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Abstract

We prove the convergence of a discontinuous Galerkin method approximating
the 2-D incompressible Euler equations with discontinuous initial vorticity:ω0 ∈
L2(Ω). Furthermore, whenω0 ∈ L∞(Ω), the whole sequence is shown to be
strongly convergent. This is the first convergence result in numerical approxima-
tions of this general class of discontinuous flows. Some important flows such as
vortex patches belong to this class.c© 2000 John Wiley & Sons, Inc.

1 Introduction

Numerical simulations of 2-D discontinuous incompressible flows are of con-
siderable interest in both theoretical analysis and applications. It is believed that
the Lagrangian methods such as vortex methods [6, 9] or the ones based on contour
dynamics [1, 16] give preferable treatments for such flows, especially for inviscid
interfacial flows. However, the convergence of such methods poses great difficul-
ties. Past efforts concentrate on either special flows (see [5, 12, 13]) or require
heavy machinery (such as large deviation [14]) and yield much weaker conver-
gence results [2, 3, 14].

However, for more complicated flows (such as a flow mixing), such front-
tracking methods are impossible to implement. Thus grid-based methods such
as finite difference and finite elements are called for. Yet, the studies of such meth-
ods have been carried out only recently [10, 11]. In particular, a discontinuous
Galerkin method was proposed in [11], which has the main advantage that the
energy is conserved even for upwind-type numerical fluxes, and, amusingly, the
numerical enstrophy is nonincreasing in time. The main observation of this paper
is that the boundedness of energy and enstrophy is sufficient for strong conver-
gence for a class of discontinuous initial dataω0 ∈ L2 including vortex patches.
In particular, our results imply that the discontinuous Galerkin methods in [11] do
converge for such flows. It should also be noted that the convergence of a class
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of finite difference methods for some class of 2-D discontinuous Euler flows has
recently been announced in [7].

2 A Discontinuous Galerkin Method

The 2-D incompressible Euler equation in vorticity stream-function formulation
reads

(2.1a) ∂tω+(∇⊥ψ ·∇)ω = 0, ∇⊥ = (−∂y,∂x) , ∆ψ = ω ,

with no-flow boundary condition

(2.1b) ψ = 0 on∂Ω

and initial condition

(2.1c) ω|t=0 = ω0(x) ∈ L2(Ω)

whereΩ ⊂ R
2 is a simply connected domain with aC2 boundary or piecewiseC2

boundary with convex corners. Assume thatΩ is equipped with a quasi-uniform
triangulation (see (4.4.5) in [4])Th = {K} consisting of polygonsK of maximum
size (diameter)h. DenoteΩh =

⋃
K. The vorticityω is approximated byωh in

a discontinuous finite element spaceVk
h = {v : v|K ∈ Pk(K), ∀K ∈ Th}, while the

stream functionψ is approximated byψh in a continuous oneWk
0,h = Vk

h ∩C0(Ωh).
HerePk(K) denotes the set of all polynomials of degree at mostk on the cellK. In
the following, we will also use the notation〈 · 〉 to stand for the standard integration
over the whole domainΩh, while an integral over a subdomainK is denoted by
〈 · 〉K . The semidiscrete discontinuous Galerkin method in [11] can be described by
looking forωh ∈Vk

h andψh ∈Wk
0,h such that

(2.2a) 〈∂tωhvh〉K −〈ωhuh ·∇vh〉K + ∑
e∈∂K

〈uh ·nω̂hv
−
h 〉e = 0

for all K ∈ Th andvh ∈Vk
h ,

(2.2b) −〈∇ψh ·∇ϕh〉Ωh = 〈ωh,ϕh〉Ωh , ∀ϕh ∈Wk
0,h ,

wheree is a cell boundary andn is its unit outward-pointing normal.
We now explain the notation used in (2.2). First, the velocity field is given

by uh = ∇⊥ψh. Note that even though bothωh and the test functionvh may be
discontinuous across the cell boundaries, the velocity field possesses continuous
normal components across each cell boundary due to the definition of the finite
element spaceWk

0,h. Thus the numerical flux in (2.2a) can be defined as follows:
Denote byv−h (v+

h ) the value ofvh from the inside (outside) of the elementK; then
theupwind fluxis set to be

(2.3) ω̂h =

{
ω−

h if uh ·n ≥ 0,

ω+
h if uh ·n< 0.
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We note that for smooth flows, we could use a central flux defined by

(2.3′) ω̂h =
1
2

(
ω+

h +ω−
h

)
.

