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We propose a simple and efficient finite-difference method for the incompressible
MHD equation. The numerical method combines the advantage of the MAC scheme
for the Navier—Stokes equation and Yee’s scheme for the Maxwell equation. In par-
ticular, the semi-discrete version of our scheme introduces no numerical dissipation
and preserves the energy identity exactly 2001 Elsevier science
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1. INTRODUCTION

We propose a finite-difference method for the unsteady incompressible magnetohysr
dynamics (MHD) equation

1.
p(81u+u-Vu)+Vp:MAu+ijb

V.-u=0
1 .
Eatb—l—Vxe:O in Q (1.1)
4
Vxb= 2]
c

1
j :a(e—}— —U X b),
c
with no-slip and perfectly conducting wall conditions

u=0 exrvr=0 onl =9%, (1.2)

wherep is the fluid densityu is the fluid velocity, and, j, ande are the magnetic field,
the electric current density, and the electric field, respectiyely:, andc are physical
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ENERGY-PRESERVING SCHEME FOR MHD EQUATION 13

constants representing the viscosity coefficient, the electric conductivity, and the spee
light, respectively.

Equation (1.1) can be roughly divided into two parts: the Navier—Stokes equation g
erning the motion of the solenoidal fluid motion and the Faraday equation describing
evolution of the magnetic field. They are coupled together through the Lorentz farbe
and the electromotive forae x b.

A major research topic on (1.1) is the regularity of the solution. For the viscous a
resistive casen> 0, 0 < 00), Duvaut and Lions [7] constructed a class of global-in-time
weak solutions and local-in-time strong solutions similar to the Leray—Hopf weak s
lutions for the Navier—Stokes equation. Further partial regularity results can be founc
[13, 14, 23]. Most of the results are similar to partial regularity results for the Navier—Stok
equation. In particular, the 2-D solution is shown to be smooth [23]. It is worth noting th
the one-point-singular solution constructed in [26] for the Navier—Stokes equation does
have a counterpart in the MHD equation [14], suggesting some kind of regularization eff
in the presence of the magnetic field.

To date, whether or not smooth initial data for the ideal MHD=£ 0, 0 = c0) would
develop singularity in finite time remains open, even in the 2-D case. An MHD version
the Beale—Kato—Majda theorem in [4] gives a necessary condition for blowup of smo
solutions. Namely, if smooth initial data lead to a singularity at timé¢hen

]
/O lo® e + [~ dt = oo, (1.3)

This suggests thdto () ||~ + || j(t) ||~ iS the only quantity that needs to be traced durinc
numerical simulations in search of possible singularities.

In numerical experiments for ideal 2-D flows, strong current sheets are often obsen
This singularity-like structure is a thin stretched region of high concentration of curre
density. Exponential growth rate in current density has been observed [6, 9, 22] for
current sheet associated with a hyperbolic saddle of the magnetic potential (also kn
as an X point in plasma literature). A scaling argument was proposed in [22] to acco
for the observed exponential growth rate. Partial regularity results concerning flow str
ture near an X point can be found in [6, 9]. It is worth mentioning that the scenario
blowup near an X point is excluded under mild assumptions of the velocity field [9]. Hov
ever, the possibility of blowup outside an X point remains open. The 3-D flow structu
is even more complicated and the conclusions of different numerical simulations se
controversial [10, 18].

The purpose of this paper is to propose a simple and efficient finite-difference method
(1.1) at large Reynolds number. Typical difficulties in the numerical computation of (1.
are similar to those in computational fluid dynamics, such as enforcing the incompressib
constraint of velocity field, the realization of no-slip boundary condition, and in particul
the resolution of the boundary layer and small-scale flows at large Reynolds numbel
addition, in contrast to the explicit incompressibility constraint of the velocity field, th
Faraday equation does not have a Lagrangian multiplier. The magnetic field is necess
divergence free since the source term is a perfect curl. It is important that the numer
scheme keeps the magnetic field divergence free automatically. Failure to maintain
incompressibility constraint for the magnetic field is known to result in spurious numeric
solutions [3]. In addition to accuracy consideration, efficiency is a major concern. The c
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of directly solving the coupled 3-D system (1.1) is enormous, especially in the presel
of physical boundaries. To effectively decouple the system (1.1), we insist on treating
nonlinear termexplicitly. The viscous and resistive terms can be treated either explicitly
implicitly depending on the magnitude of the Reynolds number and the magnetic Reync
number. With a proper choice of staggered grids, the boundary conditions (1.2) can
realized easily with a local formula. Therefore we effectively break the system into sepat
smaller systems that can be solved using the standard fast Poisson solvers. By using cla:
third- or fourth-order Runge—Kutta time discretization, the time stepping is determin
by the CFL condition only without cell Reynolds number constraint [8]. Altogether, th
resulting scheme is simple, robust, and efficient.

The most remarkable feature of our scheme is to treat the spatial discretization of
nonlinear term carefully with central differencing and proper averaging so that the result
semi-discrete version of our scheme preserves the energy identity (3.9) and the diverge
free constraint for both velocity and magnetic field exactly. As a result, the scheme
nonlinearly stable and free from excess numerical viscosity. In addition, the cross-helic
identity (3.17) is also preserved numerically. This makes the scheme suitable for large t
direct numerical simulation. In view of (1.3), the absence of excess numerical viscos
also helps to identify possible singularities. A preliminary test of our scheme on 2-D ide
MHD with strong current sheet gives satisfactory results; see Section 5 for details.

