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We begin a systematical study on the effect of numerical viscosi-
ties. In this paper we investigate the behavior of shock-capturing
methods for slowly moving shocks. It is known that for slowly mov-
ing shocks even a first-order scheme, such as the Godunov or Roe
type methods, will generate downstream oscillatory wave patterns
that cannot be effectively damped by the dissipation of these first-
order schemes. The purpose of this paper is to understand the
formation and behavior of these downstream patterns. Our study
shows that the downstream errors are generated by the unsteady
nature of the viscous shock profiles and behave diffusively. The
scenario is as follows. When solving the compressible Euler equa-
tions by shock capturing methods, the smeared density profile intro-
duces a momentum spike at the shock location if the shock moves
slowly. Downstream waves will necessarily emerge in order to bal-
ance the momentum mass carried by the spike for the momentum
conservation. Although each family of waves decays in /* and /?
while they preserve the same mass, the perturbing nature of the
viscous or spike profile is a constant source for the generation of
new downstream waves, causing spurious solutions for all time.
Higher order TVD or ENO type interpolations accentuate this

problem. © 1996 Academic Press, Inc.

1. INTRODUCTION

In the past two decades there have been tremendous
progress in the development of numerical methods for
solving the equations governing the unsteady flow of an
inviscid, adiabatic ideal gas—the Euler equations. First-
order methods usually do not generate numerical oscilla-
tions but give poor resolutions due to excessive numerical
smearing. Modern high order shock capturing schemes are
high order nonlinear schemes that reduce to lower order
only near discontinuities to suppress nu erical oscillations
(e.g., [26,28, 6,9]). For shocks of moderate strength these
methods give sharp resolutions without oscillations.

However, there are several circumstances where even
first-order schemes (such as the Godunov method [4] and

! Email address: jin@math.gatech.edu. Research was supported in part
by NSF Grant No. DMS-9404157.

2 Email address: jliu@math.temple.edu. Research was supported in part
by NSF Grant No. DMS-9505275.

373

the Roe scheme [22]) may give inferior results [19]. One
known example is the computation of slowly moving
shocks. Here slowly moving means that the ratio of the
shock speed to the maximum wave speed in the domain
is much smaller than one. Several references have reported
the difficulty of computing slowly moving shocks [28, 21,
19], where first-order Godunov or Roe type methods pro-
duce spurious long wave oscillations behind the shock,
which eventually ruin the downstream solution.

In [28] Colella and Woodward discussed this kind of
error in some detail and give a heuristic explanation of it.
They also presented additional numerical dissipation terms
in their PPM method to damp it. Roberts [21] showed
that their explanation of the error is incomplete and that
different schemes (i.e., different numerical flux formulas)
have significant different levels of these oscillations. This
error is inherent to nonlinear systems of equations. The
use of total variation diminishing (TVD) concepts in the
construction of higher order schemes accentuates the prob-
lem. Several improvements on the Roe solver have been
suggested [21, 11, 2], which could reduce the level of, but
did not completely eliminate, this kind of noise.

Unless a full understanding of the nature of this numeri-
cal phenomenon is gained one cannot expect the develop-
ment of a robust mechanism to completely filter out this
kind of oscillations. The goal of this paper is to carefully
study this peculiar numerical phenomenon and to under-
stand its formation and propagation. Our study shows that
these downstream oscillations propagate along each char-
acteristic family and decay in /” and /% while preserving the
mass in /! norm. They re generated by the unsteadiness of
the discrete shock profile. The scenario is as follows. Since
all shock capturing methods introduce artificial viscosity
in the continuity equation, the smeared shock profile of
the density will introduce a momentum spike when the
shock is stationary or moves slowly. To maintain momen-
tum conservation, the downstream error will necessarily
emerge in order to balance the mass carried by the momen-
tum spike. Although each family of the downstream waves

0021-9991/96 $18.00
Copyright 0 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



374

decays in time, our numerical experiments show that the
numerical viscous shock or spike profiles are highly un-
steady. The unsteady nature of the viscous or spike profile
becomes a constant source for the generation of new down-
stream waves, and as a result, the downstream solution is
polluted for all time.

In our numerical experiments we also observed the peri-
odic structure of the unsteady viscous shock profile. The
period is essentially the time for the shock to propagate
one spatial grid.

The importance of such a study goes beyond the slow
shock problem. In [21] this kind of error has been blamed
for the slow convergence of upwind methods to steady
state in transonic flow computations reported, for example,
in [15, 29]. Indeed when the solution is near the steady
state the shock moves slowly. This will be further explored
in Section 5. The study of the unsteadiness of the discrete
shock profile is also an active area of research in the aero-
nautical gas turbine industry because of the need to predict
the onset of flutter, as well as the magnitude of forced
response loading and oscillations [5, 12].

