

becomes degenerate. The first equation (2.17) reduces to

(d1 − ξe1)ũ−1(0, ξ) = 0 (2.23)

which, by taking α = Re ξ sufficiently large, implies

ũ−1(0, ξ) = 0 (2.24)

With (2.24), the second equation (2.18) now becomes

(d1 − ξe1)ũ(0, ξ) + d2ṽ
b.l.(0, ξ) = F̃ (ξ)− d2ṽ0(ξ) (2.25)

Next we show that by choosing α = Re ξ > 0 sufficiently large, we have

det(d1 − ξe1, d2) = det D − ξe11d22 6= 0 (2.26)

This is obvious when d22 6= 0. On the other hand, if d22 = 0, we must have d21 6= 0.
In this case, (1.2)2 reduces to the following Dirichlet boundary condition for uε:

uε(0, t) = f2(t)/d21 (2.27)

while (1.2)1 becomes

d11u
ε(0, t) + e11∂xuε(0, t) + d12v

ε(0, t) = f1(t) (2.28)

Clearly we must also have d12 6= 0 and hence det(d1 − ξe1, d2) = −d12d21 6= 0.
With (2.26), the desired boundary data ũ(0, ξ) and ṽb.l.(0, ξ) can now be uniquely

determined from (2.25):

ũ(0, ξ) =
det(F̃ (ξ), d2)

det(d1 − ξe1, d2)
, ṽb.l.(0, ξ) = −det(F̃ (ξ), d1 − ξe1)

det(d1 − ξe1, d2)
− ṽ0(ξ) (2.29)

Case II(b): e12 6= 0, d21 6= 0, e21 = e22 = 0.
In this case, we have det(d1 − ξe1,−e2) = d21e12 6= 0. Therefore the linear

systems (2.17) and (2.18) can be solved in exactly the same way as in Case I.

ũ−1(0, ξ) = 0, ṽb.l.(0, ξ) = 0, (2.30)

ũ(0, ξ) = f̃2(ξ)/d21 − (d22/d21)ṽ0(ξ), (2.31)

and

ṽb.l.
1 (0, ξ) =

det(d1 − ξe1, F̃ (ξ))
d21e12

− det(d1 − ξe1, d2 + ξe2)
d21e12

ṽ0(ξ). (2.32)
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Case II(c): e12 6= 0, d21 = e21 = e22 = 0.
In this case, again we have det(d1 − ξe1,−e2) = 0 and the linear system (2.17)-

(2.18) is degenerate with (2.17) now reducing to the following single equation

(d11 − ξe11)ũ−1(0, ξ)− e12ṽ
b.l.(0, ξ) = 0 (2.33)

On the other hand, we have from (2.18)2

d22ṽ
b.l.(0, ξ) = f̃2(ξ)− d22ṽ0(ξ) (2.34)

Therefore we obtain

ũ−1(0, ξ) =
e12f̃2(ξ)

d22(d11 − ξe11)
− e12

d11 − ξe11
ṽ0(ξ) (2.35)

and

ṽb.l.(0, ξ) = f̃2(ξ)/d22 − ṽ0(ξ) (2.36)

Note that in this case we must have d22 6= 0 and the second boundary condition
in (1.2) determines the boundary data vε(0, t) completely

vε(0, t) = f2(t)/d22 (2.37)

On the other hand since we cannot have both boundary conditions for vε only, we
must also have d11 6= 0 or e11 6= 0. Thus, by choosing α sufficiently large, we have
d11 − ξe11 6= 0.

3. Solution by Laplace Transform. We now solve the IBVP (1.1)-(1.3) explic-
itly by the method of Laplace transform. Taking Laplace transform on (1.1) and
using (1.3), we obtain{

ε∂2
xũε − ∂xũε − ξũε = −u0(x)

ε∂2
xṽε + ∂xṽε − ξṽε = −v0(x)

(3.1)

On the other hand, the boundary condition (1.2) becomes

D

(
ũε

ṽε

)
(0, ξ) + E

(
∂xũε

∂xṽε

)
(0, ξ) =

(
f̃1(ξ)
f̃2(ξ)

)
(3.2)

With appropriate boundary data (ũε(0, ξ), ∂xũε(0, ξ)) and (ṽε(0, ξ), ∂xṽε(0, ξ)),
the solution to (3.1) can be expressed in the following form [15]{

ũε(x, ξ) = A+(x, ξ, ε)eω1+x + A−(x, ξ, ε)eω1−x

ṽε(x, ξ) = B+(x, ξ, ε)eω2+x + B−(x, ξ, ε)eω2−x
(3.3)

where

ω1±(ξ, ε) =
1±

√
1 + 4εξ

2ε
, ω2±(ξ, ε) =

−1±
√

1 + 4εξ

2ε
(3.4)
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and

A+ =
1

ω1+ − ω1−

(
−ω1−ũε(0, ξ) + ∂xũε(0, ξ)− ε−1

∫ x

0

e−ω1+ηu0(η) dη

)
A− =

1
ω1+ − ω1−

(
ω1+ũε(0, ξ)− ∂xũε(0, ξ) + ε−1

∫ x

0

e−ω1−ηu0(η) dη

)
B+ =

1
ω2+ − ω2−

(
−ω2−ṽε(0, ξ) + ∂xṽε(0, ξ)− ε−1

∫ x

0

e−ω2+ηv0(η) dη

)
B− =

1
ω2+ − ω2−

(
ω2+ṽε(0, ξ)− ∂xṽε(0, ξ) + ε−1

∫ x

0

e−ω2−ηv0(η) dη

)
The following estimates can be proved directly.

