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We investigate, by numerical simulation, the shear layer instability associated with the outer layer
of a spiral vortex formed behind an impulsively started thin ellipse. The unstable free shear layer
undergoes a secondary instability. We connect this instability with the dynamics of corner vortices
adjacent to the tip of the ellipse by observing that the typical turnover time of the corner vortex
matches the period of the unstable mode in the shear layer. We suggest that the corner vortex acts
as a signal generator, and produces periodic perturbation which triggers the instability. ©1999
American Institute of Physics.@S1070-6631~99!04109-4#
y
n

or
x

d

s
lli
on
ig
ea
ee
ar
x

-
e

il

ica
-
x

la-
a
te
le

it
th
e

io
ne
ar

f
he

r–

con-

lver

he
as

th-
ped
e
e

se
m
od

ng
30
se
use
ld,
ies,
xis,

y

Introduction.Vortex roll-up behind a sharp-edged bod
is a familiar phenomenon. In laboratory experiments, o
finds that at high Reynolds numbers secondary vortices f
along the outer layer of the primary vortex. A classical e
ample of these beautiful secondary vortices can be foun
the work of Pierce.1

However in those classical studies the origin of the
secondary vortices was not clear. In an early work, Pu
and Perry2 argued that the secondary vortices were the c
sequence of a shear layer instability, which could be tr
gered by oscillations in the experimental device. Using lin
stability results for an exponentially stretching vortex sh
in an inviscid fluid and numerical studies of a self-simil
vortex sheet,3,4 they further predicted that the primary vorte
should be stable in a viscous flow.

Recently, Koumotzakos and Shiels5 simulated accelerat
ing flows behind a plate using a vortex method, and th
observed secondary structures similar to those seen
Pierce’s experiment. These authors argued that the instab
is intrinsic to accelerating flows.

There is also the possible contamination by numer
noise. For example, Krasny6 has shown that both the round
off error and insufficient spatial resolution can introduce e
traneous vortices, as have Brown and Minion.7

In this work, we reexamine, by direct numerical simu
tion, the shear layer instability which produces the second
vortices. We consider a special case of impulsively star
uniform flow normal to a thin ellipse, as opposed to acce
ating flows studied by previous authors.5 Secondary vortices
are observed at sufficiently high Reynolds numbers, w
Re510 000 in our case. The periodicity associated with
secondary vortices is found to be independent of the num
cal resolution. More interestingly, we also find a connect
between the instability and the dynamics of small cor
vortices,2 which are adjacent to the tips of the ellipse and
induced by the primary vortices.
2441070-6631/99/11(9)/2446/3/$15.00
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Flow setup and computational methods.We consider an
impulsively started uniform flow normal to a thin ellipse o
thickness ratioh51/8. The Reynolds number based on t
major axisL and flow velocity at infinityU0 is Re5U0L/n,
where n is the kinematic viscosity. In our computation,L
52, U051, and Re510 000.

To simulate flow past an ellipse, we solved the Navie
Stokes equation in elliptic coordinates,~m,u!. Elliptic coor-
dinates can be mapped onto Cartesian coordinates via a
formal transformation,x1 iy5cosh(m1iu). Consequently,
the Poisson equation appearing in the Navier–Stokes so
has constant coefficients in the coordinates of~m,u!, and it
can be solved efficiently via Fast Fourier transform. T
two-dimensional Navier–Stokes equation for vorticity h
the following form in ~m,u!;

]~Sv!/]t 1~ASu–“ !v5nDv, ~1!

“–~ASu!50, ~2!

whereu is the velocity field,v the vorticity field, andS the
scaling factorS(m,u)5cosh2 m2cos2 u.

Our Navier–Stokes solver is based on an explicit four
order compact finite difference scheme, recently develo
by Liu and Liu.8 A detailed description of the method can b
found in Ref. 8. At the far field boundary, we impose th
standard outer flow boundary condition for vorticity and u
the potential solution of flow past an ellipse for the strea
function. The numerical convergence study of the meth
has been established in Ref. 9.

To resolve the flow, we keep at least 10 grid points alo
the radial direction in the boundary layer, and at least
points in the azimuthal direction around each tip, who
length scale is estimated by its radius of curvature. Beca
the elliptic coordinates stretch exponentially at the far fie
we can afford a large computational domain. In our stud
we chose the outer radius to be ten times the semimajor a
which is sufficiently far away from the region of vorticit
6 © 1999 American Institute of Physics
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FIG. 1. Vortex growth as a function of time. R
510 000. Grid resolution 51231024, with 1024 in the
azimuthal direction. The gray scale corresponds to
strength of the vorticity. To save space, only the upp
right quarter of the region of the whole computation
shown. The detailed structure of the corner vortex
side the black box marked in plate~d! is shown in Fig.
2.
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structure during the time of interest,tP(0,2.5). We also
monitored the vorticity field near the far field to ensure tha
was sufficiently small. For our computations its magnitu
was on the order of the machine error. The computation
carried out using double precision for two resolutions: 5
31024 and 102432048. Finally, a single precision compu
tation was performed to evaluate the effect of the round
errors.