The outline of the paper follows. In Section 2 we present
some numerical results on a Riemann problem of the com-
pressible Euler equations that admits slow shocks. Numeri-
cal spikes and downstream oscillations are generated in
this example. These results also show that methods using
the Lax—Friedrichs scheme as a building block outperform
those using the Roe scheme as a building block. In Section
3 a traveling wave analysis on the viscous isentropic Euler
equations (Euler equations with viscosity terms in both
the continuity and momentum equations) is presented,
which shows the existence of the momentum spikes and
its difference from the momentum profile of the Navier—
Stokes equations. In Section 4 we discuss the downstream
waves that balance the momentum spike for the momen-
tum conservation. Numerically we demonstrate that the
downstream waves propagate along characteristics and be-
have diffusively. We also show numerically that the viscous
(or spike) profile in these examples highly fluctuate, thus
become a constant source for the generation of new down-
stream waves that ruin the downstream solution for all
time. In Section 5 we study the effect of the momentum
spike to the computation of steady state solutions and
connect it to the non-convergence of high order schemes.
We finally make some concluding remarks in Section 6.

For numerical experiments we use a Lax—Friedrichs type
scheme (abbreviated as LxF), the second-order relaxation
scheme (with van Leer’s slope limiter [26]) of Jin and Xin
[9] (abbreviated as RELAX2), and the essentially non-
oscillatory schemes (both the ENO-ROEs that use the Roe
scheme as the building block and the ENO-LLFs that use
the Lax—Friedrichs scheme locally as the building block)
developed by Shu and Osher [23]. The purpose for the
choice of these schemes is that they have quite different
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viscosity matrices due to different building blocks and in-
terpolation procedures; thus they are excellent examples
to illustrate our idea. We would like to point out that
similar numerical phenomena occur in essentially all other
shock-capturing methods.

In subsequent sections we let x;;1,, be the grid points,
U112 be the pointwise value of U at x = x;,1,2, and U; be
either the cell average value on the jth cell defined by

1 Yir12
U=-—|""Ux1td
v MRLCOL

as in most shock capturing methods, or simply the value
of U at the cell center x; = (xj+1/» + xj-12) (as in the ENO
schemes of Shu and Osher).

2. NUMERICAL SOLUTIONS OF A SLOWLY
MOVING SHOCK

Consider the 1D compressible Euler equations of gas dy-
namics,

ap+o,m=0,
am+ d(pu*+p) =0,
d,E + o, (u(E + p)) =0.

@.1)

Here p, u, m = pu, p, and E are respectively the density,
velocity, momentum, pressure, and total energy. For a po-
lytropic gas, the equation of state is given by

p =y = )(E —zp0). (22)

Let A denote the Jacobian matrix dF(U)/dU. The Euler
equations (2.1)—(2.2) are hyperbolic with eigenvalues

1 2 —

al=u—c, a®=u, a®=u+c, (2.3)

where ¢ = Vyp/p is the local speed of sound. The right
eigenvectors of A form the matrix R = (R!, R?, R®) given by

1 1 1

R=|u—-c u u+c | (2.4)

H—uc %* H+uc

with H = ¢*/(y — 1) + u?/2. The inverse of R defines the
left eigenvectors (LY, 1.2, I.3) = R7! of A by
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R"l = 1- b] sz _bz . (25)
%<bl - %) %<—b2u + —> ;bg
with
y—1 ot
b=Ym bi=b. (2.6)

Let U = (p, m, E)" be the vector of conserved quantity,

A

Aji12 be the Roe matrix satisfying [22]

A

F(l]j+]) - F(U]) = Aj+]/2(ljj+1 - U/) (27)
By projecting U;.; — U;onto{R;,1,,} one obtains the charac-

teristic decomposition

3
Ui — U= 21 afﬂ/zRﬁl/z- (2.8)
o

In this decomposition the local characteristic variables
a?,1,, can be obtained using Roe’s average which perfectly
resolves stationary discontinuities.

Among our first-order schemes we use the ENO1-Roe
and ENOI1-LLF by Shu and Osher and a Lax—Friedrichs
type scheme. The ENO1-Roe has the numerical flux de-
fined by

Fii1p = 3(F(U;) + F(Ujs1)) 29

= 320N )V = VIR B9
where v/ is the component of F(U;) in the pth characteris-
tic family,

3
F(U) = 3 ¥R, (2.9b)
2

The nth order ENO extension of this scheme will be re-
ferred to as the ENOn-Roe [23]. These schemes use the
Roe scheme as the building block. The ENO1-LLF has
the numerical flux defined by

F,‘+1/2 = %(F(U,) + F(U/+1)) - %a,g+1/2af+1/zR,g+1/2, (2-10)
where a?,;,, = max(|A?], |A%1]). The nth order ENO exten-

sion of this scheme will be referred to as the ENOn-LLF
[23]. These schemes use the Lax—Friedrichs scheme locally
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as the building block. A Lax—Friedrichs type scheme that
we use is
Fiip = §(F(U)) + F(Up)) = 2a(Upa = Up),  (2.11)
where a = supy{lu — ¢, |ul, u + cl}.
In addition we also use the RELAX2 in our computa-
tions. This idea was originally introduced by Jin and Xin
[9]. By introducing a new vector variable V € R?, one can

couple U and V by the following second-order hyper-
bolic system

U+ 9,V=0,

oV + AdU = _% (V= F(UY). 2.12)

In (2.12), € is a small positive parameter called the relax-
ation time,
A = diag(a?, a3, a3) (2.13)

for a; > 0, a, > 0, a; > 0 is a positive diagonal constant
matrix satisfying

_ OF(U)?

