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ABSTRACT: We study a fourth order finite difference method for the unsteady incompressible

Navier-Stokes equations in vorticity formulation. The scheme is essentially compact and can be

implemented very efficiently. Either Briley’s formula, or a new higher order formula, which will be

derived in this paper, can be chosen as the vorticity boundary condition. By formal Taylor expansion,

the new formula for the vorticity on the boundary gives 4th order accuracy; while Briley’s formula

provides only 3rd order accuracy. However, the use of either formula results in a stable method and

achieves full 4th order accuracy. The convergence analysis of the scheme with our new formula will

be given in this paper, while that with Briley’s formula has been established in earlier literature.

The consistency analysis is easier than that of Briley’s formula, no Strang type analysis is needed.

In the stability analysis part, we adopt the technique of controlling some local terms by the diffusion

term via discrete elliptic regularity. Physical no-slip boundary conditions are used throughout.

AMS(MOS) Subject Classification. 65M06, 76M20.

1. INTRODUCTION

We start with the 2-D Navier-Stokes equations in vorticity-stream function formulation:

(1.1)





∂tω + ∇·(uω) = ν∆ω ,

∆ψ = ω ,

u = −∂yψ , v = ∂xψ ,

with the no-slip boundary condition written in terms of the stream function ψ:

(1.2) ψ = 0,
∂ψ

∂n
= 0 .

1cwang@indiana.edu
2jliu@math.umd.edu
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Here u = (u, v) denotes the velocity field, ω denotes the vorticity.

The subject of fourth order schemes for (1.1) and (1.2) has attracted considerable attentions

recently. For example, E and Liu proposed an Essentially Compact Fourth Order Scheme (EC4) in

[4], and proved the fourth order convergence of the method. Their analysis resorts to high order

expansion of Strang type. A technical assumption of one-sided physical, one-sided periodic boundary

condition was also imposed.

The purpose of this paper is to thoroughly analyze the fourth order scheme proposed by E and

Liu. The boundary condition for vorticity will also be analyzed in detail. Briley’s formula, which

was derived in [2], was used in [4]. We will derive a new formula in this paper, which gives higher

order accuracy for the vorticity on the boundary by formal Taylor expansion.

Then we treat the full Navier-Stokes equations in 2-D with a [0, 1]2 box as the domain, with

the physical boundary condition (1.2) applied to all boundaries. The convergence proof for the

analogous 4th order scheme (EC4) is then presented, with our new 4-th order vorticity boundary

condition. The use of this new boundary condition results in no Strang type expansion being needed,

thus simplifies the consistency analysis.

The procedure of our convergence proof is standard: consistency analysis and error estimate. The

style of consistency analysis is similar to that in [15]. Yet there are still some differences since our

fourth order scheme involves an intermediate variable for vorticity. We construct the approximate

intermediate vorticity variable via the finite difference of the exact stream function, and recover

the approximate vorticity by solving a linear system, whose eigenvalues are controlled, through the

approximate intermediate vorticity variable with suitable boundary conditions. To maintain a higher

order consistency for vorticity, which will be needed when we compute its finite difference, we add an

O(h4) correction term to the exact vorticity on the boundary when we set our boundary condition

for the approximate vorticity. The approximate velocity will be constructed via finite differences of

the exact stream function. Then it can be shown that the constructed profiles satisfy the numerical

scheme up to an O(h4) truncation error, including the vorticity on the boundary. Next, we perform

stability analysis and error estimate. A technique similar to that used in [4] by E and Liu is adopted.

The basic strategy is to use energy estimates, with special care taken at the boundary. Standard

local estimates do not work for the boundary terms, due to the interior points of stream function

involved in the boundary vorticity formula, so we have to apply elliptic regularity at the discrete

level, and then control these local terms by global terms.

In section 2 we outline the main idea of the EC4 scheme and present the derivation of both
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boundary conditions. The rigorous convergence proof of the method with the new formula as vorticity

boundary condition will be presented in section 3, where the consistency analysis is explained in

detail. The detailed stability and error estimates of the diffusion term and the convection term are

given in section 4 and section 5, respectively.

2. DESCRIPTION OF THE SCHEME

Essentially compact fourth order scheme (EC4) for 2-D Navier-Stokes equations was proposed

by E and Liu in [4]. The starting point of the scheme is the fact that Laplacian operator ∆ can be

approximated with the fourth order by

(2.1) ∆ =
∆h + h2

6 D
2
xD

2
y

1 + h2

12∆h

+O(h4) .

Multiplying the denominator difference operator 1+
h2

12
∆h to the momentum equation in (1.1) gives

(2.2) (1 +
h2

12
∆h)∂tω + (1 +

h2

12
∆h)∇·(uω) = ν

(
∆h +

h2

6
D2
xD

2
y

)
ω ,

and multiplying the same operator to the kinematic equation leads to

(2.3)
(
∆h +

h2

6
D2
xD

2
y

)
ψ = (1 +

h2

12
∆h)ω .

As in [4], the corresponding nonlinear convection term in the vorticity dynamic equation can be

estimated as

(2.4)

(1 +
h2

12
∆h)(u·∇ω) = D̃x

(
1 +

h2

6
D2
y

)
(uω) + D̃y

(
1 +

h2

6
D2
x

)
(vω)

−
h2

12
∆h

(
uD̃xω + vD̃yω

)
+O(h4) .

The first and the second terms in (2.4) are compact. The third term is not compact, yet it does

not cause any trouble in practical computations since unD̃xω
n + vnD̃yω

n can be taken as 0 on the

boundary. The case of boundary condition with slip can be treated similarly, as discussed in [4].

Thus, by the introduction of an intermediate variable ω,

(2.5) ω = (1 +
h2

12
∆h)ω ,

NSE can be approximated by

(2.6)





∂tω = (∆h +
h2

6
D2
xD

2
y)ω −NL ,

(∆h +
h2

6
D2
xD

2
y)ψ = ω , ψ |Γ= 0 ,

(1 +
h2

12
∆h)ω = ω ,
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where the approximate nonlinear term NL is given by

(2.7) NL = D̃x(1 +
h2

6
D2
y)(uω) + D̃y(1 +

h2

6
D2
x)(vω) −

h2

12
∆h(uD̃xω + vD̃yω) .

Note that the implementation of the third term of (2.7) needs the boundary value of uD̃xω+ vD̃yω,

which is set to be 0 since the velocity u vanishes on the boundary.

The velocity u = (−∂yψ, ∂xψ) can be estimated by using the standard long-stencil 4-th order

formulas:

(2.8) u = −D̃y(1 −
h2

6
D2
y)ψ , v = D̃x(1 −

h2

6
D2
x)ψ .

Note that the implementation of (2.8) near the boundary needs ”ghost point” values of ψ, which

will be discussed in the next subsection.

