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We propose a simple and efficient finite-difference method for the incompressible
MHD equation. The numerical method combines the advantage of the MAC scheme
for the Navier–Stokes equation and Yee’s scheme for the Maxwell equation. In par-
ticular, the semi-discrete version of our scheme introduces no numerical dissipation
and preserves the energy identity exactly.c© 2001 Elsevier Science
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1. INTRODUCTION

We propose a finite-difference method for the unsteady incompressible magnetohydro-
dynamics (MHD) equation

ρ(∂tu+ u · ∇u)+∇ p = µ1u+ 1

c
j × b

∇ · u = 0
1

c
∂tb+∇ × e= 0 in Ä (1.1)

∇ × b= 4π

c
j

j = σ
(

e+ 1

c
u× b

)
,

with no-slip and perfectly conducting wall conditions

u = 0, e× ν = 0 on0 = ∂Ä, (1.2)

whereρ is the fluid density,u is the fluid velocity, andb, j, ande are the magnetic field,
the electric current density, and the electric field, respectively.µ, σ, and c are physical
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constants representing the viscosity coefficient, the electric conductivity, and the speed of
light, respectively.

Equation (1.1) can be roughly divided into two parts: the Navier–Stokes equation gov-
erning the motion of the solenoidal fluid motion and the Faraday equation describing the
evolution of the magnetic field. They are coupled together through the Lorentz forcej × b
and the electromotive forceu× b.

A major research topic on (1.1) is the regularity of the solution. For the viscous and
resistive case (ν > 0, σ <∞), Duvaut and Lions [7] constructed a class of global-in-time
weak solutions and local-in-time strong solutions similar to the Leray–Hopf weak so-
lutions for the Navier–Stokes equation. Further partial regularity results can be found in
[13, 14, 23]. Most of the results are similar to partial regularity results for the Navier–Stokes
equation. In particular, the 2-D solution is shown to be smooth [23]. It is worth noting that
the one-point-singular solution constructed in [26] for the Navier–Stokes equation does not
have a counterpart in the MHD equation [14], suggesting some kind of regularization effect
in the presence of the magnetic field.

To date, whether or not smooth initial data for the ideal MHD (µ = 0, σ = ∞) would
develop singularity in finite time remains open, even in the 2-D case. An MHD version of
the Beale–Kato–Majda theorem in [4] gives a necessary condition for blowup of smooth
solutions. Namely, if smooth initial data lead to a singularity at timeT , then

∫ T

0
‖ω(t)‖L∞ + ‖ j(t)‖L∞ dt = ∞. (1.3)

This suggests that‖ω(t)‖L∞ + ‖ j(t)‖L∞ is the only quantity that needs to be traced during
numerical simulations in search of possible singularities.

In numerical experiments for ideal 2-D flows, strong current sheets are often observed.
This singularity-like structure is a thin stretched region of high concentration of current
density. Exponential growth rate in current density has been observed [6, 9, 22] for the
current sheet associated with a hyperbolic saddle of the magnetic potential (also known
as an X point in plasma literature). A scaling argument was proposed in [22] to account
for the observed exponential growth rate. Partial regularity results concerning flow struc-
ture near an X point can be found in [6, 9]. It is worth mentioning that the scenario of
blowup near an X point is excluded under mild assumptions of the velocity field [9]. How-
ever, the possibility of blowup outside an X point remains open. The 3-D flow structure
is even more complicated and the conclusions of different numerical simulations seem
controversial [10, 18].

The purpose of this paper is to propose a simple and efficient finite-difference method for
(1.1) at large Reynolds number. Typical difficulties in the numerical computation of (1.1)
are similar to those in computational fluid dynamics, such as enforcing the incompressibility
constraint of velocity field, the realization of no-slip boundary condition, and in particular
the resolution of the boundary layer and small-scale flows at large Reynolds number. In
addition, in contrast to the explicit incompressibility constraint of the velocity field, the
Faraday equation does not have a Lagrangian multiplier. The magnetic field is necessarily
divergence free since the source term is a perfect curl. It is important that the numerical
scheme keeps the magnetic field divergence free automatically. Failure to maintain the
incompressibility constraint for the magnetic field is known to result in spurious numerical
solutions [3]. In addition to accuracy consideration, efficiency is a major concern. The cost
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of directly solving the coupled 3-D system (1.1) is enormous, especially in the presence
of physical boundaries. To effectively decouple the system (1.1), we insist on treating the
nonlinear termsexplicitly. The viscous and resistive terms can be treated either explicitly or
implicitly depending on the magnitude of the Reynolds number and the magnetic Reynolds
number. With a proper choice of staggered grids, the boundary conditions (1.2) can be
realized easily with a local formula. Therefore we effectively break the system into separate
smaller systems that can be solved using the standard fast Poisson solvers. By using classical
third- or fourth-order Runge–Kutta time discretization, the time stepping is determined
by the CFL condition only without cell Reynolds number constraint [8]. Altogether, the
resulting scheme is simple, robust, and efficient.

The most remarkable feature of our scheme is to treat the spatial discretization of the
nonlinear term carefully with central differencing and proper averaging so that the resulting
semi-discrete version of our scheme preserves the energy identity (3.9) and the divergence-
free constraint for both velocity and magnetic field exactly. As a result, the scheme is
nonlinearly stable and free from excess numerical viscosity. In addition, the cross-helicity
identity (3.17) is also preserved numerically. This makes the scheme suitable for large time
direct numerical simulation. In view of (1.3), the absence of excess numerical viscosity
also helps to identify possible singularities. A preliminary test of our scheme on 2-D ideal
MHD with strong current sheet gives satisfactory results; see Section 5 for details.

The rest of the paper is organized as follows: In Section 2, we describe the scheme in
detail. We then derive the energy identity and its discrete analogue in as well as the cross-
helicity identity, in Section 3. In Section 4, we discuss equivalent numerical formulations
of our scheme and comment on their efficiency, and finally we present a few numerical test
problems in Section 5.

2. THE MAC–YEE SCHEME

The scheme presented here combines two well-known methods in computational fluid
dynamics and computational electromagnetic waves, namely, the MAC scheme and Yee’s
scheme. We use the MAC scheme to decouple the pressure Poisson equation from the
momentum equation, keeping the velocity field divergence free. The Faraday equation,
however, does not have a Lagrangian multiplier to perform the Hodge decomposition. With
the setting introduced by Yee [28], we can evaluate the discrete curl of the magnetic field in
a natural way and enforce the discrete divergence-free constraint automatically. In addition,
we have carefully chosen the spatial discretization of the nonlinear terms in a way such that
a discrete version of the energy identity is satisfied; see Theorem 1.