Lemma 3.1. For all ε > 0 and α = Re ξ > 0, we have

Re ω1+ > 0, Re ω1− < 0, Re ω2+ > 0, Re ω2− < 0. (3.5)

Clearly the boundary data (ũε(0, ξ), ∂xũε(0, ξ)) and (ṽε(0, ξ), ∂xṽε(0, ξ)) have to
satisfy the boundary condition (3.2). On the other hand, in order to determine a
unique solution (ũε(·, ξ), ṽε(·, ξ)) ∈ L2(R+), we also need to impose the following
boundary condition at x = +∞:

ũε(∞, ξ) = 0, ṽε(∞, ξ) = 0 (3.6)

which, by (3.3) and Lemma 3.1, yields,

A+(∞, ξ, ε) = 0, B+(∞, ξ, ε) = 0 (3.7)

or equivalently,{
∂xũε(0, ξ) = ω1−ũε(0, ξ) + ε−1

∫∞
0

e−ω1+ηu0(η)dη

∂xṽε(0, ξ) = ω2−ṽε(0, ξ) + ε−1
∫∞
0

e−ω2+ηv0(η)dη
(3.8)

Substituting (3.8) into (3.2), we now obtain

(d1 + ω1−e1)ũε(0, ξ) + (d2 + ω2−e2)ṽε(0, ξ) (3.9)

= F̃ (ξ)− e1ε
−1

∫ ∞

0

e−ω1+ηu0(η) dη − e2ε
−1

∫ ∞

0

e−ω2+ηv0(η) dη

Lemma 3.2. For α = Re ξ > 0 (sufficiently large and fixed), there exists an ε0 > 0
(sufficiently small) such that the following estimate

∆ = det(d1 + ω1−(ξ, ε)e1, d2 + ω2−(ξ, ε)e2) 6= 0 (3.10)

holds in all cases independent of 0 < ε ≤ ε0 and β ∈ R.

Proof. First we note that by using

Re
√

1 + 4εξ ≥
√

1 + 4εα (3.11)

we obtain (i = 1, 2)

|Re ωi±(ξ, ε)| ≥ α√
1 + 4εα

→∞ as α →∞ (3.12)

and hence

|ωi±(ξ, ε)| → ∞ as α →∞ (3.13)

independent of β ∈ R and ε > 0 (without loss of generality, we assume ε ≤ 1).
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We now prove the estimate (3.10) separately for the cases I, II(a)-(c).
Case I: detE 6= 0.

In this case, we have

∆ = (detE)ω1−ω2− + det(d1, e2)ω2− + det(e1, d2)ω1− + detD

≈ (detE)ω1−ω2− = (det E)ε−1ξ →∞ as α →∞. (3.14)

Case II(a): e11 6= 0, e12 = e21 = e22 = 0.
In this case, we have

∆ = d22e11ω1− + detD. (3.15)

For d22 6= 0, clearly we have |∆| → ∞ as α → ∞. For d22 = 0, we must have
d21 6= 0 and d12 6= 0 (see the proof of (2.26)) and hence ∆ = det D = −d12d21 6= 0.

Case II(b): e12 6= 0, d21 6= 0, e21 = e22 = 0.
In this case, we have

∆ = det(d1, e2)ω2− + det(e1, d2)ω1− + detD

=
1
2ε

{
2d21e12 + (d21e12 − e11d22)

(√
1 + 4εξ − 1

)
+ 2ε detD

}
In the case d21e12 − e11d22 = 0, it is clear that since e12 6= 0, d21 6= 0, by taking ε
sufficiently small, we have |∆| ≥ O(1)ε−1 independent of ξ.

Next we assume d21e12 − e11d22 6= 0. Since
√

1 + 4εξ is continuous in the half
plane Re ξ ≥ 0, we have ∣∣∣√1 + 4εξ − 1

∣∣∣ ≤ o(1)

and hence

|∆| ≥ 1
2ε

{
2|d21e12| − |d21e12 − e11d22|

∣∣∣√1 + 4εξ − 1
∣∣∣− 2ε|detD|

}
≥ O(1)ε−1

for ε|ξ| ≤ δ0 with δ0 sufficiently small.
For ε|ξ| > δ0, since α > 0 is fixed, we may choose ε0 sufficiently small such that

εα < δ0/2 and hence ε|β| > δ0/2. By using the following estimate∣∣∣Im √
1 + 4εξ

∣∣∣ =
2ε|β|

Re
√

1 + 4εξ
≥ 2ε|β|
|
√

1 + 4εξ|
=

2ε|β|√
(1 + 4εα)2 + (4εβ)2

and the monotonicity (in ε|β|) of the right hand side in the above inequality, we
obtain again

|∆| ≥ |Im ∆| ≥ O(1)ε−1
∣∣∣Im √

1 + 4εξ
∣∣∣ ≥ O(1)ε−1

Case II(c): e12 6= 0, d21 = e21 = e22 = 0.
In this case,

∆ = d22(d11 + e11ω1−) (3.16)

Since we must have d22 6= 0 and (d11, e11) 6= (0, 0), by choosing α sufficiently large,
we can always guarantee ∆ 6= 0.

The proof of Lemma 3.2 is now complete.
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With Lemma 3.2, we can now solve (3.9) to obtain the desired boundary data
(ũε(0, ξ), ṽε(0, ξ)):

ũε(0, ξ) = ∆−1 det(F̃ (ξ), d2 + ω2−e2)

−(ε∆)−1 det(e1, d2 + ω2−e2)
∫ ∞

0

e−ω1+ηu0(η) dη

−(ε∆)−1 det(e2, d2)
∫ ∞

0

e−ω2+ηv0(η) dη (3.17)

ṽε(0, ξ) = −∆−1 det(F̃ (ξ), d1 + ω1−e1)

+(ε∆)−1 det(e1, d1)
∫ ∞

0

e−ω1+ηu0(η) dη

+(ε∆)−1 det(e2, d1 + ω1−e1)
∫ ∞

0

e−ω2+ηv0(η) dη (3.18)

and hence the following solution representations for ũε and ṽε

ũε(x, ξ) = ũε
I (x, ξ) + ũε

II(x, ξ) + ũε
III(x, ξ) + ũε

IV(x, ξ) + ũε
V(x, ξ)

(3.19)
ṽε(x, ξ) = ṽε

I (x, ξ) + ṽε
II(x, ξ) + ṽε

III(x, ξ) + ṽε
IV(x, ξ) + ṽε

V(x, ξ)

where

ũε
I (x, ξ) = ∆−1 det(F̃ , d2 + ω2−e2)eω1−x

(3.20)
ṽε
I (x, ξ) = −∆−1 det(F̃ (ξ), d1 + ω1−e1)eω2−x

ũε
II(x, ξ) =

1
ε(ω1+ − ω1−)

∫ x

0

eω1−(x−η)u0(η)dη

+
1

ε(ω1+ − ω1−)

∫ ∞

x

eω1+(x−η)u0(η)dη (3.21)

ṽε
II(x, ξ) =

1
ε(ω2+ − ω2−)

∫ x

0

eω2−(x−η)v0(η)dη

+
1

ε(ω2+ − ω2−)

∫ ∞

x

eω2+(x−η)v0(η)dη (3.22)