The rest of the paper is organized as follows: In Section 2, we describe the schem
detail. We then derive the energy identity and its discrete analogue in as well as the cr
helicity identity, in Section 3. In Section 4, we discuss equivalent numerical formulatiol
of our scheme and comment on their efficiency, and finally we present a few numerical
problems in Section 5.

2. THE MAC-YEE SCHEME

The scheme presented here combines two well-known methods in computational f
dynamics and computational electromagnetic waves, namely, the MAC scheme and Y
scheme. We use the MAC scheme to decouple the pressure Poisson equation fron
momentum equation, keeping the velocity field divergence free. The Faraday equat
however, does not have a Lagrangian multiplier to perform the Hodge decomposition. W
the setting introduced by Yee [28], we can evaluate the discrete curl of the magnetic fiel
a natural way and enforce the discrete divergence-free constraint automatically. In addit
we have carefully chosen the spatial discretization of the nonlinear terms in a way such
a discrete version of the energy identity is satisfied; see Theorem 1.

2.1. Notations

We start with the mesh description (see also Fig. 1): For simplicity in presentatic
we assume that the physical domain is a cube divided Mt N, x N3 equally sized
cubic cells. Defined on the center of each cell interface are the normal components ¢
andb representing the approximate mean flux across the interface. We use the nota
“=“f,”and “@", indexed by(i, j — 3, k—3), (i — 3, j.k—3),and(i — 3, j — 3. k)
to denote the interfaces perpendiculakiy, andz directions, respectively. The tangential
components of andw are defined on the edge centers. Edges irxthg andz directions
are labeled *>,” “ 4, and “@" with indices (i — 3, j, k), (i, j — 2, k), and(, j, k— 1),
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FIG. 1. Mesh depiction for the 3-D MAC-Yee scheme.

respectively. Finally the pressure is defined on the center of each ce'tpeints indexed
For convenience, we denote all the interior faces, edges, and cufddsyin

Qr = (“=".“1", and‘®" in Q)
Qe = {"—>",“1", and‘©" in Q) (2.1)
Qc = {"e"},

the boundary faces and edges by

I'e={"=",“1", and ‘®” onT}

(2.2)
e ={"=",“1", and“‘®" onT},
and
QF=QrUTE, Qe =QeUTE. (2.3)
For convenience, we also denote
QF = Qr U {ghost faces
Qe = Qe U {ghost edges (2.4)

S -e)

c = Q¢ U {ghost centells

By a ghost point we mean a point half mesh size away fforRor example, the “ghost cen-
ters” will then be indexed byi — 3, j — 1, k=D with ( =0, Ny + 1, j=1,..., Ny,
k=1,...,N3),(i=1,...,N;,j=0,No+Lk=1...,N3), and(i =1,..., Ny, j =
1,...,N, k=0, N3+ 1).
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We write f = (f1, fo, f3)T € L2(Q2¢) (or LA(Qr), LA(Qe)) if

fl on “i”
f=¢f, ony (2.5)
.I:3 on u@n ,

with f1, f», and f3 square summable.?(Qg), L2(Q¢), L2(I'r), andL?(I'g) are similarly
defined.
The differencing and averaging operators in xhgirection are defined as

f(X+ AX/2,y,2) — f (X — AX/2,Y,2)

Dif(x,y,2 = Ax
f(Xx+ AXx/2,y,2) + f (X — AX/2,y,2
A f(Xy.2) = ( /2,y )2 ( /2,y )'

D, f, Dsf, Ao f, and A3 f are defined in a similar way.
On a boundary face, we use

f,=f. v (2.6)

to denote the component along the outward unit nomnathereas on a boundary edge,
we denote byr the unit tangent vector along that edge,

T =vXxT, (2.7)
and similarly define the tangential components
0 =097, OQv=9-7. (2.8)

On either a boundary face or a boundary eddg denotes the averaging operator in the
normal direction (over an interior point and a ghost point outside the physical domain) &
D, the differencing operator along the outward normal. For examgdle;ifntains a portion

of the plang{x = 0} with {x > 0} being the interior, we have

f(—AXx/2,y,2) — f(AX/2,Y, 2)

D,f(0,y,2) = =
A,f(0.y.2) = [EAX2Y, Z)2+ f(ax/2.y.2)

For f € L2(Qp), g € L2(Qk), andq € L2(Qc), we define the discrete divergence, curl,
and gradient operators as

Vh-f=D1f1+Dafo+D3f3) onQc, (2.9)
Vhxf = (Do fa — D3 fy, D3ty — D1 f3, D1fo — Do f]_) on Qg, (210)
Vh x g = (D203 — D3ga, D3gs — D103, D1g2 — D201)  ON Qr, (2.11)

and

Vhd = (D10, D2q, D3q)  ON Q. (2.12)
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SinceD; D; = DD, it is obvious that

Vh x (Vhq) =0, (2.13)
Vh - (Vh x Q) =0, (2.14)

and
Anf = (DI +D5+Dj)f = —Vh x Vi x f + Vh(Vp-f). (2.15)

2.2. The Semi-discrete Scheme

To describe the MAC-Yee scheme, we first rewrite (1.1) in dimensionless form w
the convection tern - Vu replaced byw x u + V|u|?/2. The new Lagrangian multiplier
p/p + |ul?/2 is still denoted byp:

U+ wxUu+Vp=—vVxw+ajxb (2.16)
V-u=0 (2.17)

b—V xe=—-nVxj (2.18)
w=Vxu, j=Vxb, e=uxh (2.19)