However, the upwind fluxes (2.3) are preferred since the main concerns here are
discontinuous flows.

It is well-known that 2-D smooth Euler flows preserve energy and enstrophy. It
is remarkable that the same holds true for the discontinuous Galerkin method men-
tioned above. Indeed, the first important property of this scheme is the conservation
of (no numerical dissipation in) energy

(2.4) ‖∇⊥ψh( · ,t)‖L2(Ωh) = ‖∇⊥ψh( · ,0)‖L2(Ωh)

for the upwind flux (2.3), which can be verified directly by takingvh =ψh in (2.2a),
using the fact thatuh ·∇ψh = 0, summing up the resulting equations over allK in
the triangulation, and using (2.2b) and the continuity of the normal velocity across
the cell boundaries. Next, takingvh = ωh, integrating by parts for the second term
in (2.2a), summing up for allK, and estimating the terms involving cell boundaries
by using (2.3) and the continuity of the normal component of the velocity field
across the cell boundaries, one can show that the enstrophy decays in the sense that

(2.5) ‖ωh( · ,t)‖L2(Ωh) ≤ ‖ωh( · ,0)‖L2(Ωh) ≤ ‖ω0‖L2(Ωh)

where the initial dataωh( · ,0) is taken as theL2 projection ofω0 and hence is
uniformly bounded inL2. Furthermore, takingϕh = ψh in (2.2b), one derives the
fact that

(2.6) ‖∇ψh‖2
L2(Ωh) = −〈ωh,ψh〉Ωh .

Our main observation in this paper is the fact that these three simple properties,
(2.4)–(2.6), yield a strong convergence. To prove and state such a result, one needs
some estimate of time regularity first.

3 Time Regularity Estimate

In this section, we will prove a lemma about the time regularity for the approxi-
mate solutions constructed by the discontinuous Galerkin method, which is needed
for the argument of convergence. Although it is rather routine in the continuous
case to obtain time regularity through the Euler equations given the spatial regu-
larity, such regularity estimates in the discrete case are much more involved and
are the main technical parts of this paper. We need a convention before stating the
main lemma. Note that on a boundary element, the approximate solutionsωh and
ψh are polynomials, and we can use them to extend/restrict these functions from
Ωh into the domainΩ; we will refer to such extensions as the natural extensions.
It is noted that one may use the zero extensions, but the arguments in the proof of
the following lemma cannot be simplified much since one needs to estimate the
restriction anyway (see(3.18′)).
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LEMMA 3.1 (Time Regularity)There is a constant qo such that

(3.1) ‖∂tωh‖L∞([0,T),W−2,q(Ω)) +‖∂tψh‖L∞([0,T),Lq(Ω)) ≤C

for any q0 ≤ q< 2, whereωh andψh denote, respectively, their natural extensions
or restrictions fromΩh to Ω.

PROOF: We first show that

(3.2) ‖∂tωh‖L∞([0,T),L2(Ωh)) ≤
C
h2 .

For any smooth functionv ∈ C∞
0 (Ω) with zero extension to the outside, letvh be

theL2 projection ofv in the space ofVk
h . Now takingvh as a test function in (2.2a),

one gets

〈∂tωhv〉Ωh = 〈∂tωhvh〉Ωh

= ∑
K

〈ωhuh ·∇vh〉K −∑
K

∑
e∈∂K

〈uh ·nω̂hv
−
h 〉e ≡ I1 + I2 .(3.3)

I1 can be estimated directly as

|I1| ≤ ‖ωh‖L∞ ∑
k

‖uh‖L2(K)‖∇vh‖L2(K) ≤C‖ωh‖L∞(Ωh)‖uh‖L2(Ωh)‖∇vh‖L2(Ωh) .