A
aU

(2.14)

As £ — 0 (2.12) formally approximates (2.1) via the Chap-
man-Enskog expansion. By applying the MUSCL scheme
[26] to the linear convection in (2.12), coupled with a sec-
ond-order stiff time integrator, one can obtain a second-
order TVD type scheme based on (2.12) that may avoid
the Riemann solver or the use of the Roe matrix. In our
experiment we choose € = 107° and a; = supy |a’].

Except the LxF (2.11), all other schemes that we use
here have non-linear viscosities. The RELAX2 and ENO2s
are TVD schemes.

We carried out the following 1D test on a Riemann
problem of the Euler equation (2.1)-(2.2).

ExampLE 2.1. We take the following initial data [19]
that gives a Mach-3 shock moving to the right with a speed
s = 0.1096:

3.86
—3.1266
27.0913

U

if0=x<0.5;

(2.15)
1

—3.44
8.4168

Ugr = if05=x=1.




376

JIN AND LIU
Density by LxF Momentum by LxF
4 T T T T T T — T T T T T
3sF \‘ %
§
\
3 L [y &
zf -35 T o
N '
25 ! 'I [
r '
b -
[ ) t
] Ve
2F 1 " t
l
.\ -ar $
\ Yo
15 L] [Py
[ [
Y V!
. .
1+ 9
45} 3
o KO 0‘,1 0‘,2 0‘:! 0‘.4 0‘,5 0‘,6 0t7 0‘,8 O‘.Q 1 o 0.1 0.2 03 0.4 05 0.6 0.7 08 09
Density by RELAX2 Momentum by RELAX2
¥ Ry
35 Y ‘?
1
3 35 vy
[
[}
25 \ ?
"
[N
U 3
2 [ h
|
\ -4 q
R y
15 ! &
!
1
W+ o
-4.5
0’0 D‘.! 0‘2 ol:s D‘.z: 0‘5 0‘.6 0‘.7 0‘.8 019 1 0 Ol,l 0.2 03 0.4 05 06 07 0.8 08 1
Density by ENO1-Roe Momentum by ENO1-Roe
v W
ast b 1 .
[
1
b -as| :,'
N
i
25 1 N
|
y
2
-4
| d
15} :
i
i
4 .
a5}
OJD 01 0.2 03 04 05 0.6 0.7 08 09 1 0 01 0.2 03 0.4 a5 0.6 0.7 08 4.9 1
Density by ENO2-Roe Momentum by ENO2-Roe
W
35k l d :
|
il s in
1t
1
25§ :l
h
"
o
2t i
4 1
- $
]
15F d
\
g
i
Hs
_as}
050 0‘.1 0‘.2 0..8 Dl.d 05 0‘.6 0‘.7 0‘,8 0.9 1 [ Otl 0.2 0‘3 0‘.4 D‘.S 0.6 0.7 0.8 0.9 1

FIG. 2.1. A slowly moving shock computed by LxF, RELAX2, ENO1-Roe, and ENO2-Roe (from top to bottom). In all plots Ax = 0.01, At =
0.001, t = 1. Solid lines are the exact solutions, while the dashed circles are numerical solutions.
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FIG. 2.1 Continued. A slowly moving shock computed by ENO3-Roe, ENO1-LLF, ENO2-LLF, and ENO3-LLF (from top to bottom). In all
plots Ax = 0.01, Az = 0.001, r = 1. Solid lines are the exact solutions, while the dashed circles are numerical solutions.
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We take y = 1.4 and output the results at t = 0.95 in Fig.
2.1. All computations are carried out in the domain [0, 1]
with Ax = 0.01, Ar = 0.001. All schemes exhibit some level
of momentum spikes and postshock oscillations, with the
oscillation of LxF almost negligible. The higher order Lax—
Friedrichs type schemes produce less severe downstream
oscillations than their Roe counterparts. Also higher order
interpolations produce more severe oscillations than
their lower order counterparts. Overall speaking, the
ENO2-LLF gives the best result, followed by RELAX2.

3. THE MOMENTUM SPIKES

3.1. The Existence of the Spike

Earlier the momentum (or velocity in Lagrangian coor-
dinates) spikes in stationary shocks were reported in [24]
for a mixed type problem and in [27] for the nozzle flow
computation. Here we present a traveling wave analysis
on the viscous Euler equations, which shows precisely the
formation of the momentum spike. Consider the following
viscous isentropic Euler equations for density p and mo-
mentum #:

dp + Im = € dyp, (3.1a)

m2
am + 9, 7 +p(p) | = & dum. (3.1b)

Here the pressure p(p) = kp? for some constants k and 1.
This hyperbolic system has two distinct eigenvalues u *
¢, where u = m/p is the velocity, ¢ = Vykp’ ! is the sound
speed. Although the true numerical viscosity is far more
complicated than those appeared on the right-hand side
of Eq. (3.1), a study on (3.1) is sufficient for a full under-
standing of the numerical momentum spike.

We look at the traveling wave solution to (3.1). Let
& = (x — st)/e, where s is the shock speed. Then the
traveling wave solution takes the form

p(x. 1) = $(&), m(x,1) = P(§) (32)
with asymptotic states
H(ro) = ¢, P(xe) = .. (33)
The Rankine—Hugoniot jump condition requires
—=5(ds = ¢-) + (s — ) =0,
(3.4)

—s(py — ) + <% +p(bs) — _: - P(¢)> =0.