The three free parameters?, 1, anda /2 are known as Reynolds number, magnetic
Reynolds number, and Aléri number.
The semi-discrete version of the energy-preserving MAC-Yee scheme is given by

d
ai + Asz(w2A1u3) — Az(wsAiUz) + D1p

= —v(Dawsz — Dawz) + a(Az(j2A1b3) — Ax(j3Abr)) on“=”

d
— Uy + A1 (w3 Azuy) — Az(wr.A2uz) + Dop

dt _ _ (2.20)
= —v(D3w1 — D1w3) + a (A1(jaAzbr) — Az(j1A203)) on“p”
d
au3 + Az (w1 Azup) — Ay(woAsuy) + D3p
= —v(D1w2 — Daw1) + a(Az(j1Asby) — A1(j2Azb)) on*E”
Diu; +Dyus +D3u3=0 on‘e” (2.21)
d . .
abl — (D2e3 — D3g2) = —n(D2js — D3jz) on“="
d . .
abz — (D3ey — D1g3) = —n(D3j1 — D1j3) on“p” (2.22)

d . .
abs — (D182 — Dre1) = —n(D1j2 — D2j1) on“E”"

with
w1="Douz—DslUy, j1=Dolz—Dzbp, e1=(Asu2)(A2b3) — (A2u3z)(Asby) on*—"
w2 =D3uy —DiUs, jo=D3b1—Dibz, e2=(A1U3)(A3b1)—(Asu1)(Aibs) on*“4”

w3=D1Us—Douy, jz=D1by—Dob;, e3=(Aou1)(A1b2) — (A1Uz)(A2by) on*E.”
(2.23)
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FIG. 2. The two averaging operatoi4, and.A.

We simplify the expression for (2.20)—(2.23) as

U+ Ag(w x A U) +Vhp= —vVy xw+aAp(j x ALb) onQe (2.24)

Vh-u=0 onQc (2.25)
ob—Vh xe=—-—nVhx ] oOnQE (2.26)
w = Vh x U, j =Vhxb, &= A+U X A+b, on Qe (227)

by introducing two averaging operatass, and.Ap (see Fig. 2):A , takes vectors on four
adjacent faces onto the center of their common edge, resulting in a vector field definec
the edge centers with value transversal to the edge, denote@(fy; E*),

A, L%(Qp) > L%(Qe EY
Gy = (0, (G11)2, (G11)3) " = (0, A3 fa, A2 f3)T  on“—"
A f=G=<Gu =((G)1.0, (Gar)a)" = (A3f1, 0, A1 f3)T on“p”  (2.28)
Gzt = ((G3)1, (G31)2,0)T = (A2 f1, A1 T2, 0T on“®”

and.Aj (the adjoint of A |, see (3.6)) takes the normal component of transversal vecto
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on the edges of a face onto the center of the face,
Ap: L3(Qe; EY > LA(Q6)
f1 = A2(Gzr)1 + A3(Gyr)y  on ="

ApG=f = fo=A3(Gu)2+ A1(Gar)2 on*“f” (2.29)
f3 = A1(Gor)3+ A2(Gi)s on“E".

In (2.24), we have implicitly identified

w1 on u:>n
w = Wy on “TT"
w3 on u©n

with
(w1,0,00T on“="

w=1{ (0,wp, 07 on“p”
(0,0,w3)" on“@®”

so thatw and.A , u are both vector fields defined @2, andw x A, u is simply the usual
cross product irR3. Furthermorew x A, u € L2(Qg; EY) and is mapped t@.2(QF) by
An. Ag(j x A, Db) is defined in the same manner.

2.3. The Fully Discrete Scheme

With the notation introduced above, we proceed with the fully discrete MAC—Yee schel
with the dissipative terms and nonlinear terms treated explicitly using the forward Eu
method as time discretization. The actual implementation is classical third- or fourth-or
Runge—Kutta schemes for stability consideration as explained in [8]. The extension fr
forward Euler to RK3 or RK4 is straightforward:

un+l_ u ]
At +Aqwx AU +Vhp" = vV xw4aAg(j x A onQe  (2.30)
Vh-u™l=0 onQc (2.31)
b —b
AL Vhxe=—-nVh X ] ONQE. (2.32)

Here variables without the superscript represent quantities at tim¢"step
In actual computations, we decompose the fluid part into several steps in the setting of
jection method [5]: First we introduce an intermediate velocity variable- (u3, u3, u3):

u*—u
At

+Ap(w x Aju) = —vWh xw+aApg(j x ALb) onQe. (2.33)

The perfectly conducting wall condition and the no-slip condition can be easily realiz
numerically using local formulas:
jc =0 onTlg, (2.34)
u, =0 onlg, (2.35)
A,(uy) =0 onTlEg. (2.36)
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In this step, we can directly evaluai& at all the interior faces using (2.33) and impose
ur =0 onlE. (2.37)

Second, we subtract (2.33) from (2.30) to get

un+1 _ U*

vhp"tt =0 QF. 2.38
Ap T VnP onQr (2.38)

To recoverp™?!, we derive the pressure Poisson equation. Tékeon (2.38) and apply
(2.31),

1
App™tt = GV u* onQec. (2.39)

From (2.37),p"** naturally satisfies the Neumann boundary condition
D,p"t =0 onlk (2.40)

Finally we update™t! from (2.38). The computation di"* is straightforward from (2.32)
and the boundary conditions (2.34)—(2.36).

In this setting, the divergence-free constraint for the magnetic field is satisfied autor
ically. Indeed, if we computeAl—t(Vh b — v, . b") onQc using (2.32), we see exact
cancellations among andj;,| = 1, 2, 3, and therefor&j, - bt =0, providedv, -b =10
initially.