The vorticity is determined by ω via (2.5), whose implementation needs the boundary condition

for ω, which is the main issue in the next subsection.

2.1 Vorticity Boundary Condition

As pointed out in [3], [4], there are two boundary conditions for ψ. The Dirichlet boundary con-

dition ψ |Γ= 0 can be implemented to solve the stream function. Yet the normal boundary condition

∂ψ

∂n
= 0, which cannot be enforced directly, could be converted into the boundary condition for the

vorticity. For example, Briley’s formula

(2.9) ωi,0 =
1

h2
(6ψi,1 −

3

2
ψi,2 +

2

9
ψi,3) −

11

3h

(
∂ψ

∂y

)

i,0

,

was used in the EC4 scheme (see [2], [4]). It should be noted that Briley’s formula is only third order

accurate for the vorticity on the boundary by formal local Taylor expansion. Yet it still preserves

4th order accuracy, as was first proved in [4] and argued by a 1-D model in [15]. Next, we derive

our new 4th order vorticity boundary condition. First, a 4th order approximation of ω = (∂2
x+∂2

y)ψ

can be applied on the boundary

(2.10) ωi,0 = ∂2
yψi,0 =

1

12h2

(
16(ψi,−1 + ψi,1) − (ψi,−2 + ψi,2)

)
+O(h4) ,

where in the first step we used the fact that ψ vanishes on the boundary, and (i,−1), (i,−2) refer

to the ”ghost” grid points outside the computational domain. Note that we need five points of

ψ to obtain fourth order accuracy for ω, which is different from the second order case, where we

only need three points of ψ, as discussed in [15]. Then the values for the ”ghost” points of ψ are

prescribed by using the no-slip boundary condition
∂ψ

∂y
= 0 , on y = 0, along with a 6-th order
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one-sided approximations for ψ:

(2.11) ψi,−1 = 10ψi,1 − 5ψi,2 +
5

3
ψi,3 −

1

4
ψi,4 − 5h

(
∂ψ

∂y

)

i,0

+O(h6) ,

and

(2.12) ψi,−2 = 80ψi,1 − 45ψi,2 + 16ψi,3 −
5

2
ψi,4 − 30h

(
∂ψ

∂y

)

i,0

+O(h6) .

Combining (2.10), (2.11) and (2.12), we obtain

(2.13) ωi,0 =
1

h2
(8ψi,1 − 3ψi,2 +

8

9
ψi,3 −

1

8
ψi,4) −

25

6h

(
∂ψ

∂x

)

i,0

.

The last terms in (2.11), (2.12) and (2.13) vanish if no-slip boundary condition for velocity is

assumed. This new formula is used to perform our analysis. The system (2.6) along with the

boundary condition (2.9) or (2.13) can be implemented very efficiently via an explicit time-stepping

procedure introduced by E and Liu in [4].

The following is the main theorem in this paper.

Theorem 2.1. Let ue ∈ L∞([0, T ];C7,α(Ω) ) be the solution of the Navier-Stokes equations (1.1)-

(1.2) and uh be the approximate solution of EC4, then we have

(2.14) ‖u − uh‖L∞([0,T ],L2) ≤ Ch4‖ue‖L∞([0,T ],C7,α)(1 + ‖ue‖L∞([0,T ],C5))exp

{
CC∗T

ν

}
,

where C∗ = (1 + ‖ue‖L∞([0,T ],C5))
2.

Here are some notations which will be used later.

Notation. We will use the discrete L2-norm and the discrete L2-inner product

(2.15) ‖u‖ = 〈u , u〉1/2 , where 〈u , v〉 =
∑

1≤i,j≤N−1

ui,j vi,j h
2 .

For u |Γ= 0, we introduce the notation ‖∇hu‖ by defining

(2.16) ‖∇hu‖
2 =

∑

0≤i,j≤N−1

{
(D+

x ui,j)
2 + (D+

y ui,j)
2
}
h2 ,

where D+
x ui,j =

ui+1,j − ui,j

h
and D+

y ui,j =
ui,j+1 − ui,j

h
.

3. CONVERGENCE PROOF
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The convergence analysis follows from the consistency analysis, stability and error estimate. As

can be seen, direct truncation error analysis gives us fourth order accuracy for both the momentum

equation and the vorticity on the boundary if the new formula is used. The methodology in the

consistency analysis is to construct approximate velocity and vorticity via the exact stream function

to satisfy NSE up to O(h4) order. Yet, the construction of the approximate vorticity needs some

technique: first, an approximate intermediate vorticity variable will be constructed via the finite

difference of the exact stream function; then, the approximate vorticity field will be constructed

by solving a linear system using the approximate intermediate vorticity variable. The eigenvalues

corresponding to the linear system are controlled. To maintain higher order consistency for the

approximate vorticity, we add an O(h4) correction term to the exact vorticity on the boundary

when we set its boundary condition, which makes it easier when its finite differences are computed.

3.1. Consistency Analysis

We denote ψe,ue, ωe as the exact solutions of NSE, and extend ψe smoothly to [−δ, 1 + δ]2. Let

Ψi,j = ψe(xi, yj) for −2 ≤ i, j ≤ N + 2, and construct U , V via the finite differences of Ψ

(3.1) Ui,j = −D̃y(1 −
h2

6
D2
y)Ψ , Vi,j = D̃x(1 −

h2

6
D2
x)Ψ , for 0 ≤ i, j ≤ N .

The construction of the approximate vorticity is quite tricky. First we define

(3.2) Ωi,j = (∆h +
h2

6
D2
xD

2
y)Ψ , for 1 ≤ i, j ≤ N − 1 ,

and then recover Ω by solving the following system

(3.3) (1 +
h2

12
∆h)Ωi,j = Ωi,j .

It should be mentioned that (3.3) always has a solution since the eigenvalues of the matrix corre-

sponding to (1 + h2

12∆h) are all non-zero. On the other hand, the implementation of (3.3) requires

the boundary value for Ω. To maintain the higher order consistency needed in the truncation error

estimate below for the discrete derivatives of the constructed vorticity, we introduce

(3.4) ω̂ = (−
1

240
∂4
x −

1

240
∂4
y +

1

90
∂2
x∂

2
y)ωe ,

and set boundary condition for Ω (say on Γx, j = 0) to be

(3.5) Ωi,0 = (ωe)i,0 + h4ω̂i,0 , 0 ≤ i ≤ N .

It should be noted here that h4ω̂ is just the O(h4) truncation error of (∆h +
h2

6
D2
xD

2
y)ψe − (1 +
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h2

12
∆h)ωe. The purpose of the introduction of h4ω̂ is to maintain the higher order consistency needed

in the truncation error estimate below for the discrete derivatives of the constructed vorticity, as

can be seen in the following lemma.

