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Abstract. Most biochemical processes involve macromolecules in solution. The corresponding
electrostatics is of central importance for understanding their structures and functions. An accurate
and efficient numerical scheme is introduced to evaluate the corresponding electrostatic potential
and force by solving the governing Poisson-Boltzmann equation. This paper focuses on the following
issues: (i) the point charge singularity problem, (ii) the dielectric discontinuity problem across a
molecular surface, and (iii) the infinite domain problem. Green’s function associated with the point
charges plus a harmonic function is introduced as the zeroth order approximation to the solution to
solve the point charge singularity problem. A jump condition capturing finite difference scheme is
adopted to solve the discontinuity problem across molecule surfaces, where a body-fitting grid is used.
The infinite domain problem is solved by mapping the outer infinite domain into a finite domain.
The corresponding stiffness matrix is symmetric and positive definite, therefore, fast algorithm such
as preconditioned conjugate gradient method can be applied for inner iteration. Finally, the resulting
scheme is second order accurate for both the potential and its gradient.

1. Introduction. Most biochemical processes involve macromolecules such as
protein or nucleotide in mobile ionic water solvent. The corresponding electrostatics
is of central importance for understanding their structures and functions [5, 8, 28].

A common and practical model is to represent the macromolecule as a structured
and polarized clusters of atoms, and to treat the ionic solvent as a continuum. Such
a continuum model was pioneered by Debye and Hückel in 1924 [9, 19]. The coordi-
nates {xi|i = 1, · · · , Nm} of these atoms can be obtained from X-ray crystallography
pictures, and are available from the protein data bank at Brookhaven National Lab-
oratory. As the macromolecule is immersed in water solvent, a “molecular surface”
is formed, which separates the bimolecular region from the water region. In the wa-
ter region, there is a thin ion exclusion layer around the molecular surface, and ions
are mobile outside this layer. The construction of this molecular surface and the ion
exclusion layer is usually done by moving a probe around the macromolecule. More
precisely, the water region is defined to be the union of all spheres whose centers y
satisfy |y − xi| > ri + σ for all macromolecular atoms xi, where ri and σ are respec-
tively the radii of the ith atom and the probe. The mobile ion region is defined to be
the exterior of the union of spheres B(xi, ri + σion) [20, 32]. The ion densities in the
water solvent are assumed to obey the Boltzmann distribution law [9].

To write down the governing equation for the electrostatic potential for such a
system, we follow the notation in Holst’s paper [12]. Let us denote Ω1 the macro-
molecule region, Γ1 the molecular surface, Ω2 the ion exclusion layer, Ω3, the ionic
solvent region, and Γ2 the interface which separates Ω2 and Ω3. There could be several
kinds of ions. For easy presentation of our numerical model, we assume there are only
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two kinds of ions with opposite sign and same charge unit, and with total neutralized
solution. The corresponding electrostatic potential Φ satisfies the Poisson-Boltzmann
equation (PBE) [9, 27, 28]:

−∇ · [ε(x)∇Φ(x)] + K(x)
(

kBT

ec

)
sinh

(
ecΦ(x)
kBT

)
= 4π

Nm∑
i=1

qiδ(x − xi). (1)

Φ(∞) = 0. (2)

Here, ec the charge of an electron, kB the Boltzmann constant, T the temperature,
xi the atomic location, qi the atomic partial charge, the function ε(x) is the dielectric
parameter,

ε(x) =
{

ε−, x ∈ Ω1,
ε+, x ∈ Ω2 ∪ Ω3.

K(x) =
{

0, x ∈ Ω1 ∪ Ω2,
κ2, x ∈ Ω3,

where κ =
√

ε+κ is the modified Debye-Hückel parameter and κ is the Debye-Hückel
parameter.