As shown in [8], the stability constraint for the transport diffusion operator

& +aD — vD?

with centered differencing spatial discretization and third- or fourth-order Runge—Kuf
time discretization is given by

— < C 241
Ax <C; ( )
and
At
4y— < Co. 2.42
VAXZ =~ L2 ( )

There is no cell Reynolds number constraint imposed by stability consideration. Thus
time stepping for (2.24)—(2.27) is governed by the CFL condition whenimax « 1.

In typical laboratory applications, the magnetic Reynolds numjger<10.5. An explicit
treatment for the resistive term imposes the parabolic time-stepping constraint in (2.42]
this case, we can switch to treat the resistive term of the Faraday equation implicitly:

bn+1_ b .
X —Vh xe=—nVpx "

on Qg. (2.43)

We can solvés"*? efficiently as follows:
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From (2.43), we hav&, - b = 0. In view of (2.15), we can write (2.43) as

br‘H—l —b
At

— Vh x € = nApb™? onQp; (2.44)

thus the equations fdJ{‘*l, i =1,2,3, are decoupled. A standard Poisson solver can k
used to solve fob™* with proper boundary conditions. Indeed, if we require (2.43) to hols
on T, then (2.34)—(2.36) implies

bl — b

" =0 onlg. 2.45
At F (2.45)

Equation (2.45) together with (2.34) (evaluatedt®t!) provides a full set of mixed
Dirichlet—-Neumann boundary conditions for (2.44).

Itis worth mentioning here that (2.45), which also holds in the explicit case, is consist
with the following calculus fact: foe(x) € (H1(R2))3,e x v| = 0implies(V x €) - v| =
0 and%(b -v)|r = 0 as a consequence of the Faraday equation (2.18).

Ifinstead the fluid Reynolds number is small, the viscosity term must be treated implici

As the treatment of resistive term, we rewrite (2.30) as
un+1 _
Al +Ag(w x A u) 4+ Vap"  =vAnu™ 0 Ap(j x ALb) onQe. (2.46)

In this case, standard fast Poisson solvers can be used to solve for the intermediate vel

u*—u .
X + Ap(w x A U) = vARU* +aAp(j x A b) onQe
(2.47)
u=0 onlg, A,(U:)=0 onlg
followed by the projection step
un+l _ u*
N +Vhp"™t=0 onQ:
(2.48)
u™t =0 onrg,
which can be realized by solving the following pressure Poisson equation:
n+1 1 *
Anp = A—tvh -Uu* onQc
(2.49)

D,p""1=0 onrlke

This is the first-order projection method [5, 25].

3. THE ENERGY IDENTITY

The most distinguishing feature of the MAC—Yee scheme is, through proper averag
of the nonlinear terms as we described, no numerical dissipation was introduced sin
discrete analogue of the energy identity (3.1) holds; see Theorem 1. This is particul:
important for accuracy consideration in high-Reynolds-number flow computation.
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Like most physical systems, (2.16)—(2.18) has a natural conserved quantity, namely,
total energy. We take the inner product of (2.16) with{2.18) withab, and sum them up.
After integrating by parts, we get the energy identity

2 2
2dt/(|u| + alb |)+/(VIw| +anlj®) =0, 3.1

where we have used the boundary conditions (1.2). We will show that our numerical sche

satisfies the same identity with spatial derivatives replaced by central differences. A dil

consequence is the nonlinear stability of our scheme and hence the error estimate [20
For simplicity of presentation, we takex = Ay = Az = h. We define

(f,f~)§F = h3<z/f1f~1+ Z/fzfz-f- Z/fsf?,),
= n ©®
% = h3<z/91§1 +) 00, + Z/g3§3>,
- 1 ©
(G, G)) (Z G -G + Z Gy -Gy + Z Ga. - Gsi)

(@, Ga. =h*>_qd,
Ifllae = V(f, flae

9l = V(9 D

with

Ng
i=0 j
N:1 Ny
’ /
E:r=§: Mi-ljk-1
T i—1 j=0 k=1
N1 N2 N3
le _ /
r= fi-ij-ik
® i=1 j=1 k=0
Ni N2 N3
! ! /
D=2 itk
— i=1 j=0 k=0
N, N, N3
’ / ’
E:r = E: Fij—1k
2 i=0 j=1 k=0
Ny N N3
/ / /
§ :r = § , Mijk—1
o i=0 j=0 k=1
[\
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Here we use the primed sum to denote proper weighting:

N 1 N-1 1
1= =r N+ =rn.
Z| 20+|Z:1:|+2N

=0

(-, - )re, and(-, -)r. are similarly defined as summation over boundary faces and edg
with proper weights,

(f, f)pF=h2<Z/ff+Z’ff+Z’ff>,

=elF frele el
&~ 2 I N /- /-
(g,g>rE=h< > 98+ > 95+ » gg>,
—ele rele Oel'e
where
N, Nz
/ —
r= DBUNETEE
—elf i=0,N; j=1 k=1
Ny N3
e —
r=> fi-gik-%
frele i=1 j=0,N; k=1
N1 N2
I
r=2 fii-phe
@el'r i=1 j=1 k=0, N3
Ny N3 N N
T = r ! r
= i—3.j.k + i—3.j.k
—ele i=1 j=0,N; k=0 i=1 j=0 k=0,N3
N1 N2 N2 N3
/ / !
r = r r
E i,j—1k + ij—3.k
rele i=0 j=1k=0,Ng i=0,N; j=1 k=0
Nz N3 Nl NS
I / !
r= Mijk-3 + Fijk—1-
O€el'e i=0,N; j=0 k=1 i=0 j=0,N; k=1

