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Abstract. We are concerned with the convergence of Lax-Wendroff type
schemes with high resolution to the entropy solutions for conservation laws.
These schemes include the original Lax-Wendroff scheme proposed by Lax
and Wendroff in 1960 and its two step versions–the Richtmyer scheme and the
MacCormack scheme. For the convex scalar conservation laws with algebraic
growth flux functions, we prove the convergence of these schemes to the weak
solutions satisfying appropriate entropy inequalities. The proof is based on de-
tailed Lp estimates of the approximate solutions, H−1 compactness estimates
of the corresponding entropy dissipation measures, and some compensated
compactness frameworks. Then these techniques are generalized to study the
convergence problem for the nonconvex scalar case and the hyperbolic systems
of conservation laws.

1. Introduction

We are interested in the convergence of finite difference schemes with high reso-
lution for conservation laws

∂tu+ ∂xf(u) = 0 , u(x, 0) = u0(x) ∈ L2(R) ∩ L∞(R) .(1.1)

One of the most fundamental and important second-order finite difference schemes
is the Lax-Wendroff scheme [11]. It is defined by

un+1
j =unj − λn

2 ∆0f(unj ) +
λ 2
n

2 ∆−

(
f ′
(unj + unj+1

2

)
∆+f(unj )

)
+ λn∆−

(
βnj+1/2|∆+f

′(unj )|∆+u
n
j

)
,

(1.2)

where unj = u(xj , tn), tn =
∑n

k=1 τk, xj = jh, λn = τn/h, ∆+uj = uj+1 − uj,
∆0uj = uj+1 − uj−1, ∆−uj = uj − uj−1, and βnj+1/2, 0 ≤ β0 ≤ βnj+1/2 ≤ β1 < +∞,

is a smooth function of unj and unj+1 (e.g. βnj+1/2 = const. in [11]). Moreover, this

scheme has to satisfy the Courant-Friedrichs-Lewy condition

ε0 = max
n

(
λn max

j
|f ′(unj )|) ≤ 1(1.3)

for stabilization in general.
This scheme is designed to have the following desirable computational features:

conservation form, three-point dependence, second-order accuracy on the smooth
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regions of solutions, and stabilization for the convex case for β0 > 0 and ε0 ≤ 1.
When βnj+1/2 = 0, the Lax-Wendroff scheme serves as not only a simple mode

for the physical phenomenon of the dissipation-dispersion couplings, but also an
example of dispersive schemes that do not converge in the sense of strong topology
(cf. [10]). Indeed, as observed by Harten-Hyman-Lax [7] and Majda-Osher [14], [15],
the second-order numerical viscosity βnj+1/2 ≥ β0 > 0 in this scheme is essential to

guarantee that the numerical solutions are nonlinearly stable and converge to the
physical solutions. The main role of the factor |∆+f

′(unj )| in the third term of the
scheme (1.3) is to reduce effectively viscosity in the smooth regions of solutions to
produce sharp discontinuities in numerical computations. Such a scheme does not
have a TVD property.

The main objective of this paper is to prove the convergence of the Lax-Wendroff
approximate solutions to the entropy solutions and to provide an analytical ap-
proach for such a convergence analysis for high-order finite difference schemes,
which do not preserve BV (and even L∞ bound). This is motivated by the fact
that any high-resolution difference scheme cannot, in general, preserve BV for the
hyperbolic systems of conservation laws, especially for the nonstrictly hyperbolic
case and the multidimensional case. Since our analysis is qualitative, we will always
assume that β0 is suitably large and ε0 is suitably small to make our analysis more
convenient without loss of our purpose. One can follow our analysis to get the op-
timal constants for β0 and ε0 from this approach for some concrete equations. Our
analysis is based on careful Lp estimates of the approximate solutions, H−1 com-
pactness estimates of the corresponding entropy dissipation measures, and some
compensated compactness frameworks.

In Section 2 we describe some compensated compactness theorems for conserva-
tion laws, which guarantee the convergence of the finite difference schemes provided
that the corresponding approximate solutions satisfy these frameworks. Since these
compactness frameworks do not need the BV estimates, this enables us to carry
through our analysis by using the Lp estimates and the H−1 compactness estimates,
which are weaker than the BV estimates in general.

Section 3 is devoted to the estimates of the Lax-Wendroff approximate solutions
to the convex scalar conservation laws. We obtain the uniform Lp estimates of the
approximate solutions and the H−1 compactness estimates of the corresponding
entropy dissipation measures by analyzing carefully the properties of this scheme
and by developing some useful estimate techniques. A global entropy error estimate
is also obtained to ensure the consistency of this scheme with the scalar conservation
laws.

In our analysis we need a technical assumption of the algebraic growth of flux
functions. This is because we do not require the L∞ bound or the BV bound for
the Lax-Wendroff approximate solutions to achieve our goal. One difficulty in the
analysis is the fact that the dissipation is third-order in the Lax-Wendroff scheme,
comparing with the second-order dissipation in the first-order schemes. All these
terms need to be carefully combined into a third-order term or a term consisting
of square products of second-order differences with a favorable sign. Moreover, the
factor in each combined third-order difference needs to be bounded by the growth
factor in the dissipative term in each cell. Some special treatment is also made
since the Lax-Wendroff scheme is a three-point scheme. A requirement of small
CFL number is made here to use the grid ratio λ to control some growth factors.
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In order to get the compactness of entropy dissipation measures, we estimate certain
entropy inequalities with a higher growth rate.

These techniques are generalized to study the convergence of the Lax-Wendroff
scheme for the nonconvex scalar case in Section 4 and for the hyperbolic systems
of conservation laws in Section 5, and to prove the convergence of the Richtmyer
scheme [22] and the MacCormack scheme [13]–two step versions of the Lax-Wendroff
schemes in Section 6, which are widely used in industry and engineering.

In connection with earlier work on the Lax-Wendroff type schemes, we recall that
Majda and Osher [14], [15] showed the L2-stability for general scalar conservation
laws, the entropy consistency for the boundedly convergent approximate solutions
for the semi-discrete cases as well as the complete-discrete scheme for the time-
independent cases of general systems endowed with a convex entropy, the efficient
choices of artificial viscosity such as the switching techniques, and the validity of
the CFL number in their analysis. Many of their techniques have been melted into
our analysis. We also refer to [25] for the stability of the local discrete shock profile
for the Lax-Wendroff scheme.

Regarding work on the convergence analysis of full discrete high-resolution finite
difference schemes, we refer to [4] and the references cited therein for the flux-limit
schemes with slope modification or antidiffusive flux approach, which preserve L∞

bound. Since the Lax-Wendroff type schemes do not have a TVD property, our
analysis consists of two steps: One is to prove the convergence, which is an essential
difficulty here and is, however, automatically ensured by the Helly principle for the
TVD or TVB schemes, and the other is to verify the entropy consistency. The
convergence analysis of TVD or TVB schemes focus mainly upon the second step
for the scalar case, that is, the consistency proof. The convergence of a class of
semi-discrete generalized MUSCL schemes for the strictly convex case was obtained
in [19]. For the semi-discrete MUSCL scheme for the convex scalar conservation
laws, some consistency results were announced in [12], [31].

2. Compactness frameworks

In this section we discuss some compactness frameworks for the approximate
solutions for subsequent developments. A pair of functions

(
η(u), q(u)

)
is called an

entropy-entropy flux pair if they satisfy q′(u) = η′(u)f ′(u) . For the scalar case,
any function is an entropy function. In the following theorem and the analysis in
Section 3 and Section 4, we will denote entropy η0(u) = 1

2u
2 for the convex case

and η0(u) = f(u) for the general case.

Theorem 2.1. Consider the scalar conservation laws (1.1) satisfying meas
{
u :

f ′′(u) = 0
}

= 0. Let uh(x, t) be numerical approximate solutions of (1.1) satisfying
the following conditions:

(1) uh is bounded in Lp for some p ≥ 2 and
(
f(uh), η0(uh), q0(uh)

)
is bounded in

L2
loc;

(2) The dissipation measures ∂tuh+∂xf(uh) and ∂tη0(uh)+∂xq0(uh) are compact
in H−1

loc ;

(3) For any C2 convex entropy pair
(
η(u), q(u)

)
, ∂tη(uh)+ ∂xq(uh) ≤ o(1) in D′,

provided that |η(u)|+ |q(u)| ≤M(1 + |u|r), r < p.

Then there is a subsequence (still denoted as) uh such that uh(x, t) → u(x, t) a.e.
as h→ 0 and u is the entropy solution of (1.1) satisfying ∂tη(u)+∂xq(u) ≤ 0 in D′
for any C2 convex entropy pair (η, q).
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We remark that, for general conservation laws, the conditions (1) and (2) imply
that w- lim f(uh) = f(w- limuh) in L2 and the condition (3) implies the following
entropy condition for the Young measures νx,t, determined by the Lax-Wendroff
approximate solutions uh(x, t),

∂t〈νx,t, η〉+ ∂x〈νx,t, q〉 ≤ 0

in the sense of distributions. We refer the reader to Chen-Lu [3] for a detailed
discussion. The proof of the L∞ version of Theorem 2.1 can be found in [2], [3],
[28] using the div-curl lemma of Tartar and Murat [28].