ũε
III(x, ξ) = − 1

ε(ω1+ − ω1−)
eω1−x

∫ ∞

0

e−ω1+ηu0(η)dη

ṽε
III(x, ξ) = − 1

ε(ω2+ − ω2−)
eω2−x

∫ ∞

0

e−ω2+ηv0(η)dη

ũε
IV(x, ξ) = −(ε∆)−1 det(e1, d2 + ω2−e2)eω1−x

∫ ∞

0

e−ω1+ηu0(η)dη

(3.23)
ṽε
IV(x, ξ) = (ε∆)−1 det(e1, d1)eω2−x

∫ ∞

0

e−ω1+ηu0(η)dη

ũε
V(x, ξ) = −(ε∆)−1 det(e2, d2)eω1−x

∫ ∞

0

e−ω2+ηv0(η)dη

(3.24)
ṽε
V(x, ξ) = (ε∆)−1 det(e2, d1 + ω1−e1)eω2−x

∫ ∞

0

e−ω2+ηv0(η)dη

In view of the results in the scalar case [15], it is not difficult to see that the
first part (ũε

I , ṽ
ε
I ) in the above solution decomposition corresponds to the Laplace
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transform of the solution of the IBVP (1.1)-(1.3) with zero initial data, that is,
u0(x) = v0(x) = 0. All other terms depend on (u0(x), v0(x)) and vanish when
u0(x) = v0(x) = 0.

Similarly it can be easily checked that the second part (ũε
II, ṽ

ε
II), corresponds to

the Laplace transform of the solution of the Cauchy problem of (1.1) with initial
data

(uε
II(x, 0), vε

II(x, 0)) =
{

(u0(x), v0(x)) x ≥ 0
(0, 0) x < 0 (3.25)

and the third part (ũε
III, ṽ

ε
III) corresponds to the Laplace transform of the solution of

(1.1) with zero initial condition

uε
III(x, 0) = 0, vε

III(x, 0) = 0 (3.26)

and the following (decoupled) Dirichlet boundary condition

uε
III(0, t) = −uε

II(0, t), vε
III(0, t) = −vε

II(0, t) (3.27)

Note that these two parts have exactly the same form as in the scalar case, see [15].
Finally, by linearity, it is clear that the last two parts (ũε

IV + ũε
V, ṽε

IV + ṽε
V) corre-

sponds to the Laplace transform of the solution of (1.1) with zero initial condition

uε
IV(x, 0) + uε

V(x, 0) = 0, vε
IV(x, 0) + vε

V(x, 0) = 0

and the following boundary condition

D

(
uε

IV + uε
V

vε
IV + vε

V

)
(0, t) + E∂x

(
uε

IV + uε
V

vε
IV + vε

V

)
(0, t) = −E∂x

(
uε

II + uε
III

vε
II + vε

III

)
(0, t).

We will consider these five parts separately in the next two sections. The con-
vergence analysis for the first part (uε

I , v
ε
I ) is the most straightforward and will be

carried out in Section 4. The main difficulty is with the nonzero initial data effect,
particularly the last part (uε

V, vε
V). This will be done in Section 5.

4. Convergence Proof: Zero Initial Data Case. With the explicit solution
representation obtained in the last section, we are now ready to prove the con-
vergence estimates as stated in Theorem 1.2 and Theorem 1.3. For simplicity of
presentation, we consider the zero initial data case first and assume u0(x) ≡ 0,
v0(x) ≡ 0 in this section. For convenience, we drop the subscripts and still use uε

and vε instead of uε
I and vε

I . Therefore, we have,

ũε(x, ξ) = ∆−1 det(F̃ , d2 + ω2−e2)eω1−x

(4.1)
ṽε(x, ξ) = −∆−1 det(F̃ , d1 + ω1−e1)eω2−x

where

∆ = det(d1 + ω1−e1, d2 + ω2−e2) (4.2)

satisfies (see the proof of Lemma 3.2)

|∆| ≥

 O(1)ε−1|ξ| Case I
O(1)ε−1 Case II(b)
O(1) Case II(a) and Case II(c)

(4.3)

for some constant O(1) independent of ε and β.
The following uniform estimates can be found in [15] and will be used extensively

in our proof.
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Lemma 4.1 (Asymptotic estimates on ω±(ξ, ε)). There exists a constant O(1) in-
dependent of ε and β such that

1
Re ω1+(ξ, ε)

≤ O(1)ε,
1

−Re ω1−(ξ, ε)
≤ O(1) (4.4)

1
Re ω2+(ξ, ε)

≤ O(1),
1

−Re ω2−(ξ, ε)
≤ O(1)ε (4.5)

|ω1+(ξ, ε)− 1/ε| ≤ O(1)|ξ|, |ω1−(ξ, ε) + ξ| ≤ O(1)ε|ξ|2 (4.6)
|ω2+(ξ, ε)− ξ| ≤ O(1)ε|ξ|2, |ω2−(ξ, ε) + 1/ε| ≤ O(1)|ξ| (4.7)

We now consider each case separately.

Case I:
First we note that by taking formal pointwise limit ε → 0, we obtain from (4.1)

ũε(x, ξ) ∼ det(F̃ (ξ), e2)
det(d1 − ξe1, e2)

e−ξx, ṽε(x, ξ) ∼ ε
det(F̃ (ξ), d1 − ξe1)
det(d1 − ξe1, e2)

e−x/ε (4.8)

This is clearly consistent with the formal expansion results obtained in Section 2:

ũ−1(x, ξ) = 0, ũ(x, ξ) =
det(F̃ (ξ), e2)

det(d1 − ξe1, e2)
e−ξx (4.9)

ṽ(x, ξ) = 0, ṽb.l.(y, ξ) = 0, ṽb.l.
1 (y, ξ) =

det(F̃ (ξ), d1 − ξe1)
det(d1 − ξe1, e2)

e−y (4.10)

The above convergence can be justified easily by using Parseval’s relation [12].
First we observe that by using (4.3) and Lemma 4.1, we have

|ṽε(x, ξ)| ≤ O(1)
∣∣∣F̃ (ξ)/ω2−

∣∣∣ eRe ω2−x ≤ O(1)ε
∣∣∣F̃ (ξ)

∣∣∣ eRe ω2−x (4.11)

and therefore,∫ ∞

0

∫ ∞

0

|vε(x, t)|2e−2αtdxdt =
1
2π

∫ ∞

0

∫ ∞

−∞
|ṽε(x, α + iβ)|2dxdβ

≤ O(1)ε2 sup
β

1
−Re ω2−(ξ, ε)

∫ ∞

−∞

∣∣∣F̃ (α + iβ)
∣∣∣2 dβ

≤ O(1)ε3

∫ ∞

0

|F (t)|2e−2αt dt ≤ O(1)ε3||F ||2L2 . (4.12)

This proves rigorously the asymptotic convergence vε → v = 0 in the zero viscosity
limit ε → 0. The leading boundary layer vb.l. also vanishes in the present case.