We have the following discrete version of vector identities:

LEMMA 1. Letf e L2(Q2p), g € L2(Qe), G € LA(Qe; EY), and ge L2(Qc). The fol-
lowing identities hold

<f7 th)f_lp = _(Vh : f? q)ﬁc + (fvv AvQ)l‘p (32)
<f7 vh X g)ﬁp = <Vh X f’ g)ﬁE + <-Al) f'l.’/’ gT)Fga (33)
h
(fv ADG)§F = <(A+f7 G>>§E - Z(DU f‘L'/a (GIL)T’>FEa (34)

where(G;1)y = G,1 -7/,

Equations (3.2)—(3.4) can be reduced to the following one-dimensional version
summation-by-part identity; the proof is elementary, so we omit it here.
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PropPosITIONL. Letfbe ascalarfunction defined onthe cell centers of a one-dimensior

domain with uniform gridsand g defined on the grids

f|_% = f (X|_%),

Defining
1
D=2 (F(4eg) = F(x-1)),
1
(AP = S(F(Xg) + f(xi1)),

we have the following identities

N
hz fi_i(Dg) 1 = —

I=1

=0

P4

1=0

Proof of Lemma 1.
N, N3 N;

hZ D) =h> > > (D) j_1 s

j=1 k=1 i=0
N2 N3 N1

=—h) > > (Dufdi_g s«

j=1k=1i=1

N2 N3

+ Z Z( ]cl(-/éth))[\h_J_%’k_i

=1 k=1

=e{i=Nz}

g =gx).

N
h) gD+ gn(AT)N = do(Af)o

Z fi_1(Ag)_; = Z 9 (Af) — —gNmf)N + go<Df>o.

1
DY),y = H(Q(Xl) —g(X-1)),

1
(Agh_1 = E(Q(XI) +9(Xi-1)),

(3.5)

(3.6)

k—1
2

N2 N3

- Z Z( fl(Alq))oyj_%’k_%

j=1 k=1

—hZ(lel)q+ Z (fh(Aq) — > (fuA)),

=¢€{i=0}

where we have used (3.5) in the second equality. Similarly,

fre{j=Nz}

h> ' fa(Daq) =
T

©e{k=Nz}

h) ' fa(Dsq) =
©

—hZ(szz)q+ > (fa(Am) — D (fa(A). (3.7)

fre{j=0}

—hZ(Dsfs)Q-i- > (faAsq) — Y (fa(4aq), (3.8)

©e{k=0}

and (3.2) follows. Equations (3.3) and (3.4) follow similarly from (3.5) and (3.6), respe:

tively. We omit the details.

THEOREM1. Letu, bbe the solution of2.24)—(2.27) with boundary condition&2.34)—

(2.36). Then

NI =

1
= 5 (IuOE_ +elbO]F).

t
(||u<t)9 +alb®]3,) + /O(v||w(s)||§;E+an||j(s)||§;E)ds

(3.9)
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Proof. We take the inner product afwith Eq. (2.24) xb with Eq. (2.26), and sum them
up:
(U, diu)g, + (U, An(w x A W)g. + (U, VhPg + v(U, Vh X w)g,
_a(uv AD(J S A+b)>§|: +a((b, 8tb>§|: - <b7 VI"I X (A+u X A+b))§|:
+n{b, Vh x j)g,) = 0.

From Lemma 1 and the boundary conditions (2.34)—(2.36),

(U, Ap(w x A )g. = (AU, w x Au))g. =0,
(U, Vhp)ge = (Vh - U, P)g. =0,
(U, Vh X w)g, = (w, w)g,
(U, Ag(j x A, b)g, ((A+U j x Aib)a,
(b, Vh x (A u x A b))g. = (Vh x b, A u x A+ ) Qe
=(j, Aux A b)g,

—((Au, j x A.b))g,,

and (3.9) follows after integrating in time.
In addition to energy conservation, there are two more quadratic invariants, namely,
cross helicity

i/u-b—l—(n—i—v)/j~u.:—i—/(pb—i—nu><j—i-vb><<.u)-1/=0 (3.10)
dt Q Q r

and the magnetic helicity

;t/a b+2n/j b+/(vb+exb) v=0 (3.12)
wherea is the vector potential
Vxa=bh, (3.12)
andV the electric potential satisfying
dha+e+VV =0. (3.13)
A common choice of the gauge is

V.eia=0
—AV(,t) =V .e,t) (3.14)
V(,t) =0 onT.

In view of (3.14) and the boundary condition (1.2), the helicity identities (3.11) and (3.1
reduce to

(;jt/u b+(n+v)/j w+/pb v=0 (3.15)
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and

d
dt/a b+2n/1 b=0. (3.16)

From Lemma 1 and the discrete boundary conditions (2.34)—(2.36), it is straightforwarc
derive the following discrete version of (3.15):

t
(u, b>§F<t>+/0<<Aup, b)re(S) + (v + w)(j, )a.(8) ds = (U, b5 (0). (3.17)

However, there is no natural discrete analogue of (3.16) for our schemesinté(Qe)
andb e L?(Q) are defined on different grid points. To analyze the effect of the MAC-Ye
scheme on the magnetic helicity, we averagadb to cell centers