Using the inverse inequality (cf. (4.5.12) in [4]),

‖ωh‖L∞ ≤ C
h
‖ωh‖L2 , ‖∇vh‖L2 ≤ C

h
‖vh‖L2 ,

theL2 estimate foruh andωh in (2.4) and (2.5), and the fact thatvh is theL2 pro-
jection ofv, one has

(3.4) |I1| ≤ C
h2‖ωh‖L2(Ωh)‖uh‖L2(Ωh)‖vh‖L2(Ωh) ≤

C
h2‖v‖L2(Ωh) .

Next we proceed to estimateI2. Sinceuh ·n is continuous and̂ωh takes the same
value from both sides of a cell boundary, the contribution of the two sides will give
the jump ofvh. Therefore, one can obtain

(3.5) |I2| ≤ ∑
K

∑
e∈∂K

〈|uh ·nω̂h(v+
h −v−h )|〉e .

Thanks to the quasi-uniform regularity in the triangulation [4], one can map each
triangle back and forth to the reference triangle. Using the fact that all norms in a
finite-dimensional space are equivalent in the reference triangle, one can show that

(3.6) ∑
K

∑
e∈∂K

‖ωh‖L2(e)‖vh‖L2(e) ≤
C
h ∑

K

‖ωh‖L2(K)‖vh‖L2(K) .

Hence

(3.7) |I2| ≤ C
h2‖vh‖L2(Ωh) ≤

C
h2‖v‖L2(Ωh) .
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Combining (3.4) with (3.7) shows

(3.8) |〈∂t ωhv〉Ωh| ≤
C
h2‖v‖L2(Ωh) ,

which yields the desired estimate (3.2), since the natural extension of∂tωh to Ω
from Ωh gives equivalent norms. Hence we have also shown

(3.2′) ‖∂tωh‖L∞([0,T),L2(Ω)) ≤
C
h2 .

Next, let Ihv be the piecewise linear interpolation ofv in Vk
h . Then one can

decomposeI1 in (3.3) as

(3.9) I1 = ∑
K

〈ωhuh ·∇Ihv〉K +∑
K

〈ωhuh ·∇(vh− Ihv)〉K ≡ I11+ I12.

I11 is bounded by

|I11| ≤ ∑
K

‖ωh‖L2(K)‖uh‖L2(K)‖∇Ihv‖L∞

≤ ‖ωh‖L2(Ωh)‖uh‖L2(Ωh)‖∇Ihv‖L∞(Ωh) .
(3.10)

Due to the inequality
‖∇Ihv‖L∞(Ωh) ≤C‖v‖W1,∞(Ω) ,

one obtains from (2.4), (2.5), and (3.10) that

(3.11) |I11| ≤C‖v‖W1,∞(Ω) .

One can estimateI12 similarly. Indeed,

|I12| ≤ ∑
K

‖ωh‖L2(K)‖uh‖L2(K)‖∇(vh− Ihv)‖L∞(Ωh) ≤C‖∇(vh− Ihv)‖L∞(Ωh) .

Using the inverse inequality [4]

‖∇(vh− Ihv)‖L∞(Ωh) ≤
C
h2‖vh− Ihv‖L2(Ωh)

and

(3.12) ‖vh− Ihv‖L2(Ωh) ≤ ‖v− Ihv‖L2(Ωh) ,

which holds true sincevh is theL2 projection ofv, one gets

(3.13) |I12| ≤ C
h2‖v− Ihv‖L2(Ωh) .

This together with the standard estimate for the interpolation (cf. (4.4.21) in [4])
leads to

(3.14) |I12| ≤C‖v‖H2(Ω) .

It follows from (3.11) and (3.14) that we have obtained an estimate onI1 in (3.3)
independent ofh. Now we can also derive anh-independent estimate onI2 in (3.3)
as follows: Noting thatIhv is continuous at the cell boundary, one can insert it into
the right-hand side of (3.5) to obtain
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(3.15) [|I2| ≤ ∑
K

∑
e∈∂K

〈|uh ·nω̂h(vh− Ihv)|〉e ≤

C‖uh‖L∞ ∑
K

∑
e∈∂K

‖ωh‖L2(e)‖vh− Ihv‖L2(e) .

As in (3.6), one has

(3.16) |I2| ≤ C
h2‖vh− Ihv‖L2(Ωh) ≤

C
h2‖v− Ihv‖L2(Ωh) ≤C‖v‖H2(Ω) .

