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Abstract

We prove the convergence of a discontinuous Galerkin method approximating
the 2-D incompressible Euler equations with discontinuous initial vorticigys

L?(Q). Furthermore, whewp € L®(Q), the whole sequence is shown to be
strongly convergent. This is the first convergence result in numerical approxima-
tions of this general class of discontinuous flows. Some important flows such as
vortex patches belong to this clagd.2000 John Wiley & Sons, Inc.

1 Introduction

Numerical simulations of 2-D discontinuous incompressible flows are of con-
siderable interest in both theoretical analysis and applications. It is believed that
the Lagrangian methods such as vortex methods [6, 9] or the ones based on contour
dynamics [1, 16] give preferable treatments for such flows, especially for inviscid
interfacial flows. However, the convergence of such methods poses great difficul-
ties. Past efforts concentrate on either special flows (see [5, 12, 13]) or require
heavy machinery (such as large deviation [14]) and yield much weaker conver-
gence results [2, 3, 14].

However, for more complicated flows (such as a flow mixing), such front-
tracking methods are impossible to implement. Thus grid-based methods such
as finite difference and finite elements are called for. Yet, the studies of such meth-
ods have been carried out only recently [10, 11]. In particular, a discontinuous
Galerkin method was proposed in [11], which has the main advantage that the
energy is conserved even for upwind-type numerical fluxes, and, amusingly, the
numerical enstrophy is nonincreasing in time. The main observation of this paper
is that the boundedness of energy and enstrophy is sufficient for strong conver-
gence for a class of discontinuous initial dat@e L? including vortex patches.

In particular, our results imply that the discontinuous Galerkin methods in [11] do
converge for such flows. It should also be noted that the convergence of a class
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of finite difference methods for some class of 2-D discontinuous Euler flows has
recently been announced in [7].
2 A Discontinuous Galerkin Method

The 2-D incompressible Euler equation in vorticity stream-function formulation
reads

(2.1a) dw+ (0 Y- O)w=0, OF=(-0,,0), AM=uw,
with no-flow boundary condition

(2.1b) =0 0onoQ

and initial condition

(2.1¢) wlt—o = wo(X) € L3(Q)

whereQ c R? is a simply connected domain withG% boundary or piecewisg?
boundary with convex corners. Assume tkats equipped with a quasi-uniform
triangulation (see (4.4.5) in [4]), = {K} consisting of polygon& of maximum
size (diameterh. DenoteQy = [JK. The vorticityw is approximated by, in

a discontinuous finite element spaég= {v : v|x € PX(K), VK € Tn}, while the
stream function) is approximated by, in a continuous on\;é\/(gfh :thmCo(Qh).
HerePX(K) denotes the set of all polynomials of degree at rkast the cellK. In
the following, we will also use the notatidn) to stand for the standard integration
over the whole domaif;, while an integral over a subdomaihis denoted by
(-)k. The semidiscrete discontinuous Galerkin method in [11] can be described by
looking forwn € Vi andyn, € W(',fh such that

(2.29) (Orwhonyk — (whUp - Ovp)k + Z (Up - n@;vﬁ% =0
ecoK

for all K € Ty andop € VK,

(22b) _<D'¢h . D‘Ph)Qh == <Wha(Ph>Qh ’ V(Ph € WOk,h'

whereeis a cell boundary and is its unit outward-pointing normal.

We now explain the notation used in (2.2). First, the velocity field is given
by u, = O¢n. Note that even though both, and the test functiom,, may be
discontinuous across the cell boundaries, the velocity field possesses continuous
normal components across each cell boundary due to the definition of the finite
element spacwc',"h. Thus the numerical flux in (2.2a) can be defined as follows:
Denote by, (v) the value ofu, from the inside (outside) of the elemégtthen
theupwind fluxis set to be

~ ifuy,-n>0
(2.3) Gr={“n D=
w, Ifup-n<O0.
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We note that for smooth flows, we could use a central flux defined by

1 _
(2.3) “h= 3 (wp +wp).