By introducing the dimensionless potential φ = ecΦ
kBT , we can rewrite the Poisson-

Boltzmann equation as

−∇ · [ε(x)∇φ(x)] + K(x) sinh (φ(x)) = Q(x) (3)

where

Q(x) = C

Nm∑
i=1

ziδ(x − xi). (4)

Typical molecules such as enzymes and proteins have length scale 10 to over 100
angstroms [12]. Typical numerical values of these parameters are [12]

ε− ≈ 2, ε+ ≈ 80,

5249.0 ≤ C ≤ 10500.0,

−1 ≤ zi ≤ 1, (5)

K+ = κ2 = 8.486902807Å−2Is,

Is (ionic strength) ∈ [0, 10]

Previous numerical methods for PBE can be classified into finite difference methods [1,
10, 18, 23, 17, 26, 29, 12], finite element methods [6, 7], and adaptive finite element
methods [13, 3]. To speed up the interior iteration in solving a corresponding linear
system, multigrid [14] and multi-level methods [12] have been proposed. The nonlinear
counterpart was solved successfully by the damped inexact-Newton’s method [12].

Despite decades of effort on improvement of modeling by various groups of people
mentioned above, accurate and efficient modeling for typical macromolecules is still
very challenging for the following reasons.
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1. Typical macromolecules contain hundreds to thousands of singular charges.
2. Usually, the molecular surface Γ1 is quite irregular due to complicated macro-

molecular folding; moreover, across which the dielectric function is discontin-
uous.

3. This is an infinite domain problem.
This paper focuses on the corresponding issues, namely, (i) the point charge singularity
problem, (ii) the surface singularity problem, and (iii) the infinite domain problem.

Most finite difference methods mentioned above treated these singularity problems
by smearing. The sources are then less singular and the coefficients become smoother.
In finite element approaches, the point charge singularities are handled by taking
averages with the test polynomials over mesh zones, and the surface discontinuities
are taken care of by using interface-aligned meshes. These approaches are hard to
achieve second order accuracy for both the potential and the electric field.

For the infinite domain problem, standard approach is to use a truncated finite
domain which contains the macromolecule region, and its boundary is far from the
molecule surface. A Dirichlet boundary condition is then applied. The Dirichlet
data for the potential is taken to be either 0 or the solution of a linearized Poisson-
Boltzmann equation. Such an approach requires a larger computation domain when
the Debye parameter κ is small.

Here, we take a different approach. First, Green’s function corresponding to the
point charges plus a harmonic function in the molecule region are introduced as the
zeroth order approximation to the solution. This approach takes care of the point
charge singularity problem. It certainly also creates an extra surface discontinuity
across the molecular surface. This problem together with the original surface discon-
tinuity problem will be solved by using the jump condition capturing scheme [31], a
finite difference scheme developed by one of the authors to handle surface singularities.
The scheme uses a body-fitting grid and a skewed variable. The jump condition across
the molecular surface is built in the finite difference scheme in the skewed variable
naturally. The scheme is simple, and no interpolation is needed as that in the im-
mersed interface method [21]. The resulting stiffness matrix is symmetric and positive
definite. Hence, standard preconditioned conjugate gradient method can be applied
to gain efficiency. More importantly, the scheme is second order for both the potential
and its gradient. The second order property for the gradients is probably due to the
central differencing and uniformity of the grids in the computational domain.

To treat the infinite domain problem, a grid patching technique is applied. The
whole domain is divided into a ball (containing the molecule region) and its exterior.
The grid in the exterior region is obtained through a mirror map. The grid inside the
ball is an extension of the above body-fitting grid. The connection of these two grids
is smooth only up to first order. The jump condition capturing scheme is applied
again to solve the discontinuous curvature problem across the grid interface.

2. Treatments of singularities.

2.1. Treatment of point charge singularities. The solution of the Poisson-
Boltzmann equation contains singular part due to the presence of the singular charge
distribution C

∑
ziδ(x − xi) inside Γ1. In order to compute the solution correctly

without smearing, we decompose the solution into regular and singular parts

φ = φ + φ̃, (6)
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where

φ(x) =
{

φ∗(x) + φ0(x) x ∈ Ω1

0 x ∈ Ω2 ∪ Ω3
. (7)

and φ∗ is the potential in the free space induced by Q, i.e.