2.1. Notations

We start with the mesh description (see also Fig. 1): For simplicity in presentation,
we assume that the physical domain is a cube divided intoN1× N2× N3 equally sized
cubic cells. Defined on the center of each cell interface are the normal components ofu
andb representing the approximate mean flux across the interface. We use the notation
“⇒,” “⇑,” and “©a ”, indexed by(i, j − 1

2, k− 1
2), (i − 1

2, j, k− 1
2), and(i − 1

2, j − 1
2, k)

to denote the interfaces perpendicular tox, y, andz directions, respectively. The tangential
components ofj andω are defined on the edge centers. Edges in thex, y, andz directions
are labeled “→,” “ ↑,” and “¯” with indices (i − 1

2, j, k), (i, j − 1
2, k), and(i, j, k− 1

2),
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FIG. 1. Mesh depiction for the 3-D MAC–Yee scheme.

respectively. Finally the pressure is defined on the center of each cell, the “•” points indexed
by (i − 1

2, j − 1
2, k− 1

2).
For convenience, we denote all the interior faces, edges, and cubes inÄ by

ÄF = {“⇒” , “⇑” , and “©a ” in Ä}
ÄE = {“→” , “↑” , and “̄ ” in Ä} (2.1)

ÄC = {“•”},

the boundary faces and edges by

0F = {“⇒” , “⇑” , and “©a ” on 0}
(2.2)

0E = {“→” , “↑” , and “̄ ” on 0},

and

ǞF = ÄF ∪ 0F, ǞE = ÄE ∪ 0E. (2.3)

For convenience, we also denote

¯̄ÄF = ǞF ∪ {ghost faces}
¯̄ÄE = ǞE ∪ {ghost edges} (2.4)

¯̄ÄC = ÄC ∪ {ghost centers}.

By a ghost point we mean a point half mesh size away fromÄ. For example, the “ghost cen-
ters” will then be indexed by(i − 1

2, j − 1
2, k− 1

2) with (i = 0, N1+ 1, j = 1, . . . , N2,

k= 1, . . . , N3), (i = 1, . . . , N1, j = 0, N2+ 1, k = 1, . . . , N3), and (i = 1, . . . , N1, j =
1, . . . , N2, k = 0, N3+ 1).
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We write f = ( f1, f2, f3)
T ∈ L2(ÄF) (or L2(ǞF), L2( ¯̄ÄF)) if

f =


f1 on “⇒”

f2 on “⇑”

f3 on “©a ” , (2.5)

with f1, f2, and f3 square summable.L2(ÄE), L2(ÄC), L2(0F), andL2(0E) are similarly
defined.

The differencing and averaging operators in thex direction are defined as

D1 f (x, y, z) = f (x +1x/2, y, z)− f (x −1x/2, y, z)

1x
,

A1 f (x, y, z) = f (x +1x/2, y, z)+ f (x −1x/2, y, z)

2
.

D2 f,D3 f,A2 f , andA3 f are defined in a similar way.
On a boundary face, we use

fν = f · ν (2.6)

to denote the component along the outward unit normalν, whereas on a boundary edge,
we denote byτ the unit tangent vector along that edge,

τ ′ = ν × τ , (2.7)

and similarly define the tangential components

gτ = g · τ , gτ ′ = g · τ ′. (2.8)

On either a boundary face or a boundary edge,Aν denotes the averaging operator in the
normal direction (over an interior point and a ghost point outside the physical domain) and
Dν the differencing operator along the outward normal. For example, if0 contains a portion
of the plane{x = 0} with {x > 0} being the interior, we have

Dν f (0, y, z) = f (−1x/2, y, z)− f (1x/2, y, z)

1x
,

Aν f (0, y, z) = f (−1x/2, y, z)+ f (1x/2, y, z)

2
.

For f ∈ L2(ǞF), g ∈ L2(ǞE), andq ∈ L2(ÄC), we define the discrete divergence, curl,
and gradient operators as

∇h · f = (D1 f1+D2 f2+D3 f3) onÄC, (2.9)

∇h × f = (D2 f3−D3 f2,D3 f1−D1 f3,D1 f2−D2 f1) onÄE, (2.10)

∇h × g = (D2g3−D3g2,D3g1−D1g3,D1g2−D2g1) on ǞF, (2.11)

and

∇hq = (D1q,D2q,D3q) onÄF. (2.12)
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SinceDiD j = D jDi , it is obvious that

∇h × (∇hq) = 0, (2.13)

∇h · (∇h × g) = 0, (2.14)

and

1h f = (D2
1 +D2

2 +D2
3

)
f = −∇h ×∇h × f +∇h(∇h · f ). (2.15)

2.2. The Semi-discrete Scheme

To describe the MAC–Yee scheme, we first rewrite (1.1) in dimensionless form with
the convection termu · ∇u replaced byω × u+∇|u|2/2. The new Lagrangian multiplier
p/ρ + |u|2/2 is still denoted byp:

∂tu+ ω × u+∇ p = −ν∇ × ω + αj × b (2.16)

∇ · u = 0 (2.17)

∂tb−∇ × ε = −η∇ × j (2.18)

ω = ∇ × u, j = ∇ × b, ε = u× b. (2.19)

The three free parametersν−1, η−1, andα−1/2 are known as Reynolds number, magnetic
Reynolds number, and Alfv´en number.