1 bi(X — AX/2,y,2) + bi(X + AX/2, Y, 2)
Agb= 2 | bax.y - Ay/2.2) + b,y + Ay/2.2) | one
bs(X,y,z— Az/2) + bs(X, Y, 2+ Az/2)

aX,y—Ay/2,z— Az/2) +a1(X, Y+ Ay/2,2— Az/2)
+ai(X,y— AY/2, 24+ Az/2) + ay(X, Y + AY/2, 2+ Az/2)

def 1 | aa(X — AX/2,y,z2— Az/2) + ax(X + AX/2,y,2— AZ/2)
A&a = on QC?
4 +ax(X — AX/2,y,2+ Az/2) + ax(X + AX/2,y,z2+ Az/2)

(X — AX/2,y — AY/2,2) + ag(X + AX/2,y — Az/2, 2)
+ag(X — AX/2,y+ Ay/2,2) + az(X + AX/2, ¥y + Ay/2, 2)

evaluate

(Axa, Agb)g. = hngga Agb, (3.18)
and then monitor the quantity
t
Ma() = (Aza, Asbla O +20 [ (Au). AsDiz©ds  (@.19)

in our calculation. We expea¥s(t) = M3(0) + O(h?) and the results seems even better:;
see Section 5 for details.

It would be desirable to have a numerical scheme that preserves all three of these phy
invariants numerically. In a forthcoming paper, we will consider flows with coordinat
symmetry, such as pipe flow, axisymmetric flow, and flow on a sphere, the cases in wt
the flow is effectively two-dimensional. In these cases, we introduce a generalized stre
function and vorticity-stream formulation for the Navier—Stokes and MHD equations.
class of energy and helicity (both the cross-helicity and the magnetic helicity in the case
MHD equation) preserving schemes is developed for these flows using a different techni
see [20] for details.
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4. EQUIVALENT NUMERICAL FORMULATIONS

Inthis section, we lista few equivalent formulation of the MAC—Yee scheme and comm
on their efficiency. As in Section 2.3, we only illustrate the schemes with forward Eul
time discretization.

4.1. 3-D Scheme

In the primitive formulation (2.30)—(2.32), an additional subroutine is needed to reco
the vector potentiah to monitor the discrete magnetic helicity (3.19). This requires thre
Poisson solvers each tingeis recovered. In practice, if the numerical valueeofs of
interest at each time step, an alternative scheme based on discretizing (3.13) can be de
as follows:

Suppose we are givame L2(Qg) anda € L2(Qg) with Vi, x a = b at timet". To re-
cover inductivelya"* such that

Vi x 8"t = p™*t (4.20)
with b"*! given by (2.32), we notice that
b = Vi, x (@a+ At(e — nVh x b)); (4.21)
thereforea™! is a solution to (4.20) if

a”+1 —a

A T —nVh x b. (4.22)

In fact, if we denote all cell vertices if2 by

Qu={(AX, jAY.kKAZ) i =1,2,..., Ny =1, j=1,2,..., N — 1,
k=12...,N;—1}

and all cell vertices o by I'y, the general solutions to (4.20) are then given by
at+l_a

T — &+ th = —T]Vh X b, (423)

with an arbitraryv € L2(Qy). Thisis adirect consequence of the following discrete versio
of Green’s formula.

PROPOSITION2. Letg e L%(Qe) with
Vhxg=0 onQ.
Then
g= Vno,

whered € L2(Qy) is given by the line integral aj along the cell edges.

The derivation from (4.22) or (4.23) with (4.20) to (2.32) is trivial.
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Equation (4.22) is good faf small, and the computational cost is comparable to (2.32
In this case, the boundary condition (2.34) becomes

a;1+1 —a,
— =0 onl 4.24
= c (4.24)

sincee; = j; = 0o0nTE.
Wheny, is large, the resistive term must be treated implicitly:

an+1 —a

N ViV = —Vh x b onQe. (4.25)

With a proper choice of the gaudg (4.25) can be solved efficiently:

ARV = Vh-e 0onQy (4.26)
V =0 only. (4.27)

As in the implicit treatment of the primitive formulation, (4.25) and (4.26) together impl
Vh - a1 = 0 providedVy, - a = 0 initially. Therefore (4.25) is equivalent to

atl_ga

et ViV = nApa™t onQe. (4.28)

The boundary condition (4.27) f&f is chosen so that (4.24) remains valid for convenience
In addition to (4.24), one more boundary conditionddt* must be supplied on the ghost
edges to solva™! from (4.28). The correct boundary condition is

Vp-a"t=0 onTly, (4.29)

which serves as a Neumann boundary conditiorafot in view of (4.24).
Since

ApVh-a"t=0 onQy (4.30)
from (4.28), (4.29) implies
Vp-a"l=0 onQy.

A standard Poisson solver can be utilized to solveddr, i = 1, 2, 3, separately from
(4.28), (4.24), and (4.29).

In summary, the implicit treatment for the resistive term at low magnetic Reynolds nu
ber, (4.28) and (4.26) with boundary conditions (4.24), (4.30), and (4.27) solves the Fara
equation in terms of the vector potential at the expense of one additional Poisson solve
each forward Euler time step, compared to the primitive formulation (2.44).
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4.2. 2-D Scheme

In this section, we derive an alternative formulation of the MAC-Yee scheme based
the discretization of the—a formulation of the 2-D MHD equation [2, 6]:

otw+U-Vo =vAw+ab-VJ
—AY =w (4.31)
da+u-Va=nAa.

We show that proper treatment of the nonlinear terms and boundary conditions for (4.
leads to a numerically equivalent formulation of the MAC-Yee scheme.