φ∗(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

m∑
i=1

1
ε1

zi

4π

1
|x − xi| , x ∈ R3

C

m∑
i=1

− 1
ε1

zi

2π
log(|x − xi|), x ∈ R2

. (8)

φ0 is a harmonic function in Ω1 satisfying{ �φ0 = 0 in Ω1

φ0 = −φ∗ on Γ1. (9)

The introduction of φ0 is to force [φ] = 0 across Γ1. This can avoid an over-floating
problem in evaluating sinh(φ) during nonlinear iteration when C is large (5). It is
clear that φ is a solution to (1) in Ω1 ∪ Ω2 ∪ Ω3 and satisfies the following jump
conditions

[φ]Γ1 = 0,

[εφn]Γ1 = −ε−∇(φ∗ + φ0) · n|Γ1 ,

[φ]Γ2 = 0,

[εφn]Γ2 = 0.

(10)

The equation for the correction potential φ̃ = φ − φ is therefore

−∇ ·
(
ε(x)∇φ̃(x)

)
+ K(x) sinh(φ(x) + φ̃(x)) = 0, x ∈ Ω1 ∪ Ω2 ∪ Ω3, (11)

[φ̃]Γ1 = 0,

[εφ̃n]Γ1 = −[εφn]Γ1

[φ̃]Γ2 = 0,

[εφ̃n]Γ2 = 0.

(12)

or equivalently

−∇ ·
(
ε(x)∇φ̃(x)

)
+ K(x) sinh(φ(x) + φ̃(x)) = [εφn]Γ1δΓ1 . (13)

Since K(x) = 0 on Ω1 and φ(x) = 0 on Ω2 ∪ Ω3, (13) can be further simplified as

−∇ ·
(
ε(x)∇φ̃(x)

)
+ K(x) sinh(φ̃(x)) = [εφn]Γ1δΓ1 . (14)
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Note that K(x) = 0 in Ω1, the correction potential φ̃(x) is harmonic and therefore
smooth in Ω1. Thus the decomposition φ = φ + φ̃ has indeed separated the singular
part from the solution.

In this formulation, we have effectively replaced the point charges singularity
Q(x) by the much milder surface charges singularity [εφn]Γ1δΓ1 which can be handled
accurately and efficiently by the jump condition capturing finite difference scheme
described in section 2.3.

2.2. Nonlinear iteration for the correction potential. The nonlinear cor-
rection equation (14) can be solved by standard iterative methods such as monotone
iteration and Newton’s iteration. The monotone iteration for (14) is given by

−∇ ·
(
ε(x)∇φ̃l+1(x)

)
+ λφ̃l+1(x) = λφ̃l(x) − K(x) sinh(φ̃l(x)) + [εφn]Γ1δΓ1 . (15)

and converges when λ > 0 is large enough and the right-hand side becomes monotonic
in φ̃

λ − K(x) cosh(φ̃(x)) ≥ 0.

It is worth noting that the monotone iteration (15) can be interpreted as numerical
integration of the gradient flow

φ̃t = −δE(φ̃)
δφ̃

= ∇ ·
(
ε(x)∇φ̃(x)

)
− K(x) sinh(φ̃(x)) + [εφn]Γ1δΓ1 , (16)

where E(φ̃) is the convex energy functional

E(φ̃) =
∫

Rn

ε(x)(∇φ̃(x))2 + K(x) cosh(φ̃(x)) −
∫

Γ1

[εφn]φ̃.

When we integrate the gradient flow (16) in t using explicit treatment for the nonlinear
term and implicit treatment of the diffusion term, we get

φ̃l+1 − φ̃l

∆t
= ∇ ·

(
ε(x)∇φ̃l+1(x)

)
− K(x) sinh(φ̃l(x)) + [εφn]Γ1δΓ1 ,

which is equivalent to (15) and converges for ∆t sufficiently small.
The monotone iteration (15) only converges at a linear rate. For better perfor-

mance, we can switch to Newton’s iteration to accelerate convergence. The standard
Newton’s iteration for (14) is given by

φl = φ + φ̃l (17)

−∇·(ε(x)∇vl
)
+K(x) cosh(φl)vl = ∇·

(
ε(x)∇φ̃l

)
−K(x) sinh(φl)+[εφn]Γ1δΓ1 (18)

φ̃l+1 = φ̃l + vl (19)

A well known trick to control global convergence of Newton’s method is through
damping [2]. Since the direction vn is indeed a descent direction for the functional
E(φ),

E(φl + λlvl) < E(φl) for small λl > 0,
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we can accelerate the convergence of the Newton’s method globally by performing a
line search to find a suitable damping parameter λl that minimizes E(φl + λlvl) and
replace (19) by

φ̃l+1 = φ̃l + λlvl. (20)

An efficient search scheme for λl can be found in [2, 12]. When the linear system (18)
is solved only approximately, a more sophisticated damped inexact Newton’s method
was also proposed to insure the approximate solution vl is a descent direction [2, 12].