For a 2×2 system of conservation laws endowed with global Riemann invariants,
we have the following similar framework.

Theorem 2.2. Let uh(x, t) be numerical approximate solutions of the 2 × 2 gen-
uinely nonlinear and strictly hyperbolic system of conservation laws (1.1) satisfying
the following conditions:

(1) uh is bounded in L∞;
(2) For any C2 entropy pair (η, q), ∂tη(uh) + ∂xq(uh) is compact in H−1

loc ;
(3) For any C2 convex entropy pair (η, q), ∂tη(uh) + ∂xq(uh) ≤ o(1) in D′.

Then there is a subsequence (still denoted as) uh such that uh(x, t) → u(x, t) a.e.
as h→ 0 and u is the entropy solution of (1.1) satisfying ∂tη(u)+∂xq(u) ≤ 0 in D′
for any C2 convex entropy (η, q).

This theorem is proved by DiPerna [5] by estimating the entropy dissipation
measures and by using the Lax entropy pairs and the compensated compactness
method. An alternative extension proof can be found in [16], [23]. Finally we state
the following two lemmas, which can be found in [17] and [2], respectively.

Lemma 2.1. The embedding of the positive cone of W−1,p in W−1,q
loc is completely

continuous for all q < p.

Lemma 2.2. Let Ω ⊂ Rn be a bounded open set. Then(
compact set of W−1,q

loc (Ω)
) ∩ (bounded set of W−1,r

loc (Ω)
)

⊂ (compact set of H−1
loc (Ω)

)
,

where q and r are constants, 1 < q ≤ 2 < r <∞.

3. Convex scalar conservation laws

In this section we are concerned with the Lax-Wendroff approximate solutions
of the scalar conservation laws (1.1) with flux function f(u) satisfying

f ′′(u) ≥ c0 > 0 , f (k)(u) ∼ O(|u|m−k) , for |u| � 1, k = 0, 1, 2 .(3.1)

For convenience, we write the Lax-Wendroff scheme (1.2) into the form

un+1
j = unj + Fn

j +Hn
j + Jnj ,(3.2)

where

Fn
j = − 1

2λn∆0f(unj ) , Hn
j = 1

2λ
2
n∆−

((
∆+f(unj )

)2
∆+unj

)
,

Jnj = λn∆−
(
β̃nj+1/2|∆+a(u

n
j )|∆+u

n
j

)
,

(3.3)
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with

β̃nj+1/2 = βnj+1/2 + λn
a
(unj +unj+1

2

)−∆+f(unj )/∆+u
n
j

|∆+a(unj )| = βnj+1/2 +O(λn|a′|).

From unj , we construct the Lax-Wendroff approximate solutions on R2
+:

uh(x, t) ≡ unj , for (x, t) ∈ [xj−1/2, xj+1/2)× [tn, tn+1) .(3.4)

Then we have the following main convergence theorem of this section.

Theorem 3.1. Let uh(x, t) be the Lax-Wendroff approximate solutions (3.4) of the
scalar conservation laws (1.1) and (3.1). Assume that the coefficient β0 > 0 is
suitably large and the CFL number ε0 given by (1.3) is suitably small. Then there
exists a subsequence strongly converging to the entropy solution of (1.1) satisfying
the following entropy condition ∂tη(u) + ∂xq(u) ≤ 0 in D′ for any C2 convex
entropy pair (η, q) satisfying η(k)(u) ∼ O(|u|r−k), for |u| � 1, 0 ≤ k ≤ r < 4m.

The proof consists of the following three subsections in which we check the three
conditions in Theorem 2.1, respectively. For simplicity of our proof, we drop the
subscript n and use the following notations:

fj = f(unj ) , aj = a(unj ) , aj+1/2 = a
(unj + unj+1

2

)
,

ηj = η(unj ) , η′j = η′(unj ) , η′′j = η′′(unj ) ,

where η is an entropy function of (1.1). We first introduce the following three
technical lemmas.

Lemma 3.1. If g′(u) ≥ c0 > 0 and g(k)(u) = cku
m−k(1+ o(1)

)
, |u| � 1 , for some

constants ck, k = 0, 1, 2, then there is ū� 1 and α > 0 such that

g(u)− g(v)

u− v
≥ Φ(max(|u|, |v|)) , with Φ(s) =

{
αg′(s) , s ≥ ū ,

c0 , s < ū .

The proof is straightforward and hence is omitted.
Summing by parts, one has

Lemma 3.2. If {aj} and {bj} are two arbitrary sequences, then

∆+(aj∆0bj) = ∆0(aj∆+bj) + ∆−(∆+aj∆+bj),(3.5)

and

2
∑
j

ajbj∆0bj =
∑
j

(∆+bj)
2∆+aj −

∑
j

b 2
j ∆0aj ,(3.6)

provided that the above sums make sense.

Proof. The formula (3.6) comes from a direct computation. Notice that

∆0(ajbj) = aj∆0bj + bj∆0aj + ∆−(∆+aj∆+bj) .

Multiplying both sides of the above equation by bj, taking sum for j, and summing
by parts, one arrives at (3.7).

Using the relation η′f ′ = q′, expanding η at uj in the intervals [uj−1, uj ] and
[uj, uj+1], and using the integration by parts, one has
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Lemma 3.3. If (η, q) is an entropy pair of (1.1), then

η′j∆0fj = ∆0qj − 1
2η
′′
j (∆+uj)

2∆+aj − 1
2η
′′
j ∆−

(
(∆+uj)

2aj
)

+ 1
2η
′′
j

∫ uj+1

uj−1

(uj − s)2a′(s) ds

+ 1
2η
′′′(ξj)

∫ uj+1

uj

(uj − s)2a(s) ds+ 1
2η
′′′(ξj−1)

∫ uj

uj−1

(uj − s)2a(s) ds ,

where ξj−1 and ξj are some values in [uj−1, uj ] and [uj, uj+1], respectively.

Proof. Using the relation η′f ′ = q′ and expanding η at uj in the intervals [uj−1, uj]
and [uj , uj+1], one has

η′j∆0fj = ∆0qj + η′′j

∫ uj+1

uj−1

(uj − s)a(s) ds

+ 1
2η
′′′(ξj)

∫ uj+1

uj

(uj − s)2a(s) ds+ 1
2η
′′′(ξj−1)

∫ uj

uj−1

(uj − s)2a(s) ds,

for some ξj ∈ [uj , uj+1] and ξj−1 ∈ [uj−1, uj]. Now using the integration by parts
to the second term on the right-hand side of the above equation, we obtain the
lemma.

We remark here that we split the remainders in Lemma 3.3 into two cells
[uj−1, uj ] and [uj, uj+1]. A basic reason for this is that we do not require the
L∞ bound of the approximate solutions, and thus need to control the growth rate.
This kind of splitting techniques will be used in several places in this section.

3.1. Lp estimate. We now verify the first condition of Theorem 2.1 for the Lax-
Wendroff scheme (3.2)-(3.3). Since the flux function has the algebraic growth rate
m, we only need to show that uh is bounded in L2 and L4m−2. The method used
here is to estimate the entropy function η with certain required growth rate. In
order to control the growth rate in the compactness analysis in Subsection 3.3, we
estimate the entropy with a growth rate slightly more than that required in this
subsection. For this reason, we choose a strictly convex entropy function

η(u) =
1

4m(4m− 1)
u4m + 1

2u
2(3.7)

and estimate the bound of
∑

η(unj ) for the Lax-Wendroff scheme unj .
We first expand the time increment of

∑
η(unj ) and split it into three terms:∑

j

(
η(un+1

j )− η(unj )
)

=
∑
j

η′(unj )(un+1
j − unj ) + 1

2

∑
j

η′′(unj )(un+1
j − unj )2

+

4m∑
k=3

1
k!

∑
j

η(k)(unj )(un+1
j − unj )

k ≡ I1 + I2 + I3,

(3.8)

which will be estimated in this subsection, where we used the exact expansion to
the highest order to avoid the remainder in [unj , u

n+1
j ], which is difficult to control.
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Estimate of I1. Plugging (3.2) into I1, one has

I1 =
∑
j

η′jJj +
∑
j

η′jHj +
∑
j

η′jFj .(3.9)

To estimate the first term, one uses the expression of Jj in (3.3), the summation
by parts, and Lemma 3.1 to get∑

j

η′jJj = −λ
∑
j

β̃nj+1/2∆+η
′
j |∆+aj |∆+uj ≤ −λβ0

∑
j

Φ(sj)|∆+uj|3 ,(3.10)

where

sj = max(|uj |, |uj+1|), Φ(s) =

{
cs5m−4, s ≥ ū ,

c0, s < ū ,
(3.11)

for some constant c > 0. Note that (3.10) is the sum of products of three first-order
differences due to the fact that the viscosity term is second-order accurate. This is
the main dissipative term that is used to control all of the error terms.

