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Abstract. In this paper, we study a tumor growth equation along with vari-
ous models for the nutrient component, including a in vitro model and a in vivo

model. At the cell density level, the spatial availability of the tumor density

n is governed by the Darcy law via the pressure p(n) = nγ . For finite γ, we
prove some a priori estimates of the tumor growth model, such as boundedness

of the nutrient density, and non-negativity and growth estimate of the tumor

density. As γ → ∞, the cell density models formally converge to Hele-Shaw
flow models, which determine the free boundary dynamics of the tumor tis-
sue in the incompressible limit. We derive several analytical solutions to the

Hele-Shaw flow models, which serve as benchmark solutions to the geometric
motion of tumor front propagation. Finally, we apply a conservative and pos-

itivity preserving numerical scheme to the cell density models, with numerical

results verifying the link between cell density models and the free boundary
dynamical models.
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1. Introduction. Mathematical modeling and numerical simulations are of grow-
ing significance towards understanding cancer development, where the spatial effect
has been one of the most active areas for modeling the growth of solid tumors.
The tumor density can be influenced by a lot of effects, including concentration of
nutrients, spatial availability due to contact inhibition, chemical signals, as well as
other environmental factors, which yields numerous models for various tumors. In
order to include spatial effects, two main directions can be found in the literature.
One is to use a fluid mechanical view of a tissue, and write down the dynamics of
the cell population density [4, 22, 27, 28, 29, 31], the other one relies on the fact
that the tumor contours are distinguishable, so that one can use an expanding set
D(t) to describe the tumor region [2, 3, 13, 14, 15]. Using the asymptotic of a stiff
law-of-state pressure, the rigorous analysis that links these two approaches has been
given in [25, 32] for those simple cases that the tumor proliferation depends only on
contact inhibition. The formal derivation for more complicate cases that take into
account other aspects of tumor growth can be found in [24].

We introduce the cell density model for tumor growth as in [25] in the following.
We denote by n(x, t) the cell population density and by c(x, t) the nutrient concen-
tration. The dynamics of the cell population density is governed by the following
equation

∂

∂t
n−∇ · (n∇p(n)) = nG(c), x ∈ Rd, t ≥ 0, (1.1)

where p(n) = nγ (γ is a constant) is the pressure and G(c) represents the growth
that satisfies the following condition

G′(·) ≥ 0, G(0) = 0 . (1.2)

The nutrient is governed by the following nutrient equation

−∆c+ Ψ(n, c) = 0, (1.3)

where Ψ(n, c) is the consumption function which takes different forms in different
models. As in [26], two specific models considered here are a in vitro model and a
in vivo model. For the in vitro model under consideration, one assumes that the
nutrient is constant outside the tumor region, while the consumption is linear in c
inside. Thus the in vitro tumor growth model with nutrient reads

∂

∂t
n−∇ · (n∇p(n)) = nG(c), x ∈ Rd, t ≥ 0, (1.4)

−∆c+ ψ(n)c = 0, x ∈ D(t), (1.5)

c = cB , x ∈ R\D(t), (1.6)

where

D(t) = {x; n(x, t) > 0} = {x; p(n(x, t)) > 0} . (1.7)

Here ψ(n) satisfies

ψ(n) ≥ 0 for n ≥ 0, and ψ(0) = 0 . (1.8)

For the in vivo model, the nutrient is brought by the vasculature network away
from the tumor and diffused to the tissue [5]. Specifically, the in vivo tumor growth
model with nutrient reads

∂

∂t
n−∇ · (n∇p(n)) = nG(c), x ∈ Rd, t ≥ 0, (1.9)

−∆c+ ψ(n)c = χ{n=0}(cB − c), x ∈ Rd, (1.10)
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where ψ is the same as in (1.8) and χA denotes the characteristic function of the
set A.

We point out that, in the present paper, G(c) defined in (1.2) only takes non-
negative values. Compared with the nutrient models in [24, 32, 25], we exclude the
possibility that G being negative, therefore, no necortic core can appear. Besides,
we remark that, since there is no contact inhibition in the growth term, albeit those
two nutrient models are of great practical significance, the analysis results in [25],
however, applies to neither case directly.

In order to build connections of the cell density model some free boundary model
where the evolution of the tumor contours are directly described, the state equation
p(n) takes the form p(n) = nγ in [25]. The limit γ → ∞ is considered as the
incompressible limit. On the one hand, this limit is physically relevant, it boils
down to consider the tumor cell tissue as an incompressible elastic material in a
confined environment. On the other hand, it is mathematically interesting, since
the limiting model becomes a Hele-Shaw type free boundary problem. To see what
happens in the limit γ →∞, we multiply the equation (1.1) by γnγ−1 on both sides
to get

∂

∂t
p(n) = |∇p(n)|2 + γp(n)∆p(n) + γp(n)G(c) . (1.11)

Hence formally we have, when γ →∞, that p→ p∞ with p∞ solving{
−∆p∞ = G(c), in D∞(t),
p∞ = 0, on ∂D∞(t).