2.3. Treatment of surface singularities — the jump condition capturing
scheme. Both the monotone iteration (15) and the Newton iteration (18) are based
on solving the following linearized Poisson-Boltzmann equation

−∇ ·
(
ε(x)∇φ̃(x)

)
+ H(x)φ̃(x) = f(x), x ∈ Ω1 ∪ Ω2 ∪ Ω3

[φ̃] = g(x), [εφ̃n] = h(x), x ∈ Γ1.

[φ̃] = 0, [φ̃n] = 0, x ∈ Γ2.

. (21)

where ε(x) is discontinuous across Γ1, and H(x) and f(x) are discontinuous across Γ2.
The singularity across Γ2 is not essential because the corresponding φ̃ is C1 across Γ2.
For easy presentation on the treatment of surface singularity, we lump the treatments
of two singularities together and simply assume Γ1 = Γ2. Such a problem is known
as the interface problem. In many practical application, we are also interested in
computing the electrostatic field ∇φ. In this situation, the accuracy of the numerical
solution is even more demanding. Some of the existing schemes which are first order
accurate in φ are not adequate for this purpose. A standard finite element method
with meshes aligned with interface can achieve second order for potential but only
first order for its gradients. Finite difference approaches such as immerse boundary
method [24], or immerse interface method [21] are also at most first order accurate
for the gradients.

In our simulations, we have adopted the jump condition capturing finite difference
scheme [31]. The resulting matrix is symmetric and positive definite and easy to invert.
In addition, both the computed potential φ and electrostatic field ∇hφ|Γ1 are observed
to have second order accuracy in all our simulations. For readers’ convenience, we
briefly describe the jump condition capturing scheme in two space dimension here.
The 3D scheme can be derived similarly [31].

2.3.1. Body-fitting grid and a skewed variable. Let us denote by (ξ1, ξ2)
the variables in the computational domain, X(ξ1, ξ2) ∈ R2 the position vector in
the physical space. We choose our coordinate system in such a way that one of the
coordinate line ξ1 = constant is mapped to the interface Γ1 which corresponds to
i = i0. We do not require the coordinate system to be orthogonal near the interface.
Therefore such a coordinate system can be easily generated by smoothly deforming
the interface from a chosen origin to a prescribed outer boundary.

We shall not discretize (21) in ξ variable. Instead, we shall discretize (21) in η
variable, a new coordinate system in the computational domain in the skewed direction
that aligned with the grid points generated by the ξ variables. More precisely, we
define

η1 =
ξ1∆ξ2 + ξ2∆ξ1√
(∆ξ1)2 + (∆ξ2)2

(22)
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ξ = 1 constant

ξ = 2 constant

η =2 constant

1η =constant

ξ = 1 constant

ξ = 2 constant

η =2 constant

1η =constant

Fig. 1.

η2 =
ξ2∆ξ1 − ξ1∆ξ2√
(∆ξ1)2 + (∆ξ2)2

(23)

∆η1 = ∆η2 =
2∆ξ1∆ξ2√

(∆ξ1)2 + (∆ξ2)2
(24)

See also Fig 1.