The semi-discrete version of the energy-preserving MAC–Yee scheme is given by

d

dt
u1+A3(ω2A1u3)−A2(ω3A1u2)+D1 p

= −ν(D2ω3−D3ω2)+ α(A3( j2A1b3)−A2( j3A1b2)) on “⇒”

d

dt
u2+A1(ω3A2u1)−A3(ω1A2u3)+D2 p

(2.20)
= −ν(D3ω1−D1ω3)+ α (A1( j3A2b1)−A3( j1A2b3)) on “⇑”

d

dt
u3+A2(ω1A3u2)−A1(ω2A3u1)+D3 p

= −ν(D1ω2−D2ω1)+ α(A2( j1A3b2)−A1( j2A3b1)) on “©a ”
D1u1+D2u2+D3u3 = 0 on “•” (2.21)

d

dt
b1− (D2ε3−D3ε2) = −η(D2 j3−D3 j2) on “⇒”

d

dt
b2− (D3ε1−D1ε3) = −η(D3 j1−D1 j3) on “⇑” (2.22)

d

dt
b3− (D1ε2−D2ε1) = −η(D1 j2−D2 j1) on “©a ”

with

ω1=D2u3−D3u2, j1=D2b3−D3b2, ε1= (A3u2)(A2b3)−(A2u3)(A3b2) on “→”

ω2=D3u1−D1u3, j2=D3b1−D1b3, ε2=(A1u3)(A3b1)−(A3u1)(A1b3) on “↑”
ω3=D1u2−D2u1, j3=D1b2−D2b1, ε3=(A2u1)(A1b2)−(A1u2)(A2b1) on “¯.”

(2.23)
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FIG. 2. The two averaging operatorsA+ andA¤.

We simplify the expression for (2.20)–(2.23) as

∂tu+A¤(ω ×A+u)+∇h p = −ν∇h × ω + αA¤( j ×A+b) onÄF (2.24)

∇h · u = 0 onÄC (2.25)

∂tb−∇h × ε = −η∇h× j onÄF (2.26)

ω = ∇h × u, j = ∇h × b, ε = A+u×A+b, onÄE (2.27)

by introducing two averaging operatorsA+ andA¤ (see Fig. 2):A+ takes vectors on four
adjacent faces onto the center of their common edge, resulting in a vector field defined on
the edge centers with value transversal to the edge, denoted byL2(ǞE;E⊥),

A+ : L2( ¯̄ÄF) 7→ L2(ǞE;E⊥)

A+ f = G=


G1⊥ = (0, (G1⊥)2, (G1⊥)3)

T = (0,A3 f2,A2 f3)
T on “→”

G2⊥ = ((G2⊥)1, 0, (G2⊥)3)
T = (A3 f1, 0,A1 f3)

T on “↑”
G3⊥ = ((G3⊥)1, (G3⊥)2, 0)T = (A2 f1,A1 f2, 0)T on “¯”

(2.28)

andA¤ (the adjoint ofA+, see (3.6)) takes the normal component of transversal vectors
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on the edges of a face onto the center of the face,

A¤ : L2(ǞE;E⊥) 7→ L2(ǞF)

A¤G= f =


f1 = A2(G3⊥)1+A3(G2⊥)1 on “⇒”

f2 = A3(G1⊥)2+A1(G3⊥)2 on “⇑”

f3 = A1(G2⊥)3+A2(G1⊥)3 on “©a ” . (2.29)

In (2.24), we have implicitly identified

ω =

ω1 on “⇒”
ω2 on “⇑”
ω3 on “©a ”

with

ω =


(ω1, 0, 0)T on “⇒”

(0, ω2, 0)T on “⇑”

(0, 0, ω3)
T on “©a ”

so thatω andA+u are both vector fields defined onÄE, andω ×A+u is simply the usual
cross product inR3. Furthermore,ω ×A+u ∈ L2(ǞE;E⊥) and is mapped toL2(ǞF) by
A¤.A¤( j ×A+b) is defined in the same manner.

2.3. The Fully Discrete Scheme

With the notation introduced above, we proceed with the fully discrete MAC–Yee scheme
with the dissipative terms and nonlinear terms treated explicitly using the forward Euler
method as time discretization. The actual implementation is classical third- or fourth-order
Runge–Kutta schemes for stability consideration as explained in [8]. The extension from
forward Euler to RK3 or RK4 is straightforward:

un+1−u
1t

+A¤(ω×A+u)+∇h pn+1=−ν∇h×ω+αA¤( j ×A+b) onÄF (2.30)

∇h · un+1 = 0 onÄC (2.31)

bn+1− b
1t

−∇h × ε = −η∇h × j onÄF. (2.32)

Here variables without the superscript represent quantities at time steptn.
In actual computations, we decompose the fluid part into several steps in the setting of pro-

jection method [5]: First we introduce an intermediate velocity variableu∗ = (u∗1, u∗2, u∗3):
u∗ − u
1t

+A¤(ω ×A+u) = −ν∇h × ω + αA¤(j ×A+b) onÄF. (2.33)

The perfectly conducting wall condition and the no-slip condition can be easily realized
numerically using local formulas:

jτ = 0 on0E, (2.34)

uν = 0 on0F, (2.35)

Aν(uτ ′) = 0 on0E. (2.36)
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In this step, we can directly evaluateu∗ at all the interior faces using (2.33) and impose

u∗ν = 0 on0F. (2.37)

Second, we subtract (2.33) from (2.30) to get

un+1− u∗

1t
+∇h pn+1 = 0 onÄF. (2.38)

To recoverpn+1, we derive the pressure Poisson equation. Take∇h· on (2.38) and apply
(2.31),

1h pn+1 = 1

1t
∇h · u∗ onÄC. (2.39)

From (2.37),pn+1 naturally satisfies the Neumann boundary condition

Dν pn+1 = 0 on0F. (2.40)

Finally we updateun+1 from (2.38). The computation ofbn+1 is straightforward from (2.32)
and the boundary conditions (2.34)–(2.36).

In this setting, the divergence-free constraint for the magnetic field is satisfied automat-
ically. Indeed, if we compute1

1t (∇h · bn+1−∇h · bn) onÄC using (2.32), we see exact
cancellations amongεl and jl , l = 1, 2, 3, and therefore∇h · bn+1 = 0, provided∇h · b= 0
initially.

As shown in [8], the stability constraint for the transport diffusion operator

∂t + aD − νD2

with centered differencing spatial discretization and third- or fourth-order Runge–Kutta
time discretization is given by

a1t

1x
≤ C1 (2.41)

and

4ν
1t

1x2 ≤ C2. (2.42)

There is no cell Reynolds number constraint imposed by stability consideration. Thus the
time stepping for (2.24)–(2.27) is governed by the CFL condition when max(η, ν)¿ 1.