Collecting estimates (3.11), (3.14), and (3.16), we arrive at

(3.17) |〈∂tωh,v〉Ωh| ≤C(‖v‖W1,∞(Ω) +‖v‖H2(Ω)) ≤C‖v‖W2,p(Ω)

for any p> 2.
To complete the proof of the first part of (3.1), we need to estimate the differ-

ence for the left-hand term betweenΩ andΩh. First,

|〈∂tωh,v〉Ω\Ωh
| ≤ ‖∂tωh‖L2(Ω\Ωh)‖v‖L∞(Ω\Ωh)

√
|Ω\Ωh|

sincev vanishes on the boundary∂Ω and because of the simple estimate|Ω\Ωh| ≤
Ch2. This estimate is due to the fact that the distance from∂Ω to ∂Ωh is O(h2),
which, in turn, is a consequence of the standard but unstated assumption that all
the vertices lying on the boundary of∂Ωh also lie on the boundary ofΩ. One then
has

‖v‖L∞(Ω\Ωh) ≤Ch2‖v‖W1,∞(Ω) .

We can obtain from these and(3.2′) that

(3.18) |〈∂tωhv〉Ω\Ωh
| ≤Ch‖v‖W1,∞(Ω) ≤Ch‖v‖W2,q(Ω)

for any 1≤ q< 2. Similarly, one can obtain

(3.18′) |〈∂tωhv〉Ωh\Ω| ≤Ch‖v‖W2,q(Ω) .

Consequently, from (3.17), (3.18), and (3.18′),

(3.19) ‖∂tωh‖L∞([0,T),W−2,q(Ω)) ≤C for any 1≤ q< 2.

This proves the first part of (3.1).
Next we prove the second part of the inequality in (3.1). Forf ∈ Lp(Ω) with

zero extension to the outside, we letφ solve the following problem:

(3.20) −∆φ= f in Ω , φ|∂Ω = 0,

and letφh ∈Wk
0,h be the finite element solution

(3.21) 〈∇φh,∇ϕh〉Ωh = 〈 f ,ϕh〉Ωh for anyϕh ∈Wk
0,h .

Since the domain is eitherC2 or piecewiseC2 with convex corners, we can choose
p0> 2 such that for anyp0> p> 2, the following elliptic regularity estimate holds:

(3.22) ‖φ‖W2,p(Ω) ≤C‖ f‖Lp(Ω) ,
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and the standard finite element estimate for the Poisson equation (cf. (5.4.8) in [4])
yields

(3.23) ‖φh−φ‖L2(Ωh) ≤Ch2‖φ‖H2(Ω) .

Since∂tψh ∈Wk
0,h, we have

(3.24) 〈∂tψh, f 〉Ωh = 〈∇∂tψh,∇φh〉Ωh = −〈∂tωh,φh〉Ωh

where we have used (3.21) and (2.2b) after taking a time derivative. Rewrite (3.24)
as

(3.25) 〈∂tψh, f 〉Ωh = −〈∂tωh,φ〉Ωh −〈∂tωh,(φh−φ)〉Ωh .

Let q be the dual number ofp : 1/p+1/q = 1. One gets

|〈∂tψh, f 〉Ωh| ≤ ‖∂tωh‖L∞([0,T),W−2,q(Ω))‖φ‖W2,p(Ω)

+‖∂tωh‖L∞([0,T),L2(Ωh))‖φh−φ‖L2(Ωh)

≤C‖φ‖W2,p(Ω) +
C
h2‖φh−φ‖L2(Ωh) .

(3.26)

Thus, (3.22) and (3.23) imply that

|〈∂tψh, f 〉Ωh| ≤C‖ f‖Lp(Ω) .

Let q0 be the dual number ofp0; then

(3.27) ‖∂tψh‖L∞([0,T),Lq(Ωh)) ≤C for anyq0 ≤ q< 2.

Since a natural extension ofψh to Ω from Ωh gives equivalent norms, we therefore
have

(3.28) ‖∂tψh‖L∞([0,T),Lq(Ω) ≤C for anyq0 ≤ q< 2.

This gives the second part of (3.1).