2.3.2. Finite difference discretization in the skewed variable. The lin-
earized PB equation (21) in the η variables reads

−∂µ(ε
√

ĝĝµν∂ν φ̃) +
√

ĝH(x)φ̃ =
√

ĝf (25)

where we have adopted the summation convention and

ĝµν = 〈∇ηµ,∇ην〉 (26)

ĝµν = 〈∂X

∂ηµ
,
∂X

∂ην
〉 (27)

ĝ = det(ĝµν) (28)

√
ĝ = det(

∂X

∂η
) =

1
2

(
∆ξ1

∆ξ2
+

∆ξ2

∆ξ1

)
det(

∂X

∂ξ
) (29)

ĝµγ ĝγν = δµ
ν (30)

A crucial observation in [31] is that the jump conditions can be incorporated into
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the following finite difference discretization

− 1
(∆η)2

(
(ε
√

ĝhĝ11
h )i+ 1

2 ,j+ 1
2
(φ̃i+1,j+1 − φ̃i,j) − (ε

√
ĝhĝ11

h )i− 1
2 ,j− 1

2
(φ̃i,j − φ̃i−1,j−1)

)
− 1

(∆η)2

(
(ε
√

ĝhĝ12
h )i+ 1

2 ,j+ 1
2
(φ̃i,j+1 − φ̃i+1,j) − (ε

√
ĝhĝ12

h )i− 1
2 ,j− 1

2
(φ̃i−1,j − φ̃i,j−1)

)
− 1

(∆η)2

(
(ε
√

ĝhĝ21
h )i− 1

2 ,j+ 1
2
(φ̃i,j+1 − φ̃i−1,j) − (ε

√
ĝhĝ21

h )i+ 1
2 ,j− 1

2
(φ̃i+1,j − φ̃i,j−1)

)
− 1

(∆η)2

(
(ε
√

ĝhĝ22
h )i− 1

2 ,j+ 1
2
(φ̃i−1,j+1 − φ̃i,j) − (ε

√
ĝhĝ22

h )i+ 1
2 ,j− 1

2
(φ̃i,j − φ̃i+1,j−1)

)
=

√
(ĝh)

i,j
(fi,j − Hi,j φ̃i,j)

(31)
The left-hand side of (31) is uniformly valid even in the presence of the interface and
jump discontinuities of the coefficients ε(x) and K(x). At the interface i = i0, the
right-hand side of (31) is replaced by

√
(ĝh)i,j

(
1
2
(fi+,j + fi−,j) − 1

2
(Hi+,j φ̃i+,j + Hi−,j φ̃i−,j)

)
+ terms involving [φ̃] and [εφ̃n]

In (31), ĝµν
h , the 2nd order approximation of the metric tensor ĝµν , can be conveniently

computed from the Xi,j ’s as follows

((ĝh)11)i+ 1
2 ,j+ 1

2
= 〈D1Xi+ 1

2 ,j+ 1
2
,D1Xi+ 1

2 ,j+ 1
2
〉

= 〈Xi+1,j+1 − Xi,j

∆η
,
Xi+1,j+1 − Xi,j

∆η
〉

((ĝh)22)i+ 1
2 ,j+ 1

2
= 〈D2Xi+ 1

2 ,j+ 1
2
,D2Xi+ 1

2 ,j+ 1
2
〉

= 〈Xi,j+1 − Xi+1,j

∆η
,
Xi,j+1 − Xi+1,j

∆η
〉

and

((ĝh)12)i+ 1
2 ,j+ 1

2
= ((ĝh)21)i+ 1

2 ,j+ 1
2

= 〈D1Xi+ 1
2 ,j+ 1

2
,D2Xi+ 1

2 ,j+ 1
2
〉

As long as the grids are non-crossing, that is (Xi,j , Xi+1,j , Xi+1,j+1, Xi,j+1)
is positively oriented throughout for all (i, j)’s, then

√
ĝh > 0 and the ĝµν

h ’s can be
easily obtained from

ĝµλ
h (ĝh)λν = δµ

ν (32)

The local truncation error is O(∆η) on the interface and O(∆η2) elsewhere. From
the numerical experiments we have conducted, it is observed that the resulting scheme
is second order accurate. A remarkable feature about this scheme is that the resulting
flux function is 2nd order accurate, even on the interface.