In estimating the second term, one uses the summation by parts and the expres-
sion of Hj in (3.3), and substitutes the expansion

∆+η
′
j = η′′j ∆+uj + 1

2η
′′′(ξj)(∆+uj)

2 ,(3.12)

in the resulting terms to get

∑
j

η′jHj = − 1
2λ

2
∑
j

(∆+fj)
2

∆+uj
∆+η

′
j

= − 1
2λ

2
∑
j

η′′j (∆+fj)
2 − 1

4λ
2
∑
j

η′′′(ξj)(∆+fj)
2∆+uj.

(3.13)

We use the term of the right-hand side in (3.10) to control the second term in (3.13).
Notice that there is a factor (∆+uj)

3 in the second term that can be clearly con-
trolled by the term of the right-hand side in (3.10). The factor in front of the
difference is of growth rate 2(m−1)+4m−4 = 6(m−1) that is larger than 5m−4
in (3.11). Noting that there is also a parameter λ2 in front of this factor, therefore,
we can use the fact λ|∆+fj/∆+uj | ≤ ε0 to control certain powers of the growth
rate to obtain ∑

j

η′jHj ≤ − 1
2λ

2
∑
j

η′′j (∆+fj)
2 + λε0C

∑
j

Φ(sj)|∆+uj|3 ,(3.14)

for some positive constant C > 0. This kind of simple techniques will be used in
several places in the rest of this section and we will omit the detailed explanations.

Here and henceforth, we use the notations ξj and ξ̄j as some values in [uj , uj+1],
and C is a positive constant, independent of the grid size h, the CFL number, the
viscosity constant β, and the numerical solution uh. In different contexts, they may
have different values.
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Now we estimate the term
∑

j η
′
jFj . Writing the expression of Fj in (3.3) in the

integral form and using the conservative property of entropy, one has∑
j

η′jFj = − 1
2λ
∑
j

η′(uj)
∫ uj+1

uj−1

a(s) ds

= 1
2λ
∑
j

∫ uj+1

uj−1

(
η′(s)− η′(uj)

)
a(s) ds

= 1
2λ
∑
j

η′′(uj)
∫ uj+1

uj−1

(s− uj)a(s) ds

+ 1
4λ
∑
j

η′′′(ξj−1)

∫ uj

uj−1

(s− uj)
2a(s) ds

+ 1
4λ
∑
j

η′′′(ξj)
∫ uj+1

uj

(s− uj)
2a(s) ds .

(3.15)

Applying the following integration by parts to the first term in the right-hand side
of the above equality∫ uj+1

uj−1

(s− uj)a(s) ds = 1
2 (∆+uj)

2∆+aj − 1
2

∫ uj+1

uj−1

(s− uj)
2a′(s) ds ,

and plugging the above two estimates back into (3.15), we obtain∑
j

η′jFj ≤ λC
∑
j

Φ(sj)|∆+uj |3 .(3.16)

Finally, one uses (3.10), (3.14), and (3.16) to get the following estimate:

I1 ≤ −λβ0

∑
j

Φ(sj)|∆+uj |3 − 1
2λ

2
∑
j

η′′j (∆+fj)
2 + λ(1 + ε0)C

∑
j

Φ(sj)|∆+uj |3 .
(3.17)

Estimate of I2. Substituting (3.2) into I2 in (3.8), one has the expansion

I2 = 1
2

∑
j

η′′(uj)(F 2
j +H 2

j + 2FjHj + J 2
j + 2Jj(Fj +Hj)) .(3.18)

We now estimate I2 term by term. In estimating the first term in (3.18), one uses
the identity

(∆0fj)
2 = 2(∆+fj)

2 + 2(∆+fj−1)
2 − (∆−∆+fj)

2 ,(3.19)

and a direct estimate of Fj from its expression in (3.3) to get

∑
j

η′′j F
2
j = 1

2λ
2
∑
j

η′′j
(
(∆+fj)

2 + (∆+fj−1)
2
)− 1

4λ
2
∑
j

η′′(uj)(∆−∆+fj)
2

= λ2
∑
j

η′′j (∆+fj)
2 − 1

4λ
2
∑
j

η′′j (∆−∆+fj)
2 + 1

2λ
2
∑
j

∆+η
′′
j (∆+fj)

2 .
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In the first and third terms on the right-hand side of the above inequality, one
uses the Taylor expansion for ∆+fj and some simple calculations used in estimat-
ing (3.13) to obtain∑

j

η′′j F
2
j ≤λ2

∑
j

η′′j a
2
j+1/2(∆+uj)

2 − 1
4λ

2
∑
j

η′′j (∆−∆+fj)
2

+ λε0C
∑
j

Φ(sj)|∆+uj |3 .
(3.20)

Notice that the first term on the right-hand side of (3.20) is exactly the same as the
second term on that of (3.17) except with a different sign, which cancel each other.
The second term on the right-hand side of (3.20) is a sum of squares of second-order
differences in a favorable sign. We will use it to control a similar term below.

To estimate the second term in (3.18), we use the identity

∆−

(
(∆+fj)

2

∆+uj

)
= ∆−∆+fj

∆+fj−1

∆+uj−1
+ ∆+fj ∆−

(
∆+fj
∆+uj

)
,(3.21)

and directly estimate the expression of Hj in (3.3) to get

∑
j

η′′jH
2
j ≤ 1

2λ
4
∑
j

η′′j (∆−∆+fj)
2

(
∆+fj−1

∆+uj−1

)2

+ 1
2λ

4
∑
j

η′′j (∆+fj)
2

(
∆−

(
∆+fj
∆+uj

))2

.

The first term on the right-hand side of the above inequality can be controlled by
the second term on the right-hand side of (3.20) in view of the fact that the CFL
number is less than 1. The last term of the above inequality involves three points.
Hence we split it into the following two terms by using the Taylor expansion for a
in the intervals [uj−1, uj] and [uj , uj+1]:

λ4
∑
j

η′′j (∆+fj)
2

(
∆−

(
∆+fj
∆+uj

))2

≤ 2λε 3
0

∑
j

η′′j (∆+uj)
2

(
∆−

(
∆+fj
∆+uj

))2

≤ λε 3
0

∑
j

η′′j |a′(ξj−1)||∆−uj|(∆+uj)
2

+ λε 3
0

∑
j

η′′j |a′(ξj)||∆+uj |(∆+uj)
2 .

The last term only involves two points and hence can be directly estimated. In the
last second term, we use the Hölder inequality to split it again to obtain∑

j

η′′j |a′(ξj−1)||∆−uj |(∆+uj)
2 ≤

∑
j

|uj |4m−2|sj−1|m−2|∆−uj |(∆+uj)
2

≤ C
∑
j

Φ(sj)|∆+uj |3 .
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The methods used here will be applied to estimating the similar terms. With the
above three estimates, we arrive at

∑
j

η′′jH
2
j ≤ 1

2λ
4
∑
j

η′′j (∆−∆+fj)
2

(
∆+fj−1

∆+uj−1

)2

+ λε 3
0C
∑
j

Φ(sj)|∆+uj |3 .
(3.22)

The third term in (3.18) consists of products of a factor of first-order difference and
a factor of second-order difference, we utilize a symmetric property to transform it
into a sum of products of three differences. In doing this, we first split the positive
function η′′, and sum by parts to get

− 1
4λ

3
∑
j

η′′j ∆0fj∆−

(
(∆+fj)

2

∆+uj

)

= − 1
4λ

3
∑
j

√
η′′j ∆0fj

[
∆−

(√
η′′j

(∆+fj)
2

∆+uj

)
−∆−

√
η′′j

(∆+fj−1)
2

∆+uj−1

]

= 1
4λ

3
∑
j

(√
η′′j ∆+fj

)
∆+

(√
η′′j ∆0fj

∆+fj
∆+uj

)

+ 1
4λ

3
∑
j

√
η′′j ∆0fj∆−

√
η′′j

(∆+fj−1)
2

∆+uj−1
.

(3.23)

Now the last term consists of products of three differences and hence can be di-
rectly estimated. The first term has some symmetric property after switching the
difference operator ∆+ with ∆0. This can be done by using Lemma 3.2 as follows.

∑
j

(√
η′′j ∆+fj

)
∆+

(√
η′′j ∆0fj

)∆+fj
∆+uj

=
∑
j

(√
η′′j ∆+fj

)
∆0

(√
η′′j ∆+fj

)∆+fj
∆+uj

+
∑
j

(√
η′′j ∆+fj

)
∆−
(
∆+

√
η′′j ∆+fj

)∆+fj
∆+uj

.

Again the last term in the above equality is a sum of products of three differences in
uj and hence can be estimated directly. The first term can now be transformed into
a sum of products of three differences by using Lemma 3.3 where bj are replaced

by
√
η′′j ∆+fj .