Lemma 3.1 We have at grid points 0 ≤ i, j ≤ N ,

(3.6) Ω = ωe + h4ω̂ +O(h6)‖ψe‖C8 .

Proof. Our construction of Ω and Ψ and Taylor expansion of ψe and ωe indicate that at grid

points (xi, yj), 1 ≤ i, j ≤ N − 1,

(3.7) (1 +
h2

12
∆h)Ω = (∆h +

h2

6
D2
xD

2
y)ψe = (1 +

h2

12
∆h)ωe + h4ω̂ +O(h6)‖ψe‖C8 ,

where ω̂ was introduced in (3.4). (3.7) gives us

(3.8) (1 +
h2

12
∆h)(Ω − ωe − h4ω̂) = −

h6

12
∆hω̂ +O(h6)‖ψe‖C8 = O(h6)‖ψe‖C8 ,

since the second order differences of ω̂ is bounded by ‖ψe‖C8 . (3.8) along with (3.5), the boundary

condition for Ω, and the property that the matrix I +
h2

12
∆h is uniformly diagonally dominant, lead

to (3.6). Therefore Lemma 3.1 was proved.

One direct consequence of (3.6) is that

(3.9) (∆h +
h2

6
D2
xD

2
y)Ω = (∆h +

h2

6
D2
xD

2
y)ωe +O(h4)‖ψe‖C8 ,

which together with Taylor expansion of ωe that

(3.10) (∆h +
h2

6
D2
xD

2
y)ωe = (1 +

h2

12
∆)∆ωe + O(h4)‖ψe‖C8 ,

indicates the estimate of our truncation error for the diffusion term

(3.11) (∆h +
h2

6
D2
xD

2
y)Ω = (1 +

h2

12
∆)∆ωe +O(h4)‖ψe‖C8 .

Next we look at the convection term, which is the NL term applied to U , V and Ω introduced

in (2.7). First we estimate the difference between U , V and ue. Our definition of U , V and Taylor

expansion of ψe shows that at the grid points (xi, yj), 0 ≤ i, j ≤ N :

(3.12) U = ue +
1

30
h4∂5

yψe +O(h5)‖ψe‖C6 , V = ve −
1

30
h4∂5

xψe +O(h5)‖ψe‖C6 .

The combination of (3.12) and (3.6) gives

(3.13) D̃x(1 +
h2

6
D2
y)(UΩ) = D̃x(1 +

h2

6
D2
y)(ueωe) +O(h4)‖ψe‖C6‖ψe‖C8 ,
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which along with the Taylor expansion of ueωe

(3.14)

D̃x(1 +
h2

6
D2
y)(ueωe) = (1 +

h2

6
∆)∂x(ueωe) +O(h4)‖ueωe‖C5

= (1 +
h2

6
∆)∂x(ueωe) +O(h4)‖ψe‖C6‖ψe‖C8 ,

leads to the estimate

(3.15) D̃x(1 +
h2

6
D2
y)(UΩ) = (1 +

h2

6
∆)∂x(ueωe) +O(h4)‖ψe‖C6‖ψe‖C8 .

The other convection terms can be treated similarly

(3.16) D̃y(1 +
h2

6
D2
x)(V Ω) = (1 +

h2

6
∆)∂y(veωe) +O(h4)‖ψe‖C6‖ψe‖C8 ,

(3.17)
h2

12
∆h(UD̃xΩ + V D̃yΩ) =

h2

12
∆(ue∂xωe + ve∂yωe) +O(h4)‖ψe‖C6‖ψe‖C8 .

Now we estimate time marching term. Note that at the grid points (xi, yj), 1 ≤ i, j ≤ N − 1,

(3.18)

∂t(1 +
h2

12
∆h)Ω = (∆h +

h2

6
D2
xD

2
y)∂tψe

=
(
∆ +

h2

12
(∂4
x + ∂4

y) +
h2

6
∂2
x∂

2
y

)
∂tψe +O(h4)‖∂tψe‖C6 ,

where the first term is exactly (1 +
h2

12
∆)∂tωe. To estimate the second term, we have a look at the

following Poisson equation satisfied by ∂tψe

(3.19)





∆(∂tψe) = ∂tωe , in Ω ,

∂tψe = 0 , on Γ .

The Schauder estimate of (3.19) gives

(3.20) ‖∂tψe‖C6,α ≤ C‖∂tωe‖C4,α ≤ C(‖ψe‖C8,α + ‖ψe‖C7,α‖ψe‖C5,α) ,

where in the second step we applied our original NSE. Then we arrive at

(3.21) ∂t(1 +
h2

12
∆h)Ω = (1 +

h2

12
∆)∂tωe +O(h4)(‖ψe‖C8,α + ‖ψe‖C7,α‖ψe‖C5,α) .

Finally, the combination of (3.11), (3.15)-(3.17) and (3.21) completes the truncation error analysis

for the momentum equation: at grid points (xi, yj), 1 ≤ i, j ≤ N − 1,

(3.22)

(1 +
h2

12
∆h)∂tΩ + D̃x(1 +

h2

6
D2
y)(UΩ) + D̃y(1 +

h2

6
D2
x)(V Ω) −

h2

12
∆h(UD̃xΩ + V D̃yΩ)

= ν(∆h +
h2

6
D2
xD

2
y)Ω +O(h4)(‖ue‖C7,α + ‖ue‖C5‖ue‖C7) ,
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where we applied the NSE, which implies that (1 +
h2

12
∆)

(
∂tωe + ∇·(ueωe) − ν∆ωe

)
= 0.

The estimate of Ω on the boundary is more straightforward than that of Briley’s formula in [4].

As can be seen, one-sided Taylor expansion of ψe at the boundary shows that

(3.23) (ωe)i,0 =
1

h2
(8Ψi,1 − 3Ψi,2 +

8

9
Ψi,3 −

1

8
Ψi,4) +O(h4)‖ψe‖C6 ,

whose combination with our definition of Ωi,0 in (3.4) and the fact that |ω̂i,0| ≤ C‖ψe‖C6, indicates

the vorticity boundary condition up to O(h4) error:

(3.24) Ωi,0 =
1

h2
(8Ψi,1 − 3Ψi,2 +

8

9
Ψi,3 −

1

8
Ψi,4) +O(h4)‖ψe‖C6 .

This completes our consistency analysis.

3.2. Stability and Error estimates

For 0 ≤ i, j ≤ N , we define

(3.25) ψ̃i,j = ψi,j − Ψi,j , ω̃i,j = ωi,j − Ωi,j , ũi,j = ui,j − Ui,j , ṽi,j = vi,j − Vi,j .