4 A Uniqueness Theorem

In this section we generalize Judovič’s uniqueness theorem [8] to show that
weak solutions with corresponding vorticity inL∞ are unique in the wider class
where the vorticity are inL2. This generalization will be used in the next section to
obtain a stronger convergence theorem. The precise statement is as follows:

THEOREM 4.1 Assume thatω0 ∈ L∞(Ω) and∂Ω is C2. Then the weak solution

(4.1) ω ∈ L∞(
[0,T),L∞(Ω)

)∩Lip
(
[0,T),W−2,r(Ω)

)
to (2.1) is unique in the space L∞([0,T),Lq(Ω))∩Lip([0,T),W−2,r(Ω)) where q>
4
3 and1≤ r < 2.
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PROOF: Suppose that the initial boundary value problem (2.1) for the 2-D Euler
equations has two weak solutions with the same initial vorticityω0 ∈ L∞ and the
following regularities:

ω1 ∈ L∞(
[0,T),L∞(Ω)

)∩Lip
(
[0,T),W−2,r(Ω)

)
(4.2)

and

ω2 ∈ L∞(
[0,T),Lq(Ω)

)∩Lip
(
[0,T),W−2,r(Ω)

)
,(4.3)

q> 4
3 and 1≤ r < 2. It suffices to show thatω1 = ω2.

Denote byψ1 andψ2 the stream functions in (2.1) corresponding toω1 andω2,
respectively. Then by the theory of elliptic regularity, we have

ψ1 ∈ L∞(
[0,T),W2,p(Ω)

)∩Lip
(
[0,T),Lr(Ω)

)
(4.4)

and

ψ2 ∈ L∞(
[0,T),W2,q(Ω)

)∩Lip
(
[0,T),Lr(Ω)

)
.(4.5)

We denote the corresponding velocities byu1 = ∇⊥ψ1 andu2 = ∇⊥ψ2. Then one
can rewrite the Euler equations (2.1a) in a distribution sense as

∇⊥(∂tu1 +u1∇u1) = 0 in D ′(4.6)

and

∇⊥(∂tu2 +u2∇u2)∗ = 0 in D ′ .(4.7)

Set

(4.8) u = u1−u2 , ψ = ψ1−ψ2 ,

and subtract (4.7) from (4.6) to get

(4.9) ∇⊥(∂tu+u2∇u+u∇u1) = 0 in D ′ .

It follows from (4.4) and (4.5) that

(4.10) ψ ∈ L∞(
[0,T),W2,q(Ω)

)∩Lip
(
[0,T),Lr(Ω)

)
.

Therefore, one can takeψ as a test function in (4.9) to obtain

(4.11)
∫

Ω

u(∂tu+u2∇u+u∇u1)dx = 0

where one has used the fact thatu = ∇⊥ψ andψ vanishes on the boundary. Define

(4.12) E(t) =
∫

Ω

|u|2dx .

Due to the regularity assumption (4.2) and (4.3), one can show that

(4.13)
d
dt

E(t) = 2
∫

Ω

u ·ut dx .
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Using the fact that

(4.14)
∫

Ω

u ·u2∇udx = 0

and using equation (4.9), we have

(4.15)
d
dt

E(t) ≤ 2
∫

Ω

|u|2|∇u1|dx .

Using the classical potential estimate

(4.16) ‖∇u1( · ,t)‖Lp ≤Cp‖ω1( · ,t)‖L∞

for all 1< p< ∞, whereC is an constant independent ofp, u1, andω1, together
with the fact that

(4.17) ‖ω1( · ,t)‖L∞ ≤ ‖ω0‖L∞ ,

one shows by the Hölder inequality that

d
dt

E(t) ≤
∫

Ω

|u|2p/(p−1) dx


p−1

p

‖∇u1‖Lp ≤Cp

∫

Ω

|u|2p/(p−1) dx


p−1

p

whereC is independent ofp. The right-hand side above can be further estimated
by∫

Ω

|u|2p/(p−1) dx =
∫

Ω

(|u|2)(p−2)/(p−1)(|u|4)1/(p−1) = ‖u‖2(p−2)/(p−1)
L2 ‖u‖4/(p−1)

L4 .

On the other hand,

‖u‖L4 ≤C‖u‖q/(4(q−1))
W1,q ‖u‖(3q−4)/(4(q−1))

L2 .