(1.12)

Here

D∞(t) = {p∞(t) > 0} . (1.13)

And n will converge to the weak solution of

∂

∂t
n∞ = ∇ · (n∞∇p∞) + n∞G(c) , (1.14)

wherein the limit density n∞ satisfies 0 ≤ n∞ ≤ 1 and n∞ = 1 in D∞(t). Note
here the difference between D in (1.7) and D∞ in (1.13): the former one is for finite
γ when n and p(n) have the same support, whereas the latter is when taking γ to
infinity and n∞ may have a larger support than p∞. For a general class of initial
conditions, see [24, 19], n∞ converges to a patch function χD∞(t) as time goes on,
and the velocity of the free boundary ∂D∞ is v = −∇p∞. In this case, the supports
of n∞ and p∞ coincide.

Then, in the in vitro model, equation (1.3) becomes

−∆c+ ψ(1)c = 0, forx ∈ D∞(t); (1.15)

c = cB , forx ∈ {p∞(t) = 0}. (1.16)

And for the in vivo model, equation (1.3) becomes

−∆c+ ψ(1)χD(t)c = χ{p(t)=0}(cB − c). (1.17)

In this paper, three different nutrient dependence are considered: 1) G(c) is a
constant in the whole domain; 2) in vitro as in (1.15) and (1.16); 3) in vivo as in
(1.17). The main contribution of this paper is two-fold. One is to provide some
a priori estimates of the non-negativity and global boundedness of the nonlinear
parabolic-elliptic system. It is important to note that, different from the models
in [25], the cell growth is not prohibited by the contact inhibition, which is the
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case for tumor cells in the in vitro model, thus there exhibits no maximum pres-
sure, and in the nutrients models, Ψ is no longer necessarily smooth functions of n
or p. Therefore, the proof of the non-negativity and global boundedness is not as
straightforward as in [25]. The other is to derive some benchmark analytical solu-
tions for multi-dimensional front dynamics, a geometric motion of the limiting free
boundary model. These solutions compare favorably with the numerical solutions
to cell density model, which to some extend, verify this singular limit. To solve
the cell density model numerically, we adopt a recently proposed numerical scheme
for sub-critical Keller Segel equations [20] to the tumor growth models, which is
conservative in the spatial flux due to pressure, positivity preserving, and free from
a nonlinear solver.

There exist other models in the literature that can connect time dynamic density
model with the free boundary model, for example the threshold dynamics method
introduced in [23] found similar connections and is used to simulate the motion by
mean curvature flow [9, 30, 33]. The incompressible limit of the tumor growth model
is interesting not only because it provides the link between different model types
[12, 13, 25, 26], but also it provides a possible tool to simulate and approximate the
free boundary problems. In the numerical part, 2D geometric motions of the free
boundary models are investigated as the limits of cell density models as γ →∞.

The organization of this paper is as follows. We prove the non-negativity and
global boundedness of the cell population density model with finite γ in section 2.
Some multidimensional geometric front dynamics are derived analytically in section
3. In section 4 and 5, we introduce the adopted numerical scheme for the tumor
growth models, verify the analytical results found in section 3 by simulating the
cell density models, and present some worthy geometric motions of the limiting free
boundary model. Finally, we conclude with some discussions.

2. Properties of the PDE models. In this section, we start a study of various
basic estimates of the solution to the tumor-nutrient models with fixed γ. The
properties we will cover include the non-negativity and global boundedness of the
tumor density n and nutrient density c, and limited growth for the total mass of
the tumor.

In [25], a general class of parabolic-parabolic systems of the tumor cell density
and the nutrient concentration were studied, where the coupling functions G and Ψ
are assumed to be smooth functions of p. However, in the in vitro model and the in
vivo model, the nutrient density functions are governed by elliptic equations with
moving boundary conditions or nonsmooth dependence on the cell density function
n, and hence the analysis in [25] cannot be directly extended to the models we
study.

First, the non-negativity for n(x, t) is given by the following theorem.

Theorem 2.1. For the tumor growth model (1.1), if initially n(x, 0) = n0(x) ≥ 0,
and G(c) ∈ [0, Gm] for some Gm > 0, then n(x, t) ≥ 0 for all t ≥ 0 and x ∈ Rd,
regardless of the specific form of G(c).

This result is an immediate consequence of the fact that n ≡ 0 is a trivial solution
to (1.1) and the comparison principle: for two solutions of the cell density model
(1.1) n1 and n2, we have for t ≥ 0, n1(t) ≤ n2(t), if n1(0) ≤ n2(0) (see e.g.
Proposition 4.5 in [24]). Hence we omit the proof of the theorem in this work. We
emphasis that, this property is independent of the growing factor G(c), and thus
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naturally applies to all three tumor-nutrient models we have listed in the previous
section.