The 2-D MAC-Yee scheme (2.30)—(2.32) (see Fig. 3 for the 2-D version of grid notatior
takes the form

ur£+l —u L
T — Az(a)AlLIz) + Dlp = —sza) — (X.Az(J.Albg) on =",
(4.32)
uzt —u e
T + Aj(wAouq) + Dop =vDiw + aA1(JAb) on M,
Diu; +Dou, =0 on“e”, (4.33)
bn+1 —b
thl — D28 =N DZJ on “:>",
(4.34)
bf21+1 _ b2 L
T+D18=7}D1J on “q”,

with

w = DU, — Dyuy,
J = D1b, — Doby on“®”, (435)
e = (A2u1)(A1bp) — (A1uz)(Azby).

y
X
0 € j O € j
I
u2b2
= o -
u, b, P u/ b,
O TT \)
O € j u, b, O € j

FIG. 3. Mesh depiction for the 2-D MAC-Yee scheme.
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SinceVy - u = V4, - b = 0, we can write

_ Doy _ Doa
o=(Z0). om(P), 39

with ¢ anda defined on regular gridsc”.
We now introduce the following notation:

_ fx+AXxy) — f(x— AX,y)

Dif(x,y) = Ax on“e" (4.37)
Pofx.y) = L&Y+ Ay)zgyf XY =AY e (4.38)
Vi -f =Dify+Dofy on“e” (4.39)
and
a=(2)=(2). 5=(2)=(_32) oo @
Since

ADi = DA =D,

we can write (4.32) and (4.34) as

unJrl —u ~
1Tt1 — Az(wliz) + D1p = —vDow — aA2(Jbp) on ="

(4.41)
% + As(liy) + D2p = vD1w + aAr(Iby) on*p”

[ - w_n
2L Dy({i- Vha) = —yD2J on“=

At (4.42)
bn+1 _ b2 N )
ZT + D1 - Vha) = nD1J on“q”.

The Faraday equation can be formulated in terms @ in the 3-D case,

atl_a

T + G- %ha =nApa on Qy (443)

an+1 —a
A 0 only. (4.44)

HereQy andI'y refer to the regular grids$” points in 2 andI’, respectively. The implicit
treatment of the resistive term in (4.43) poses no difficulty and there is no need to introd
the gauge function.

As for (4.41), we apply} x to obtain the vorticity-stream formulation for the fluid part,

o™l . . .
T @) = vane +aVh - (Ib) onQy, (4.45)
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with the kinematic relation

AhY = —w 0NQy. (4.46)

The boundary conditions (2.35) and (2.36) read

Y =0 only, (4.47)
and, say onj = 0,
2vi 1
O)i,() = m, (448)

which is known as Thom'’s formula.

The implicit treatment of the viscous term involves solving a biharmonic function ar
is usually quite expensive; we should go back to the primitive formulation (4.32)—(4.3
whenv is large.

The resultingv—a formulation of the MAC-Yee scheme,

ot + V, - (wl) = vARw + aVh - (J~b)
- (4.49)
oa+0-Vha=nAna,

has significant saving in terms of memory and work over the original formulation in primiti\
variables (4.32)—(4.35).

In two-dimensional MHD equation, the magnetic helicity is identically zero f}pdz
emerges as an additional conserved quantity, taking place of the magnetic helicity:

d1 ) )
a- _ ,a=0. 4.
dtz/Qa+n/Q|b| r;/QaBa 0] (4.50)

The discrete 2-D magnetic helicity

2 t t
Mz(t)=%2’a(t)2+n/ hZZ’|B(s)|2ds—n/ h) '@D,axs)ds (4.51)
Q 5\/ 0 Iy

Qy 0

is also monitored in our 2-D calculations. The primed sums in (4.51) denote prope
weighted sums.

5. NUMERICAL RESULTS

We can show that the Mac—Yee scheme is second-order accurate for smooth solut
based on the energy identity (3.9). The detail proofs will be presented elsewhere [20]. F
we give a few numerical examples to demonstrate the performance of the scheme. The
integrals in (3.9), (3.17), (3.19), and (4.51) were calculated using Simpson’s formula. In
our examples, the discrete divergence of the calculated velocity and magnetic field, as
as the errors in the discrete energy identitiy (3.9) and cross-helicity identity (3.17) is witt
accumulation of roundoff errors, typically 10—12 digits accurate.
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5.1. Example 1

Our first example is the 2-D Taylor vortex. This is a simple example used to demonstr
that the numerical solution has the right amount of viscosity. We take

¥ (X, y) = sin(2rx) sin(2ry)
a(x, y) = sin(2rx) sin2ry)

as initial data with periodic boundary condition on (7. The exact solution is given by

Y (X, Yy, 1) = sin(27X) sin2ry) exp(—8r2vt)
a(x, y,t) = sin(27x) sin2ry) exp(—8r2nt).

In our test, we chose = 1,v = 0.0001, and; = 0.02. The exact solution has two distinct
decay rates foyy anda, respectively. The result at= 0.5 with At = 0.001 is summarized
in Table |. We see that the scheme is able to resolve the two rates correctly. In this partic
example, (3.19) is accurate up to 12 digits because of the symmetry of the solution.