Since‖u‖W1,q is bounded, we thus have shown that

(4.18)
d
dt

E(t) ≤CpE(t)1−(5q−4)/(4p(q−1)) ;

therefore

(4.19)
d
dt

(
E(t)(5q−4)/(4p(q−1))

)
≤C.

Now one can conclude thatE(t) ≡ 0. Indeed, taking an interval[0,T∗] with the
property thatCT∗ ≤ 1

2, one obtains from (4.20) andE(0) = 0 that

(4.20) E(t) ≤
(

1
2

) 4p(q−1)
5q−4

→ 0 asp→ ∞ ,

soE(t) ≡ 0 for t ∈ [0,T∗]. Repeating these arguments, we conclude thatE(t) = 0
for all t < T. This completes the proof.
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5 Main Convergence Theorem

Finally, we are able to state and prove our main convergence theorem.

THEOREM 5.1 Let Ω ⊂ R2 be a simply connected domain with C2 boundary(or
piecewise smooth C2 boundary with convex corners) and equipped with a quasi-
uniform triangulation. Suppose that the initial vorticityω0 belongs to L2(Ω). Let
(ωh,ψh) ∈Vk

h ×Wk
0,h be the approximate solutions generated by the discontinuous

Galerkin method(2.2). Then there exists a convergent subsequence of(ωh,ψh) (for
which we will still use the same notation for simplicity) such that

(5.1) ωh ⇀ω (star weakly) in L∞(
[0,T),L2(Ω)

)∩Lip
(
[0,T),W−2,q(Ω)

)
for any q0 ≤ q< 2 and

(5.2) ψh → ψ (strongly) in L2([0,T),H1(Ω)
)

,

and the limiting functionsω andψ have the properties that

ω ∈ L∞(
[0,T),L2(Ω)

)∩Lip
(
[0,T),W−2,q(Ω)

)
(5.3)

and

ψ ∈ L2([0,T),H1
0(Ω0)

)∩Lip
(
[0,T),Lq(Ω)

)
(5.4)

for any q0 ≤ q< 2, and for anyφ ∈C∞
0 (Ω× [0,t))

∫ T

0

∫

Ω

(
ωφt +ω∇⊥ψ ·∇φ)

dxdt +
∫

Ω

ω0φ( · ,0)dx = 0,(5.5)

∆ψ = ω in D ′ .(5.6)

In other words,(ω,ψ) is a weak solution of the Euler equation(2.1) with initial
dataω0. Furthermore, if the initial dataω0 ∈ L∞(Ω) and∂Ω is C2, then the whole
sequence of(ωh,ψh) will converge to the unique solution of the Euler equations,
and the limiting vorticityω is bounded in L∞([0,T),L∞(Ω)).

PROOF: As in Lemma 3.1, we extendωh andψh to Ω from Ωh naturally. First,
(2.5) and (3.1) show that there is a subsequence ofωh (for which we still use the
same notation) such that

(5.7) ωh ⇀ω (star weakly) inL∞(
[0,T),L2(Ω)

)∩Lip
(
[0,T),W−2,q(Ω)

)
,

and the limiting functionω satisfies (5.3).
Next, it follows from (2.5), (2.6), and the Poincaré inequality that

(5.8) ‖ψh‖L∞([0,T),H1) ≤C.

This, together with (3.1), shows that there is a subsequence ofψh such that

(5.9) ψh ⇀ψ (star weakly) inL∞(
[0,T),H1(Ω)

)∩Lip
(
[0,T),Lq(Ω)

)
and

ψ ∈ L∞(
[0,T),H1(Ω)

)∩Lip
(
[0,T),Lq(Ω)

)
.
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Since the distance between∂Ωh to ∂Ω is of orderO(h2) andψh vanishes on∂Ωh,
we have

(5.10) ‖ψh‖L∞(∂Ω) ≤Ch2‖∇ψh‖L∞(Ωh) ≤Ch‖∇ψh‖L2(Ωh) ≤Ch→ 0.