Next, we consider the change in the total mass of n. With sufficient nutrient
G(c) ≡ G0, we immediately get the exponential growth in time. Indeed, integrate
(1.1) against x over Rn, we have

d

dt

∫
Rd

n(x, t)dx = G0

∫
Rd

n(x, t)dx ,

which readily implies

‖n(·, t)‖L1 = exp(tG0)‖n(·, 0)‖L1 ,

thanks to the non-negativity of n in Theorem 2.1. For the other two nutrient
models, we need to prove the global boundedness of the nutrient functions first.
Note that the nutrient densities are self-consistently determined by the cell density
with moving support, and one can show that this support propagates with finite
speed. In fact, it is well known that for porous media equations, the support of the
solution expands with bounded speed, see, for example, [1], and similar estimates
have been derived for some tumor growth models in [25]. Actually, with the global
boundedness of the nutrient functions, the analysis in [25] for finite front speed
naturally applies. Therefore, it suffices to estimate the nutrient models.

Having established the non-negativity of the cell density model, we next demon-
strate the boundedness on c(x, t). Consider the in vitro model (1.4), (1.5) and (1.6)
with the initial condition

n(x, 0) = n0(x) ≥ 0, (2.18)

where n0(x) is a compactly supported function, and D(t) is defined in (1.7). We
now show the following lemma.

Lemma 2.1. In the in vitro model (1.4) – (1.6) and (2.18), 0 ≤ c(x, t) ≤ cB for
t ≥ 0 and x ∈ Rd.

Proof. Write c(x, t) = c+(x, t) − c−(x, t), where c±(x, t) ≥ 0 denote the positive
part and the negative part of c(x), respectively. Notice that at the boundary
c(x, t)|∂D(t) = cB > 0, thus c−(x, t)|∂D(t) = 0. Then multiply equation (1.5) by
−c−(x, t), and integrate over D(t), we have, upon integration by parts,∫

D(t)

|∇c−|2 + ψ(n)c2−dx = 0.

Here, we have used the fact that the terms involving products of c+ and c− nat-
urally vanish in the integral. Notice that by Theorem 2.1, the cell density stays
nonnegative and thus ψ(n) ≥ 0. Then the above equation implies c−(x, t) = 0 in
D(t), and thus c(x, t) ≥ 0 in D(t). Hence, c(x, t) ≥ 0 in Rd.

Now from (1.5), we have in D(t),

∆c = ψ(n)c ≥ 0.

Then, by maximum principle, we have

c(x, t)|D(t) ≤ c(x)|∂D(t) = cB ,

which indicates that c(x, t) ≤ cB in Rd.
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Next we turn our attention to the in vivo model (1.9) and (1.10) with the fol-
lowing conditions

n(x, 0) = n0(x) ≥ 0, c(±∞, t) = cB > 0. (2.19)

Again, we assume that n0 is compactly supported. We show the boundedness of
c(x, t) in the following.

Lemma 2.2. In the in vivo model (1.9), (1.10) and (2.19), for t ≥ 0 and x ∈ Rd,
0 ≤ c(x, t) ≤ cB.

Proof. Similar to the proof in Lemma 2.1, by Theorem 2.1, the cell density stays
nonnegative and ψ(n) ≥ 0.

We write c(x, t) = c+(x, t)− c−(x, t), where c±(x, t) ≥ 0 denote the positive part
and the negative part of c(x), respectively. Due to assumption of c(x, t) at infinity,
c−(±∞, t) = 0. Multiply equation (1.10) by −c−(x, t), and integrate over Rn, we
have, upon integration by parts,∫

Rn

(
|∇c−|2 + ψ(n)c2−

)
dx+

∫
Rn\D(t)

(
cBc− + c2−

)
dx = 0

which implies c−(x, t) = 0 in Rn, and thus c(x, t) ≥ 0 in Rn. Here, we have used the
fact that the terms involving products of c+ and c− naturally vanish in the integral.

Next, we show that there exits an upper bound for c(x, t). In Rn\D(t), due to
the boundary conditions that c(±∞, t) = cB , if we further assume:

max
x∈Rn\D(t)

c(x, t) = cM > cB ,

then there exists x0 ∈ Rn\D(t), such that

∆c(x0, t) ≤ 0, and c(x0, t) = cM .

This implies,

−∆c(x0, t) ≥ 0 > cB − cM .

So equation (1.10) is violated at this point. Therefore, when x ∈ Rn\D(t), c(x, t) ≤
cB . In D(t),

∆c = ψ(n)c ≥ 0.

By maximum principle, we have

c(x, t)|D(t) ≤ c(x, t)|∂D(t).

