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SUMMARY

A finite element method for computing viscous incompressible flows based on the gauge formulation
introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computa-
tional Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This
new gauge variable is a numerical tool and differs from the standard gauge variable that arises from
decomposing a compressible velocity field. It has the advantage that an additional boundary condition
can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition
associated with the original primitive variable formulation. The computational task is then reduced to
solving standard heat and Poisson equations, which are approximated by straightforward, piecewise
linear (or higher-order) finite elements. This method can achieve high-order accuracy at a cost compara-
ble with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry
and it is much simpler than traditional finite element methods for incompressible flows. Several numerical
examples on both structured and unstructured grids are presented. Copyright © 2000 John Wiley & Sons,
Ltd.
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1. THE GAUGE FORMULATION OF THE NAVIER–STOKES EQUATION

We start with the incompressible Navier–Stokes equation
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(1.1)
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on V, where u= (u, 6, w) is the velocity and p is the pressure, with the simplest physical
boundary condition:

u=0 (1.2)

at G=(V. The well-known difficulty with the numerical computation of viscous incompress-
ible flows is the lack of an evolution equation for pressure. This is reflected in the additional
boundary condition needed either explicitly or implicitly in various numerical methods for
solving Equations (1.1) and (1.2). Much discussion has been devoted to this issue. We refer to
Reference [1] for a review of various proposals. So far, it is generally agreed that projection
method provides the best approach to tackling the issue of a pressure boundary condition.

A new approach was introduced in [Weinan E, Liu J-G. Gauge method for viscous
incompressible flows. Journal of Computational Physics (submitted)], in which the Navier–
Stokes equation was written in a form using a new variable f. Instead of advecting u,
Reference [Weinan E, Liu J-G (submitted)] proposes to advect an auxiliary variable a=u−
9f. Indeed, the Navier–Stokes equation can be rewritten as

Á
Ã
Í
Ã
Ä

at−
1

Re
Da+ (u ·9)u=0

−Df=9 ·a
u=a+9f

(1.3)

f is referred to as the gauge variable, since writing u=a+9f is equivalent to choosing
another gauge we view vorticity v=9×u as the analog of the magnetic field, and u as the
analog of vector potential. Pressure has disappeared from the equations and can be recovered
through

ft−
1

Re
Df=p (1.4)

Replacing p by f has the advantage that an additional boundary condition (as well as an
initial condition) can be assigned to f, since f solves a parabolic equation with p as the
right-hand side. Corresponding to Equation (1.2), we can either prescribe

(f

(n
=0, a ·n=0, a ·t= −

(f

(t
(1.5)

or

f=0, a ·n= −
(f

(n
, a ·t=0 (1.6)
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on G. Here t is the unit vector in the tangential direction. We will call Equation (1.5) the
Neumann formulation and Equation (1.6) the Dirichlet formulation. The boundary conditions
for a come from Equation (1.2) and the relation u=a+9f.

In principle, Equation (1.3), together with Equation (1.5) or (1.6), can be solved by any
reasonable numerical method for the Poisson equation and heat equations. In Reference
[Weinan E, Liu J-G (submitted)], we concentrated on finite difference methods. In this paper,
we present the most simple-minded finite element method. We will discretize f and a using the
standard C0 elements. As we will see later, the complexity of the resulting method is not very
different from that of solving standard heat and Poisson equations.

Remark 1
The idea of reformulating the Navier–Stokes equation by introducing a gauge variable
appeared in Reference [2] and was used in Reference [3] in the context of the vortex method.
Their formulation was shown to be numerically unstable in Reference [4]. We also refer to
References [5–7] for other related work.

2. DESCRIPTION OF THE FINITE ELEMENT METHOD

There are many different ways of formulating finite element methods for Equation (1.3).
Instead of presenting general procedures, we concentrate on a special scheme, which is quite
likely the simplest second-order method. We first discretize time using Crank–Nicolson

an+1−an

Dt
+9 ·(un+1/2�un+1/2)=

1
Re

D
an+1+an

2
(2.1)

The convective term can be approximated using Adams–Bashfort

un+1/2�un+1/2=
3
2

un�un−
1
2

un−1�un−1 (2.2)

Next we describe the spatial discretization. Here we work with the Dirichlet formulation
(1.6) for two reasons. The first is that the Neumann formulation was studied quite extensively
in Reference [Weinan E, Liu J-G (submitted)] in the context of finite difference methods. The
second is that numerically solving the Dirichlet problem of the Poisson equation is much easier
than solving the Neumann problem. At each time step, we have
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with boundary condition

an+1 ·n= −
�
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�

, an+1 ·t=0 (2.4)
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and

−Dfn+1=9 ·an+1, fn+1�(V=0 (2.5)

These equations are discretized in space using the standard piecewise linear finite element
method.