5.2. Example 2

Next, We take the forced flow in a confined b@x= [0, 1]° to check the accuracy of our
3-D code. We take = 1,v = n = 0.001, and

SirP(rx)(sin(2rry) — sin(2rz))
u(x, y, z,t) = cogt)| sirf(zy)(sin(2rz) — sin2rx)) (5.1)
sSir(r2)(sin(27X) — sin(2y))

sin(X)(cogy) — cogwz))

b(x,y, z,t) = coqt)| sin(ry)(cogmz) — cogmX)) (5.2)
sin(mz)(cogx) — cogmy))

as an exact solution, use it to generate the corresponding forcing term, and apper
to the right-hand side of (2.30) and (2.32). The exact formula of this forcing term is qu
complicated so we omitit here. Itis straightforward to modify the boundary condition (2.3
for the slip velocity in (5.1). The result at timte= 2.0 with At = 0.0025 is summarized in
Table Il. Second-order accuracy is clearly verified.

TABLE |
Errors and Orders of Accuracy for Example 1

Mesh L2 error Order L error Order

[} 32 1.257E-01 — 2.514E-01 —
64 3.145E-02 1999 6.290E02 1.999
128 7.864E-03 2.000 1.573E02 2.000

J 32  1.219E-02 — 2.438E-02 —
642 3.034E-03 2.007 6.068E03 2.006
128 7.577E-04 2.002 151503 2.002

Note. Parameterst = 0.5, « = 1, v = 0.0001,n = 0.02,
andAt = 0.001.
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TABLE Il
Errors and Orders of Accuracy for Example 2

Mesh L2 error Order L% error Order

u 16 2.342E-02 — 5.800E-02 —
32 5.433E-03 2.108 1.245E02 2.220
64 1.338E-03 2.022 3.063E03 2.023

b 16 2.507E-01 — 6.811E-01 —
32 5.586E-02 2.166 1.442E01 2.240
64 1.362E-02 2.036 3.537E02 2.027

Note. Parameterst = 2, « = 1, v = 0.001, = 0.001,
andAt = 0.0025.

5.3. Example 3

Next, we take

—2sin2ry)(1 — cog2r X)) sin(4r z)
Uo(X,y,2) = —sin(27 x)(1 — cox2ry)) sin(2r z) (5.3)
sin(2r X) sin(2ry)(cog2rz) — co94m z))

sin(zx)(cogy) — cog2))
bo(X, Yy, 2) = | sin(zry)(coswz) — cogmx)) (5.4)
sin(r z) (cogw X) — cogry))

as initial data with the boundary conditions (2.34)—(2.360) and the paranaeters, v =
0.001,n = 0. The error inM3 at timet = 0.5 with At = 0.001 is shown in Table IlI.

5.4. Example 4

Our final example is the Orszag-Tang vortex for ideal MHD equation p2{{F with
periodic boundary condition. The initial data

Y (X, Y, 0) = 2(cogx) — sin(y))

(5.5)
a(x, y, 0) = 2cosgx) — cogq2y)

are a pair of two vortices of opposite sign, centere@ratr /2) and(rr, 3 /2), respectively.
Because of symmetry of the flow, the current sheet forms atlater time near the two vortice!

TABLE IlI
Errors and Orders of Accuracy for Example 3

Mesh Error Order

M; 16 2.022E-03 —
32 3.815E-04 2.406
64° 5.880E-05 2.698

Note.Parameterst = 0.5, = 1, v = 0.001,5 = 0, and
At = 0.001.
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FIG.4. (a)Absolute value of the current density as a function of time at /2) and(xr, 37/2) in Example 4.
(b) Contours of the currerjtat timet = 0.75 in Example 4 at 1024esolution. (c) A closer look of (b) near the
top current sheet. (d) Same as (c) with 5gsolution.
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TABLE IV
Errors and Orders of Accuracy for Example 4

Mesh Error Order

M, 256 1.061E-03 —
512 2.595E-04 2.032
1024 6.440E-05 2.010

Note.Parameters: = 0.75,a = 1,v = 0, = 0, andAt = 0.001.

[6], a high-resolution scheme based on projection method with second-order upwinding
adaptive mesh refinement is used to simulate this problem. There a relative high resolu
(equivalence of 3276gnonadaptive meshes) is used to calculgfanja — (3xdya)®.

As a comparison, we repeat this calculation with 70@dd points. Itis clear from (2.41)
and (2.42) that the MAC-Yee scheme can be applied to the ideal MHD under the C
constraint. The time history of the local minimum of the current densityratr/2) and
(r, 37 /2) is shown in Fig. 4a. The contour plot of 16 equally spaced level curves of
current density at = 0.75 with dt = 0.001 is shown in Fig. 4b. Both of them agree well
with the high-resolution calculation done in [6]. A blowup figure near3r/2) (Fig. 4c)
shows that the flow is well resolved with approximately 12 mesh size across the curr
sheet. The simplicity of this scheme and its remarkable performance lead us to believe
the MAC—-Yee scheme is suitable for large time direct numerical simulation and probal
the numerical search of possible singularity formation when combined with the local me
refinement technique [1, 6]. This topic is currently under investigation.

At 5122, the numerical solution starts to develop oscillations near the peaks of the curr
sheet because of lack of resolution (Fig. 4d). The result of thé, 62, and 1024 runs
shows that the discrete magnetic helicity (4.51) is second-order accurate (Table 1V).

Itis worth remarking here on the efficiency of the MAC—Yee scheme. Since the equat
is completely decoupled with explicit treatment of the nonlinear terms and local bound:
conditions, the scheme can make use of standard fast Poisson solvers such as FFT pacl
Without specific optimization, the 84alculation in Example 3 with double precision took
about 20 s per time step on a laptop with a 266-MHz processor and 128 MB memory. T
1024 computation took about 30 s per time step on a PC with a 550-MHz processor ¢
the job occupied about 145 MB of system memory.
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