Next we consider the uε component. We have seen that the convergence ũε → ũ
holds for all x and ξ as ε → 0. On the other hand, by direct integration, it can be
easily checked that∫ ∞

0

∫ ∞

−∞

(
|ũε(x, ξ)|2 + |ũ(x, ξ)|2

)
dxdβ ≤ O(1)

∫ ∞

−∞

∣∣∣F̃ (ξ)
∣∣∣2 dβ (4.13)

Therefore, by Lebesgue’s dominated convergence theorem (and assuming F ∈ L2),
we obtain ∫ ∞

−∞

∫ ∞

0

|ũε(x, ξ)− ũ(x, ξ)|2 dxdβ → 0 as ε → 0 (4.14)
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which, by Parseval’s identity, implies∫ ∞

0

∫ ∞

0

|uε(x, t)− u(x, t)|2 e−2αt dxdt → 0 as ε → 0. (4.15)

In order to obtain optimal convergence rate, we rewrite ũε(x, ξ)− ũ(x, ξ) as

ũε(x, ξ)− ũ(x, ξ) = ∆−1 det(F̃ , d2)eω1−x

+
(

ω2−

∆
− 1

det(d1 − ξe1, e2)

)
det(F̃ , e2)eω1−x

+
1

det(d1 − ξe1, e2)
det(F̃ , e2)

(
eω1−x − e−ξx

)
(4.16)

Next, we note that by choosing α sufficiently large and ε sufficiently small, we have
(see Lemma 3.2)

|∆| ≥ O(1)|ω1−ω2−| ≥ O(1)ε−1|ξ|, |det(d1 − ξe1, e2)| ≥ O(1)|ξ| (4.17)

Furthermore, by using Lemma 4.1, we have∣∣∣∣ω2−

∆
− 1

det(d1 − ξe1, e2)

∣∣∣∣ ≤ O(1)ε|ξ| (4.18)

and ∫ ∞

0

∣∣eω1−x − e−ξx
∣∣2 dx ≤ O(1)ε2|ξ|4 (4.19)

Combining the above, we obtain easily∫ ∞

0

∫ ∞

−∞
|ũε(x, ξ)− ũ(x, ξ)|2 dxdβ ≤ O(1)ε2

∫ ∞

−∞
|ξ|2

∣∣∣F̃ (ξ)
∣∣∣2 dβ

≤ O(1)ε2

∫ ∞

0

|F ′(t)|2e−2αtdt ≤ O(1)ε2||F ||2H1 (4.20)

Case II(a):
In this case, we have

ũε(x, ξ) = ∆−1 det(F̃ , d2)eω1−x

(4.21)
ṽε(x, ξ) = −∆−1 det(F̃ , d1 + ω1−e1)eω2−x

with

∆ = det(d1 + ω1−e1, d2) = d22e11ω1− + detD (4.22)

Taking the formal pointwise limit ε → 0, we have

ũε(x, ξ) ∼ ũ(x, ξ) =
1

det(d1 − ξe1, d2)
det(F̃ , d2)e−ξx

(4.23)
ṽε(x, ξ) ∼ ṽb.l.(x, ξ) = − 1

det(d1 − ξe1, d2)
det(F̃ , d1 − ξe1)e−x/ε

The proof of the convergence ũε → ũ as ε → 0 is similar to that in Case I. First
we note that, similar to (4.16), ũε(x, ξ)− ũ(x, ξ) can be written as

ũε(x, ξ)− ũ(x, ξ) =
(
∆−1 − det(d1 − ξe1, d2)−1

)
det(F̃ , d2)e−ξx

+det(d1 − ξe1, d2)−1 det(F̃ , d2)
(
eω1−x − e−ξx

)
(4.24)
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Next, by using Lemma 4.1 and the following estimates

|∆| ≥ O(1), |det(d1 − ξe1, d2)| ≥ O(1) (4.25)

we have ∣∣∆−1 − det(d1 − ξe1, d2)−1
∣∣ ≤ O(1)ε|ξ| (4.26)

Therefore, using (4.26) and (4.19) (and assuming F (t) ∈ H2 with F (0) = F ′(0) =
0), we obtain the following convergence in uε∫ ∞

0

∫ ∞

−∞
|ũε(x, ξ)− ũ(x, ξ)|2 dxdβ ≤ O(1)ε2

∫ ∞

−∞
|ξ|4

∣∣∣F̃ (ξ)
∣∣∣2 dβ

≤ O(1)ε2

∫ ∞

0

(
|F ′(t)|2 + |F ′′(t)|2

)
e−2αtdt ≤ O(1)ε2||F ||2H2 (4.27)

We now turn to the vε component. First it is clear that by using (4.25) and the
estimate |ω1−(ξ, ε)| ≤ O(1)|ξ|, we have from (4.21),

|ṽε(x, ξ)| ≤ O(1)
∣∣∣ξ ˜F (ξ)eω2−(ξ,ε)x

∣∣∣ (4.28)

Therefore, similar to (4.12), we obtain (assuming F ∈ H1 with F (0) = 0),∫ ∞

0

∫ ∞

−∞
|ṽε(x, ξ)|2 dxdβ ≤ O(1) sup

β

1
−Re ω2−(ξ, ε)

∫ ∞

−∞

∣∣∣ξF̃ (ξ)
∣∣∣2 dβ

≤ O(1)ε||F ||2H1 (4.29)

This again proves rigorously the asymptotic convergence of vε → v = 0 in the zero
viscosity limit ε → 0. Note that, due to the presence of the boundary layer vb.l. (see
(4.23)), the convergence rate of vε → v = 0 is now one order lower than in Case I,
see (4.12).