In typical laboratory applications, the magnetic Reynolds number 1/η ≤ 0.5. An explicit
treatment for the resistive term imposes the parabolic time-stepping constraint in (2.42). In
this case, we can switch to treat the resistive term of the Faraday equation implicitly:

bn+1− b
1t

−∇h × ε = −η∇h× jn+1 onÄF. (2.43)

We can solvebn+1 efficiently as follows:
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From (2.43), we have∇h · bn+1 = 0. In view of (2.15), we can write (2.43) as

bn+1− b
1t

−∇h × ε = η1hbn+1 onÄF; (2.44)

thus the equations forbn+1
i , i = 1, 2, 3, are decoupled. A standard Poisson solver can be

used to solve forbn+1 with proper boundary conditions. Indeed, if we require (2.43) to hold
on0F, then (2.34)–(2.36) implies

bn+1
ν − bν
1t

= 0 on0F. (2.45)

Equation (2.45) together with (2.34) (evaluated attn+1) provides a full set of mixed
Dirichlet–Neumann boundary conditions for (2.44).

It is worth mentioning here that (2.45), which also holds in the explicit case, is consistent
with the following calculus fact: fore(x) ∈ (H1(Ä))3,e× ν|0 = 0 implies(∇ × e) · ν|0 =
0 and ∂

∂t (b · ν)|0 = 0 as a consequence of the Faraday equation (2.18).
If instead the fluid Reynolds number is small, the viscosity term must be treated implicitly.

As the treatment of resistive term, we rewrite (2.30) as

un+1− u
1t

+A¤(ω×A+u)+∇h pn+1= ν1hun+1+ αA¤( j ×A+b) onÄF. (2.46)

In this case, standard fast Poisson solvers can be used to solve for the intermediate velocity,

u∗ − u
1t

+A¤(ω ×A+u) = ν1hu∗ + αA¤( j ×A+b) onÄF

(2.47)
u∗ν = 0 on0F, A ν(u

∗
τ ′) = 0 on0E

followed by the projection step

un+1− u∗

1t
+∇h pn+1 = 0 onÄF

(2.48)
un+1
ν = 0 on0F,

which can be realized by solving the following pressure Poisson equation:

1h pn+1 = 1

1t
∇h · u∗ onÄC

(2.49)
Dν pn+1 = 0 on0F.

This is the first-order projection method [5, 25].

3. THE ENERGY IDENTITY

The most distinguishing feature of the MAC–Yee scheme is, through proper averaging
of the nonlinear terms as we described, no numerical dissipation was introduced since a
discrete analogue of the energy identity (3.1) holds; see Theorem 1. This is particularly
important for accuracy consideration in high-Reynolds-number flow computation.



22 LIU AND WANG

Like most physical systems, (2.16)–(2.18) has a natural conserved quantity, namely, the
total energy. We take the inner product of (2.16) withu, (2.18) withαb, and sum them up.
After integrating by parts, we get the energy identity

1

2

d

dt

∫
Ä

(|u|2+ α|b2|)+
∫
Ä

(ν|ω|2+ αη| j|2) = 0, (3.1)

where we have used the boundary conditions (1.2). We will show that our numerical scheme
satisfies the same identity with spatial derivatives replaced by central differences. A direct
consequence is the nonlinear stability of our scheme and hence the error estimate [20].

For simplicity of presentation, we take1x = 1y = 1z= h. We define

〈 f , f̃ 〉ǞF
= h3

(∑
⇒

′ f1 f̃ 1+
∑
⇑

′ f2 f̃ 2+
∑
©a ′ f3 f̃ 3

)
,

〈g, g̃〉ǞE
= h3

(∑
→

′g1g̃1+
∑
↑

′g2g̃2+
∑
¯

′g3g̃3

)
,

〈〈G, G̃〉〉ǞE
= h3

(∑
→

′G1⊥ · G̃1⊥ +
∑
↑

′G2⊥ · G̃2⊥ +
∑
¯

′G3⊥ · G̃3⊥

)
,

〈q, q̃〉ǞC
= h3

∑
•

q q̃,

‖ f ‖ǞE
= √〈 f , f 〉ǞE

,

‖g‖ǞF
= √〈g, g〉ǞF

,

with

∑
⇒

′r =
N1∑

i=0

′
N2∑
j=1

N3∑
k=1

ri, j− 1
2 ,k− 1

2
,

∑
⇑

′r =
N1∑

i=1

N2∑
j=0

′
N3∑

k=1

ri− 1
2 , j,k− 1

2
,

∑
©a
′r =

N1∑
i=1

N2∑
j=1

N3∑
k=0

′ri− 1
2 , j− 1

2 ,k
,

∑
→

′r =
N1∑

i=1

N2∑
j=0

′
N3∑

k=0

′ri− 1
2 , j,k

,

∑
↑

′r =
N1∑

i=0

′
N2∑
j=1

N3∑
k=0

′ri, j− 1
2 ,k
,

∑
¯

′r =
N1∑

i=0

′
N2∑
j=0

′
N3∑

k=1

ri, j,k− 1
2
,

∑
•

r =
N1∑

i=1

N2∑
j=1

N3∑
k=1

ri− 1
2 , j− 1

2 ,k− 1
2
.
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Here we use the primed sum to denote proper weighting:

N∑
l=0

′rl = 1

2
r0+

N−1∑
l=1

rl + 1

2
r N .

〈 ·, · 〉0F, and〈 ·, · 〉0E are similarly defined as summation over boundary faces and edges
with proper weights,

〈 f, f̃ 〉0F = h2

( ∑
⇒∈0F

′ f f̃ +
∑
⇑∈0F

′ f f̃ +
∑
©a∈0F

′ f f̃

)
,

〈g, g̃〉0E = h2

( ∑
→∈0E

′gg̃+
∑
↑∈0E

′gg̃+
∑
¯∈0E

′gg̃

)
,

where

∑
⇒∈0F

′r =
∑

i=0,N1

N2∑
j=1

N3∑
k=1

ri, j− 1
2 ,k− 1

2
,

∑
⇑∈0F

′r =
N1∑

i=1

∑
j=0,N2

N3∑
k=1

ri− 1
2 , j,k− 1

2
,

∑
©a∈0F

′r =
N1∑

i=1

N2∑
j=1

∑
k=0,N3

ri− 1
2 , j− 1

2 ,k
,

∑
→∈0E

′r =
N1∑

i=1

∑
j=0,N2

N3∑
k=0

′ri− 1
2 , j,k
+

N1∑
i=1

N2∑
j=0

′ ∑
k=0,N3

ri− 1
2 , j,k

,

∑
↑∈0E

′r =
N1∑

i=0

′
N2∑
j=1

∑
k=0,N3

ri, j− 1
2 ,k
+
∑

i=0,N1

N2∑
j=1

N3∑
k=0

′ri, j− 1
2 ,k
,

∑
¯∈0E

′r =
∑

i=0,N1

N2∑
j=0

′
N3∑

k=1

ri, j,k− 1
2
+

N1∑
i=0

′ ∑
j=0,N2

N3∑
k=1

ri, j,k− 1
2
.