However, the upwind fluxes (2.3) are preferred since the main concerns here are
discontinuous flows.

It is well-known that 2-D smooth Euler flows preserve energy and enstrophy. It
is remarkable that the same holds true for the discontinuous Galerkin method men-
tioned above. Indeed, the first important property of this scheme is the conservation
of (no numerical dissipation in) energy

(2.4) 15 (- Dllzay = 105 ¢n(-,0) L2y

for the upwind flux (2.3), which can be verified directly by taking= v in (2.2a),

using the fact thati, - Oy, = 0, summing up the resulting equations overkaih

the triangulation, and using (2.2b) and the continuity of the normal velocity across
the cell boundaries. Next, taking = wy, integrating by parts for the second term

in (2.2a), summing up for ak, and estimating the terms involving cell boundaries

by using (2.3) and the continuity of the normal component of the velocity field
across the cell boundaries, one can show that the enstrophy decays in the sense that

(2.5) ln(- D) llz(@n) < llwn(-5 0)llizay) < llwollizay)

where the initial datau,(-,0) is taken as thé.? projection ofwy and hence is
uniformly bounded irL.2. Furthermore, takingy, = ) in (2.2b), one derives the
fact that

(2.6) ||D¢h||52(gh) = —(wh,¥h)ay, -

Our main observation in this paper is the fact that these three simple properties,
(2.4)—(2.6), yield a strong convergence. To prove and state such a result, one needs
some estimate of time regularity first.

3 Time Regularity Estimate

In this section, we will prove a lemma about the time regularity for the approxi-
mate solutions constructed by the discontinuous Galerkin method, which is needed
for the argument of convergence. Although it is rather routine in the continuous
case to obtain time regularity through the Euler equations given the spatial regu-
larity, such regularity estimates in the discrete case are much more involved and
are the main technical parts of this paper. We need a convention before stating the
main lemma. Note that on a boundary element, the approximate solugicarsd
1 are polynomials, and we can use them to extend/restrict these functions from
Qy into the domairQ; we will refer to such extensions as the natural extensions.

It is noted that one may use the zero extensions, but the arguments in the proof of
the following lemma cannot be simplified much since one needs to estimate the
restriction anyway (se€8.18)).
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LEmMMA 3.1 (Time Regularity)There is a constantgsuch that

(3.1) [0twhllie(jo;m)w-2a(@)) + 10c¥nlL= (o) Loy <C

for any @ < q < 2, wherewy andy, denote, respectively, their natural extensions
or restrictions fromQy, to Q.

PrRooOF. We first show that
C
(3.2) 19tnlli=(om) L2@n) = 12 -

For any smooth function € C3(Q) with zero extension to the outside, lgt be
theL? projection ofv in the space df/h". Now takingup, as a test function in (2.2a),
one gets

(Orwnv)a, = (Otwhtn)ay,

(3.3) = Z<thh.Dvh>K —Z Z <uh-n&\hvg)ez l1+15.

ecoK
I, can be estimated directly as

1] < llwn||L= Z U2y [ Bonllzky < CllwnllLe@p) Unllz@n [Evnllizqy) -
Using the inverse inequality (cf. (4.5.12) in [4]),
C C
lonlli= < Fllwnlliz, [Ovnlliz < llonlliz,

the L? estimate fomuy andwy, in (2.4) and (2.5), and the fact that is theL? pro-
jection ofv, one has

C C
(3.4) ] < p”whHLZ(Qh)||Uh||L2(Qh)”Uh”LZ(Qh) < QHUHLZ(Qh)-

Next we proceed to estimaltg Sinceup, - n is continuous andy, takes the same
value from both sides of a cell boundary, the contribution of the two sides will give
the jump ofvy,. Therefore, one can obtain