The validity of the leading boundary layer vb.l. can be proved as follows. First,
by using (4.25) and Lemma 4.1, it can be easily checked that∣∣ṽε(x, ξ)− ṽb.l.(x, ξ)

∣∣ ≤ O(1)ε|ξ|2
∣∣∣F̃ (ξ)

∣∣∣ |eω2−x|

+O(1)|ξ|
∣∣∣F̃ (ξ)

∣∣∣ ∣∣∣eω2−x − e−x/ε
∣∣∣ (4.30)

Next, from Lemma 4.1, it follows∫ ∞

0

|eω2−x|2 dx ≤ O(1)ε (4.31)∫ ∞

0

∣∣∣eω2−x − e−x/ε
∣∣∣2 dx ≤ O(1)ε3|ξ|2 (4.32)

and hence ∫ ∞

0

|ṽε(x, ξ)− ṽb.l.(x, ξ)|2 dx ≤ O(1)ε3|ξ|4|F̃ (ξ)|2 (4.33)

The desired boundary layer estimate∫ ∞

0

∫ ∞

−∞
|ṽε(x, ξ)− ṽb.l.(x, ξ)|2dxdβ ≤ O(1)ε3‖F‖2H2 (4.34)

now follows easily from Parseval’s relation (assuming F ∈ H2 with F (0) = F ′(0) =
0).

Case II(b):
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In this case, we have

ũε(x, ξ) = ∆−1 det(F̃ , d2 + ω2−e2)eω1−x

(4.35)
ṽε(x, ξ) = −∆−1 det(F̃ , d1 + ω1−e1)eω2−x

and

ũε(x, ξ) ∼ ũ(x, ξ) = f̃2(ξ)/d21e
−ξx

(4.36)
ṽε(x, ξ) ∼ ṽb.l.(x, ξ) = −ε det(F̃ , d1 − ξe1)/(d21e12)e−x/ε

where

∆ = det(d1, e2)ω2− + det(e1, d2)ω1− + detD (4.37)

First we observe that by using |∆| ≥ O(1)ε−1 and |ω1−(ξ, ε)| ≤ O(1)|ξ|, it follows
immediately that

|ṽε(x, ξ)| ≤ O(1)ε|ξ|
∣∣∣F̃ (ξ)eω2−x

∣∣∣ (4.38)

and therefore ∫ ∞

0

∫ ∞

−∞
|ṽε(x, ξ)|2 dβ ≤ O(1)ε3‖F‖2H1 (4.39)

As in Case I, the above estimate establishes the convergence of vε → v = 0 in
the zero viscosity limit. It also shows that the boundary layer vb.l. vanishes at the
leading order.

Next we prove the convergence of uε → u. Similarly to (4.16), we have

ũε − ũ = ∆−1 det(F̃ , d2)eω1−x +
(

ω2−

∆
− 1

det(d1, e2)

)
det(F̃ , e2)eω1−x

+
1

det(d1, e2)
det(F̃ , e2)

(
eω1−x − e−ξx

)
(4.40)

Furthermore, similar to (4.18), it holds,∣∣∣∣ω2−

∆
− 1

det(d1, e2)

∣∣∣∣ =
|ω1− det(e1, d2]+ det D|

|∆ det(d1, e2)|
≤ O(1)ε|ξ| (4.41)

Therefore, similar to (4.20), by using (4.19), (4.41) and |∆| ≥ O(1)ε−1 (and assum-
ing F ∈ H2 with F (0) = F ′(0) = 0), we obtain∫ ∞

0

∫ ∞

−∞
|ũε(x, ξ)− ũ(x, ξ)|2 dxdβ ≤ O(1)ε2‖F‖2H2 (4.42)

Case II(c):
In this case, we have

∆ = det(d1 + ω1−e1, d2) = d22(d11 + ω1−e11), (4.43)

ũε(x, ξ) =
−ω2−e12f̃2 + det(F̃ , d2)

d22(d11 + ω1−e11)
eω1−x

(4.44)
ṽε(x, ξ) = f̃2(ξ)/d22e

ω2−x

and

ũε(x, ξ) ∼ ε−1ũ−1(x, ξ) = ε−1 e12f̃2(ξ)
d22(d11 − ξe11)

e−ξx

(4.45)
ṽε(x, ξ) ∼ ṽb.l.(x, ξ) = f̃2(ξ)/d22e

−x/ε
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Note that in this case, since we have a decoupled Dirichlet boundary condition
for the outflow vε, that is, vε(0, t) = f2(t)/d22, the validity of the above boundary
layer structure for vb.l. (and the convergence of vε → v = 0) follows directly from
Theorem 1.1. Indeed, using (4.32) and assuming f2 ∈ H1 with f2(0) = 0, we obtain
immediately ∫ ∞

0

∫ ∞

−∞
|ṽε(x, ξ)− ṽb.l.(x, ξ)|2dxdβ

≤ O(1)ε3

∫ ∞

−∞
|ξ|2

∣∣∣f̃2(ξ)
∣∣∣2 dβ ≤ O(1)ε3‖f2‖2H1 (4.46)

The uε component, on the other hand, now includes an expansive growth term
at the order of ε−1, see (4.45). By using the estimates |ω2−(ξ, ε) + 1/ε| ≤ O(1)|ξ|
and |ω1−(ξ, ε) + ξ| ≤ O(1)ε|ξ|2, it can be easily checked that∣∣ũε(x, ξ)− ε−1ũ−1(x, ξ)

∣∣
≤ O(1)|ξ|

∣∣∣F̃ (ξ)eω1−x
∣∣∣ + O(1)ε−1

∣∣∣f̃2(ξ)
(
eω1−x − e−ξx

)∣∣∣ (4.47)

and therefore we obtain∫ ∞

0

∫ ∞

−∞

∣∣ũε(x, ξ)− ε−1ũ−1(x, ξ)
∣∣2 dxdβ ≤ O(1)‖F‖2H2 (4.48)

5. Convergence Proof: Nonzero Initial Data Case. We now turn to the
nonzero initial data effect in the viscous IBVP (1.1)-(1.3) and consider the remaining
parts in the solution representations (3.19). Without confusion, we assume F ≡ 0
in this section. Then it is clear that

ũε(x, ξ) = ũε
II(x, ξ) + ũε

III(x, ξ) + ũε
IV(x, ξ) + ũε

V(x, ξ)
(5.1)

ṽε(x, ξ) = ṽε
II(x, ξ) + ṽε

III(x, ξ) + ṽε
IV(x, ξ) + ṽε

V(x, ξ)

solves the following IBVP{
∂tu

ε + ∂xuε
x = ε∂2

xuε

∂tv
ε − ∂xvε

x = ε∂2
xvε

(5.2)

uε(x, 0) = u0(x), vε(x, 0) = v0(x) (5.3)

D

(
uε

vε

)
(0, t) + E

(
∂xuε

∂xvε

)
(0, t) =

(
0
0

)
(5.4)