We have the following discrete version of vector identities:

LEMMA 1. Let f ∈ L2( ¯̄ÄF), g ∈ L2(ǞE), G ∈ L2(ǞE;E⊥), and q∈ L2( ¯̄ÄC). The fol-
lowing identities hold,

〈 f ,∇hq〉ǞF
= −〈∇h · f ,q〉ǞC

+ 〈 fν,Aνq〉0F, (3.2)

〈 f ,∇h × g〉ǞF
= 〈∇h × f , g〉ǞE

+ 〈A ν fτ ′ , gτ 〉0E, (3.3)

〈 f ,A¤G〉ǞF
= 〈〈A+ f ,G〉〉ǞE

− h

4
〈Dν fτ ′ , (Gτ⊥)τ ′ 〉0E, (3.4)

where(Gτ⊥)τ ′ = Gτ⊥ · τ ′.
Equations (3.2)–(3.4) can be reduced to the following one-dimensional version of

summation-by-part identity; the proof is elementary, so we omit it here.



24 LIU AND WANG

PROPOSITION1. Let f be a scalar function defined on the cell centers of a one-dimensional
domain with uniform grids, and g defined on the grids:

fl− 1
2
= f

(
xl− 1

2

)
, gl = g(xl ).

Defining

(D f )l = 1

h

(
f
(
xl+ 1

2

)− f
(
xl− 1

2

))
, (Dg)l− 1

2
= 1

h
(g(xl )− g(xl−1)),

(A f )l = 1

2

(
f
(
xl+ 1

2

)+ f
(
xl− 1

2

))
, (Ag)l− 1

2
= 1

2
(g(xl )+ g(xl−1)),

we have the following identities:

h
N∑

l=1

fl− 1
2
(Dg)l− 1

2
= −h

N∑
l=0

′gl (D f )l + gN(A f )N − g0(A f )0 (3.5)

N∑
l=1

fl− 1
2
(Ag)l− 1

2
=

N∑
l=0

′gl (A f )l − h

4
gN(D f )N + h

4
g0(D f )0. (3.6)

Proof of Lemma 1.

h
∑
⇒

′ f1(D1q) = h
N2∑
j=1

N3∑
k=1

N1∑
i=0

′( f1(D1q))i, j− 1
2 ,k− 1

2

= −h
N2∑
j=1

N3∑
k=1

N1∑
i=1

((D1 f1)q)i− 1
2 , j− 1

2 ,k− 1
2

+
N2∑
j=1

N3∑
k=1

( f1(A1q))N1, j− 1
2 ,k− 1

2
−

N2∑
j=1

N3∑
k=1

( f1(A1q))0, j− 1
2 ,k− 1

2

= −h
∑
•
(D1 f1)q +

∑
⇒∈{i=N1}

( f1(A1q))−
∑
⇒∈{i=0}

( f1(A1q)),

where we have used (3.5) in the second equality. Similarly,

h
∑
⇑

′ f2(D2q) = −h
∑
•
(D2 f2)q +

∑
⇑∈{ j=N2}

( f2(A2q))−
∑
⇑∈{ j=0}

( f2(A2q)), (3.7)

h
∑
©a
′ f3(D3q) = −h

∑
•
(D3 f3)q +

∑
©a∈{k=N3}

( f3(A3q))−
∑

©a∈{k=0}
( f3(A3q)), (3.8)

and (3.2) follows. Equations (3.3) and (3.4) follow similarly from (3.5) and (3.6), respec-
tively. We omit the details.

THEOREM1. Letu, bbe the solution of(2.24)–(2.27)with boundary conditions(2.34)–
(2.36). Then

1

2

(‖u(t)2ǞF
+ α‖b(t)‖2ǞF

)+ ∫ t

0

(
ν‖ω(s)‖2ǞE

+ αη‖ j(s)‖2ǞE

)
ds

= 1

2

(‖u(0)‖2ǞF
+ α‖b(0)‖2ǞF

)
. (3.9)
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Proof. We take the inner product ofu with Eq. (2.24),αbwith Eq. (2.26), and sum them
up:

〈u, ∂tu〉ǞF
+ 〈u,A¤(ω ×A+u)〉ǞF

+ 〈u,∇h p〉ǞF
+ ν〈u,∇h × ω〉ǞF

−α〈u,A¤( j ×A+b)〉ǞF
+ α(〈b, ∂tb〉ǞF

− 〈b,∇h × (A+u×A+b)〉ǞF

+ η〈b,∇h × j〉ǞF

) = 0.

From Lemma 1 and the boundary conditions (2.34)–(2.36),

〈u,A¤(ω ×A+u)〉ǞF
= 〈〈A+u,ω ×A+u〉〉ǞE

= 0,

〈u,∇h p〉ǞF
= 〈∇h · u, p〉ǞC

= 0,

〈u,∇h × ω〉ǞF
= 〈ω,ω〉ǞE

,

〈u,A¤( j ×A+b)〉ǞF
= 〈〈A+u, j ×A+b〉〉ǞE

,

〈b,∇h × (A+u×A+b)〉ǞF
= 〈∇h × b,A+u×A+b〉ǞE

= 〈 j,A+u×A+b〉ǞE

= −〈〈A+u, j ×A+b〉〉ǞE
,

and (3.9) follows after integrating in time.
In addition to energy conservation, there are two more quadratic invariants, namely, the

cross helicity

d

dt

∫
Ä

u · b+ (η + ν)
∫
Ä

j ·ω +
∫
0

(p b+ η u× j + ν b× ω) ·ν = 0 (3.10)

and the magnetic helicity

d

dt

∫
Ä

a · b+ 2η
∫
Ä

j · b+
∫
0

(Vb+ e× b) · ν = 0, (3.11)

wherea is the vector potential

∇ × a= b, (3.12)

andV the electric potential satisfying

∂ta+ e+∇V = 0. (3.13)

A common choice of the gauge is

∇ · ∂ta = 0

−1V(·, t) = ∇ · e(·, t) (3.14)

V(·, t) = 0 on0.