(3.5) uzygz za {Jun-n@r(vf —vp)))e -
ecoK

Thanks to the quasi-uniform regularity in the triangulation [4], one can map each
triangle back and forth to the reference triangle. Using the fact that all norms in a
finite-dimensional space are equivalent in the reference triangle, one can show that

C
(3.6) lwnllLze lvnllze) < & D llwnllzp) lvnllz -
h
ecoK
Hence
C C
(37) 12l < el < llvlley -
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Combining (3.4) with (3.7) shows

C
(3.8) [(Otwhv)a,| < WHUHL?(Qh)’

which yields the desired estimate (3.2), since the natural extensidawpto Q
from Qy, gives equivalent norms. Hence we have also shown

C
(3.2) [0twhl[L=(0,1) L2(0)) < 2

Next, letlhv be the piecewise linear interpolation ofin th- Then one can
decomposé; in (3.3) as

(3.9) I, = Z@)huh Olpo)k + Z@)huh O(vn— Ih))k = 1+ 112.

I11 is bounded by

l11] <Y llwnlliz) lunllag) B T80 |Le
(3.10) Z

< llwnlliz(qy) l[Unlliziqy BTl () -
Due to the inequality
101 |lL=(@y) < Cllvllwie(q) »
one obtains from (2.4), (2.5), and (3.10) that

(3.11) 12| < Cljv[lwae(q)-
One can estimati, similarly. Indeed,
[EPIS Z llwnllz)lunllz) D (vn = Tho) Loy < CIIE(vh = 10v) [l (@y) -

Using the inverse inequality [4]

C
10(vh — o)L=y < ﬁH’Uh— Ihvlliz(qp)
and
(312 [vh = Thollzon < llv = Iholleqy »

which holds true sincey, is theL? projection ofv, one gets

C
(3.13 [l1o] < ﬁ”v— |hUHL2(Qh)-

This together with the standard estimate for the interpolation (cf. (4.4.21) in [4])
leads to

(3.14) 12| < Cllv[lhz(gq) -

It follows from (3.11) and (3.14) that we have obtained an estimatie on(3.3)
independent oli. Now we can also derive arindependent estimate anin (3.3)

as follows: Noting thatyv is continuous at the cell boundary, one can insert it into
the right-hand side of (3.5) to obtain



2-D DISCONTINUOUS EULER FLOWS 791

(3.15) [lI2] SZ > {|un-nGh(vh — Ihv))e <
ecoK

CIIUhHLwZ > llwnllizllon = IhvllLze) -
ecoK

As in (3.6), one has

C C
(316 [t2l < Slvn— Invllizay < Fllv = Invllizay) < Cllolee)-
Collecting estimates (3.11), (3.14), and (3.16), we arrive at
(3.17) [(Otwn, v)an| < C(l|v]lwee(q) + [[0]lv2(Q)) < Cllvllwer(o)

foranyp > 2.
To complete the proof of the first part of (3.1), we need to estimate the differ-
ence for the left-hand term betwe®andQy,. First,

[(Otwn, v)a\an| < 10twnllLz@\an 1V ]L=(@\Qn) V/ [Q\2n|

sincev vanishes on the boundadf2 and because of the simple estimgd& Q| <

CH. This estimate is due to the fact that the distance fagirto 0Qy, is O(h?),

which, in turn, is a consequence of the standard but unstated assumption that all
the vertices lying on the boundary é®}, also lie on the boundary @. One then

has

lollee@\an) < CHlollwie)
We can obtain from these aif@.2') that
(3.18) [ (Otwnv) o\, < Chljv[lwie(q) < Chljvllwza(q)
for any 1< g < 2. Similarly, one can obtain
(3.18) | (Ownv) gl < Chljvllweag) -
Consequently, from (3.17), (3.18), and (3)18
(319) HatwhHLw([OYT),sz,q(Q)) <C for any 1< q< 2.

This proves the first part of (3.1).