We first assume that the shock is stationary (s = 0)
and corresponds to the eigenvalue u — ¢. Then the jump
condition (3.4) reduces to

JIN AND LIU

psi 4

psi—

D
phi- phi+ phi
FIG. 3.1. A sketch of the phase portrait of Egs. (3.7).
i ’
vo=v, Tep)=Lrp@). 63
b+ b-
and the Lax entropy condition gives
O<wu-—c-<u-+c., uy—c;<0<uy+cy, (3.6)

where u. = ./¢. and ¢ = Vkyd'.
Applying the traveling wave solution (3.2) in (3.1) one
gets the following ODEs:

==, (3.7a)

2 2

0= P~ p@). ()
This system has two rest points: V., = (¢, _) on the right
and V_ = (¢-, ) on the left on the phase plane of
(o, ). It has two distinct eigenvalues Ay = u — ¢ and A,
= u + ¢, with corresponding eigenvectors R; = (1, u —
¢)"and R, = (1, u + ¢)". By the entropy condition (3.6),
V. is a saddle point with a stable manifold on R, and V_
is a source. Thus a heteroclinic orbit O will connect V_
and V., in the direction of R; [25], as shown in Fig. 3.1.
(In Fig. 3.1, Ry and R5 are the two eigenvectors at V.,
respectively). Since O is smooth and d,¢ is not identically
zero if ¢_ # ¢, , thus (3.7a) implies that ¢ is not a constant.
Moreover, whenever ¢p(€) connects ¢- and ¢, with a mono-
tone profile, d;¢p becomes a spike. Thus ¢ = d¢p + Y is
a spike.

Here we give an example of a stationary shock for the
Euler equations (2.1).

ExaMPLE 3.1. We take the initial data

2/3
1n\2
9/14

U= if0=x<0.5;

(3.8)
2
1V2

23/14

Ug = if0.5=x=3.
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FIG. 3.2. Numerical density p and momentum m profiles of Example 3.1 by the LxF. Ax = 0.01, CFL number = 0.95. Here the solid lines are

the exact solution, the circles are numerical solutions.

For this problem the exact solution is exactly the same
as the initial data, i.e., a stationary shock, corresponding
to the eigenvalue u — c, that connects the two initial
constant states of the density, while the momentum is
the initial constant in the entire domain. We use the
LxF to solve this problem. In Fig. 3.2 we depict the
numerical results at + = 1 and ¢+ = 2 with 300 points
(Ax = 0.01), CFL number = 0.95. Only density and
momentum will be depicted. Other quantities, such as
velocity, total energy, pressure, and temperature behave
qualitatively similar to the density, thus they will not be
depicted here. Observe that the density is smeared out
at the shock location x = 0.5, and the momentum has
an O(1) spike there. Also observable is the two waves
that travel to the right, spread out and decaying. These
waves will be carefully studied in Section 4. The behavior
of the spike differs significantly from the downstream
waves, since the spike does not spread out and decay.
Note that the shock location is slightly off center of the
correct location. This is because a small amount of mass
has been carried away by the downstream waves.

In Fig. 3.3 we display the results at + = 5 with 100, 200,
and 400 points, respectively. As the spatial grid is refined
the momentum spike becomes narrower, but the magni-
tude remains essentially unchanged. The downstream
waves observed in Fig. 3.2 have moved to the right, and
no new downstream waves have been generated.

Note that the momentum spikes we observed here are
solely numerical artifacts. By solving the Riemann problem
(3.8) exactly one obtains a monotone momentum.

For this problem, any method using the Roe scheme as
the building block [16] (such as the ENO-Roe) does not
give such a momentum spike, since the Roe scheme gives
the exact stationary shock (no smearing) by its design.
However, it is no longer the case when the shock is moving,
as shown in Example 2.1.

For a non-stationary shock, the traveling wave solution
(3.2) applied to (3.1a) gives

dep=—s(p—¢-) + ¢~ ¢,
or

p=s¢+ .+ (4 —sbo). (3.9)
Hence ¢ is a superposition of a monotone profile s¢ with
a spike corresponding to d.¢. When s is small (for stationary
or slowly moving shock), the monotone profile s¢p becomes
small and the spike term d;¢ dominates. Thus the shock
profile of ¥ is a non-monotone spike. Therefore the spike
is usually generated in a stationary or slowly moving shock,
as shown in our earlier examples. For a strong shock the
monotone profile s¢p dominates so the shock profile of the
momentum is monotone.

3.2. The Viscous Profile of the Navier—Stokes Equations

Since the more physical viscous shock profile is deter-
mined by that of the Navier—Stokes equations, we now
study the viscous profile of the isentropic Navier—Stokes
equations and compare with that of the viscous Euler
equations (3.1). The isentropic Navier—Stokes equa-
tions are

9p+ dm =0,
am+a<ﬂ2+p( )>=sa <ﬂ>
t X p P xx P .