In view of (3.14) and the boundary condition (1.2), the helicity identities (3.11) and (3.10)
reduce to

d

dt

∫
Ä

u · b+ (η + ν)
∫
Ä

j · ω +
∫
0

p b · ν = 0 (3.15)
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and

d

dt

∫
Ä

a · b+ 2η
∫
Ä

j · b= 0. (3.16)

From Lemma 1 and the discrete boundary conditions (2.34)–(2.36), it is straightforward to
derive the following discrete version of (3.15):

〈u, b〉ǞF
(t)+

∫ t

0
(〈Aν p, bν〉0F(s)+ (ν + µ)〈 j,ω〉ǞE

(s)) ds= 〈u, b〉ǞF
(0). (3.17)

However, there is no natural discrete analogue of (3.16) for our scheme sincea ∈ L2(ǞE)

andb ∈ L2(ǞF) are defined on different grid points. To analyze the effect of the MAC–Yee
scheme on the magnetic helicity, we averagea andb to cell centers

A¢b def= 1

2

b1(x −1x/2, y, z)+ b1(x +1x/2, y, z)

b2(x, y−1y/2, z)+ b2(x, y+1y/2, z)

b3(x, y, z−1z/2)+ b3(x, y, z+1z/2)

 onÄC

A£a def= 1

4



a1(x, y−1y/2, z−1z/2)+ a1(x, y+1y/2, z−1z/2)

+a1(x, y−1y/2, z+1z/2)+ a1(x, y+1y/2, z+1z/2)

a2(x −1x/2, y, z−1z/2)+ a2(x +1x/2, y, z−1z/2)

+a2(x −1x/2, y, z+1z/2)+ a2(x +1x/2, y, z+1z/2)

a3(x −1x/2, y−1y/2, z)+ a3(x +1x/2, y−1z/2, z)

+a3(x −1x/2, y+1y/2, z)+ a3(x +1x/2, y+1y/2, z)


onÄC,

evaluate

〈A£a,A¢b〉ǞC
= h3

∑
•
A£a ·A¢b, (3.18)

and then monitor the quantity

M3(t) = 〈A£a,A¢b〉ǞC
(t)+ 2η

∫ t

0
〈A£ j,A¢b〉ǞC

(s) ds (3.19)

in our calculation. We expectM3(t) =M3(0)+ O(h2) and the results seems even better;
see Section 5 for details.

It would be desirable to have a numerical scheme that preserves all three of these physical
invariants numerically. In a forthcoming paper, we will consider flows with coordinate
symmetry, such as pipe flow, axisymmetric flow, and flow on a sphere, the cases in which
the flow is effectively two-dimensional. In these cases, we introduce a generalized stream
function and vorticity-stream formulation for the Navier–Stokes and MHD equations. A
class of energy and helicity (both the cross-helicity and the magnetic helicity in the case of
MHD equation) preserving schemes is developed for these flows using a different technique;
see [20] for details.
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4. EQUIVALENT NUMERICAL FORMULATIONS

In this section, we list a few equivalent formulation of the MAC–Yee scheme and comment
on their efficiency. As in Section 2.3, we only illustrate the schemes with forward Euler
time discretization.

4.1. 3-D Scheme

In the primitive formulation (2.30)–(2.32), an additional subroutine is needed to recover
the vector potentiala to monitor the discrete magnetic helicity (3.19). This requires three
Poisson solvers each timea is recovered. In practice, if the numerical value ofa is of
interest at each time step, an alternative scheme based on discretizing (3.13) can be derived
as follows:

Suppose we are givenb ∈ L2(ǞF) anda ∈ L2(ǞE) with ∇h × a= b at timetn. To re-
cover inductivelyan+1 such that

∇h × an+1 = bn+1 (4.20)

with bn+1 given by (2.32), we notice that

bn+1 = ∇h × (a+1t(ε − η∇h × b)); (4.21)

thereforean+1 is a solution to (4.20) if

an+1− a
1t

− ε = −η∇h × b. (4.22)

In fact, if we denote all cell vertices inÄ by

ÄV = {(i1x, j1y, k1z) | i = 1, 2, . . . , N1− 1, j = 1, 2, . . . , N2− 1,

k = 1, 2, . . . , N3− 1}

and all cell vertices on0 by 0V, the general solutions to (4.20) are then given by

an+1− a
1t

− ε +∇hV = −η∇h × b, (4.23)

with an arbitraryV ∈ L2(ǞV). This is a direct consequence of the following discrete version
of Green’s formula.

PROPOSITION2. Letg ∈ L2(ǞE) with

∇h × g= 0 on ǞF.

Then

g= ∇hθ,

whereθ ∈ L2(ǞV) is given by the line integral ofg along the cell edges.

The derivation from (4.22) or (4.23) with (4.20) to (2.32) is trivial.
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Equation (4.22) is good forη small, and the computational cost is comparable to (2.32).
In this case, the boundary condition (2.34) becomes

an+1
τ − aτ
1t

= 0 on0E (4.24)

sinceετ = jτ = 0 on0E.
Whenη is large, the resistive term must be treated implicitly:

an+1− a
1t

− ε +∇hV = −η∇h × bn+1 onÄE. (4.25)

With a proper choice of the gaugeV , (4.25) can be solved efficiently:

1hV = ∇h · ε onÄV (4.26)

V = 0 on0V . (4.27)

As in the implicit treatment of the primitive formulation, (4.25) and (4.26) together imply
∇h · an+1 = 0 provided∇h · a= 0 initially. Therefore (4.25) is equivalent to

an+1− a
1t

− ε+∇hV = η1h an+1 onÄE. (4.28)

The boundary condition (4.27) forV is chosen so that (4.24) remains valid for convenience.
In addition to (4.24), one more boundary condition foran+1

ν must be supplied on the ghost
edges to solvean+1 from (4.28). The correct boundary condition is

∇h · an+1 = 0 on0V, (4.29)

which serves as a Neumann boundary condition foran+1
ν in view of (4.24).

Since

1h∇h · an+1 = 0 onÄV (4.30)

from (4.28), (4.29) implies

∇h · an+1 = 0 onÄV .