5.1. Estimates on (ũε
II, ṽ

ε
II) and (ũε

III, ṽ
ε
III). Recall that the first two parts (ũε

II, ṽ
ε
II)

and (ũε
III, ṽ

ε
III) in (5.1) correspond to the solution of the Cauchy problem (1.1), (3.25)

and the decoupled IBVP (1.1), (3.26)-(3.27) respectively. Let

ũII(x, ξ) =
∫ x

0

e−ξ(x−η)u0(η) dη, ṽII(x, ξ) =
∫ ∞

x

eξ(x−η)v0(η) dη, (5.5)

and

ṽb.l.
III (x/ε, ξ) = −e−x/εṽ0(ξ) = −e−x/ε

∫ ∞

0

e−ξηv0(η) dη (5.6)

Then by applying the convergence results in the scalar case [15], we can obtain the
following convergence estimates for (ũε

II, ṽ
ε
II) and (ũε

III, ṽ
ε
III):∫ ∞

0

∫ ∞

−∞
|ũε

II(x, ξ)− ũII(x, ξ)|2 dxdβ ≤ O(1)ε2‖u0‖2H2 (5.7)
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0

∫ ∞

−∞
|ṽε

II(x, ξ)− ṽII(x, ξ)|2 dxdβ ≤ O(1)ε2‖v0‖2H2 (5.8)

∫ ∞

0

∫ ∞

−∞
|ũε

III(x, ξ)|2 dxdβ ≤ O(1)ε2‖u0‖2H2 (5.9)

∫ ∞

0

∫ ∞

−∞
|ṽε

III(x, ξ)|2 dxdβ ≤ O(1)ε‖v0‖2L2 (5.10)

∫ ∞

0

∫ ∞

−∞

∣∣ṽε
III(x, ξ)− ṽb.l.

III (x/ε, ξ)
∣∣2 dxdβ ≤ O(1)ε3‖v0‖2H3 (5.11)

5.2. Estimates on (ũε
IV, ṽε

IV). Next we consider the third part (ũε
IV, ṽε

IV) in (5.1):

ũε
IV(x, ξ) = −(ε∆)−1 det(e1, d2 + ω2−e2)eω1−x

∫ ∞

0

e−ω1+ηu0(η)dη

(5.12)
ṽε
IV(x, ξ) = (ε∆)−1 det(e1, d1)eω2−x

∫ ∞

0

e−ω1+ηu0(η) dη

We will show that the effect of (ũε
IV, ṽε

IV) is negligible and the following estimates∫ ∞

0

∫ ∞

−∞
|ũε

IV(x, ξ)|2 dxdβ ≤ O(1)ε2‖u0‖2H2 (5.13)∫ ∞

0

∫ ∞

−∞
|ṽε

IV(x, ξ)|2 dxdβ ≤ O(1)ε3‖u0‖2H2 (5.14)

hold in all cases provided the initial data u0(x) is twice differentiable and satisfies
u0(0) = u′0(0) = 0.

To prove (5.13) and (5.14), we first note that by using (4.3), we have in all cases∣∣(ε∆)−1 det(e1, d1)
∣∣ ≤ O(1)ε−1 (5.15)

and ∣∣(ε∆)−1 det(e1, d2 + ω2−e2)
∣∣ ≤ O(1)ε−1 (5.16)

Furthermore, we have for all β ∈ R,∫ ∞

0

|eω1−x|2 dx =
1

−2Re ω1−
≤ O(1) (5.17)

and ∫ ∞

0

|eω2−x|2 dx =
1

−2Re ω2−
≤ O(1)ε (5.18)

To finish the proof of (5.13) and (5.14), now it remains to show that∫ ∞

−∞

∣∣∣∣∫ ∞

0

e−ω1+ηu0(η) dη

∣∣∣∣2 dβ ≤ O(1)ε4||u0||2H2 (5.19)

By using Cauchy-Schwarz, it is easy to see that∣∣∣∣∫ ∞

0

e−ω1+ηu0(η) dη

∣∣∣∣2 ≤ ∫ ∞

0

∣∣e−ω1+η
∣∣2 dη

∫ ∞

0

|u0(η)|2 dη ≤ O(1)ε||u0||2L2 (5.20)

However this does not lead to (5.19). Notice that the right hand side of (5.20) is
not even integrable with respect to β.
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To overcome this difficulty and also to obtain the desired convergence rate, we
need to assume that u0(x) is twice differentiable and satisfies the compatibility
condition u0(0) = u′0(0) = 0. Then a simple integration by parts yields∫ ∞

0

e−ω1+ηu0(η) dη =
1

ω1+

∫ ∞

0

e−ω1+ηu′0(η) dη =
1

ω2
1+

∫ ∞

0

e−ω1+ηu′′0(η) dη (5.21)

The new integral term on the right hand side of (5.21) can be similarly estimated
as in (5.20) and hence∣∣∣∣∫ ∞

0

e−ω1+ηu′′0(η) dη

∣∣∣∣2 ≤ O(1)ε||u0||2H2 (5.22)

On the other hand, the extra integrated factor 1/ω1+(ξ, ε)2 now gives the desired
convergence rate and integrability with respect to β since∫ ∞

−∞

1
|ω1+(ξ, ε)|4

dβ ≤ O(1)ε4

∫ ∞

−∞

1
1 + (4εβ)2

dβ ≤ O(1)ε3 (5.23)

The desired estimate (5.19) now follows by combining (5.21)-(5.23). Furthermore
we remark that the integral

∫∞
0

e−ω1+ηu0(η) dη and hence (ũε
IV, ṽε

IV) can be arbitrar-
ily small provided the initial data u0(x) is sufficiently smooth and compatible at
x = 0. This can be proved by applying additional integration by parts as in (5.21).

5.3. Estimates on (ũε
V, ṽε

V). We now turn to the last part (ũε
V, ṽε

V) in the solution
representation (5.1). It is clear that from (3.24), we have

ũε
V(x, ξ) = −(ε∆)−1 det(e2, d2)eω1−x

∫ ∞

0

e−ω2+ηv0(η)dη

(5.24)
ṽε
V(x, ξ) = (ε∆)−1 det(e2, d1 + ω1−e1)eω2−x

∫ ∞

0

e−ω2+ηv0(η)dη

Note that by taking formal pointwise limit, we can obtain from (5.24) the following
asymptotic behavior for (ũε

V, ṽε
V) as ε → 0:

Case I:

ũε
V(x, ξ) ∼ ũV(x, ξ) = − det(e2, d2)

det(e2, d1 − ξe1)
e−ξx

∫ ∞

0

e−ξηv0(η) dη

(5.25)
ṽε
V(x, ξ) ∼ ṽb.l.