Another crucial point to use the skewed directions ην for discretization is that
all 4 entries of the metric tensor ĝµν are evaluated at the same location, namely
X(ξ1

i+ 1
2 ,j+ 1

2
, ξ2

i+ 1
2 ,j+ 1

2
). It follows from summation by parts (assuming Dirichlet

boundary condition at the outermost boundary for simplicity) that,

−〈〈φ̃,∇h · (ε∇hφ̃)〉〉 def= −
∑
i,j

√
ĝi,j φ̃i,j∇h · (ε∇hφ̃)i,j

=
∑
i,j

(ε
√

ĝĝµνDµφ̃Dν φ̃)i+ 1
2 ,j+ 1

2
≥ 0
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as long as each (ĝµν

i+ 1
2 ,j+ 1

2
) is a positive definite 2 by 2 matrix. In other words, the

symmetry and positivity of this discretization is essentially unconditional.

2.4. Infinite domain problem and coordinate patching. In this subsection,
we explain the idea of coordinate patching to handle the infinite domain problem. For
simplicity, we assume that Γ1 is contained in the unit disk {r ≤ 1, 0 ≤ θ < 2π}, well
separated from the boundary r = 1 and star-shaped with respect to the origin. More
general domain can be handled by the same idea. For details, see [16].

Our computational domain will be the disk: {0 ≤ ρ ≤ 2, 0 ≤ θ < 2π}. We
construct a map: (ρ, θ) → (r(ρ, θ), θ) with the following properties:

1. ρ = 1/2 is mapped to the interface Γ1, ρ = 1 − δ is mapped to r = 1 − δ for
some small δ, 0 < δ < 1/2. This can be done by a suitable scaling because
we have assumed Γ1 is star shape.

2. The function r(ρ, θ) is defined by

r(ρ, θ) =
{

ρ 1 − δ < ρ ≤ 1
1/(2 − ρ) 1 ≤ ρ < 2 (33)

3. The function r(ρ, θ) is smooth everywhere except on ρ = 1.
The only non-smooth part of r(ρ, θ) is on ρ = 1, where its second derivative has
jumps. In other words, we patch two coordinates together on {r = 1}.

In region {0 < ρ < 1 − δ}, the jump condition capturing scheme is applied. In
region {1− δ < ρ < 1}, the Laplacian is discretized by a standard five point formula.
Smooth transition from the jump condition capturing scheme to the standard five
point formula can be achieved by a symmetry preserving averaging as discussed in
[31]. The treatment of pole (i.e. the origin) is also discussed there [31].

Now, we focus on the treatment across the coordinate patching interface {r = 1}.
Roughly speaking, the patching results in discontinuity in the new diffusion coefficient
ε
√

ĝĝµν since ĝµν are discontinuous across coordinate charts. Therefore, it can be
handled by the jump condition capturing scheme in the same way.

As in the treatment of the interface problem, we place the grids i = iM , j =
1, · · · , nθ on r = 1. Notice that both H(x) and f(x) are smooth on the outer region
r ≥ 1 − δ. By standard elliptic regularity, φ̃ is smooth there as well. Now consider
the standard five point formula expressed in terms of (ρ, θ) on the outer region:

−ε2
ρ′(r)

r
Dρ(rρ′(r)Dρφ̃) +

1
r2

D2
θ φ̃ + H(x)φ̃ = f(x) (34)

or equivalently

−ε2Dρ(rρ′(r)Dρφ̃) +
1

rρ′(r)
D2

θ φ̃ +
r

ρ′(r)
H(x)φ̃ =

r

ρ′(r)
f(x) (35)

The discretization (35) is symmetric and has local truncation error O(∆ρ2) both on
ρ < 1 and ρ > 1.

As to i = iM , or ρ = 1, we observe that

(rρ′(r)Dρφ̃)iM+ 1
2 ,j = (rρ′(r)φ̃ρ)iM+ 1

2 ,j + O(∆ρ2)

= (rφ̃r)i+M ,j +
∆ρ

2
∂ρ(rρ′(r)φ̃ρ)i+M ,j + O(∆ρ2)

and similarly

(rρ′(r)Dρφ̃)iM− 1
2 ,j = (rφ̃r)i−M ,j −

∆ρ

2
∂ρ(rρ′(r)φ̃ρ)i−M ,j + O(∆ρ2)
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It follows then