In addition, the error function for ω is introduced here at grid points (xi, yj), 1 ≤ i, j ≤ N − 1

(3.26) ω̃i,j = ωi,j − Ωi,j = (1 +
h2

12
∆h)ω̃i,j .

Our consistency analysis in 3.1 shows that

(3.27)





∂tω̃ + L = ν(∆h +
h2

6
D2
xD

2
y)ω̃ + f ,

(∆h +
h2

6
D2
xD

2
y)ψ̃ = (1 +

h2

12
∆h)ω̃ , ψ̃ |Γ= 0 ,

ũ = −D̃y(1 −
h2

6
D2
y)ψ̃ , ṽ = D̃x(1 −

h2

6
D2
x)ψ̃ ,

where the local truncation error |f | ≤ Ch4‖ue‖C7,α(1+‖ue‖C5), and the linearized convection error

L is represented as

(3.28)

L = D̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃) + D̃y

(
1 +

h2

6
D2
x

)
(ṽΩ + vω̃)

−
h2

12
∆h(uD̃xω̃ + vD̃yω̃) −

h2

12
∆h(ũD̃xΩ + ṽD̃yΩ) .

On the boundary (say near Γx, j = 0), we have

(3.29)

ω̃i,0 =
1

h2
(8ψ̃i,1 − 3ψ̃i,2 +

8

9
ψ̃i,3 −

1

8
ψ̃i,4) + h4ei ,

ψ̃i,−1 = 10ψ̃i,1 − 5ψ̃i,2 +
5

3
ψ̃i,3 −

1

4
ψ̃i,4 +O(h5)‖ue‖C5 ,
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where |ei| ≤ C‖ue‖C5 . The first equality in (3.29) comes from our numerical boundary condition

(2.13) and our estimate (3.24); the second estimate in (3.29) comes from our numerical ”ghost point”

value (2.13) and Taylor expansion of ψe.

Multiplying the vorticity error equation in (3.27) by −(1+
h2

12
∆h)ψ̃, using the fact that ψ̃ vanishes

on the boundary, we arrive at

(3.30) −

〈
(1 +

h2

12
∆h)ψ̃ , ∂tω̃

〉
= −

〈
(1 +

h2

12
∆h)ψ̃ , (∆h +

h2

6
D2
xD

2
y)∂tψ̃

〉
=

1

2

dẼ

dt
,

where Ẽ is denoted as

(3.31) Ẽ = ‖∇hψ̃‖
2 −

h2

12
‖∆hψ̃‖

2 −
h2

6
‖DxDyψ̃‖

2 +
h4

72
(‖DxD

2
yψ̃‖

2 + ‖DyD
2
xψ̃‖

2) .

We should note that
1

3
‖∇hψ̃‖

2 ≤ Ẽ since Ẽ vanishes on the boundary. The combination of (3.30)

and (3.31), along with the application of Cauchy inequality to

〈
(1 +

h2

12
)∆hψ̃,f

〉
results in

(3.32)
1

2

dẼ

dt
+ ν

〈
(1 +

h2

12
∆h)ψ̃ , (∆h +

h2

6
D2
xD

2
y)ω̃

〉
−

〈
(1 +

h2

12
∆h)ψ̃ , L

〉
≤ C‖ψ̃‖2 + C‖f‖2 .

The estimates of the diffusion term and the convection term are stated in Propositions 3.2 and

3.3, whose proofs will be given in section 4 and section 5, respectively.

Proposition 3.2 For sufficiently small h, we have

(3.33)

〈
(1 +

h2

12
∆h)ψ̃ , (∆h +

h2

6
D2
xD

2
y)ω̃

〉
≥

3

16
‖ω̃‖2 − h8 .

Proposition 3.3 Assume a-prior that the error function for the velocity field satisfy

(3.34) ‖ũ‖L∞ ≤ h ,

then we have

(3.35)

∣∣∣∣
〈

(1 +
h2

12
∆h)ψ̃ , L

〉∣∣∣∣ ≤ C̃‖∇hψ̃‖
2 +

ν

8
‖ω̃‖2 + h8 ,

where L was defined in (3.28) and C̃ =
32(1 + ‖ue‖C0)2

ν
+ C(2 + ‖ue‖C1)2 + C‖ue‖C5 .

Then we go back to our convergence analysis. First we assume that (3.34) holds. Applying

Propositions 3.2, 3.3 back into (3.32), we obtain

(3.36)
1

2

dẼ

dt
≤ (1 + ν)h8 + C‖f‖2 + C‖ψ̃‖2 + C̃‖∇hψ̃‖

2 −
ν

16
‖ω̃‖2 .
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As can be seen, ‖ψ̃‖2 can be absorbed in the coefficient of ‖∇hψ̃‖2 since the Poincare inequality for

ψ̃: ‖ψ̃‖2 ≤ C‖∇hψ̃‖2 can be applied here. Integrating in time for (3.36) gives

(3.37) Ẽ +
ν

8

∫ T

0

‖ω̃‖2dt ≤ C

∫ T

0

‖f‖2 dt + C̃

∫ T

0

‖∇hψ̃‖
2 dt+ CTh8 .

As be mentioned earlier,
1

3
‖∇hψ̃‖

2 ≤ Ẽ, whose application into (3.37) leads to

(3.38) ‖∇hψ̃‖
2 +

3ν

8

∫ T

0

‖ω̃‖2 dt ≤ C

∫ T

0

(‖f‖2 + h8) dt + C̃

∫ T

0

‖∇hψ̃‖
2 dt .

By Gronwall inequality, we have

(3.39)

‖∇hψ̃‖2 ≤ Cexp
{
C̃T

}∫ T

0

(‖f (·, s)‖2 + h8) ds

≤ Ch8exp

{
CC∗T

ν

}
‖ue‖

2
C7,α(1 + ‖ue‖C5)2 ,

since C̃ ≤
CC∗T

ν
where C∗ was introduced after (2.14). Thus, we have proved

(3.40) ‖u(·, t) − u(t)‖L2 ≤ Ch4‖ue‖C7,α(1 + ‖ue‖C5)exp

{
CC∗T

ν

}
,

which implies (2.14). Using the inverse inequality, we have

(3.41) ‖ũ‖L∞ ≤ Ch3 .

Now we can adopt a standard device which asserts that (3.34) will never be violated if h is small

enough. Therefore Theorem 2.1 is proved.