Next we prove the second part of the inequality in (3.1). FerLP(Q) with
zero extension to the outside, we desolve the following problem:

(3.20) —Ap=11inQ, ¢lsg=0,
and letgp € Wé"h be the finite element solution
(3.21) (O, Ogn)ay = (F.on)a, for anyen € We,.

Since the domain is eith€@? or piecewiseC? with convex corners, we can choose
po > 2 such that for anyy > p > 2, the following elliptic regularity estimate holds:

(3.22) [9llwzr@) < ClIfllLrq)



792 J.-G. LIU AND Z. XIN

and the standard finite element estimate for the Poisson equation (cf. (5.4.8) in [4])
yields

(3.23) 6 — dlliz(qn < CPPlI8llnz(a) -
Sincedyn € Wg’h, we have
(3.24) (Otthn, T, = (O0ton, Ogn)a, = —(Otwh, dh)a,

where we have used (3.21) and (2.2b) after taking a time derivative. Rewrite (3.24)
as

(3.25) (0ttn, F)o, = —(Own, d)a, — (Own, (Ph — &), -
Let g be the dual number gf: 1/p+1/g= 1. One gets
[(@cton, F)an| < [0twnl|L=(o)w-29(0)) |2 llwze(q)
(3.26) +[|0twnl[L=(j0;7),L2(0)) 160 — BllL2 ()
C

< Clldlwze() + g2 llén = Sllzqy -
Thus, (3.22) and (3.23) imply that

|{0ttn, T)an| < Cl[fllLeq) -
Let qg be the dual number gip; then
(3.27) [0¢nl[L=(jo;m)Lan)) <C  foranygo < q< 2.

Since a natural extension ¢f, to Q from Qy, gives equivalent norms, we therefore
have

(3.28) [0ttn|lL=(jo;r),La@) <C  foranygo < q< 2.
This gives the second part of (3.1). O

4 A Uniqueness Theorem

In this section we generalize Judé'g uniqueness theorem [8] to show that
weak solutions with corresponding vorticity f° are unique in the wider class
where the vorticity are ih?. This generalization will be used in the next section to
obtain a stronger convergence theorem. The precise statement is as follows:

THEOREM 4.1 Assume thatp € L®(Q) andadQ is C2. Then the weak solution
(4.1) w € L”([0,T),L*(Q)) NLip([0,T),W27(Q))

to (2.1)is unique in the space’([0,T),L9(Q))NLip([0,T),W~2'(Q)) where g>
2andl<r<2
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PROOF. Suppose that the initial boundary value problem (2.1) for the 2-D Euler

equations has two weak solutions with the same initial vorticgye L and the
following regularities:

(4.2) w1 € L*(0,T),L*(Q)) NLip ([0,T),W 2 (Q))

and

(4.3) wp € L*([0,T),LYQ)) NLip ([0,T),W 2" (Q)),

q> % and 1<r < 2. It suffices to show that; = w.

Denote byy1 andi, the stream functions in (2.1) correspondingstoandwso,

respectively. Then by the theory of elliptic regularity, we have
(4.4) P1 € L([0,T),W2P(Q)) NLip([0,T),L"(Q))
and

(4.5) e € L*([0,T),W29(Q)) NLip ([0,T),L"(Q)).

We denote the corresponding velocitiestay= 041 andu, = O 4. Then one
can rewrite the Euler equations (2.1a) in a distribution sense as

(4.6) O+ (tuy +us0ug) =0 inD’
and
(4.7 O+ (0uz + up0uz)x =0 inD’.
Set
(4.8) U=ui—Uz,  Y=1v1—1s,
and subtract (4.7) from (4.6) to get
(4.9) O (du+up0u+uluy) =0 inD’.
It follows from (4.4) and (4.5) that
(4.10) (ONS Lm([O,T),WZ'q(Q)) NLip([0,T),L"(Q)).
Therefore, one can takeas a test function in (4.9) to obtain
(4.11) /u(atu+u2Du+uDu1)dx:0
o

where one has used the fact tbat [ and vanishes on the boundary. Define

(4.12) E(t) = [ |u?dx.
/

Due to the regularity assumption (4.2) and (4.3), one can show that

(4.13) %E(t) :2/u~utdx.
Q
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Using the fact that