−ε+Dρ(rρ′(r)Dρφ̃)iM ,j

= −ε+[(rφ̃r)]iM ,j + ε+

rρ′(r)
1
2 ((∂2

θ φ̃)i+M ,j + (∂2
θ φ̃)i−M ,j)

− 1
2

r
ρ′(r) ((Hφ̃)i+M ,j + (Hφ̃)i−M ,j) + 1

2
r

ρ′(r) (fi+M ,j + fi−M ,j) + O(∆ρ)
(36)

where [·]iM ,j denotes the jump across r = 1.
Since φ̃ has continuous first derivative and H, f and φ̃ are continuous across

r = 1, (36) reduces to

−ε+Dρ(rρ′(r)Dρφ̃)iM ,j =
ε+

rρ′(r)
(∂2

θ φ̃)iM ,j− r

ρ′(r)
(Hφ̃)iM ,j+

r

ρ′(r)
fiM ,j+O(∆ρ) (37)

which shows (35) is consistent with local truncation error O(∆ρ) on i = iM . The
overall error resulting from the discretization (35) is thus (∆ρ2).

Remarks.

1. We have explained the idea of coordinate patching to handle the infinite
domain problem. It can also be applied to problems with more complex
molecule surface.

2. In the example above, we may choose a smooth patching function: r =
tan(πρ/2), which is smooth everywhere and suitable for higher order dis-
cretizations.

2.5. Summary of the Algorithm. We summarize the numerical scheme for
nonlinear Poisson Boltzmann equation as follows.

Step 1 Evaluate the free space Poisson kernel φ∗(x) and φ∗
n(x) for x ∈ Γ1

according to (8). When the number of atoms is large and efficient evaluation of the
free space kernel becomes an issue, standard fast summation algorithm such as the
tree code [22] or the fast Multipole method [11] can be adopted to gain efficiency.

Step 2 Evaluate φ0
n(x) for x ∈ Γ1 by solving the Laplace equation (9) in Ω1.

The jump conditions for the correction potential across Γ1 is defined by [φ̃] = 0 and
[εφ̃] = ε−(φ∗

n + φ0
n).

Step 3 Compute the correction potential φ̃ according to (11) using the monotone
iteration (15) and/or the damped Newton iteration (18). The resulting linearized
Poisson Boltzmann equation (21) is discretized using the jump condition capturing
scheme with the jump conditions defined in step 2. The initial trial of φ̃ of the iteration
is set to be zero.

Step 4 Evaluate φ = φ+ φ̃ and ∇hφ = ∇φ∗ +∇hφ0 +∇hφ̃ from (7), (8), (9) and
the solution computed in step 3.

3. Numerical Examples. In the following numerical examples, the macro-
molecules have various shapes and roughly occupy the region r < 50Å. We use
different parameters in the regime specified in (5). We take the unit disk {ρ ≤ 1}
as the computational domain with nr × nθ uniform grids in polar coordinate. The
circle ρ = 5/9 is mapped to the interface in physical domain and the linearized Pois-
son Boltzmann equation (11) is then discretized using the jump condition capturing
scheme.

In example 1-3, we perform standard accuracy check. That is, we substitute the
exact solution into the Poisson-Boltzmann equation to generate an additional source
term and append it to the right hand side of the equation. Moreover, we impose the
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nr × nθ L∞ error in φ order L∞ error in ε−φ−
n order

14 × 32 6.066E-03 — 1.214E-01 —
23 × 64 2.253E-03 1.429 6.372E-02 0.930
41 × 128 6.315E-04 1.835 1.747E-02 1.867
77 × 256 1.810E-04 1.803 4.097E-03 2.092
149 × 512 4.841E-05 1.903 9.481E-04 2.112

Table 1

Error and order of accuracy in φ and the flux for Example 1.

interface condition derived by the exact solution. In all these tests, we have observed
2nd order accuracy both in the potential φ and the electrostatic field ∇φ at the cell
interface in all practical regimes of the parameters Is, C and zi. In example 4, we
conduct a genuine simulation with various configurations of the charge distributions.
It is clear from our simulation that the resulting electrostatic field is well resolved and
nontrivial at the cell interface.