∑
j

(√
η′′j ∆+fj

)
∆0

(√
η′′j ∆+fj

)∆+fj
∆+uj

= 1
2

∑
j

(
∆+

(√
η′′j ∆+fj

))2

∆+

(
∆+fj
∆+uj

)

− 1
2

∑
j

(√
η′′j ∆+fj

)2
∆0

(
∆+fj
∆+uj

)
.

(3.24)

Finally, combining all the estimates (3.23)-(3.24), we arrive at∑
j

η′′j FjHj ≤ λε 2
0C
∑
j

Φ(sj)|∆+uj |3 .(3.25)
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Estimating the remainder three terms in (3.18) is rather simple since each of
them consists of more than three difference factors. We estimate them as follows:

∑
j

η′′j J
2
j = λ2

∑
j

η′′j
(
∆−(β̃nj+1/2|∆+aj |∆+uj)

)2 ≤ λε0β
2
1C
∑
j

Φ(sj)|∆+uj |3 ,
(3.26)

and

2
∑
j

η′′j Jj(Fj +Hj) = −λ2
∑
j

η′′j ∆−(β̃nj+1/2|∆+aj |∆+uj)∆0fj

+ λ3
∑
j

η′′j ∆−(β̃nj+1/2|∆+aj |∆+uj)∆−(aj+1/2∆+fj)

≤ λ(ε0 + ε 2
0 )β1C

∑
j

Φ(sj)|∆+uj|3 .

(3.27)

The estimate of I2 is now completed by combining (3.20) and (3.22) with (3.25)-
(3.27).

I2 ≤ 1
2λ

2
∑
j

η′′j a
2
j+1/2(∆+uj)

2 − 1
8λ

2
∑
j

(1 − 2λ2a 2
j−1/2)η

′′
j (∆−∆+fj)

2

+ λε0(1 + ε0 + ε 2
0 + β1 + β2

1)C
∑
j

Φ(sj)|∆+uj|3 .
(3.28)

Estimate of I3. The estimate of I3 is rather easy. We first substitute the expan-
sion of un+1

j − unj in (3.2)-(3.3) into I3 to get

|I3| ≤
4m∑
k=3

3k

k!

∑
j

|η(k)(unj )|(|Fj |k + |Hj |k + |Jj |k
)
.(3.29)

Using the expressions in (3.3), we have

|I3| ≤
4m∑
k=3

3k

k!

∑
j

|η(k)(unj )|
(
λk|∆+fj |k + λk|∆−fj |k + λ2k|aj+1/2∆+fj |k

+ λ2k|aj−1/2∆−fj|k + (2λβ1)
k|∆+aj∆+uj|k + (2λβ1)

k|∆−aj∆−uj|k
)

≤ λC

4m∑
k=3

(
ε k−1
0 + ε 2k−1

0 + ε k−1
0 βk1

)∑
j

Φ(sj)|∆+uj|3 .

(3.30)

We have now estimated all I1, I2, and I3. Using (3.17), (3.28), and (3.30), we
obtain∑

j

(ηn+1
j − ηnj ) ≤ −λ

2
β0

∑
j

Φ(sj)|∆+aj|3 − 1
8λ

2
(
1− 2ε20

)∑
j

η′′j (∆−∆+fj)
2

+ λC

(
1 + ε0β1 +

4m∑
k=2

ε k−1
0 βk1

)∑
j

Φ(sj)|∆+uj |3 .
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Choosing β0 large and ε0β1 small, one has∑
j

(ηn+1
j − ηnj ) ≤ −λC1

∑
j

Φ(sj)|∆+aj |3 − λ2C2

∑
j

(∆−∆+fj)
2 .

This gives the following proposition.

Proposition 3.1. Under the same assumptions of Theorem 3.1, we have∑
j

η(unj )h + λ
∑
k≤n;j

Φ(skj )|∆+u
k
j |3h + λ2

∑
k≤n;j

(
∆−∆+f(ukj )

)2
h ≤ C,(3.31)

where η is the entropy function given by (3.7).

As an immediate consequence, we have

Corollary 3.1. Under the same assumptions of Theorem 3.1, we have

‖uh‖L4m
loc

+
∥∥(f(uh), η0(uh), q0(uh)

)∥∥
L

4m/(2m−1)
loc

≤ C , C independent of h,

where (η0, q0) is the entropy pair given by (2.2).

3.2. Entropy inequality. We now estimate the entropy inequalities as stated in
the third condition in Theorem 2.1 for the entropy functions of form

η(k)(u) ∼ O(|u|2`−k) , for |u| � 1, k = 0, 1, · · · , 2`,(3.32)

where ` ≤ 2m is a positive integer. In the next subsection, we will use the integer
` ≤ (13m−3)/6 in the compactness arguments. We will always take ` ≤ (3m+1)/2
for using Theorem 2.1 to ensure the entropy inequalities. For any φ(x, t) ∈ C1

0 ,
φ ≥ 0, denote φnj = φ(xj , tn) and

Ih(φ) ≡ h
∑
j,n

φnj
(
η(un+1

j )− η(unj )
)

+ 1
2λh

∑
j,n

φnj
(
q(unj+1)− q(unj−1)

)
.

We decompose Ih into the following three terms that are similar to (3.8).

Ih(φ) = h
∑
j,n

φnj η
′
jJj + h

∑
j,n

φnj η
′
jHj + h

∑
j,n

φnj
(
η′jFj + 1

2λ∆0qj
)

+ 1
2h
∑
j,n

φnj η
′′
j

(
F 2
j +H 2

j + 2FjHj + J 2
j + 2Jj(Fj +Hj)

)
+ h

2`−1∑
k=3

1
k!

∑
j,n

φnj η
(k)
j (Fj +Hj + Jj)

k

+ h 1
(2`)!

∑
j,n

φnj η
(2`)(ξ∗)(Fj +Hj + Jj)

2`

= Ih1 (φ) + Ih2 (φ) + Ih3 (φ) .

(3.33)

Notice that there is a remainder term in I3 with ξ∗ ∈ [unj , u
n+1
j ]. This term can

be estimated by using the fact that η(2`) is uniformly bounded for the entropy
functions of form (3.32). We now estimate all these terms in the same order as those
in Subsection 3.1 to keep consistency. We will skip some parts of the estimates,
which are similar to the corresponding parts in the previous subsection.
Estimate of Ih1 . Similar to the estimate (3.10), one can use the identity

∆+(φnj η
′
j) = 1

2 (φnj + φnj+1)∆+η
′
j + 1

2 (η′j + η′j+1)∆+φ
n
j(3.34)
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and the expression of Jj in (3.3) to get∑
j,n

φnj η
′
jJj =− 1

2λ
∑
j,n

β̃nj+1/2(φ
n
j + φnj+1)∆+η

′
j |∆+aj |∆+uj

− 1
2λ
∑
j,n

β̃nj+1/2(η
′
j + η′j+1)∆+φ

n
j |∆+aj |∆+uj .

Applying Lemma 3.1 to the first term on the right-hand side and estimating the
second term directly, one has∑

j,n

φnj η
′
jJj ≤− 1

2λβ0

∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj |3

+ λβ1C
∑
j,n

sjΦ(sj)|∆+uj|2|∆+φ
n
j | ,

(3.35)

where sj and Φ(s) are determined by (3.11). With this good term in our hands, we
now estimate other terms. Notice that∑

j,n

φnj η
′
jHj = − 1

2λ
2
∑
j,n

φnj ∆+η
′
j

(∆+fj)
2

∆+uj
− 1

2λ
2
∑
j,n

η′j+1∆+φ
n
j

(∆+fj)
2

∆+uj
.

As in estimating (3.13)-(3.14), expanding ∆+η
′
j and ∆+fj in the first term on the

right-hand side of the above equality and estimating the resulting terms directly,
we have ∑

j,n

φnj η
′
jHj ≤− 1

2λ
2
∑
j,n

φnj η
′′
j (∆+fj)

2 + λε0C
∑
j,n

φnj Φ(sj)|∆+uj|3

+ λε0C
∑
j,n

sjΦ(sj)|∆+uj |2|∆+φ
n
j | .

(3.36)

Using Lemma 3.4, one has

∑
j,n

φnj
(
η′jFj + 1

2λ∆0qj
)

= − 1
2λ
∑
j,n

φnj
(
η′j∆0fj −∆0qj

)
= 1

4λ
∑
j,n

φnj

(
η′′j (∆+uj)

2∆+aj − η′′j

∫ uj+1

uj−1

(uj − s)2a′(s) ds
)

− 1
4λ
∑
j,n

φnj aj∆+η
′′
j (∆+uj)

2 − 1
4λ
∑
j,n

η′′j+1aj(∆+uj)
2∆+φ

n
j

− 1
4λ
∑
j,n

φnj

[
η′′′(ξj)

∫ uj+1

uj

(uj − s)2a(s) ds + η′′′(ξj−1)

∫ uj

uj−1

(uj − s)2a(s) ds

]
.