(4.14) /u-uzDudx:O
Q
and using equation (4.9), we have

(4.15) <2/\u| |Cuy|dx.

dt

Using the classical potential estimate
(4.16) [0ug(-,t)[le < Cpllews(-,1)]|ie

for all 1 < p < o, whereC is an constant independent pfu;, andws, together
with the fact that

(4.17) lwr (-, )L < [lwollL=

one shows by the Hoélder inequality that

p-1 p-1
P P
de t) < (/ |u|2p/(P=1) dx) [0ugf[e <Cp (/u29/<p1> dx)
Q Q

whereC is independent op. The right-hand side above can be further estimated
by
J PP = [ (uf?) P2 D P2 e,
Q Q
On the other hand,
Julle < Clullee Y ull g 4

Since||ufjyzaq is bounded, we thus have shown that

‘ —E(t) < CpE(t)t~(5a-4)/(4p(@-1) .

(4.18) =

therefore

(4.19) ad (E(t)<5q,4>/(4p(q,1)>> <c
. - <cC.

Now one can conclude th&tt) = 0. Indeed, taking an intervéd, T*] with the
property thaCT* < % one obtains from (4.20) aril0) = O that

4p(g-1)
50—4

(4.20) E(t)<<—> " .0 aspoow,

2

soE(t) =0 fort € [0,T*]. Repeating these arguments, we concludeHf{at= 0
forallt < T. This completes the proof. ]
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5 Main Convergence Theorem
Finally, we are able to state and prove our main convergence theorem.

THEOREM5.1 Let Q C R? be a simply connected domain witk Boundary(or
piecewise smoothiboundary with convex cornérand equipped with a quasi-
uniform triangulation. Suppose that the initial vorticity belongs to B(Q). Let
(wh,¥n) € Vhk X W&h be the approximate solutions generated by the discontinuous
Galerkin method2.2). Then there exists a convergent subsequengenof,) (for
which we will still use the same notation for simpli¢isgich that

(51) wh—w (starweaklyinL®([0,T),L2(Q)) NLip([0,T),W29(Q))
forany g < gq<2and

(5.2) Yh— 1 (strongly in L%([0,T),HY(Q)),
and the limiting functions) andv have the properties that
(5.3) w € L*([0,T),L%(Q)) NLip([0,T),W~29(Q))
and

(5.4) ¥ € L%([0,T),Hg(Qo)) NLip([0,T),LYQ))

forany g < g < 2, and for anyp € C3(Q x [0,t))
(5.5) /T/( d+ w4y - 0g) dxd / (-,00dx =0
. wor +w . xat+ [ woo(-, x=0,
0 Q Q

(5.6) Ap=w inD’.

In other words,(w,?) is a weak solution of the Euler equati¢®.1) with initial
datawp. Furthermore, if the initial datasg € L*(Q) andoQ is C?, then the whole
sequence ofwn, 1) will converge to the unique solution of the Euler equations,
and the limiting vorticityw is bounded in E([0,T),L*(Q)).

PROOE Asin Lemma 3.1, we extend, andyy, to Q from Qp, naturally. First,
(2.5) and (3.1) show that there is a subsequenca, @for which we still use the
same notation) such that

(57) wh—w (starweakly)inL®([0,T),L%(Q)) NLip([0,T),W2%(Q)),

and the limiting functionw satisfies (5.3).
Next, it follows from (2.5), (2.6), and the Poincaré inequality that

(5.8) [l L=(om)H1) < C.
This, together with (3.1), shows that there is a subsequengg @ifich that
(5.9) Yh— 1 (star weakly) inL” ([0,T),H*(Q)) NLip([0,T),L9(Q))

and
¥ € L*([0,T),HY(Q)) NLip([0,T),LY(Q)).
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Since the distance betweéfy to aQ is of orderO(h?) ands/y, vanishes odQy,
we have

(5.10) [4nl=(aqy < CHPJ|TenllLe(q,) < Chll D]l 2q,) < Ch— 0.