A standard Poisson solver can be utilized to solve foran+1
i , i = 1, 2, 3, separately from

(4.28), (4.24), and (4.29).
In summary, the implicit treatment for the resistive term at low magnetic Reynolds num-

ber, (4.28) and (4.26) with boundary conditions (4.24), (4.30), and (4.27) solves the Faraday
equation in terms of the vector potential at the expense of one additional Poisson solver for
each forward Euler time step, compared to the primitive formulation (2.44).
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4.2. 2-D Scheme

In this section, we derive an alternative formulation of the MAC–Yee scheme based on
the discretization of theω–a formulation of the 2-D MHD equation [2, 6]:

∂tω + u · ∇ω = ν1ω + αb · ∇ J

−1ψ = ω (4.31)

∂ta+ u · ∇a = η1a.

We show that proper treatment of the nonlinear terms and boundary conditions for (4.31)
leads to a numerically equivalent formulation of the MAC–Yee scheme.

The 2-D MAC–Yee scheme (2.30)–(2.32) (see Fig. 3 for the 2-D version of grid notations)
takes the form

un+1
1 − u1

1t
−A2(ωA1u2)+D1 p = −νD2ω − αA2(JA1b2) on “⇒” ,

(4.32)
un+1

2 − u2

1t
+A1(ωA2u1)+D2 p = νD1ω + αA1(JA2b1) on “⇑” ,

D1u1+D2u2 = 0 on “•” , (4.33)

bn+1
1 − b1

1t
−D2ε = −ηD2J on “⇒” ,

(4.34)
bn+1

2 − b2

1t
+D1ε = ηD1J on “⇑” ,

with

ω = D1u2−D2u1,

J = D1b2−D2b1 on “¯” ,

ε = (A2u1)(A1b2)− (A1u2)(A2b1).

(4.35)

FIG. 3. Mesh depiction for the 2-D MAC–Yee scheme.
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Since∇h · u = ∇h · b= 0, we can write

u =
(
D2ψ

−D1ψ

)
, b=

(
D2a
−D1a

)
, (4.36)

with ψ anda defined on regular grids “̄”.
We now introduce the following notation:

D̃1 f (x, y) = f (x +1x, y)− f (x −1x, y)

21x
on “¯” (4.37)

D̃2 f (x, y) = f (x, y+1y)− f (x, y−1y)

21y
on “¯” (4.38)

∇̃h · f = D̃1 f1+ D̃2 f2 on “¯” (4.39)

and

ũ =
(

ũ1

ũ2

)
=
(
D̃2ψ

−D̃1ψ

)
, b̃=

(
b̃1

b̃2

)
=
(
D̃2a
−D̃1a

)
on “¯” . (4.40)

Since

AiDi = DiAi = D̃i ,

we can write (4.32) and (4.34) as

un+1
1 − u1

1t
−A2(ωũ2)+D1 p = −νD2ω − αA2(Jb̃2) on “⇒”

(4.41)
un+1

2 − u2

1t
+A1(ωũ1)+D2 p = νD1ω + αA1(Jb̃1) on “⇑”

bn+1
1 − b1

1t
−D2(ũ · ∇̃ha) = −ηD2J on “⇒”

(4.42)
bn+1

2 − b2

1t
+D1(ũ · ∇̃ha) = ηD1J on “⇑” .

The Faraday equation can be formulated in terms ofa as in the 3-D case,

an+1− a

1t
+ ũ · ∇̃ha = η1ha onÄV (4.43)

an+1− a

1t
= 0 on0V . (4.44)

HereÄV and0V refer to the regular grids, “̄” points inÄ and0, respectively. The implicit
treatment of the resistive term in (4.43) poses no difficulty and there is no need to introduce
the gauge function.

As for (4.41), we apply∇h× to obtain the vorticity-stream formulation for the fluid part,

ωn+1− ω
1t

+ ∇̃h · (ωũ) = ν1hω + α∇̃h · (Jb̃) onÄV, (4.45)
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with the kinematic relation

1hψ = −ω onÄV . (4.46)

The boundary conditions (2.35) and (2.36) read

ψ = 0 on0V, (4.47)

and, say onj = 0,

ωi,0 = 2ψi,1

1x2
, (4.48)

which is known as Thom’s formula.
The implicit treatment of the viscous term involves solving a biharmonic function and

is usually quite expensive; we should go back to the primitive formulation (4.32)–(4.33)
whenν is large.

The resultingω–a formulation of the MAC–Yee scheme,

∂tω + ∇̃h · (ωũ) = ν1hω + α∇̃h · ( J̃b)
(4.49)

∂ta+ ũ · ∇̃ha = η1ha,

has significant saving in terms of memory and work over the original formulation in primitive
variables (4.32)–(4.35).

In two-dimensional MHD equation, the magnetic helicity is identically zero and
∫
Ä

a2

emerges as an additional conserved quantity, taking place of the magnetic helicity:

d

dt

1

2

∫
Ä

a2+ η
∫
Ä

|b|2− η
∫
Ä

a∂νa = 0. (4.50)

The discrete 2-D magnetic helicity

M2(t) = h2

2

∑
ǞV

′a(t)2+ η
∫ t

0
h2
∑
ǞV

′|b̃(s)|2 ds− η
∫ t

0
h
∑
0V

′(aD̃νa)(s) ds (4.51)

is also monitored in our 2-D calculations. The primed sums in (4.51) denote properly
weighted sums.

5. NUMERICAL RESULTS

We can show that the Mac–Yee scheme is second-order accurate for smooth solutions,
based on the energy identity (3.9). The detail proofs will be presented elsewhere [20]. Here
we give a few numerical examples to demonstrate the performance of the scheme. The time
integrals in (3.9), (3.17), (3.19), and (4.51) were calculated using Simpson’s formula. In all
our examples, the discrete divergence of the calculated velocity and magnetic field, as well
as the errors in the discrete energy identitiy (3.9) and cross-helicity identity (3.17) is within
accumulation of roundoff errors, typically 10–12 digits accurate.
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5.1. Example 1

Our first example is the 2-D Taylor vortex. This is a simple example used to demonstrate
that the numerical solution has the right amount of viscosity. We take

ψ(x, y) = sin(2πx) sin(2πy)

a(x, y) = sin(2πx) sin(2πy)

as initial data with periodic boundary condition on [0, 1]2. The exact solution is given by

ψ(x, y, t) = sin(2πx) sin(2πy) exp(−8π2νt)

a(x, y, t) = sin(2πx) sin(2πy) exp(−8π2ηt).