Each term on the right-hand side of the above equality is the sum of products of
three differences and, therefore, can be directly estimated by similar arguments as
in (3.15)-(3.16).∑

j,n

φnj
(
η′jFj + 1

2λ∆0qj
)

≤ λC
∑
j,n

[
(φnj + φnj+1)Φ(sj)|∆+uj |3 + sjΦ(sj)|∆+uj |2|∆+φ

n
j |
]
.

(3.37)
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Using (3.35)-(3.37), we have

Ih1 (φ) ≤ − 1
2λβ0h

∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj |3 − 1
2λ

2h
∑
j,n

φnj η
′′
j (∆+fj)

2

+ λ(1 + ε0 + β1)Ch
∑
j,n

[
(φnj + φnj+1)Φ(sj)|∆+uj |3

+ sjΦ(sj)|∆+uj |2|∆+φ
n
j |
]
.

(3.38)

Estimate of Ih2 . Using the identity (3.19), one can decompose the first term in
Ih2 and estimate similar to that of (3.20) to obtain

∑
j,n

φnj η
′′
j F

2
j = 1

2λ
2
∑
j,n

φnj (η′′j + η′′j+1)(∆+fj)
2 − 1

4λ
2
∑
j,n

φnj η
′′
j (∆−∆+fj)

2

+ 1
2λ

2
∑
j,n

η′′j+1(∆+fj)
2∆+φ

n
j

≤ λ2
∑
j,n

φnj a
2
j+1/2η

′′
j (∆+uj)

2 − 1
4λ

2
∑
j,n

φnj η
′′
j (∆−∆+fj)

2

+ λε0C
∑
j,n

[
(φnj + φnj+1)Φ(sj)|∆+aj|3 + sjΦ(sj)|∆+uj|2|∆+φ

n
j |
]
.

(3.39)

Estimating the second term of Ih2 is similar to that of (3.21)-(3.22) by

∑
j,n

φnj η
′′
jH

2
j ≤ 1

2λ
4
∑
j,n

φnj η
′′
j (∆−∆+fj)

2

(
∆+fj−1

∆+uj−1

)2

+ λε 3
0C
∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj |3 .
(3.40)

The main idea in estimating the third term in Ih2 is to utilize the symmetric property.
It involves some similar techniques as in estimating (3.23) and (3.24). We omit
detailed calculations here and write down the resulting terms as follows:

∑
j,n

φnj η
′′
j FjHj = − 1

4λ
3
∑
j,n

φnj η
′′
j ∆0fj∆−

(
(∆+fj)

2

∆+uj

)

= − 1
8λ

3
∑
j,n

[(√
η′′j ∆+fj

)2
∆0

(
φnj

∆+fj
∆+uj

)

−∆+

(
φnj

∆+fj
∆+uj

)(
∆+

(√
η′′j ∆+fj

))2]
+ 1

4λ
3
∑
j,n

√
η′′j

[
(∆+fj)

2

∆+uj
∆−

(
∆+

(
φnj

√
η′′j
)
∆+fj

)

+ φnj ∆0fj
(∆+fj−1)

2

∆+uj−1
∆−
√
η′′j

]
.
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Clearly the terms on the right-hand side of the above equality are the sums of three
difference products of unj and hence can be estimated directly.∑

j,n

φnj η
′′
j FjHj ≤ λε 2

0C
∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj|3

+ λε 2
0C
∑
j,n

sjΦ(sj)|∆+uj |2
(|∆+φ

n
j |+ |∆−φnj |

)
.

(3.41)

The remainder three terms in Ih2 can be similarly estimated as in the estimates (3.26)
and (3.27). ∑

j,n

φnj η
′′
j J

2
j + 2

∑
j,n

φnj η
′′
j Jj(Fj +Hj)

≤ λε0(β1 + β2
1)C

∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj |3 .
(3.42)

Therefore, combining (3.39)-(3.40) with (3.41)-(3.42), we have the following esti-
mate for Ih2 :

Ih2 (φ) ≤ 1
2λ

2h
∑
j,n

φnj η
′′
j (∆+fj)

2 − 1
8λ

2h
∑
j,n

φnj (1− 2ε20)η
′′
j (∆−∆+fj)

2

+ λCε0(1 + ε0 + ε 2
0 + β + β2)h

∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj|3

+ λε0(1 + ε0)Ch
∑
j,n

sjΦ(sj)|∆+uj|2
(|∆+φ

n
j |+ |∆−φnj |

)
.

(3.43)

Estimating Ih3 is straightforward as in that of (3.29) and (3.30). One can obtain

Ih3 (φ) ≤ λCh

4m∑
k=3

(
ε k−1
0 + ε 2k−1

0 + ε k−1
0 βk

)∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj |3 .(3.44)

Finally, we have the following estimate of Ih after combining (3.38) with (3.43)-
(3.44):

Ih(φ) ≤ − 1
4λβ0h

∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj |3

− 1
8λ

2(1− 2ε 2
0 )h

∑
j,n

φnj η
′′
j (∆−∆+fj)

2

+ λ(1 + ε0 + β1)Ch
∑
j,n

sjΦ(sj)|∆+uj |2
(|∆+φ

n
j |+ |∆−φnj |

)
+ λC

(
1 + ε0β1 +

4m∑
k=2

ε k−1
0 βk1

)
h
∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj |3 .

Choose β0 large and ε0β1 small. Then we have

Ih(φ) ≤ − 1
8λβ0h

∑
j,n

(φnj + φnj+1)Φ(sj)|∆+uj |3

+ λβ1Ch
∑
j,n

sjΦ(sj)|∆+uj |2
(|∆+φ

n
j |+ |∆−φnj |

)
.
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Now we deal with the last term in the above inequality. From the Hölder in-
equality, one has

λh
∑
j,n

sjΦ(sj)|∆+uj|2
(|∆+φ

n
j |+ |∆−φnj |

) ≤ λh1+α‖φ‖Cα

∑
(xj,tn)∈Ω

Φ(sj)sj(∆+u)2

≤ Chα−1/3‖φ‖Cα

 ∑
(xj ,tn)∈Ω

s 6`−9m+3
j τnh

1/3 ∑
(xj ,tn)∈Ω

Φ(sj)|∆+u|3h
2/3

.

Let 6`− 9m+ 3 ≤ 4m. Then

λh
∑
j,n

sjΦ(sj)|∆+uj|2
(|∆+φ

n
j |+ |∆−φnj |

) ≤ Chα−1/3‖φ‖Cα .

Substituting it back to (3.33), we have the following proposition.

Proposition 3.2. Under the same assumptions of Theorem 3.1,

∑
j,n

φnj
(
η(un+1

j )− η(unj )
)
h+ 1

2λ
∑
j,n

φnj
(
q(unj+1)− q(unj−1)

)
h ≤ Chα−1/3‖φ‖Cα

(3.45)

holds for any φ ∈ C1
0 , φ ≥ 0, where (η, q) is the entropy pair given by (3.32).

3.3. H−1 compactness of entropy dissipation measures. For the entropy
pair (η, q), we define the following functional as the entropy dissipation measures

Mh(φ) =

∫ ∫ (
η(uh)∂tφ+ q(uh)∂xφ

)
dxdt , φ ∈ C1

0 ,(3.46)

for the approximate solutions uh(x, t) defined by (3.4). In this subsection, we will
show that Mh is compact in H−1 for the entropy pairs (u, f(u)) and (η0, q0) with
η0(u) = u2.

From Proposition 3.1, we can easily get from the Hölder inequality that |Mh(φ)|
≤ C‖φ‖W 1,(2m+1)/(4m) . Hence Mh is bounded in W−1,q

loc for q= 2m−1
4m >2. Lemma 2.2

tells us that Mh is compact in H−1
loc as long as we can prove that Mh is compact in

W−1,p
loc for some p < 2. We define the following two functionals:

Ih(φ) =
∑
j,n

φnj
(
η(un+1

j )− η(unj )
)
h+ 1

2λ
∑
j,n

φnj
(
q(unj+1)− q(unj−1)

)
h ,(3.47)

and ∆h(φ) = Ih(φ) + Mh(φ) for any strictly convex entropy (η, q) and φ ∈ C1
0 . It

is easy to show that

∆h(φ) = −
∑
j,n

(ηn+1
j − ηnj )

∫ xj+1/2

xj−1/2

(
φ(x, tn+1)− φ(xj , tn)

)
dx

− 1
2

∑
j,n

(qnj+1 − qnj )

∫ tn+1

tn

(
2φ(xj+1/2, t)− φ(xj , tn)− φ(xj+1, tn)

)
dt .

(3.48)
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Estimating directly and using the Hölder inequality and Proposition 3.1, one obtains

|∆h(φ)| ≤ ‖φ‖Cα

∑
(xj ,tn)∈Ω

(|ηn+1
j − ηnj |h1+α + |qnj+1 − qnj |τnhα

)
≤ h1+α‖φ‖Cα

∑
(xj ,tn)∈Ω

(
2∑

k=1

3k

k!
|η(k)
j |(|Fj |k + |Hj |k + |Jj |k

)
+ λ|q′(ξj)||∆+u

n
j |
)

≤ λCh1+α‖φ‖Cα

∑
(xj,tn)∈Ω

Φ(sj)
1/3|∆+u

n
j |

≤ λ1/3Chα−2/3‖φ‖Cα → 0 , for 2
3 < α < 1 .