V (x/ε, ξ) = e−x/ε

∫ ∞

0

e−ξηv0(η) dη

Case II(a):

ũε
V(x, ξ) = ũV(x, ξ) ≡ 0, ṽε

V(x, ξ) = ṽb.l.
V (x/ε, ξ) ≡ 0 (5.26)

Case II(b):

ũε
V(x, ξ) ∼ ũV(x, ξ) = −d22/d21e

−ξx

∫ ∞

0

e−ξηv0(η) dη

(5.27)
ṽε
V(x, ξ) ∼ ṽb.l.

V (x/ε, ξ) = e−x/ε

∫ ∞

0

e−ξηv0(η) dη
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Case II(c):

ũε
V(x, ξ) ∼ ε−1ũ−1(x, ξ) = − e12

ε(d11 − ξe11)
e−ξx

∫ ∞

0

e−ξηv0(η) dη

(5.28)
ṽε
V(x, ξ) = ṽb.l.

V (x/ε, ξ) = 0

It is worth mentioning that although the expression of (ũε
V, ṽε

V) is very similar
to that of (ũε

IV, ṽε
IV), the integral

∫∞
0

e−ω2+ηv0(η) dη is no longer arbitrarily small as
ε → 0. As a result, the asymptotic behavior of (ũε

V, ṽε
V) now depends crucially on

∆ or the type of boundary conditions, see (4.3) or Lemma 3.2.
In view of the convergence estimates already proved in the previous subsections

for (ũε
II, ṽ

ε
II), (ũε

III, ṽ
ε
III) and (ũε

IV, ṽε
IV), it is easy to see that the above formal asymptotic

convergence results for (ũε
V, ṽε

V) are clearly consistent with those obtained in Section
2 through matched asymptotic expansions. In particular, we note that for type I
and type II(b) boundary conditions, the boundary layer effect in the last part ṽε

V

exactly offsets that in the second part ṽε
III, that is, ṽb.l.

V = −ṽb.l.
III Therefore for such

boundary conditions the total boundary layer effect for the outlet vε vanishes at
the leading order. In the rest of this subsection, we will show that for these two
types of boundary conditions, it holds that

∫ ∞

0

∫ ∞

−∞
|ũε

V(x, ξ)− ũV(x, ξ)|2 dxdβ ≤
{

O(1)ε2||v0||2H3 Case I
O(1)ε2||v0||2H3 Case II(b) (5.29)

and ∫ ∞

0

∫ ∞

−∞

∣∣ṽε
V(x, ξ)− ṽb.l.

V (x/ε, ξ)
∣∣2 dxdβ ≤ O(1)ε3||v0||2H3 (5.30)

provided v0 ∈ H3 and satisfies v0(0) = v′0(0) = v′′0 (0) = 0.
For type II(c) boundary conditions, we will show that

∫ ∞

0

∫ ∞

−∞

∣∣ũε
V(x, ξ)− ε−1ũ−1(x, ξ)

∣∣2 dxdβ ≤ O(1)||v0||2H3 (5.31)

therefore confirming the secular growth term (at the order of ε−1) in the last part
ũε

V.
We now set out to prove (5.29)-(5.30) and (5.31). For simplicity, we assume as

usual v0 ∈ H3 with v0(0) = v′0(0) = v′′0 (0) = 0 and shall not concern ourselves with
possibly weaker or minimum assumptions on v0.
Case I:

First, by using a similar integration by parts as in (5.21), we can get

ũε
V(x, ξ) = −det(e2, d2)

ε∆ω2
2+

eω1−x

∫ ∞

0

e−ω2+ηv′′0 (η)dη (5.32)

ũV(x, ξ) = − det(e2, d2)
det(e2, d1 − ξe1)ξ2

e−ξx

∫ ∞

0

e−ξηv′′0 (η) dη (5.33)
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Therefore, we have

ũε
V(x, ξ)− ũV(x, ξ)

= −det(e2, d2)
(

1
ε∆ω2

2+

− 1
det(e2, d1 − ξe1)ξ2

)
eω1−x

∫ ∞

0

e−ω2+ηv′′0 (η)dη

− det(e2, d2)
det(e2, d1 − ξe1)ξ2

(
eω1−x − e−ξx

) ∫ ∞

0

e−ω2+ηv′′0 (η) dη

− det(e2, d2)
det(e2, d1 − ξe1)ξ2

e−ξx

∫ ∞

0

(
e−ω2+η − e−ξη

)
v′′0 (η) dη (5.34)

Note that the last two terms in (5.34) can be easily estimated by routine calcu-
lations. For example, let us consider the last term in (5.34). First, it is clear that
for type I boundary conditions, it holds that∣∣∣∣ det(e2, d2)

det(e2, d1 − ξe1)ξ2

∣∣∣∣ ≤ O(1)|ξ|−3 (5.35)

Next by using Cauchy-Schwarz, we have∣∣∣∣∫ ∞

0

(
e−ω2+η − e−ξη

)
v′′0 (η) dη

∣∣∣∣2 (5.36)

≤
∫ ∞

0

∣∣e−ω2+η − e−ξη
∣∣2 dη

∫ ∞

0

|v′′0 (η)|2 dη ≤ O(1)ε2|ξ|4||v0||2H2

Therefore it follows∫ ∞

0

∫ ∞

−∞

∣∣∣∣ det(e2, d2)
det(e2, d1 − ξe1)ξ2

e−ξx

∫ ∞

0

(
e−ω2+η − e−ξη

)
v′′0 (η) dη

∣∣∣∣2 dxdβ

≤ O(1)ε2||v0||2H2

∫ ∞

0

∫ ∞

−∞
|ξ|−2 ∣∣e−ξx

∣∣2 dxdβ ≤ O(1)ε2||v0||2H2 (5.37)

Similarly, it can be proved that∫ ∞

0

∫ ∞

−∞

∣∣∣∣ det(e2, d2)
det(e2, d1 − ξe1)ξ2

(
eω1−x − e−ξx

) ∫ ∞

0

e−ω2+ηv′′0 (η) dη

∣∣∣∣2 dxdβ

≤ O(1)ε2||v0||2H2 (5.38)

To finish the proof of (5.34), we now only have to show that∣∣∣∣ 1
ε∆ω2

2+

− 1
det(e2, d1 − ξe1)ξ2

∣∣∣∣ ≤ O(1)ε|ξ|−1 (5.39)

For this purpose, we will need the following slightly stronger estimates than given
in Lemma 4.1:

|ω2+| ≈ O(1)|ξ|/
√
|1 + 4εξ|, |ω2+ − ξ| ≤ O(1)ε|ξ|2/|1 + 4εξ| (5.40)

Then it can be easily checked that∣∣det(e2, d1 − ξe1)ξ2 − ε∆ω2
2+

∣∣ ≤ O(1)ε|ξ|4/|1 + 4εξ| (5.41)

The desired estimate (5.39) now follows easily. This finishes the proof of (5.29).
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Next we prove the boundary layer estimate (5.30). It is clear that by using
integration by parts (three times), one can rewrite ṽε

V(x, ξ)− ṽb.l.
V (x/ε, ξ) as

ṽε
V(x, ξ)− ṽb.l.