Table I. Numerical results using the P1−P1 method.

h 
u−uh
L 2

h2


u−uh
L�

h2


u−uh
L 1

h2

5.711/9 7.625.84
5.841/18 5.92 7.73

8.011/36 5.985.90

Figure 1. Numerical grid for the asymmetric annulus. Number of vertices=500, number of elements=
275.
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Figure 2. Computed steady state velocity field on the grid shown in Figure 1. Reynolds number=100.

Having an+1 and fn+1, we compute un+1 by un+1=an+1−9fn+1. In general, un+1 is
discontinuous across cell boundaries. We therefore compute the convective term using a
conservative form

((un ·9)un, c)= −
&

V
(9c)(un�un) dx (2.6)

for all c�Vh×Vh, where Vh is the space of continuous piecewise linear functions that vanishes
at the boundary.

The method described above is second-order accurate on regular grids, as shown in Table I,
but degenerates to first-order accuracy on irregular grids. This is due to the involvement of
gradient terms in the relation u=a+9f. To achieve second-order accuracy on general
irregular grids, we use piecewise quadratic polynomials to approximate f. We call this the
P1−P2 method, and the method described earlier, the P1−P1 method. There is an obvious
generalization to Pk−Pk−1 methods for k51.
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Remark 2
The main difference between the gauge method and the projection method [8–15] is that the
gauge method requires solving standard Poisson equations for the gauge, whereas the projec-
tion method requires numerically performing the Helmholtz decomposition at the projection
step. This amounts to solving the pressure Poisson equation via a mixed formulation. We
demonstrated in Reference [Weinan E, Liu J-G (submitted)] that one cannot use standard
Poisson solvers for the pressure Poisson equation because of difficulties at the boundary.

Remark 3
The time lag (also called vertical extrapolation) in Equation (2.4) is necessary to decouple the
computation of an+1 and fn+1. We showed in Reference [Weinan E, Liu J-G (submitted)] that
this does not affect the stability and accuracy of the overall method.

Remark 4
Rigorous error estimates of this method were proved in Reference [16]. Basically, for smooth
solutions this method achieves the expected accuracy. In principle, the regularity requirement

Figure 3. Computed velocity field at t=2.8, with impulsive start-up of the circle. Other parameters are:
number of elements=1193, Reynolds number=1.
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Figure 4. Numerical example for Example 3. Number of vertices=1021, number of elements=568.

on the solution can be relaxed, especially at t=0, as in Reference [17]. However, this is a much
more involved analysis and it is not yet done.

3. NUMERICAL RESULTS

3.1. Flow between concentric circles: an accuracy check

The method described above is expected to be second-order accurate. To check that this is
actually the case, we performed a detailed accuracy check on a simple model problem: flow
between two concentric circles. The radii of the inner and outer circle are 1 and 2 respectively.
The outer circle remains stationary and the inner circle rotates in the counter-clockwise
direction with unit speed. A standard regular polar co-ordinate grid is used. Table I shows the
numerical results using the P1−P1 method. We obtain second-order accuracy as a result of the
regularity of the grid.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 701–710
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3.2. Other examples

We present several examples involving increasingly complex geometries and demonstrate the
flexibility of the gauge finite element method for such geometries. In all these examples, the
flow is driven by the impulsively started rotation of the inner circle. In the first example the
computational domain is all annulus with the inner circle displaced. The computational grid is
displayed in Figure 1. The computed velocity field using the P1−P1 method is presented in
Figure 2. In the second example, the computational domain is a rectangle with a circular hole
at the lower left corner. The computed velocity field is shown in Figure 3. Finally, the
numerical grid for the third example is shown in Figure 4, with the computed velocity field in
Figure 5.

Figure 5. Computed velocity field at t=11 on the grid shown in Figure 4. Reynolds number=10.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 701–710
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4. CONCLUDING REMARKS

As we demonstrated in Reference [Weinan E, Liu J-G (submitted)], and here also, the main
advantage of the gauge method is its simplicity and flexibility for computing low-Reynolds
number flows. The gauge finite element method has the additional advantage of handling
complicated geometries easily.

The method we presented here can be generalized in many different ways. Higher-order
methods can be obtained by using higher-order backward differentiation formulas in time, and
higher-order C0 finite elements in space. Extension to three space dimensions is straightfor-
ward. At the present time, we have developed a program for computing two-dimensional
viscous flows with any specified geometry and work on extending it to three dimensions is
underway.

Because of its simplicity, the gauge method also opens up new ways of handling more
complicated physical problems, such as visco-elastic flows. Work in this direction is also in
progress.
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