(3.49)

This implies that ∆h is compact in W−1,p1

loc for p1 < 2
1+α < 2. We know from

Proposition 3.2 that Ih can be split as Ih(φ) = Ih1 (φ) + Ih2 (φ) such that

Ih1 ≤ 0 , |Ih2 (φ)| ≤ Chα−1/3‖φ‖Cα .(3.50)

Consequently, we have that Ih2 is compact in W−1,p2

loc for 1 < p2 < 2. The remainder

is to show that Ih1 is also compact in W−1,p
loc for some p < 2. Since Ih1 is negative due

to (3.50), we know from Lemma 2.1 that we only need to show that Ih1 is bounded

in W−1,p
loc for some p < 2. This is a direct consequence of (3.46), (3.49), and (3.50).

Thus, we have the following proposition.

Proposition 3.3. Under the same assumptions of Theorem 3.1,

∂tuh + ∂xf(uh) , ∂tη0(uh) + ∂xq0(uh) are compact in H−1
loc(3.51)

where (η0, q0) is the entropy pair given by (2.2).

As a consequence of Theorem 2.1, Corollary 3.1, Proposition 3.2, and Proposi-
tion 3.3, we conclude Theorem 3.1 for the convex scalar conservation laws.

4. Extension to the nonconvex case

For the nonconvex scalar conservation laws, the second-order numerical viscosity
term

λ∆−
(
βnj+1/2|∆+f

′(unj )|∆+u
n
j

)
is degenerate at the points {u | f ′′(u) = 0}. Typically such a degenerate point
occurs near the contact discontinuities, which is quite sensitive to the stability of
the discontinuities.

To assume the stability, we consider the following second-order numerical vis-
cosity in the Lax-Wendroff schemes:

λ∆−
(
βnj+1/2|∆+u

n
j |∆+u

n
j

)
(4.1)

with βnj+1/2 ∈
(
β0 +O(|a′|), β1 +O(|a′|)), β0 > 0, for the nonconvex scalar case.

This covers both the convex case (the convexity implies β0 > 0) and the non-
convex case. With such a numerical viscosity we can use the same arguments as in
Section 3, when C � 1 and ε0 � 1, to obtain the same viscosity estimate∑

j,n

Φ(sj)|unj − unj+1|3h ≤ C(4.2)
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and entropy estimate ∑
j

η(un+1
j ) ≤

∑
j

η(unj )(4.3)

for η′′ = u4m. Using these estimates, we can similarly verify that the corresponding
approximate solutions uh(x, t) satisfy the three conditions in Theorem 2.1 for any
convex entropy pair. Therefore we have the following convergence theorem for the
scalar conservation laws (1.1) whose flux functions satisfy

meas
{
u | f ′′(u) = 0

}
= 0, f (k)(u) ∼ O(|u|m−k) , for |u| � 1, 0 ≤ k ≤ m.

(4.4)

Theorem 4.1. Let uh(x, t) be numerical approximate solutions, generated from the
Lax-Wendroff scheme (1.2) endowed with the numerical viscosity (4.1), of the scalar
conservation laws (1.1) satisfying (4.4). Assume that the coefficient β0 in (4.1) is
suitably large and the CFL number ε0 given by (1.4) is suitably small. Then the se-
quence uh has a strong convergent subsequence and the limit function is the entropy
solution of (1.1) satisfying the entropy inequalities ∂tη(u) + ∂xq(u) ≤ 0 in D′ ,
for any convex entropy pair (η, q) satisfying η(k)(u) ∼ O(|u|r−k), for |u| � 1,
0 ≤ k ≤ r < 4m.

Proof. Only one thing we should check is that, for any such a C2 entropy pair
(η(u), q(u)), ∂tη(uh)+∂xq(uh) is compact in H−1

loc . This can be achieved as follows.
For any C2 entropy pair (η, q), there exists C0 > 0 such that |η′′| ≤ C0|η′′∗ | where
η∗ is a strictly convex entropy. Define η̄ = C0η∗ − η. Then η̄ is a convex entropy.
Noting that both ∂tη̄(uh) + ∂xq̄(uh) and ∂tη∗(uh) + ∂xq∗(uh) are compact sets in
H−1

loc , one obtains that ∂tη(uh) + ∂xq(uh) is compact in H−1
loc . This completes the

proof.

Remark. The assumption (4.4) can be relaxed to more general flux functions for the
Lax-Wendroff scheme. The strong convergence becomes weak one in Lr, r < 4m,
and the limit function is the weak solution satisfying the entropy condition for
the Young measures νx,t determined by the Lax-Wendroff approximate solutions
uh(x, t):

∂t〈νx,t, η〉+ ∂x〈νx,t, q〉 ≤ 0,

for any convex entropy pair (η, q) in the above theorem.

5. Extension to hyperbolic systems

We write the Lax-Wendroff scheme in the following form

un+1
j = unj + Fn

j +Hn
j + Jnj .(5.1)

Here

Fn
j = − 1

2λ∆0f(unj ) , Hn
j = 1

2λ
2∆−

(
a
(unj + unj+1

2

)
∆+f(unj )

)
,

Jnj = λ∆−
(
βnj+1/2|∆+u

n
j |∆+u

n
j

)
,

(5.2)

where the scalar function βnj+1/2 ≥ β0 > 0, for some β0, is smooth with respect to

unj and unj+1 and is bounded from below. We assume that

sup
j,n

|unj | ≤M .(5.3)



CONVERGENCE OF DIFFERENCE SCHEMES WITH HIGH RESOLUTION 1045

In this section we show the convergence of such a scheme for 2× 2 systems and
the entropy consistency of the boundedly convergent Lax-Wendroff approximate so-
lutions with general hyperbolic systems of conservation laws with a convex entropy.
This depends on the following estimates.

5.1. Dissipation estimates. We first start with the entropy estimate. Let η be
a C2 convex entropy function. As in the scalar case, we take the Taylor expansion
to the time increment of the entropy to get∑

j

(
η(un+1

j )− η(unj )
)

=
∑
j

η′(unj )(un+1
j − unj )

+ 1
2

∑
j

(un+1
j − unj )>η′′(unj )(un+1

j − unj )

+
∑
j

O
(|un+1

j − unj |3
) ≡ I1 + I2 + I3 .

(5.4)

We will keep the same order of the estimates as in Section 3 and will only emphasize
the new features, which are different from the scalar case. The arguments similar
to those in Section 3 will be omitted. We point out here that some of the estimates
in this section are simpler than the ones in Section 3 since we assumed the uniform
boundedness of the approximate solutions.
Estimate of I1. As in (3.11), we directly estimate that∑

j

(η′j)
>Jj = −λ

∑
j

βj+1/2|∆+uj |∆+(η′j)
>∆+uj ≤ −λβ0

∑
j

|∆+uj |3 ,(5.5)

using the expression of Jj in (5.2), the summation by parts, and the convexity of
η. This gives us the main dissipative term. Here we used the notation βj+1/2 =
β(uj , uj+1), which is a scalar function. We remark that (5.5) is the only place we
restrict the viscosity β(uj , uj+1) to be a scalar function.

As in estimating (3.13) and (3.14), we have∑
j

(η′j)
>Hj = − 1

2λ
2
∑
j

(∆+η
′
j)
>aj+1/2∆+fj

= − 1
2λ

2
∑
j

(∆+uj)
>η′′j aj∆+fj + λε0

∑
j

O(|∆+uj |3) .
(5.6)

Notice that the necessary and sufficient condition for a function η to be an entropy
is that η′′f ′ is symmetric, that is, η′′j aj = (aj)

>η′′j . One has from (5.6)∑
j

(η′j)
>Hj = − 1

2λ
2
∑
j

(∆+fj)
>η′′j ∆+fj + λε0

∑
j

O(|∆+uj|3) .(5.7)

In estimating the first term of I1, we use the conservative property of entropy.
Denote ūj = 1

2 (uj−1 + uj+1). Similar to (3.16)-(3.17), one can obtain

∑
j

(η′j)
>Fj = − 1

2λ
∑
j

(η′j)
>
∫ 1/2

−1/2

a(ūj + θ∆0uj) dθ∆0uj = λε0
∑
j

O(|∆+uj|3) .
(5.8)

Combining (5.5) with (5.7)-(5.8), we have the following estimate of I1.

I1 ≤ −λβ0

∑
j

|∆+uj |3 + λε0C|∆+uj|3 − 1
2λ

2
∑
j

(∆+fj)
>η′′j ∆+fj .(5.9)
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Estimate of I2. As in (3.19), we substitute (5.1)-(5.2) into I2 and have the follow-
ing expansion.

I2 =1
2

∑
j

F>j η
′′
j Fj + 1

2

∑
j

H>
j η

′′
jHj +

∑
j

F>j η
′′
jHj

+ 1
2

∑
j

J>j η
′′
j Jj +

∑
j

J>j η
′′
j (Fj +Hj) .