Example 1

In this test example, Ω1 is given by a star-shaped region (Fig 2-3) r < 50 ∗ (1 +
0.2 cos(4θ)) with the exact solution:

u(x, y) =
{

0.1 exp(x/2) cos(y/2) inside Γ1

100 exp(−κ/
√

ε+r) outside Γ1
(38)

We take κ2 = 2.0Å−2, which corresponds to the ionic strength Is = 0.2357. The
result is listed in Table 1.
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Fig. 2. The shape of the macromolecule for Example 1

Example 2

The interface is given by an ellipse

x2

a2
+

y2

b2
= 1

with a = 50 ∗ 18/27Å and b = 50 ∗ 10/27Å (Fig4-5). Two charges of opposite sign
that corresponds to C = 10000 and zi = ±1 are located at xi = (0,∓1) respectively.
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Fig. 3. Computed solution for Example 1

nr × nθ L∞ error in φ order L∞ error in ε−φ−
n order

14 × 32 1.242E-02 — 2.208E-01 —
23 × 64 2.185E-03 2.507 4.968E-02 2.152
41 × 128 5.896E-04 1.890 1.315E-02 1.918
77 × 256 1.596E-04 1.885 3.681E-03 1.837

Table 2

Error and order of accuracy in φ and the flux for Example 2.

The results are shown in Table 2. In this example, we have taken κ2 = 100Å−2 and
the regular part of the solution is given by

u(x, y) +
C

ε−

2∑
i=1

zi

2π
log(|x − xi|) =

{
x2 − 2y2 inside Γ1

3 exp(−x2 − y2/2) outside Γ1
(39)

Example 3

In this example, the interface is given by r = 50 ∗ (1+0.2 cos(6θ)) (Fig 6-7). Two
positive and two negative point charges are located on r = 50, θ = 0, 2π/3, π and
5π/3 respectively and correspond to C = 5 and zi = ±1. Here we take κ2 = 40Å−2
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Fig. 4. The shape of the macromolecule for Example 2
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Fig. 5. Computed solution for Example 2

and the regular part of the exact solution as

u(x, y) +
C

ε−

4∑
i=1

zi

2π
log(|x − xi|) =

{
x2 + y2 inside Γ1

0 outside Γ1
(40)

The result is listed in Table 3. Note that in Fig 8, a typical error plot is given which
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shows the error being continuous and piecewise smooth with a kink at the interface.
This may explain why we are able to reconstruct the electrostatic field ε∇φ to 2nd
order accuracy even on Γ1. See [31] for details.
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Fig. 6. The shape of the macromolecule for Example 3 and 4
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nr × nθ L∞ error in φ order L∞ error in ε−φ−
n order

14 × 32 3.438E-03 — 1.227E-01 —
23 × 64 8.859E-04 1.956 3.388E-02 1.857
41 × 128 2.232E-04 1.989 8.566E-03 1.984
77 × 256 5.604E-05 1.994 2.148E-03 1.996

Table 3

Error and order of accuracy in φ and the flux for Example 3.

Example 4

In this example, we perform an actual simulation on the Poisson-Boltzmann equa-
tion. The interface is the same as in Example 3. Here we take κ2 = 1.27Å−2 and
C = 15, 000. In case (a), we put six charges with alternating sign corresponding to
zi = ±1. In case (b), zi’s are randomly chosen between ±1 and sum to zero. The
results are plotted in Fig 9-11.

4. Conclusion. We propose an accurate numerical procedure to evaluate elec-
trostatic potential and force induced by a macromolecule in solution. The main
ingredients of this numerical procedure include the follows.

(i) It uses point charge potential induced by the macromolecule in free space
to separate the effect of point charges from those of molecular surface and
nonlinear response of mobile ions.
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Fig. 9. Computed solution for Example 4a

(ii) It uses a jump condition capturing scheme with body-fitting grid to solve the
discontinuity problem of the dielectric coefficient across molecular surface.

(iii) A grid patching technique is used to handle the infinite domain problem.
The resulting stiffness matrix is symmetric and positive definite, thus standard pre-
conditioned conjugate gradient method can be used to achieve linear convergent rate
for inner iteration. More importantly, the scheme is second-order accurate for both
potential and its gradient, as shown in all numerical tests.
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