Applying the traveling wave solution (3.2) in (3.10), again

(3.10)
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FIG. 3.3. Numerical density p and momentum m profiles of Example 3.1 by the LxF with three different mesh sizes. Solid lines: 100 points;
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is smeared, the momentum forms a spike and a downstream wave to balance the mass of the spike for momentum conservation.
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assuming the shock speed s = 0, one obtains the follow-
ing ODEs:

=y, (3.11a)

¢ <g> = %ﬁ +p(d)

g2

~—p(#). (311b)

Equation (3.11a) shows that ¢ is a constant, thus it contains
no spike. Let f(¢) = 2/¢p + p(¢), then (3.11b) becomes

(L) =1 - 16, (312)

Since f(¢) is a strict convex function and f(¢-) = f(d-);
hence f(¢) — f(p-) is always negative between ¢_ and
¢, s0 9,(1/¢) does not change sign by (3.12). This implies

the monotonicity of 1/¢, or ¢.
When s # 0, applying the traveling wave solution (3.2)

in (3.10a) gives
p=s5¢+ (P —s¢)

thus whenever ¢ is monotone so is . This excludes the
possibility of a momentum spike for a moving viscous
shock in the Navier—Stokes equations.

In conclusion, even if the viscous profile of ¢ of the
Navier—Stokes equations (3.10) could be similar to that of
the viscous Euler equations (3.1), the profiles of ¢ may be
significantly different. Since the physically relevant solu-
tion of the Euler equations is considered to be the zero
viscosity limit of the Navier—Stokes equations, the momen-
tum spike appeared in the viscous Euler equations is to-

tally unphysical.

Remark3.1. Although we only present the study on the
isentropic Euler and Navier—Stokes equations, the above
analysis can be carried exactly through to the full Euler
and Navier—Stokes equations. In fact, the argument on the
monotonicity of the momentum uses only the continuity
equation, which is the same for both the isentropic and
the full Euler or Navier-Stokes equations.

Remark 3.2. The non-monotonicity of the momentum
profile does not contradict the mathematical stability the-
ory of discrete shocks. It was proved in [13] that the Lax—
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FIG. 4.3. Time evolution of the momentum spike and downstream waves by LxF (top, ¢ € [0, 2]) and ENO1-Roe (bottom, ¢t € [0.5, 0.8]). For
better visualization these graphs are displayed upside down. Note the fluctuation of the spike in LxF is much smaller than that of ENO1-Roe. This
is also reflected in the downstream wave patterns, the diffusive nature of which is apparent.

Friedrichs scheme applied to general system of conserva-
tion laws yields strictly monotone principal eigenvalues at
the discrete shock profile. However, as shown here, the
primitive variables, such as the momentum, may not be
monotone.

Remark 3.3. A related numerical artifact, also induced
by numerical viscosity, occurs in the simulation of a strong
shock reflecting from a rigid wall [18, 17]. This phenome-
non will be further studied in a forthcoming paper.

Remark3.4. Pressure spike near a contact discontinuity
can also be generated by numerical viscosity. This phenom-
enon was first pointed out by von Neumann and Richtmyer
[20] using the Lagrangian formulation of the fluid equa-
tions. Similar traveling wave analysis can also be applied
to the viscous Euler equations to show this phenomenon.
A non-conservative approach was introduced by Karni
in [10] to overcome this kind of pressure spike and the
consequent noises when computing the multifluid flows.

3.3. Analytic Elimination of the Spike

In this section we show an asymptotic connection be-
tween the viscous Euler equations and the Navier—Stokes
equations, which provides a guidance for a postprocess
step that can eliminate the momentum spike. Let

p=p, M=m—gd,p (3.13)
and apply it to the viscous Euler equations (3.1), one gets

(after ignoring the O(&?) term)

ap+ agm =0,
(3.14)

_ m? _ .
am+ o, |—+p(p) | =2ed,(pou).
p

where u = m/p. Now the only difference between (3.14)

and the Navier—Stokes equations (3.10) is that ¢ is replaced
by 2ep. A similar traveling wave analysis carried out in the
preceding section can now be applied to (3.14) to show
that m is monotone; thus it does not have the spike.

Such a transformation has previously been used by Slem-
rod [24] in his study of mixed hyperbolic—elliptic equations.
Note that the difference between m and m is negligible in
smooth regions. Near the discontinuities d,p is big and this
transformation changes the momentum dramatically. It is
exactly this transformation that cancels out the momentum
spike at discontinuities.

3.4. A Numerical Postprocess that Eliminates the
Momentum Spikes

The modified equation analysis to the shock-capturing
methods show that the effect of numerical viscosity is simi-
lar to the viscous regularization of the Euler equations.
In other words, a shock-capturing method is effectively a
higher order approximation to the modified Euler equa-
tions (3.1), with a probably different (usually nonlinear)
viscosity terms which are method specific. Although our
analysis in the proceding sections is for linear viscosities
(which is the case for linear schemes such as the LxF),
it does provide a good understanding even to nonlinear
schemes. Moreover, it provides the guidance on how to
remove the momentum spike for general shock capturing
methods: an analog of the transformation (3.13) should be
performed numerically. This part of the work is motivated
by earlier numerical studies on mixed hyperbolic—elliptic
system [1, 8].