4. PROOF OF PROPOSITION 3.2

Summing by parts and keeping in mind that ψ̃ |Γ= 0, we have

(4.1)

〈
(1 +

h2

12
∆h)ψ̃ , (∆h +

h2

6
D2
xD

2
y)ω̃

〉
=

〈
(∆h +

h2

6
D2
xD

2
y)ψ̃ , (1 +

h2

12
∆h)ω̃

〉
+ B ,

where the first term is exactly ‖ω̃‖2 since (∆h +
h2

6
D2
xD

2
y)ψ̃ = (1 +

h2

12
∆h)ω̃ = ω̃, and the boundary

11



term B can be decomposed as three parts B = B1 + B2 + B3, where

(4.2)

B1 =

N−1∑

i=1

(
(1 +

h2

6
D2
x)ψ̃i,1 ·ω̃i,0 + (1 +

h2

6
D2
x)ψ̃i,N−1 ·ω̃i,N )

)

+

N−1∑

j=1

(
(1 +

h2

6
D2
y)ψ̃1,j ·ω̃0,j + (1 +

h2

6
D2
y)ψ̃N−1,j ·ω̃N,j)

)

B2 =
h4

72

N−1∑

i=1

(D2
xψ̃i,1D

2
xω̃i,0 +D2

xψ̃i,N−1D
2
xω̃i,N )

+
h4

72

N−1∑

j=1

D2
yψ̃1,jD

2
yω̃0,j +D2

yψ̃N−1,jD
2
yω̃N,j)

B3 =
1

6
(ψ̃1,1ω̃0,0 + ψ̃1,N−1ω̃0,N + ψ̃N−1,1ω̃N,0 + ψ̃N−1,N−1ω̃N,N) .

Next, we estimate the three boundary terms separately.

Lemma 4.1 We have the estimate

(4.3) B1 ≥
1

3h2
Bψ −

3

4
(‖(1 +

h2

6
D2
y)D

2
xψ̃‖

2 + ‖(1 +
h2

6
D2
x)D

2
yψ̃‖

2) − Ch9 ,

where Bψ is introduced as

(4.4) Bψ =

N−1∑

i=1

(ψ̃2
i,1 + ψ̃2

i,N−1) +

N−1∑

j=1

(ψ̃2
1,j + ψ̃2

N−1,j) .

Proof. The boundary condition for ω̃ in (3.29) implies that
N−1∑

i=1

(1+
h2

6
D2
x)ψ̃i,1ω̃i,0 includes two

parts: I1 and I2, where

(4.5)

I1 =
1

h2

N−1∑

i=1

(1 +
h2

6
D2
x)ψ̃i,1(8ψ̃i,1 − 3ψ̃i,2 +

8

9
ψ̃i,3 −

1

8
ψ̃i,4) ,

I2 = h4
N−1∑

i=1

(1 +
h2

6
D2
x)ψ̃i,1ei .

The term I2 can be controlled by Cauchy inequality directly: first, summing by parts gives I2 =

h4
N−1∑

i=1

ψ̃i,1(1 +
h2

6
D2
x)ei,0, then we have

(4.6) I2 ≥ −
1

36

N−1∑

i=1

ψ̃2
i,1

h2
− 9

N−1∑

i=1

h10
(
(1 +

h2

6
D2
x)ei

)2

≥ −
1

36

N−1∑

i=1

ψ̃2
i,1

h2
− Ch9 ,

since |ei,0| ≤ C‖ue‖C5 . Our main concern will be I1. Since ψ̃ vanishes on the boundary, the term

8ψ̃i,1 − 3ψ̃i,2 +
8

9
ψ̃i,3 −

1

8
ψ̃i,4 can be rewritten as

(4.7) 8ψ̃i,1 − 3ψ̃i,2 +
8

9
ψ̃i,3 −

1

8
ψ̃i,4 =

25

6
ψ̃i,1 −

115

72
h2(D2

yψ̃)i,1 +
23

36
h2(D2

yψ̃)i,2 −
1

8
h2(D2

yψ̃)i,3 ,

12



which in turn implies that I1 can be expressed as

(4.8)

I1 =
25

6h2

N−1∑

i=1

(ψ̃2
i,1 +

h2

6
ψ̃i,1D

2
xψ̃i,1) −

115

72

N−1∑

i=1

ψ̃i,1(1 +
h2

6
D2
x)(D

2
yψ̃)i,1

+
23

36

N−1∑

i=1

ψ̃i,1(1 +
h2

6
D2
x)(D

2
yψ̃)i,2 −

1

8

N−1∑

i=1

ψ̃i,1(1 +
h2

6
D2
x)(D

2
yψ̃)i,3 ,

where we summed by parts again, since ψ̃ |Γ= 0. Each term in I1 can be estimated by Cauchy

inequality

(4.9)

N−1∑

i=1

(ψ̃2
i,1 +

h2

6
ψ̃i,1D

2
xψ̃i,1) ≥

1

3

N−1∑

i=1

ψ̃2
i,1 ,

−
115

72
ψ̃i,1

(
1 +

h2

6
D2
x

)
(D2

yψ̃)i,1 ≥ −
1

3h2

1152

722
|ψ̃i,1|

2 −
3

4
h2

∣∣∣∣
(
1 +

h2

6
D2
x

)
(D2

yψ̃)i,1

∣∣∣∣
2

h2

23

36
ψ̃i,1

(
1 +

h2

6
D2
x

)
(D2

yψ̃)i,2 ≥ −
1

3h2

232

362
|ψ̃i,1|

2 −
3

4
h2

∣∣∣∣
(
1 +

h2

6
D2
x

)
(D2

yψ̃)i,2

∣∣∣∣
2

h2 .

1

8
ψ̃i,1

(
1 +

h2

6
D2
x

)
(D2

yψ̃)i,3 ≥ −
1

3h2

12

82
|ψ̃i,1|

2 −
3

4
h2

∣∣∣∣
(
1 +

h2

6
D2
x

)
(D2

yψ̃)i,3

∣∣∣∣
2

h2 .

Since
1

3
·
25

6
−

1

3
(
1152

722
+

232

362
+

12

82
) ≥

13

36
, we have

(4.10) I1 ≥
13

36h2

N−1∑

i=1

|ψ̃i,1|
2 −

3

4
h2

N−1∑

i=1

∑

j=1,2,3

∣∣∣∣
(
1 +

h2

6
D2
x

)
D2
yψ̃i,j

∣∣∣∣
2

.

The combination of I1 and I2 gives us

(4.11)

N−1∑

i=1

(
1 +

h2

6
D2
x

)
ψ̃i,1ω̃i,0 ≥

1

3h2

N−1∑

i=1

|ψ̃i,1|
2 −

3

4

∑

i

∑

j=1,2,3

∣∣∣∣
(
1 +

h2

6
D2
x

)
D2
yψ̃i,j

∣∣∣∣
2

h2 − Ch9 .