In the above we have used the inverse inequality

C
15%nlli=(y) < 3 18¢nllzay)

and energy bound (2.4). Hengesatisfies (5.4).

We now show thatyy, converges strongly. First, it follows from (5.8), (3.1), and
the Lions-Aubin lemma that

(5.11) Ynh—1p  strongly inL2([0,T) x Q),
which, together with (2.6) and (5.7), yields

T T T
(5.12) /O |02, dt = —/0 (wnn)dt — —/0 (W)t
To obtain the strong convergence that
(5.13) Oipn — Oy strongly inL%([0,T) x Q),
it suffices to show that
T 2 T 2
ozt [ ot
which is a direct consequence of
T T )
(514 — [ woydt= [ ov )z,

which will be verified below. Indeed, for anye C5(Q x [0,T)), takingen = Ine
in (2.2b) yields

(5.15) ~ [ 0w Dtngat= [ enlaon

wherely, is the interpolation operator M/(')fh. Using the strong convergence (cf.
(4.4.21) in [4]),

(5.16) Ih¢ — ¢ strongly inL™([0,T),L3(Q)) andL™([0,T),H(Q)),
and weak convergences (5.7) and (5.9), one shows from (5.15) that
(5.17) /T<D .D¢>dt—/T< \dt

. ~ P =/, wo)dt.

This immediately gives (5.14) sin€$((0,T) x Q) is dense irL?([0,T),H3(Q)).
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As a consequence of (5.13), one concludes that
(5.18) Up — U strongly inL2([0,T) x Q)

whereu = 044,

Now we show that the limit functiongv, ) are indeed a weak solution to the
Euler equations. To this end, one can takeo beln¢ for any¢ € C3(Q x [0,t))
in (2.2a), sum over all the cells, and integrate in time to obtain

;
(5.19) /0 ((Bwnlng) — (wntin - Olng))dt = 0,

where we have used the facts that the upwind flibgesre the same for the adjacent
elements, both,¢ and the normal component of the velocity field are continuous
across the interior cell boundaries, amdn = 0 on the exterior cell boundaries.
Sinceg is compactly supported adgln¢ = In0; ¢, we can integrate by parts to get

520 [ ({enlhds) + fontn Old) o+ (on(-. Oy, 0)) = .

Using the weak convergence ©f, in (5.7) and the strong convergence (5.16) of
110:¢, one shows that

T T
/O(whlhatgzb)dt—>/0 (wdd)dt and (wn(-,0)lhé(-,0)) — (wod(-,0)).

Similarly, it follows from the weak convergence ©f, in (5.7), the strong conver-
gence ofuy, in (5.18), and the strong convergence (5.16)1bf¢ that

T T
/<whuh-Dlh¢)dt—>/ (wu-Og)dt.
0 0

Hence

(5.21) /OT<w6t¢>dt+/oT<wu-D¢)dt+<wo¢(-,0)> ~0.

This gives (5.5). Finally, (5.6) follows from (2.2b) by taking, = ln¢. Thus we
have proved thaty,w) is a weak solution to the Euler equations (2.1).

In the case that the initial datay € L*(Q), then the Cauchy problem for the
Euler equations has a solutiere L*([0,T) x Q), and from Theorem 4.1 we know
that this solution is unique in the class of (5.3) and (5.4). Therefore every conver-
gent subsequence has the same limit. As a consequence, the whole sequence of
(wh,¥n) converges to the unique solution. This completes the proof of the theo-
rem. O
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