V (x/ε, ξ) =
(

det(e2, d1 + ω1−e1)
ε∆ω3

2+

− 1
ξ3

)
eω2−x

∫ ∞

0

e−ω2+ηv′′′0 (η)dη

+
1
ξ3

(
eω2−x − e−x/ε

) ∫ ∞

0

e−ω2+ηv′′′0 (η) dη

+
1
ξ3

e−x/ε

∫ ∞

0

(
e−ω2+η − e−ξη

)
v′′′0 (η) dη (5.42)

By using ∣∣∣∣det(e2, d1 + ω1−e1)
ε∆ω3

2+

− 1
ξ3

∣∣∣∣ ≤ O(1)ε|ξ|−1 (5.43)

and a similar analysis as in the above, the desired boundary layer estimate (5.30)
can be proved easily.

Finally we remark that by exploiting the formal asymptotic expansion results ob-
tained in Section 2, it is actually more convenient to prove the following convergence
estimate ∫ ∞

0

∫ ∞

−∞
|ṽε

III(x, ξ) + ṽε
V(x, ξ)| dxdβ ≤ O(1)ε3||v0||2H2 (5.44)

directly for both type I and type II(b) boundary conditions. Note that (5.44) implies
the boundary layer estimate (5.30) and requires only v0 ∈ H2 and v0(0) = v′0(0) = 0.

To prove (5.44), we only have to note that for both type I and type II(b) boundary
conditions, it holds∣∣∣∣ 1

ε(ω2+ − ω2−)
− det(e2, d1 + ω1−e1)

ε∆

∣∣∣∣ ≤ O(1)ε|ξ|−1 |ω2+|2 (5.45)

Then by using an integration by parts, namely,∫ ∞

0

e−ω2+ηv0(η) dη =
1

ω2
2+

∫ ∞

0

e−ω2+ηv′′0 (η) dη, (5.46)

(5.44) follows immediately.
Case II(b):

In this case, we have

ũε
V(x, ξ)− ũV(x, ξ) = −d22

d21

(
e12d21

ε∆ω3
2+

− 1
ξ3

)
eω1−x

∫ ∞

0

e−ω2+ηv′′′0 (η)dη

− d22

d21ξ3

(
eω1−x − e−ξx

) ∫ ∞

0

e−ω2+ηv′′′0 (η) dη

− d22

d21ξ3
e−ξx

∫ ∞

0

(
e−ω2+η − e−ξη

)
v′′′0 (η) dη (5.47)

and

ṽε
V(x, ξ)− ṽb.l.

V (x/ε, ξ) =
(

e12d21

ε∆ω3
2+

− 1
ξ3

)
eω2−x

∫ ∞

0

e−ω2+ηv′′′0 (η)dη

+
1
ξ3

(
eω2−x − e−x/ε

) ∫ ∞

0

e−ω2+ηv′′′0 (η) dη

+
1
ξ3

e−x/ε

∫ ∞

0

(
e−ω2+η − e−ξη

)
v′′′0 (η) dη (5.48)
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Note that∣∣e12d21ξ
3 − ε∆ω3

2+

∣∣ =
∣∣e12d21ξ(ξ2 − ω2

2+)− εω3
2+ det(d1 + ω1−e1, d2)

∣∣
≤ O(1)ε|ξ|4/|1 + 4εξ| (5.49)

and therefore ∣∣∣∣ e12d21

ε∆ω3
2+

− 1
ξ3

∣∣∣∣ ≤ O(1)ε|ξ|−1 (5.50)

The rest of the proof is the same as in Case I.
Case II(c):

In this case, we have

ũε
V(x, ξ) = − e12

ε(d11 + e11ω1−)
eω1−x

∫ ∞

0

e−ω2+ηv0(η)dη (5.51)

ũV(x, ξ) = ε−1ũ−1(x, ξ) = − e12

ε(d11 − ξe11)
e−ξx

∫ ∞

0

e−ξηv0(η) dη (5.52)

Using a similar integration by parts, we then have

εũε
V(x, ξ)− ũ−1(x, ξ)

= −
(

e12

(d11 + ω1−e11)ω3
2+

− e12

(d11 − ξe11)ξ3

)
eω1−x

∫ ∞

0

e−ω2+ηv′′′0 (η)dη

− e12

(d11 − ξe11)ξ3

(
eω1−x − e−ξx

) ∫ ∞

0

e−ω2+ηv′′′0 (η) dη

− e12

(d11 − ξe11)ξ3
e−ξx

∫ ∞

0

(
e−ω2+η − e−ξη

)
v′′′0 (η) dη (5.53)

It is easy to see that∣∣(d11 + ω1−e11)ω3
2+ − (d11 − ξe11)ξ3

∣∣ =
∣∣d11

(
ω3

2+ − ξ3
)

+ e11

(
ξ4 − ω4

2+

)∣∣
≤ O(1)ε (|d11|+ |e11| · |ξ|) |ξ|4/|1 + 4εξ| (5.54)

and hence ∣∣∣∣ 1
(d11 + ω1−e11)ω3

2+

− 1
(d11 − ξe11)ξ3

∣∣∣∣ ≤ O(1)ε|ξ|−1 (5.55)

Therefore, by the same analysis as before, we can get∫ ∞

0

∫ ∞

−∞
|εũε

V(x, ξ)− ũ−1(x, ξ)|2 dxdβ ≤ O(1)ε2||v0||2H3 (5.56)

or equivalently∫ ∞

0

∫ ∞

−∞

∣∣ũε
V(x, ξ)− ε−1ũ−1(x, ξ)

∣∣2 dxdβ ≤ O(1)||v0||2H3 (5.57)

This finishes the proof of (5.31) for type II(c) boundary conditions.
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