The treatment of the other three boundary terms is exactly the same. Finally we obtain

(4.12) B1 ≥
1

3h2
Bψ−

3

4
h2

N−1∑

i=1

N−1∑

j=1

|(1+
h2

6
D2
y)D

2
xψ̃i,j |

2−
3

4
h2

N−1∑

i=1

N−1∑

j=1

|(1+
h2

6
D2
x)D

2
yψ̃i,j |

2−Ch9 ,

where Bψ was defined in (4.4). (4.3) is a direct consequence of (4.12). This completes the proof of

Lemma 4.1.

To finish the estimate of B1, we need to have a good control of ‖(1 + h2

6 D
2
y)D

2
xψ̃‖ and ‖(1 +

h2

6 D
2
x)D

2
yψ̃‖. However, standard local estimates do not work in this case. The methodology we will

adopt is similar to that in [15]: to control the local terms by global terms via elliptic regularity.

Lemma 4.2 For any ψ̃ that vanishes on the boundary, we have

(4.13) ‖D2
xψ̃‖

2 + ‖D2
yψ̃‖

2 ≤
9

8
‖ω̃‖2 ,
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(4.14) ‖(1 +
h2

6
D2
y)D

2
xψ̃‖

2 + ‖(1 +
h2

6
D2
x)D

2
yψ̃‖

2 ≤ ‖ω̃‖2 .

Proof of Lemma 4.2. The boundary condition ψ̃i,j |Γ= 0 indicates that we can Sine transform

{ψ̃i,j} on both directions, i.e.,

(4.15) ψ̃i,j =
∑

k,ℓ

̂̃
ψk,ℓ sin(kπxi) sin(ℓπyj) .

Parserval equality gives

(4.16)
∑

i,j

(ψ̃i,j)
2 =

∑

k,ℓ

∣∣∣̂̃ψk,ℓ
∣∣∣
2

.

If we introduce

(4.17) fk = −
4

h2
sin2(

kπh

2
) , gℓ = −

4

h2
sin2(

ℓπh

2
) ,

we obtain the Fourier expansions of D2
xψ̃ and D2

yψ̃

(4.18) D2
xψ̃i,j =

∑

k,l

fk
̂̃
ψk,l , D2

yψ̃i,j =
∑

k,l

gℓ
̂̃
ψk,l ,

which in turn implies that

(4.19)
∑

i,j

|ω̃i,j |
2 =

∑

i,j

|(∆h +
h2

6
D2
xD

2
y)ψ̃i,j |

2 =
∑

k,ℓ

(gℓ + fk +
h2

6
fkgℓ)

2
∣∣∣̂̃ψk,ℓ

∣∣∣
2

.

Similarly, we have

(4.20)

∑

i,j

|(1 +
h2

6
D2
y)D

2
xψ̃i,j |

2 =
∑

k,ℓ

|(1 +
h2

6
gℓ)fk|

2
∣∣∣̂̃ψk,ℓ

∣∣∣
2

,

∑

i,j

|(1 +
h2

6
D2
x)D

2
yψ̃i,j |

2 =
∑

k,ℓ

|(1 +
h2

6
fk)gℓ|

2
∣∣∣̂̃ψk,ℓ

∣∣∣
2

.

On the other hand, the fact that −
4

h2
≤ fk, gℓ ≤ 0 shows that

(4.21) |gℓ + fk +
h2

6
fkgℓ|

2 ≥ |(1 +
h2

6
gℓ)fk|

2 + |(1 +
h2

6
fk)gℓ|

2 ,

(4.22) |gℓ + fk +
h2

6
fkgℓ|

2 ≥ (f2
k + g2

ℓ −
2

9
fkgℓ) ≥

8

9
(f2
k + g2

ℓ ) ,

by direct calculations. The combination of (4.19), (4.20) and (4.21) indicates (4.14). (4.13) can be

argued in a similar fashion. Lemma 4.2 is proved.

14



The combination of Lemma 4.1 and 4.2 results in the estimate of B1:

(4.23) B1 ≥
1

3h2
Bψ −

3

4
‖ω̃‖2 − Ch9 .

B2 can be treated in a similar fashion. We still only look at the term
∑

iD
2
xψ̃i,1D

2
xω̃i,0 here.

Once again, (3.29), the boundary condition for ω̃ indicates that
∑

iD
2
xψ̃i,1D

2
xω̃i,0 includes two parts:

I3 and I4, which are denoted as

(4.24) I3 =
1

h2

N−1∑

i=1

D2
xψ̃i,1

(
8D2

xψ̃i,1 − 3D2
xψ̃i,2 +

8

9
D2
xψ̃i,3 −

1

8
D2
xψ̃i,4

)
, I4 = h4

N−1∑

i=1

D2
xψ̃i,1D

2
xei .

The estimate of I3 and I4 is similar to that of I1 and I2, respectively. Repeating the arguments in

the proof of Lemma 4.1, we arrive at (the detail is omitted here)

(4.25) B2 ≥ −
1

144
h4‖D2

yD
2
xψ̃‖

2 − Ch9 .

On the other hand, the fact that ‖D2
yD

2
xψ̃‖ ≤

4

h2
‖D2

xψ̃‖ and ‖D2
yD

2
xψ̃‖ ≤

4

h2
‖D2

yψ̃‖ implies

(4.26) ‖D2
yD

2
xψ̃‖

2 =
1

2
(‖D2

yD
2
xψ̃‖

2 + ‖D2
yD

2
xψ̃‖

2) ≤
8

h4
‖D2

xψ̃‖
2 +

8

h4
‖D2

yψ̃‖
2 ≤

9

h4
‖ω̃‖2 ,

where in the last step we applied (4.13) in Lemma 4.2. Substituting (4.26) into (4.25), we arrive at

(4.27) B2 ≥ −
1

16
‖ω̃‖2 − Ch9 .

Finally, B3 can be controlled by standard Cauchy inequality (still, we only look at the term

1

6
ψ̃1,1ω̃0,0)

(4.28)
1

6
ψ̃1,1ω̃0,0 ≥ −

1

12

ψ̃2
1,1

h2
−

1

12
h2ω̃2

0,0 ≥ −
1

12

ψ̃2
1,1

h2
− Ch10‖ψe‖

2
C8 ,

where in the last step we used the fact that |ω̃0,0| ≤ Ch4‖ψe‖C8 by our numerical ω and our

construction of Ω in §3.1. As can be seen, the first term appearing on the right hand side of (4.28)

can be absorbed in the Bψ term, then we have

(4.29) B3 ≥ −
1

12h2
Bψ − Ch9 ,

Finally, the combination of (4.27), (4.29) and Lemma 4.1 shows that B ≥ −
13

16
‖ω̃‖2 − h8, whose

substitution into (4.1) is exactly (3.33). This completes the proof of Proposition 3.2.