(5.10)

The estimate of the first term in (5.10) is similar to that in (3.20)-(3.22) by the
identity (3.20). Putting all products of three differences together in O(|∆+uj |3),
one has ∑

j

F>j η
′′
j Fj =λ2

∑
j

(∆+fj)
>η′′j ∆+fj − 1

4λ
2
∑
j

(∆−∆+fj)
>η′′j ∆−∆+fj

+ λε0
∑
j

O(|∆+uj|3).
(5.11)

The estimate of the second term in (5.10) is similar to that in (3.23)-(3.24). After
putting all products of three differences in O(|∆+u

n
j |), the remainder term is the

sum of products of two second differences, which can be controlled by the last term
in (5.11).

∑
j

H>
j η

′′
jHj = 1

4λ
4
∑
j

∆−(aj+1/2∆+fj)
>η′′j ∆−(aj+1/2∆+fj)

= 1
4λ

4
∑
j

(∆−∆+fj)
>a>j η

′′
j aj∆−∆+fj + λε 3

0

∑
j

O(|∆+uj |3) .

(5.12)

The main idea in estimating the third term in (5.10) is to utilize the symmetric
property so that every term can be combined into the product of three differences.
For any symmetric matrix A, we have as in Lemma 3.1 that

−
∑
j

(∆0bj)
>Abj = 1

2

∑
j

b>j ∆0Abj − 1
2

∑
j

(∆+bj)
>∆+A∆+bj .(5.13)

Similar to (3.25)-(3.27), we have∑
j

F>j η
′′
jHj = − 1

4λ
3
∑
j

(∆0fj)
>η′′j ∆−(aj+1/2∆+uj)

= 1
4λ

3
∑
j

∆0

(√
η′′j ∆+fj

)>√
η′′j aj∆+uj + λε 2

0

∑
j

O(|∆+uj |3) .

We know from (5.6) that
√
η′′j aj

(√
η′′j
)−1

is symmetric. Hence we can apply the

identity (5.13) to the first term on the right-hand side of the above equality with

bj replaced by
√
η′′j ∆+fj . As a result that every term now is decomposed as the

product of three differences, we obtain∑
j

F>j η
′′
jHj = λε 2

0

∑
j

O(|∆+uj |3) .(5.14)

The estimate of the last three terms in (5.10) is rather straightforward since
every term is the sum of products of more than three differences. One has from a
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direct estimate that∑
j

J>j η
′′
j Jj + 2

∑
j

J>j η
′′
j (Fj +Hj) ≤ λε0

∑
j

O(|∆+uj|3) .(5.15)

Finally, combining (5.11)-(5.12) with (5.14)-(5.15), we have

I2 ≤ 1
2λ

2
∑
j

(∆+fj)
>η′′j ∆+fj − 1

8λ
2
∑
j

(∆−∆+fj)
>η′′j ∆−∆+fj

+ 1
4λ

4
∑
j

(∆−∆+fj)
>a>j η

′′
j aj∆−∆+fj + λε0

∑
j

O(|∆+uj |3) .
(5.16)

Estimating I3 simply follows from the fact that each term is the sum of products
of more than three difference factors

|I3| ≤ C
∑
j

(|Fj |3 + |Hj |3 + |Jj |3) ≤ λε 2
0C
∑
j

|∆+uj|3 .(5.17)

Combining (5.9) with (5.16), we have

∑
j

(ηn+1
j − ηnj ) ≤− λβ0

∑
j

|∆+uj|3 − 1
8λ

2(1− ε 2
0 )
∑
j

(∆−∆+fj)
>η′′j ∆−∆+fj

+ λ(1 + ε0 + ε 2
0 )C

∑
j

|∆+uj |3 .

For β0 large and ε0 small, we have∑
j

(ηn+1
j − ηnj ) ≤ −λC1

∑
j

|∆+uj |3 − λ2C2

∑
j

|∆−∆+fj |2 .

This gives

Proposition 5.1. Let unj be the Lax-Wendroff approximate solutions (5.1)-(5.2) of

the hyperbolic systems of conservation laws (1.1) with a convex entropy η. Assume
that uh is uniformly bound and the coefficient β in (5.2) is suitably large and the
CFL number ε0 given by (1.3) is suitably small. Then∑

j

η(unj )h + λ
∑
k≤n;j

|∆+u
k
j |3h+ λ2

∑
k≤n;j

|∆−∆+f(ukj )|2h ≤ C .(5.18)

5.2. H−1 compactness estimates. For any C2 convex entropy pair (η, q) and
any φ(x, t) ∈ C1

0 , φ ≥ 0, we denote φnj = φ(xj , tn) and

Ih(φ) ≡ h
∑
j,n

φnj
(
η(un+1

j )− η(unj )
)

+ 1
2λ
∑
j,n

φnj
(
q(unj+1)− q(unj−1)

)
.

As (3.37), we have from the Taylor expansion that

Ih(φ) = h
∑
j,n

φnj
(
(η′j)

>Fj + 1
2λ∆0qj + (η′j)

>Hj + (η′j)
>Jj

)
+ 1

2h
∑
j,n

φnj (Fj +Hj + Jj)
>η′′j (Fj +Hj + Jj)

+ 1
2h
∑
j,n

φnj η
′′′(ξ)(Fj +Hj + Jj)

3 ≡ Ih1 (φ) + Ih2 (φ) + Ih3 (φ) .

(5.19)
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Estimate of Ih1 . The estimate of the last term in Ih1 is similar to that in (3.38)
and (3.39).∑

j,n

φnj (η′j)
>Jj ≤ − 1

2λβ0

∑
j,n

(φnj + φnj+1)|∆+aj |3 + λC
∑
j,n

|∆+uj |2|∆+φ
n
j | .(5.20)

Similar to that in (3.41), one can obtain

∑
j,n

φnj (η′j)
>Hj ≤− 1

2λ
2
∑
j,n

φnj (∆+fj)
>η′′j ∆+fj + λε0C

∑
j,n

(φnj + φnj+1)|∆+uj |3

+ λε0C
∑
j,n

|∆+uj|2|∆+φ
n
j | .

(5.21)

The estimate of the first term in Ih1 is similar to that in (3.40). One has

∑
j,n

φnj
(
(η′j)

>Fj + 1
2λ∆0qj

)
= − 1

2λ
∑
j,n

φnj
(
(η′j)

>∆0fj −∆0qj
)

≤ λC
∑
j,n

(φnj + φnj+1)|∆+uj |3 + λC
∑
j,n

|∆+uj |2|∆+φ
n
j | .

The estimates (5.20)-(5.21) yield

Ih1 (φ) ≤ − 1
2λβ0h

∑
j,n

(φnj + φnj+1)|∆+uj|3 − 1
2λ

2h
∑
j,n

φnj (∆+fj)
>η′′j ∆+fj

+ λ(1 + ε0)Ch
∑
j,n

(φnj + φnj+1)|∆+uj |3 + λ(1 + ε0)Ch
∑
j,n

|∆+uj|2|∆+φ
n
j | .

We can similarly estimate Ih2 and Ih3 . Finally we have

Ih(φ) ≤ − 1
2λβ0h

∑
j,n

(φnj + φnj+1)|∆+uj |3 − λ2Ch
∑
j,n

φnj (∆−∆+fj)
2

+ λCh
∑
j,n

|∆+uj |2
(|∆+φ

n
j |+ |∆−φnj |

)
+ λCε 2

0 h
∑
j,n

(φnj + φnj+1)|∆+uj |3 .

We choose β0 large and ε0 small and then have

Ih(φ) ≤ λCh
∑
j,n

|∆+uj |2
(|∆+φ

n
j |+ |∆−φnj |

) ≤ hα−1/3‖φ‖Cα .

Therefore, we obtain

Proposition 5.2. Under the same assumptions of Proposition 5.1,

∑
j,n

φnj
(
η(un+1

j )− η(unj )
)
h + 1

2λ
∑
j,n

φnj
(
q(unj+1)− q(unj−1)

)
h ≤ Chα−1/3‖φ‖Cα ,

(5.22)

for C2 convex entropy pair (η, q) and φ ∈ C1
0 , φ ≥ 0.

Similar to Section 3.3, we can show that ∂tη(uh) + ∂xq(uh) is compact in H−1
loc

for any convex entropy pair (η, q). For a general entropy function we write it
as a linear combination of two convex entropy functions as we have explained in
Section 4. Hence we have
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Proposition 5.3. Under the same assumptions of Proposition 5.1, ∂tη(uh) +
∂xq(uh) is compact in H−1

loc for any C2 entropy pair (η, q).

5.3. Convergence and entropy consistency. Now we are concerned with the
convergence of uniformly bounded approximate solutions of 2×2 systems of conser-
vation laws endowed with global Riemann invariants and the entropy consistency
of boundedly convergent Lax-Wendroff numerical solutions of general hyperbolic
systems of conservation laws with a convex entropy.