A semi-discrete conservative discretization of the Euler
equations (2.1) is

00+ 3= (Fran = Fy 1) = 0. (3.16)
The numerical flux for most shock-capturing methods can
be written as
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FIG. 4.4. Time evolution of the peak of the momentum spike by (left to right, then top to bottom) LxF, RELAX2, ENO1-Roe, and ENO3-Roe.

Fj+1/2 = %(F] + Fj+1) - Qj+1/2 Aj+1/2U, (3~17)

where Aj1pU = Ujy — Uy, and Q = Q(Us j) is a general
numerical viscosity matrix. Applying (3.17) in (3.16) one
gets

1
9 U + 53~ (Fja = Fi)
(3.18)
1
= A_x (Qj+1/2 Aj+1/2U - Q;‘—1/2 A/'—1/2U)-

This system is a discrete analog of the viscous Euler equa-
tions (3.1), but now the viscosity term on the right-hand
side of (3.18) may be different from those appeared in
(3.1). In order to eliminate the numerical spike one has to
do a discrete analogy of (3.13). Note that (3.18) is a second

order discretization to the following viscous Euler equa-
tions

9,U + 9.F(U) = a,(Q(U)a,U). (3.19)

A similar transformation to (3.13) for (3.19) is then
p=p, E=E, m=m-(QU)dU) e, (3.20)

where e; = (1,0, 0)T. In order to eliminate the momentum
spike generated by the scheme (3.18), we use the discrete
analog of (3.20):

m; = %(m, + mj+1) - (Qj+1/2 Aj+1/2) . (3.21)

This is a consistent, second-order discretization of (3.20).
By comparing (3.21) with (3.17) we find that

m; = nji1/2. (322)
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t k(x)

—_—

k(x) = 1.398 + 0.347* tanh (0.8 x -4)

FIG. 5.1. The divergent nozzle.

Thus the discrete transformation (3.21) simply transfers
m; (the cell average value or the value at cell center) into
the mass flux m;.q,!

This defines our postprocess step for the momentum
spikes. While the momentum m; has (and will always have)
a spike, the mass flux m;,1, does not have the spike!

Earlier similar transformations were used for mixed hy-
perbolic—elliptic systems in [1, 8]. This kind of transforma-
tion was applied in order to obtain the so-called viscosity—
capillarity solutions and to eliminate the velocity spike
across the phase boundary.

Remark 3.5. Although the ENO fluxes cannot be writ-
ten in the general form (3.17), the same postprocess (3.22)
works equally well for the ENO, as shown later by our
numerical examples.

Remark 3.6. In many numerical computations for hy-
perbolic systems, even TVD or ENO schemes may gener-
ate numerical overshoots or undershoots near a discontinu-
ity. This is hardly surprising since TVD and ENO are
concepts for scalar equations or linear systems. They are
usually extended to nonlinear systems via the local charac-
teristics decompositions, which is basically an idea for lin-
ear systems, as in nonlinear systems there is no global
characteristic variables. The numerical spike studied here
also looks like an overshoot or undershoot. However, they
have distinct features. The overshoots or undershoots can
be damped by introducing more numerical viscosities,
while more numerical viscosity will make the spike worse.
Our study provides an easy method to distinguish the over/
undershoots from the spike, since the transformation (3.22)
can remove the spike but not the over/undershoots!

Remark 3.7. Since mjq/, is not a conserved variable,
the transformation (3.22) can only be done in the postpro-
cess step. Thus it is basically a cosmetic fix and does not
improve the numerical results such as the downstream os-
cillations.

Remark 3.8. We believe that the study on the momen-
tum spike is also theoretically interesting. It indicates that
one cannot obtain a uniform /” convergence on the zero
viscosity limit of the viscous Euler equations. Such an esti-
mate could be obtained only after the subtraction of the
spike profile.

JIN AND LIU

In Fig. 3.4 we display the mass flux m;,,,, for Example
2.1 (Fig. 3.2) and Example 3.1 (the mass flux of RELAX2).
They do not have the spike, but they have essentially the
same features as the momentum ; elsewhere.

4. THE DOWNSTREAM OSCILLATIONS

We bear in mind that all reasonable shock-capturing
methods are in conservative form. Due to the conservation
of momentum, the total mass of momentum carried by the
spike profile should be compensated by an equal amount
of momentum mass elsewhere. This explains the initial
formation of the downstream waves. In this section we will
also numerically demonstrate that each downstream wave
travels along with a characteristic family, and its magnitude
(or [” and I? norms) decays in time but the mass (or /'
norm) conserves. Moreover, we will show the unsteadiness
of the discrete shock for slowly moving shocks, which con-
tributes to the downstream oscillations for all time.

In Fig. 4.1 we output the result of ENO1-Roe for Exam-
ple 2.1 after five time steps to illustrate the formation of
the spike and a downstream wave. As the density is
smeared, the momentum forms a spike and a downstream
wave. The spike and the downstream wave carry the same
mass so the total momentum is conserved.

In order to demonstrate that the downstream are diffu-
sive and propagate along the characteristics, we use the
Roe decomposition (2.8), where o represents the compo-
nent of U;;; — U;in the pth characteristic family. We define
the numerical “‘characteristic”’ variable as

Bf = 2 afi Ax.

i=j

4.1)

A distinction between the dispersive oscillations and the
downstream oscillations studied here is that the latter lie
only in its own characteristic family. For example, a wave
appears in 3? does not appear in 89 for p # ¢. These can
be seen in Fig. 4.2. We also see that each wave moves away
with the corresponding characteristic speed and behaves
diffusively (spread out and decayed).