5. PROOF OF PROPOSITION 3.3
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For the convenience of the analysis below, a new notation ‖ω̃‖W is defined by

(5.1) ‖ω̃‖2
W =

∑

0≤i,j≤N

ω̃2
i,jh

2 .

Note that the difference between ‖ω̃‖W and ‖ω̃‖ is that ‖ω̃‖W involves the boundary values of ω̃.

The following lemma gives the estimate of ‖ω̃‖2
W before the proof of Proposition 3.3 is carried out.

Lemma 5.1 We have

(5.2) ‖ω̃‖2
W ≤ C‖ω̃‖2 +

C

h2
‖∇hψ̃‖

2 + Ch9 .

Proof. Step 1. Establish a bound for ‖ω̃‖2

We follow the pattern of analysis in the proof of Lemma 4.2. A decomposition of ω̃ is needed

since it does not vanish on the boundary: let ω̃0 and ω̃b be the interior part and boundary part of

ω̃, respectively, i.e. ω̃ = ω̃0 + ω̃b, such that

(5.3)
ω̃0
i,j = ω̃i,j , ω̃bi,j = 0 , for 1 ≤ i, j ≤ N − 1 ,

ω̃0
i,j = 0 , ω̃bi,j = ω̃i,j , on Γ ,

and define ω̃
0

= (1 +
1

12
∆h)ω̃

0. Since ω̃0 vanishes on the boundary, we can Sine transform
{
ω̃0
i,j

}

both in the i-direction and j-direction, i.e.

(5.4) ω̃0
i,j =

∑

k,ℓ

̂̃ω
0

k,ℓ sin(kπxi) sin(ℓπyj) .

Then, Parserval equality applied to ω̃0 gives

(5.5)
∑

i,j

(ω̃0
i,j)

2 =
∑

k,ℓ

∣∣∣̂̃ω
0

k,ℓ

∣∣∣
2

.

Similarly, we have D2
xω̃

0
i,j =

∑

k,l

fk ̂̃ω
0

k,l, and D2
yω̃

0
i,j =

∑

k,l

gℓ ̂̃ω
0

k,l, as in (4.17) and (4.18), which in

turn indicates that

(5.6)
∑

i,j

∣∣ω̃0

i,j

∣∣2 =
∑

i,j

∣∣(1 +
h2

12
∆h)ω̃

0
i,j

∣∣2 =
∑

k,ℓ

∣∣1 +
h2

12
(fk + gℓ)

∣∣2
∣∣∣̂̃ω

0

k,ℓ

∣∣∣
2

.

The combination of (5.5), (5.6), along with the fact that
1

3
≤ 1 +

h2

12
(fk + gℓ) ≤ 1, shows that

(5.7) ‖ω̃
0
‖2 ≥

1

9
‖ω̃‖2 .
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On the other hand, we note that ω̃
0

i,j = ω̃i,j for 2 ≤ i, j ≤ N − 2, and near the boundary (say at

j = 1),

(5.8) |ω̃
0

i,1|
2 = (ω̃i,1 −

1

12
ω̃i,0)

2 ≤
13

12
ω̃

2

i,1 +
13

144
ω̃2
i,0 ,

and near the corner (say at i = 1, j = 1)

(5.9) |ω̃
0

1,1|
2 = (ω̃1,1 −

1

12
ω̃1,0 −

1

12
ω̃0,1)

2 ≤
7

6
ω̃

2

1,1 +
7

72
(ω̃2

1,0 + ω̃2
0,1) ,

which indicates that

(5.10) ‖ω̃
0
‖2 ≤

7

6
‖ω̃‖2 +

7

72

(N−1∑

i=1

h2(|ω̃i,0|
2 + |ω̃i,N |

2) +

N−1∑

j=1

h2(|ω̃0,j |
2 + |ω̃N,j|

2)
)
.

The combination of (5.10) and (5.7) gives

(5.11) ‖ω̃‖2 ≤
21

2
‖ω̃‖2 +

7

8
h2Bω ,

where Bω is the total sum of boundary terms for ω̃:

(5.12) Bω =

N−1∑

i=1

(|ω̃i,0|
2 + |ω̃i,N |2) +

N−1∑

j=1

(|ω̃0,j |
2 + |ω̃N,j|

2) .

Step 2. (5.2) is a direct consequence of (5.11) and our boundary condition for vorticity error

function as in (3.29):

By our definition of ‖ω̃‖W in (5.1), we have ‖ω̃‖2
W = ‖ω̃‖2 + h2Bω, where Bω was defined in

(5.12), whose substitution into (5.11) leads to ‖ω̃‖2
W ≤

21

2
‖ω̃‖2 + 2h2Bω. Then the remaining task

is to control Bω. For simplicity we just look at the first term

N−1∑

i=1

ω̃2
i,0. Similar to the proof of the

diffusion term in Proposition 3.2, we can apply (3.29), the boundary condition for ω̃, to recover Bω.

The term appearing in the parenthesis in (3.29) can be rewritten as (4.7), whose substitution into

(3.29) shows that

(5.13) ω̃2
i,0 ≤

4

h4

(252

62
ψ̃2
i,1 +

1152

722
h4(D2

yψ̃)2i,1 +
232

362
h4(D2

yψ̃)2i,2 +
12

82
h4(D2

yψ̃)2i,3

)
+ 2h8e2

i,0 .

Similar results are available for ω̃2
i,N , ω̃2

0,j, and ω̃2
N,j. Then we arrive at

(5.14)

Bω ≤
C

h4
Bψ + C

N−1∑

i=1

N−1∑

j=1

(D2
xψ̃i,j)

2 + C

N−1∑

i=1

N−1∑

j=1

(D2
yψ̃i,j)

2 + 2h8E

≤
C

h4
‖∇hψ̃‖

2 +
C

h2
(‖D2

xψ̃‖
2 + ‖D2

yψ̃‖
2) + 2h8E ,
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where Bψ was defined in (4.4) and E is introduced as

(5.15) E =

N−1∑

i=1

(e2
i,0 + e2

i,N ) +

N−1∑

j=1

(e2
0,j + e2

N,j) .

In the second step of (5.14), we absorbed all the terms of Bψ appearing in (4.4) into ‖∇hψ̃‖
2, since

h2(
ψ̃i,1 − ψ̃i,0

h
)2 = ψ̃2

i,1 (by the fact that ψ̃i,0 = 0) is included in ‖∇hψ̃‖
2. Moreover, the second

term appearing on the right hand side of (5.14) can be controlled by the order of ‖ω̃‖2 via (4.13)

in Lemma 4.2. In addition, we can see that 2h8E ≤ Ch7‖ue‖2
C5 since |ei,0| ≤ C‖ue‖C5 . Plugging

these estimates back into (5.14), along with our previous argument that ‖ω̃‖2 ≤
21

2
‖ω̃‖2 + 2h2Bω,

we obtain (5.2).