One important example of the 2× 2 systems is the elasticity equations (cf. [5]):

∂tv − ∂xu = 0 , ∂tu− ∂xσ(v) = 0 ,

where u is the specific volume, v is the strain, and σ is the stress-strain relation
satisfying σ′(v) > 0. The numerical experiments indicate that the Lax-Wendroff
approximate solutions (vh, uh) are uniformly bounded. It is important from the
viewpoint of numerical analysis whether uniformly bounded Lax-Wendroff numer-
ical solutions may generate some oscillations. The following theorem shows that,
if (vh, uh) is uniformly bounded, then it indeed strongly converges to the corre-
sponding entropy solution. The proof follows from Theorem 2.2, the estimates in
Sections 5.1 and 5.2, and similar compactness arguments as in the scalar cases.

Theorem 5.1. Consider a 2×2 genuinely nonlinear and strictly hyperbolic system
of conservation laws (1.1) endowed with global Riemann invariants. Let uh(x, t) be
the Lax-Wendroff approximate solutions. Assume that uh is uniformly bounded and
the coefficient β in (5.2) is suitably large and the CFL number ε0 given by (1.3)
is suitably small. Then there is a subsequence (still denoted as) uh such that
uh(x, t) → u(x, t) a.e. as h → 0 and u is the entropy solution of (1.1) satis-
fying ∂tη(u) + ∂xq(u) ≤ 0 in D′ for any convex entropy (η, q).

For a general system, we conclude that the numerical solutions of the Lax-
Wendroff scheme, if they are boundedly convergent, then converge to the entropy
solutions. A similar result has been obtained by Majda and Osher [15] for the
semi-discrete case of time-dependent systems and for the fully discrete case of time-
independent systems.

Theorem 5.2. Consider a general system of genuinely nonlinear and strictly hy-
perbolic conservation laws (1.1) endowed with a convex entropy. Let uh(x, t) be the
uniformly bounded Lax-Wendroff approximate solutions converging boundedly a.e.
to u(x, t). Assume that the coefficient β in (5.2) is suitably large and the CFL
number ε0 given by (1.3) is suitably small. Then u is the entropy solution of (1.1)
satisfying ∂tη(u) + ∂xq(u) ≤ 0 in D′ for any convex entropy pair (η, q).

A typical example for such a system is the system of gas dynamics in Lagrangian
coordinates:

∂t

v
u
E

+ ∂x

−up
pu

 = 0 ,

where v > 0 denotes the specific volume of the gas, u the velocity, p > 0 the
pressure, E = 1

2u
2 + e the total specific energy and e the specific internal energy.

The additional conservation law assumes the form ∂t(−S) ≤ 0 for physical solutions.
For polytropic gases, −S(v, u, E) = − log(E − 1

2u
2) − (γ − 1) log v is a strictly

convex function of the state variables v, u, and E for γ > 1, a fixed constant,
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and p = (γ − 1)
E−1

2u
2

v = A(S)vγ . Theorem 5.2 indicates that uniformly bounded
convergent Lax-Wendroff approximation is consistent with this system.

6. The MacCormack scheme and Richtmyer scheme

An efficient implementation of the Lax-Wendroff scheme is to use two step
splitting methods. One particularly popular version is the following MacCormack
scheme:

ũnj = unj − λ∆+f(unj ) ,

un+1
j = 1

2 (unj + ũnj )− λ∆−f(ũnj ) + λ∆−
(
βnj+1/2|∆+f

′(unj )|∆+u
n
j

)
.

(6.1)

The convergence of this scheme is very much similar to what we did for the Lax-
Wendroff scheme in Sections 3-5. We only state some convergence theorems and
show those arguments that are different from ones of the previous sections.

We first rewrite the MacCormack scheme (6.1) as follows

un+1
j = unj + Fn

j +Hn
j + H̃n

j + Jnj ,(6.2)

where

Fn
j = − 1

2λn∆0f(unj ) ,

Hn
j = 1

2λ
2
n∆−

( (∆+f(unj ))2

∆+unj

)
,

H̃n
j = 1

2λn∆−
(
f(unj )− f(ũnj )− f ′(unj )(unj − ũnj )

)
,

Jnj = λn∆−
(
β̃nj+1/2|∆+a(u

n
j )|∆+u

n
j

)
,

β̃nj+1/2 = βnj+1/2 + λn
a(unj )−∆+fj/∆+uj

|∆+aj | .

(6.3)

Clearly, we can carry out the analysis without any difference in the absence of the
term H̃n

j . We only point out that H̃n
j can only produce third-order terms and can

be controlled by the viscosity term based on the following facts.
First, we notice that ũn in (6.1) is always in the interval [unj , u

n
j+1] provided the

CFL number is less than 1/2. Using the Taylor expansion and (6.1), one has

f(unj )− f(ũnj )− f ′(unj )(unj − ũnj ) = 1
2f

′′(ξnj )(unj − ũnj )2 = 1
2λ

2f ′′(ξnj )(∆+f(unj ))
4.

(6.4)

Substituting (6.4) into H̃j and using the summation by parts, one has

∑
j

η′(unj )H̃n
j = − 1

4λ
3
∑
j

∆+η
′
jf
′′(ξnj )(∆+f(unj ))4 ≤ λε 2

0C
∑
j

Φ(snj )|∆+u
n
j |3 ,

(6.5)

∑
j

η′′(unj )(H̃n
j ) 2 = 1

4λ
6
∑
j

η′′(unj )

(
∆−
(
a′(ξnj )(∆+f(unj ))2

))2

≤ λε 5
0C
∑
j

Φ(snj )|∆+u
n
j |3 ,

(6.6)
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and ∑
j

η′′(unj )Fn
j H̃

n
j = − 1

8λ
4
∑
j

η′′(unj )∆0f(unj )∆−
(
a′(ξnj )(∆+f(unj ))2

)
≤ λε 3

0C
∑
j

Φ(snj )|∆+u
n
j |3 .

(6.7)

Now we treat another two step version of the Lax-Wendroff scheme—the Richt-
myer scheme,

ũnj+1/2 = 1
2 (unj + unj+1)− 1

2λ∆+f(unj ) ,

un+1
j = unj − λ∆−f(ũnj+1/2) + λ∆−

(
βnj+1/2|∆+f

′(unj )|∆+u
n
j

)
.

(6.8)

We can rewrite it into the form

un+1
j = unj + Fn

j +Hn
j + H̃n

j + Jnj ,(6.9)

where

Fn
j = − 1

2λn∆0f(unj ) ,

Hn
j = 1

2λ
2
n∆−

( (∆+f
n
j )2

∆+unj

)
,

H̃n
j = 1

2λn∆−
(
f(unj ) + f(unj+1)− 2f(ũnj+1/2)− f ′(unj+1/2)(u

n
j + u2

j+1 − 2ũnj )
)
,

Jnj = λn∆−
(
β̃nj+1/2|∆+a(u

n
j )|∆+u

n
j

)
, β̃nj+1/2 + λn

anj −∆+f
n
j /∆+u

n
j

|∆+unj |
.

(6.10)

It is also easy to verify that H̃n
j can produce only third-order terms and can be

controlled by the viscosity term.
Therefore we have the following theorems corresponding to those of the Lax-

Wendroff scheme in Sections 3-5 under the same assumptions.

Theorem 6.1. Let uh(x, t) be approximate solutions of the convex scalar conser-
vation laws (1.1) and (3.1) by the the MacCormack scheme (6.1) or the Richtmyer
scheme (6.8). Then there is a subsequence strongly converging to the weak solution
of (1.1) satisfying the entropy inequalities.

Theorem 6.2. Let uh(x, t) be approximate solutions of the scalar conservation
laws (1.1) or (4.4) by the MacCormack scheme (6.1) or by the Richtmyer scheme
(6.8) with the artificial viscosity term (4.1). Then there is a subsequence strongly
converging to the weak solution of (1.1) satisfying the entropy inequalities.

Theorem 6.3. Consider a general 2 × 2 genuinely nonlinear and strictly hyper-
bolic system of conservation laws (1.1) endowed with global Riemann invariants.
Let uh(x, t) be the uniformly bounded approximate solutions of the MacCormack
scheme (6.1) or the Richtmyer scheme (6.8). Then there is a subsequence (still
denoted as) uh such that uh(x, t) → u(x, t) a.e. as h → 0 and u is the entropy
solution of (1.1) satisfying ∂tη(u) + ∂xq(u) ≤ 0 in D′ for any C2 convex entropy
pair (η, q).

Theorem 6.4. Consider a general system of hyperbolic conservation laws (1.1) en-
dowed with a convex entropy. Let uh(x, t) be the approximate solutions of the Mac-
Cormack scheme (6.1) or the Richtmyer scheme (6.8). If uh converges boundedly
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a.e. u(x, t), then u(x, t) is the entropy solution of (1.1) satisfying ∂tη(u)+∂xq(u) ≤
0 in D′ for any C2 convex entropy pair (η, q).
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