If the shock is stationary, then the viscous or the spike
profile will become stationary as well, after the initial for-
mation of the spike and the downstream waves, as shown
in Fig. 3.2. However, when the shock moves (slowly), the
viscous or spike profile cannot be steady. In Fig. 4.3 we
display the time evolution of the momentum profile of the
LxF and ENO1-Roe for Example 2.1. After some time the
fluctuation in the spike of LxF becomes quite small, thus
it generates new downstream waves which are almost negli-
gible. For ENO1-Roe, however, the spike (viscous) profile
keeps fluctuating in and O(1) manner, and new and strong
downstream waves are produced for all time. The diffusive
nature of the downstream waves are evident in both pic-
tures.
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FIG. 5.2. Numerical solutions of the divergent nozzle flow problem (5.1)-(5.3) at t = 672.40 with 51 points and Az = 0.046 by the RELAX2
(left) and ENO3 (right). Here the solid lines are the exact solution; the dashed circles are numerical solutions.

In Fig. 4.4 for the same example we plot the peak of
the momentum spikes for some schemes as a function of
time. The oscillatory nature of the spike is evident with
varying magnitude of fluctuations. This figure shows that
the upwind type schemes (ENO-Roe) have viscous profiles

more unsteady than those of the LxF and RELAX2. We
would like to point out that it is the amount of mass change
(instead of the change of the magnitude of the spike) dur-
ing the perturbation of the viscous profile that determines
the level of the downstream errors, due to the conservation
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FIG. 5.3. The convergence study of the RELAX? (left) and the ENO3-Roe (right).

of the momentum. The more the mass of the spike profile
varies the more strongly the downstream waves emerge for
momentum conservation. Interesting is that the peaks are
essentially periodic, with the duration of each period agrees
with the time for the shock to move one grid point.

Remark 4.1. Recall that the definition of a discrete
traveling wave solution @7, an approximation of U(x;, t,),
t, = n At, requires

P = Y

(e (4.2)
where s At/Ax = p/q for some relative prime integers p
and ¢. The stability of such discrete shock for the Lax—
Friedrichs scheme was established by Jennings [7] for scalar
equations and by Majda and Ralston [16] and J.-G. Liu
and Xin [13] for nonlinear systems. The periodicity of the
momentum peaks in Fig. 4.4 shows the stability of the
discrete traveling wave solution ®7 for these schemes mod-
ulus the time for the shock to travel one grid point. This
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is because, when s At < Ax, there exists a sufficiently large
q such that |g(s Af) — Ax| < s At, or |s At/Ax — 1/q| =
2/q*. However, within each period the shock profile is
unsteady, which becoming the source of the new down-
stream waves in all time for these schemes.

A scheme that completely eliminates such an error
should have a steady discrete viscous profile. However,
this is impossible if the shock is moving (slowly), since
it takes many time steps for the shock to move to the
next cell, and in between the viscous profile has to
perturb in order to keep the unsteady nature of the
solution. An alternative is to have a scheme that has a
more steady viscous profile, and our numerical experi-
ment shows that the Lax—Friedrichs scheme could serve
such a purpose. Thus the idea is to smear out the shock
by a Lax—Friedrichs type scheme. This is clearly against
the high resolution principle. What we would like to
emphasize here is that when one develops a shock
capturing scheme, one should not only concentrate on
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FIG. 54. The peak of the momentum spike for the RELAX?2 (left) and ENO3-Roe (right).
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the resolution (by counting the number of points across
a shock), but also pay special attention to the stability
of the numerical viscosity. A scheme that has both high
resolution and a more stable viscosity is ideal. According
to this standard, the ENO-LLFs are better than ENO-
Roes, since the former offers essentially the same resolu-
tion but have more stable viscosities.

The discrete shock profile perturbs even when the shock

does not move slowly. Thus the downstream oscillations
exist even for fast shocks. However, in the fast shock case
the momentum profile is monotone, thus does not leave
much room for the shock profile to perturb. In other words,
each perturbation does not change the mass of the viscous
profile much, and the downstream errors become negligi-
ble. For slow shock the momentum profile has a spike,
which increases the mass of the viscous profile and the
relative mass change in each perturbation, so the down-
stream errors become more significant. This also illustrates
why the downstream errors in the density is far less signifi-
cant. Since the density is monotone, thus the relative
change in the mass of the viscous profile is smaller than
that of the momentum.

In summary, although each family of the downstream
waves decays time-asymptotically, the perturbing spike or
viscous profile is a constant source for the generation of
new downstream waves, causing the downstream oscilla-
tion for all time. Higher order methods use higher order
interpolations, which amplify the level of oscillations and
exhibit rich but spurious postshock structures.

5. STEADY STATE CALCULATIONS

A closely related problem is the steady state calculation.
In this section we show numerically how the momentum
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spike contributes to the non-convergence to the steady
state solution of some high resolution shock capturing
schemes. Indeed when the solution is near the steady state
the shock moves slowly and the numerical errors discussed
earlier will occur is such a circumstance. Here, we use
the quasi-one-dimensional nozzle flow as an example to
illustrate this phenomenon.