Results.In plates~a!–~d! of Fig. 1, we show the vorticity
contour plot as time evolves up tot52.5. The vortex devel-
opment consists of two stages:~1! initial roll-up and growth
of a primary vortex@plate~a!#, and~2! formation and growth
of periodic secondary vortices along the shear layer@plates
~b!–~d!#.

In addition to the primary vortex, we observe a hierarc
of small vortices at the corner bounded by the ellipse and
shear layer, as shown inside the marked box in plate~d!. The
hierarchy resembles the corner vortices in driven flows ins
a box.10 In our case, the small vortices are induced by
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backflow of the primary vortex. The corner vortex syste
has been observed in previous experiments,2 however its in-
fluence on the shear layer instability has not been studie

In Fig. 2 we present the detailed structure of the seco
ary corner vortex. After an impulsive start, the corner vort
grows and reaches a quasisteady state. The elliptical as
metry of this vortex can result in a periodic variation in th
local vorticity field.

We plot the time series of the vorticity at various loc
tions, marked by letters A–G in Fig. 2, inside the corn
vortex. The results show periodic oscillations after an init
transient time. Fourier transforming the time series, we id
tify a period of oscillation, corresponding toT;0.2. This
period turns out to match the temporal periodicity of t
shear layer as we show below.

To estimate the temporal periodicity of the seconda
vortex structure along the shear layer, we animated the c
puted time-dependent vorticity field. When playing back t
animation, we placed a marker at a fixed point in the fra
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FIG. 2. The left-hand panel shows th
zoom-in view of the vorticity contour
plot near the tip of the ellipse. The
computation mesh is also shown. Th
right-hand panel shows the time evo
lution of the stream function at various
points near the tip. The same types
oscillations are seen in the vorticity
field. However because the vorticity
field is large inside the corner vortex
the superposed oscillations are not
obvious visually. We therefore chos
to use the stream functionC for our
diagnostics.
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FIG. 3. ~a! Comparison of the vorticity field
with different resolutions: 51231024, and
102432048. The inset shows the zoom-i
view in the time window @0.15,0.4#. The
vorticity is measured at the tip of the ellipse
which is most sensitive to the resolution.~b!
Contamination due to round-off errors in
single precision calculation. All other com
putation are done in double precision. Th
grid size is 51231024. Note that these ir-
regular noises are distinctly different from
the well-defined periodic perturbation, see
Fig. 2. The contamination also occurs we
before the onset of the secondary vortices
the resolved flows.
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and counted the number of frames between two succes
secondary vortices passing by the marker. This interval c
responds to the period. We repeated the same procedur
three consecutive vortex pairs, and the measurements
consistent. The estimated period is 0.21, approximately
same as the oscillation period of the corner vortex as sh
previously.

To get an intuitive estimate of whetherT;0.2 is a
physical time scale, we note that in the corner vortex and
shear layer,uvu;30– 58, which corresponds to a rotation
rate V[v/2;15– 29. This then gives a periodt52p/V
;0.2– 0.4. Thus the observed period is consistent with
rotational rate of fluids in the corner vortex.

To confirm our results, we repeated our computat
with twice the resolution, 102432048. In Fig. 3 we show
vorticity at the tip of the ellipse as a function of time fo
these two different resolutions, and they agree remarka
well. We see no sign of grid oscillations. At the higher res
lution, we ran up to time 0.35, limited by computing r
sources. The fact that the two curves agree in early times
shows that we have a good time resolution of an impulsiv
started flow as well as the spatial resolution. To investig
the effects of round-off errors, we computed the same fl
using a single-precision computation. It is clear from t
time series of the vorticity field that the large round-off e
rors in this case introduced irregular noises, seen in Fig. 3~b!,
which is distinctively different from the well-defined per
odic variation in double-precision computations, as shown
Fig. 3~a!. Furthermore, these errors can be detected dire
with the time series of the vorticity field, well before th
onset of the secondary vortex structure seen in the vorti
contour plot. This evidence make us believe that the seco
ary vortices seen in our computation are unlikely results
round-off errors. Finally, we checked the vorticity near t
far field and find no background oscillation. We thus co
clude that the observed instability is physical, and induc
by activity at the corner vortex structure. We also rema
that the instability is a high Reynolds number phenomen
We do not observe it at Re51000, which is consistent with
previous results.5 Our results show that the instability is no
unique to accelerating flows. In fact, these results sugges
alternative interpretation of the results in Ref. 5: The inst
taneous Reynolds number increases with time in accelera
ive
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flows, and when it exceeds a critical Reynolds number,
secondary vortices appear.

Summary.We have computed flow past an ellipse
Re510 000 to investigate the secondary vortex struct
along the free shear layer of the primary vortex. We fou
that this secondary structure is connected with the dynam
of the corner vortex. Our study does not yet rule out t
possibility that the oscillation in the corner vortex is simp
responding to the shear layer instabilities. Future work
required to further distinguish these two possibilities.
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