Now we can continue our proof of Proposition 3.3.

Proof of Proposition 3.3. We decompose L into four parts: L = L1 + L2 + L3 + L4, where

(5.16)

L1 = D̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃) , L2 = D̃y

(
1 +

h2

6
D2
x

)
(ṽΩ + vω̃) ,

L3 = −
h2

12
∆h

(
uD̃xω̃ + vD̃xω̃

)
, L4 = −

h2

12
∆h

(
ũD̃xΩ + ṽD̃xΩ

)
.

We will show that the inner product of (1 +
h2

12
∆h)ψ̃ with each term in (5.16) is bounded by the

following result

(5.17)

∣∣∣∣〈(1 +
h2

12
∆h)ψ̃ , Li〉

∣∣∣∣ ≤
1

4
C̃‖∇hψ̃‖

2 +
ν

32
‖ω̃‖2 + h9 ,

for i = 1, 2, 3, 4, where C̃ =
32(1 + ‖ue‖C0)2

ν
+ C(2 + ‖ue‖C1)2 + C‖ue‖C5.

We only give the estimate of 〈(1+ h2

12∆h)ψ̃,L1〉. The other three terms can be treated in a similar

fashion. Summing by parts, we have

(5.18)〈
(1 +

h2

12
∆h)ψ̃, D̃x(1 +

h2

6
D2
y)(ũΩ + uω̃)

〉
= −

〈
D̃x(1 +

h2

6
D2
y)ψ̃, (1 +

h2

12
∆h)(ũΩ + uω̃)

〉
+ BL1 ,

where BL1 includes boundary terms

(5.19)

BL1 =
1

6
h2

∑

i

(1 +
h2

12
∆h)ψ̃i,1 ·D̃x(ũΩ)i,0 +

1

6
h2

∑

i

(1 +
h2

12
∆h)ψ̃i,N−1 ·D̃x(ũΩ)i,N

+
1

12
h2

∑

i

D̃x(1 +
h2

6
D2
y)ψ̃i,1 ·(ũΩ)i,0 +

1

12
h2

∑

i

D̃x(1 +
h2

6
D2
y)ψ̃i,N−1 ·(ũΩ)i,N .

We look at the right hand side of (5.18) term by term. By our construction of Ω as in (3.2)-(3.5)

indicates that

(5.20) ‖Ω‖L∞ ≤ C(‖Ω‖L∞ + ‖Ω |Γ ‖L∞) ≤ C(‖ψe‖C2 + ‖ψe‖C6) ≤ C‖ue‖C5 ,
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which in turn gives that

(5.21) ‖(1 +
h2

12
∆h)(ũΩ)‖ ≤ ‖Ω‖L∞‖(1 +

h2

12
∆h)ũ‖ ≤ C‖Ω‖L∞‖ũ‖ ≤ C‖ue‖C5‖∇hψ̃‖ ,

where in the last step we applied the result that ‖ũ‖ ≤ 2‖∇hψ̃‖ by the relation between ũ and ψ̃.

(5.21) along with the fact that

(5.22) ‖D̃x(1 +
h2

6
D2
y)ψ̃‖ ≤ ‖D̃xψ̃‖ ≤ ‖∇hψ̃‖ ,

since ψ̃ vanishes on the boundary, and Cauchy inequality gives

(5.23)

∣∣∣∣
〈
D̃x(1 +

h2

6
D2
y)ψ̃, (1 +

h2

12
∆h)(ũΩ)

〉∣∣∣∣ ≤ C‖ue‖C5‖∇hψ̃‖
2 .

Now we look at the inner product of −D̃x(1 +
h2

6
D2
y)ψ̃ with (1 +

h2

12
∆h)(uω̃). First, we can

rewrite the latter as

(5.24) (1 +
h2

12
∆h)(uω̃)i,j = ui,j(1 +

h2

12
∆h)ω̃i,j + DL = ui,jω̃i,j + DL ,

where DL includes four parts:
1

12
(ui−1,j−ui,j)ω̃i−1,j ,

1

12
(ui+1,j−ui,j)ω̃i+1,j ,

1

12
(ui,j−1−ui,j)ω̃i,j−1,

1

12
(ui,j+1 − ui,j)ω̃i,j+1. Our construction of U in (3.1) and the a-priori assumption (3.34) gives

(5.25) ‖u‖L∞ ≤ ‖U‖L∞ + ‖ũ‖L∞ ≤ ‖ψe‖C1 + h ≤ ‖ue‖C0 + 1 ≡ C1 ,

which leads to

(5.26)

∣∣∣∣
〈
D̃x(1 +

h2

6
D2
y)ψ̃, uω̃

〉∣∣∣∣ ≤
32C2

1

ν
‖∇hψ̃‖

2 +
ν

32
‖ω̃‖2 .

Furthermore, we have

(5.27) ‖ui,j − ui−1,j‖L∞ ≤ ‖Ui,j − Ui−1,j‖L∞ + ‖ũi,j − ũi−1,j‖L∞ ≤ h‖ψe‖C2 + 2h ,

and a similar result holds for the other three neighboring points, which shows that ‖DL‖ ≤

C(‖ue‖C1 + 2)h‖ω̃‖W . Note that ‖ω̃‖W involves the boundary values of ω̃. Then we arrive at

(5.28)

∣∣∣∣
〈
D̃x(1 +

h2

6
D2
y)ψ̃,DL

〉∣∣∣∣ ≤ C(‖ue‖C1 + 2)2‖∇hψ̃‖
2 + h2‖ω̃‖2

W ,

and applying Lemma 5.1, we obtain

(5.29)

∣∣∣∣
〈
D̃x(1 +

h2

6
D2
y)ψ̃,DL

〉∣∣∣∣ ≤ C(‖ue‖C1 + 2)2‖∇hψ̃‖
2 + Ch2‖ω̃‖2 + Ch11 .
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The combination of (5.24), (5.27) and (5.29) shows that

(5.30)

∣∣∣∣
〈
D̃x(1 +

h2

6
D2
y)ψ̃, (1 +

h2

12
∆h)(uω̃)

〉∣∣∣∣ ≤ C2‖∇hψ̃‖
2 +

ν

32
‖ω̃‖2 +

1

2
h9 .

where C2 =
32C2

1

ν
+ C(‖ue‖C1 + 2)2.

Applying the similar argument to BL1 we can get

(5.31) BL1 ≤ C‖∇hψ̃‖
2 +

1

2
h9 .

The detail is omitted here. Finally, combining (5.23), (5.30), (5.31), we arrive at (5.17) for i = 1.

The other three terms can be estimated in a similar fashion. Thus Proposition 3.3 is proven.
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