The quasi-one-dimensional nozzle flow can be described

by the following Euler equations with a geometric
source term

d( pk) + 9,(mk) = 0,
d(mk) + 9,(pu*k + pk) = po .k,
ar(Ek) + ax(u(E + p)k) =0,

(5.1)

where k(x) is area of the nozzle. We consider only a diver-
gent nozzle from [3] with

k(x) = 1.398 + 0.347 tanh(0.8x — 4). (5.2)

as shown in Fig. 5.1. The steady flow conditions were super-
sonic inflow, subsonic outflow with a shock. In all the
calculations the computational domain is 0 = x = 10. The
numerical initial conditions are obtained using linear inter-
polation between the exact steady state boundary values,
and the boundary conditions are specified on the three
conservative variables pk, mk, Ek, one the left boundary
x = 0 and pk on the right boundary x = 10, as

(pk)(0,1) = 0.5277, (mk)(0, 1) = 0.6855,

(5.3)
(ek)(0, 1) = 1.4465, (ek)(10, 1) = 3.454.
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For the given data (5.3) there is a stationary shock near
x = 4.816. We also use zeroth-order space extrapolation to
obtain the numerical boundary conditions for the unknown
variables mk, Ek at the outflow boundary x = 10 [30].

We use the RELAX2, ENO1-Roe, and ENO3-Roe to
compute the above nozzle flow. Previously the slow conver-
gence of high resolution methods have been reported [15,
29]. In Fig. 5.2 we use RELAX2 and ENO3-Roe, with 51
points, At = 0.046, and output the results at ¢ = 672.40.
Only p, mk and the flux of mk will be depicted in Fig. 5.2.
The mk profiles in all these schemes exhibit spurious spikes
at the shock location. The ENO-Roe3 resolves the steady
shock better, with a narrower viscous and spike profile.
This is due to the fact that ENO-Roe uses the Roe matrix
which is advantageous for stationary discontinuities. How-
ever, one can observe the oscillatory behavior of ENO3-
Roe in the downstream direction. This causes the problem
of non-convergence for ENO3-Roe. We also see that the
fluxes of mk do not have the spikes in both methods.

To study the numerical convergence we define the /2
error function as

error
_(pk(t + At) — pk(1))? + (mk(t + At) — mk(1))?
B + (Ek(t + At) — Ek(1))?

(5.4)

and plot log;o(error) in Fig. 5.3. By the time we stopped
t = 672.40 the RELAX2 has reached an error of 10717,
while the error for ENO3-Roe stays in the order of 1073,
In Fig. 5.4 we plot the magnitude of the momentum spike
and found that they become steady for both RELAX?2 (at
t =~ 150) and ENO3-Roe (at ¢ =~ 300). For a steady state
solution one does not expect that the study in Section 4
will play any role in understanding the oscillatory behavior
of ENO3-Roe shown in Fig. 5.2. Rather the oscillations
seem to be caused by high order interpolations near the
spike. To justify this we compare the results of ENO1-Roe
and ENO3-Roe in Fig. 5.5. Although ENO1-Roe has a
bigger spike profile it does not exhibit any downstream os-
cillations.

It seems that the downstream oscillation in the ENO3-
Roe calculation exhibits some periodic structure. Thus a
reasonable definition of convergence for this kind of
method should be the convergence modulus this period.

6. DISCUSSIONS AND CONCLUSIONS

In this paper we studied the effect of numerical viscosi-
ties for slowly moving and steady shocks in Euler equa-
tions. We showed that it is the unsteady numerical viscosity
that causes the downstream oscillations. When the density
profile is smeared by numerical viscosities, the momentum
forms a spike due to the artificial viscosity in the continuity
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equation. The mass carried by this spike is compensated
by downstream waves of equal mass for momentum conser-
vation. These downstream waves propagate along charac-
teristics and decay in /* and /2. A perturbing viscous or
spike profile is a constant source for the generation of
new downstream waves, which explains the downstream
oscillations for all time.

Note the schemes we used in the paper are monotone,
TVD, or ENO schemes. All these monotonicity theories
are established only for scalar equations, or linear systems.
For non-linear systems there are no global characteristic
variables; thus these methods are usually extended to non-
linear systems using the idea for linear systems, i.e., via
the so-called local characteristic decomposition (using the
Roe matrix, for example). Since there is no theory for the
monotonicity of these methods for non-linear systems, it
is not surprising to see the non-monotone behavior repre-
sented by the spike and downstream oscillations reported
here. It seems to us that, to fully solve this problem, instead
of applying scalarly monotone, TVD, or ENO scheme to
non-linear systems, one needs a method that is systemati-
cally “monotone, TVD, or ENO.” One also needs to
choose numerical viscosity properly so it mimics the physi-
cal viscosity of the Navier—Stokes equations. An ideal
scheme should have both a high resolution and a more
stable numerical viscosity. These require good theories for
both inviscid and viscous nonlinear systems [14] and remain
open and challenging research subjects for the future.

Upon the completion of this work we were informed of
the work [31] on the same subject but using a dynamical
system approach.
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