In the above we have used the inverse inequality

‖∇ψh‖L∞(Ωh) ≤
C
h
‖∇ψh‖L2(Ωh)

and energy bound (2.4). Henceψ satisfies (5.4).
We now show thatψh converges strongly. First, it follows from (5.8), (3.1), and

the Lions-Aubin lemma that

(5.11) ψh → ψ strongly inL2([0,T)×Ω) ,

which, together with (2.6) and (5.7), yields

(5.12)
∫ T

0
‖∇ψh‖2

L2 dt = −
∫ T

0
〈ωhψh〉dt →−

∫ T

0
〈ωψ〉dt .

To obtain the strong convergence that

(5.13) ∇ψh → ∇ψ strongly inL2([0,T)×Ω) ,

it suffices to show that
∫ T

0
‖∇ψh‖2

L2 dt →
∫ T

0
‖∇ψ‖2

L2 dt ,

which is a direct consequence of

(5.14) −
∫ T

0
〈ωψ〉dt =

∫ T

0
‖∇ψ‖2

L2 dt ,

which will be verified below. Indeed, for anyφ ∈C∞
0 (Ω× [0,T)), takingϕh = Ihφ

in (2.2b) yields

(5.15) −
∫ T

0
〈∇ψh ·∇Ihφ〉dt =

∫ T

0
〈ωhIhφ〉dt

whereIh is the interpolation operator inWk
0,h. Using the strong convergence (cf.

(4.4.21) in [4]),

(5.16) Ihφ→ φ strongly inL∞([0,T),L2(Ω)) andL∞([0,T),H1(Ω)) ,

and weak convergences (5.7) and (5.9), one shows from (5.15) that

(5.17) −
∫ T

0
〈∇ψ ·∇φ〉dt =

∫ T

0
〈ωφ〉dt .

This immediately gives (5.14) sinceC∞
0 ((0,T)×Ω) is dense inL2([0,T),H1

0(Ω)).
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As a consequence of (5.13), one concludes that

(5.18) uh → u strongly inL2([0,T)×Ω)

whereu = ∇⊥ψ.
Now we show that the limit functions(ω,ψ) are indeed a weak solution to the

Euler equations. To this end, one can takevh to beIhφ for anyφ ∈C∞
0 (Ω× [0,t))

in (2.2a), sum over all the cells, and integrate in time to obtain

(5.19)
∫ T

0

(〈∂tωhIhφ〉−〈ωhuh ·∇Ihφ〉
)
dt = 0,

where we have used the facts that the upwind fluxesω̂h are the same for the adjacent
elements, bothIhφ and the normal component of the velocity field are continuous
across the interior cell boundaries, andu · n = 0 on the exterior cell boundaries.
Sinceφ is compactly supported and∂tIhφ= Ih∂tφ, we can integrate by parts to get

(5.20)
∫ T

0

(〈ωhIh∂tφ〉+ 〈ωhuh ·∇Ihφ〉
)
dt+ 〈ωh( · ,0)Ihφ( · ,0)〉 = 0.

Using the weak convergence ofωh in (5.7) and the strong convergence (5.16) of
Ih∂tφ, one shows that∫ T

0
〈ωhIh∂tφ〉dt →

∫ T

0
〈ω∂tφ〉dt and 〈ωh( · ,0)Ihφ( · ,0)〉 → 〈ω0φ( · ,0)〉 .

Similarly, it follows from the weak convergence ofωh in (5.7), the strong conver-
gence ofuh in (5.18), and the strong convergence (5.16) of∇Ihφ that∫ T

0
〈ωhuh ·∇Ihφ〉dt →

∫ T

0
〈ωu ·∇φ〉dt .

Hence

(5.21)
∫ T

0
〈ω∂tφ〉dt+

∫ T

0
〈ωu ·∇φ〉dt+ 〈ω0φ( · ,0)〉 = 0.

This gives (5.5). Finally, (5.6) follows from (2.2b) by takingϕh = Ihφ. Thus we
have proved that(ψ,ω) is a weak solution to the Euler equations (2.1).

In the case that the initial dataω0 ∈ L∞(Ω), then the Cauchy problem for the
Euler equations has a solutionω ∈ L∞([0,T)×Ω), and from Theorem 4.1 we know
that this solution is unique in the class of (5.3) and (5.4). Therefore every conver-
gent subsequence has the same limit. As a consequence, the whole sequence of
(ωh,ψh) converges to the unique solution. This completes the proof of the theo-
rem.
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