In our test, we choseα = 1, ν = 0.0001, andη = 0.02. The exact solution has two distinct
decay rates forψ anda, respectively. The result att = 0.5 with1t = 0.001 is summarized
in Table I. We see that the scheme is able to resolve the two rates correctly. In this particular
example, (3.19) is accurate up to 12 digits because of the symmetry of the solution.

5.2. Example 2

Next, We take the forced flow in a confined boxÄ = [0, 1]3 to check the accuracy of our
3-D code. We takeα = 1, ν = η = 0.001, and

u(x, y, z, t) = cos(t)

sin2(πx)(sin(2πy)− sin(2πz))

sin2(πy)(sin(2πz)− sin(2πx))

sin2(πz)(sin(2πx)− sin(2πy))

 (5.1)

b(x, y, z, t) = cos(t)

sin(πx)(cos(πy)− cos(πz))

sin(πy)(cos(πz)− cos(πx))

sin(πz)(cos(πx)− cos(πy))

 (5.2)

as an exact solution, use it to generate the corresponding forcing term, and append it
to the right-hand side of (2.30) and (2.32). The exact formula of this forcing term is quite
complicated so we omit it here. It is straightforward to modify the boundary condition (2.36)
for the slip velocity in (5.1). The result at timet = 2.0 with1t = 0.0025 is summarized in
Table II. Second-order accuracy is clearly verified.

TABLE I

Errors and Orders of Accuracy for Example 1

Mesh L2 error Order L∞ error Order

ω 322 1.257E−01 — 2.514E−01 —
642 3.145E−02 1.999 6.290E−02 1.999

1282 7.864E−03 2.000 1.573E−02 2.000

J 322 1.219E−02 — 2.438E−02 —
642 3.034E−03 2.007 6.068E−03 2.006

1282 7.577E−04 2.002 1.515E−03 2.002

Note.Parameters:t = 0.5, α = 1, ν = 0.0001,η = 0.02,
and1t = 0.001.
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TABLE II

Errors and Orders of Accuracy for Example 2

Mesh L2 error Order L∞ error Order

u 163 2.342E−02 — 5.800E−02 —
323 5.433E−03 2.108 1.245E−02 2.220
643 1.338E−03 2.022 3.063E−03 2.023

b 163 2.507E−01 — 6.811E−01 —
323 5.586E−02 2.166 1.442E−01 2.240
643 1.362E−02 2.036 3.537E−02 2.027

Note.Parameters:t = 2, α = 1, ν = 0.001, η = 0.001,
and1t = 0.0025.

5.3. Example 3

Next, we take

u0(x, y, z) =

 −2 sin(2πy)(1− cos(2πx)) sin(4πz)

−sin(2πx)(1− cos(2πy)) sin(2πz)

sin(2πx) sin(2πy)(cos(2πz)− cos(4πz))

 (5.3)

b0(x, y, z) =

sin(πx)(cos(πy)− cos(πz))

sin(πy)(cos(πz)− cos(πx))

sin(πz)(cos(πx)− cos(πy))

 (5.4)

as initial data with the boundary conditions (2.34)–(2.360) and the parametersα = 1, ν =
0.001,η = 0. The error inM3 at timet = 0.5 with1t = 0.001 is shown in Table III.

5.4. Example 4

Our final example is the Orszag–Tang vortex for ideal MHD equation on [0, 2π ]2 with
periodic boundary condition. The initial data

ψ(x, y, 0) = 2(cos(x)− sin(y))

a(x, y, 0) = 2 cos(x)− cos(2y)
(5.5)

are a pair of two vortices of opposite sign, centered at(π, π/2) and(π, 3π/2), respectively.
Because of symmetry of the flow, the current sheet forms at later time near the two vortices. In

TABLE III

Errors and Orders of Accuracy for Example 3

Mesh Error Order

M3 163 2.022E−03 —
323 3.815E−04 2.406
643 5.880E−05 2.698

Note.Parameters:t = 0.5, α = 1, ν = 0.001,η = 0, and
1t = 0.001.
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FIG. 4. (a) Absolute value of the current density as a function of time at(π, π/2) and(π, 3π/2) in Example 4.
(b) Contours of the currentj at timet = 0.75 in Example 4 at 10242 resolution. (c) A closer look of (b) near the
top current sheet. (d) Same as (c) with 5122 resolution.
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FIG. 4—Continued
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TABLE IV

Errors and Orders of Accuracy for Example 4

Mesh Error Order

M2 2562 1.061E−03 —
5122 2.595E−04 2.032

10242 6.440E−05 2.010

Note.Parameters:t = 0.75,α = 1,ν = 0,η = 0, and1t = 0.001.

[6], a high-resolution scheme based on projection method with second-order upwinding and
adaptive mesh refinement is used to simulate this problem. There a relative high resolution
(equivalence of 327682 nonadaptive meshes) is used to calculate∂2

xa∂2
ya− (∂x∂ya)2.

As a comparison, we repeat this calculation with 10242 grid points. It is clear from (2.41)
and (2.42) that the MAC–Yee scheme can be applied to the ideal MHD under the CFL
constraint. The time history of the local minimum of the current density at(π, π/2) and
(π, 3π/2) is shown in Fig. 4a. The contour plot of 16 equally spaced level curves of the
current density att = 0.75 with dt = 0.001 is shown in Fig. 4b. Both of them agree well
with the high-resolution calculation done in [6]. A blowup figure near(π, 3π/2) (Fig. 4c)
shows that the flow is well resolved with approximately 12 mesh size across the current
sheet. The simplicity of this scheme and its remarkable performance lead us to believe that
the MAC–Yee scheme is suitable for large time direct numerical simulation and probably
the numerical search of possible singularity formation when combined with the local mesh
refinement technique [1, 6]. This topic is currently under investigation.

At 5122, the numerical solution starts to develop oscillations near the peaks of the current
sheet because of lack of resolution (Fig. 4d). The result of the 2562, 5122, and 10242 runs
shows that the discrete magnetic helicity (4.51) is second-order accurate (Table IV).

It is worth remarking here on the efficiency of the MAC–Yee scheme. Since the equation
is completely decoupled with explicit treatment of the nonlinear terms and local boundary
conditions, the scheme can make use of standard fast Poisson solvers such as FFT packages.
Without specific optimization, the 643 calculation in Example 3 with double precision took
about 20 s per time step on a laptop with a 266-MHz processor and 128 MB memory. The
10242 computation took about 30 s per time step on a PC with a 550-MHz processor and
the job occupied about 145 MB of system memory.
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