This clearly shows that, by continuity of c(x, t) crossing ∂D(t), c(x, t) ≤ cB in Rd,
which completes the proof.

As an immediate result, in both models, we have the following estimate in the
growth of the total mass,

‖n(·, t)‖L1 ≤ exp(tGm)‖n(·, 0)‖L1 , (2.20)

where Gm = G(cB).
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3. Explicit solutions of the Hele-Shaw models. Assume that the initial con-
dition of n is a characteristic function, then it is expected that it remains so when
γ goes to infinity and thus the cell density model converges to the Hele-Shaw flow
[25, 24]. In this and the next sections, we would like to build a more concrete connec-
tion between these two models. Particularly, we explicitly work out the analytical
solutions of the Hele-Shaw type equations for the three tumor nutrient models in
this section, which will be compared with numerical solutions to the cell density
models obtained in Section 5. The analytical solutions we obtain in this section will
also serve as a benchmark for our future research.

3.1. Radial symmetric solution with constant nutrient in multi-dimensions.
Consider the tumor growth model with infinitely sufficient nutrient

∂

∂t
n = ∇ · (n∇p(n)) + nG0. (3.21)

We recall here for convenience that p(n) = nγ . As explained in the introduction,
in the limit of γ → ∞, we have p → p∞, and the model formally becomes the
Hele-Shaw geometric model. Specifically, it takes the form{

−∆p∞ = G0, in D∞(t),
p∞ = 0, on ∂D∞(t),

(3.22)

where D∞(t) = {p∞(t) > 0}. The boundary of D∞(t) moves with the speed
v = −∇p∞ · n̂ along the normal direction, where n̂(x, t) is the outer unit normal
vector at the boundary. And n∞ is a weak solution to

∂

∂t
n∞ = ∇ · (n∞∇p∞) + n∞G0. (3.23)

In what follows, we confine ourselves to the radial symmetric case and derive
the analytical solutions explicitly for several specific examples. Let r be the radial
variable; then (3.21) rewrites

∂tn =
1

rd−1

∂

∂r

(
nrd−1 ∂

∂r
p

)
+ nG0 , (3.24)

and (3.22) becomes

− 1

rd−1

d

dr

(
rd−1 d

dr
p∞

)
= G0 , (3.25)

and the expansion speed takes the form

v = −∂p∞
∂r

r̂ · n̂ .

Here both n and p now depend on r, and d denotes the dimension.

Example 1. An expanding ball. We choose the initial condition to be the
characteristic function of a ball with radius R0 centered at origin, i.e.,

n(x, 0) = χBR0
.

then it is expected that as γ goes to infinity, n(x, t) converges to n∞(x, t) = χBR(t)
.

Now it amounts to determine how R(t) changes with time. We will explore this
dynamics in the viewpoint of both the tumor growth model and the limiting Hele-
Shaw flow model, and show that they both lead to the same expansion speed for
the tumor.
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Firstly, in the tumor growth model (3.23), we integrate both sides over Rd, and
denote m(t) =

∫
Rd n∞(x, t)dx, then we get m(t) = m(0)eG0t. With the radial

symmetric assumption, this solution implies

R(t) = R(0)eG0t/d , (3.26)

which leads to the expansion speed

R′ =
G0

d
R. (3.27)

On the other hand, for the Hele-Shaw flow model (3.25), we see that

d

dr

(
rd−1 d

dr
p∞

)
= −rd−1G0,

which leads to
d

dR
p∞ = −G0

d
R. (3.28)

Therefore, the expansion speed is

v = −∇p∞ · n̂ = −dp∞
dR

=
G0

d
R ,

which agree with the speed (3.27) derived from the dynamical tumor growth model.
Also, we conclude from (3.28) that

p∞ = −G0

2d
R2 + a,

and the integration constant a can be determined by the fact that p∞(R(t)) = 0,
and thus

p∞(r) = −G0

2d
r2 +

G0

2d
R(t)2, r ≤ R(t).

Example 2. a single-annulus in dimension 2. As the second example, we
consider the case when D∞(t) has an annulus shape with inner radius r− and outer
radius r+. In this case, we can not derive the speed for the two boundaries directly
from integrating the cell density model because the problem is underdetermined,
but we can still solve the free boundary limit problem, the Hele-Shaw flow model.
Recall (3.25), then when d = 2 the solution p∞(r) takes the form

p∞(r) = −G0

4
r2 + a ln r + b, (3.29)

Here both a and b will be determined by the fact that p∞(r−) = p∞(r+) = 0,

a = G0
r2
+ − r2

−
4 (ln r+ − ln r−)

, b = −G0
r2
+ ln r− − r2

− ln r+

4 (ln r+ − ln r−)
.

To lighten the notation, we let m denote the total mass

m = Bd(r+)−Bd(r−) ,

where Bd(r) = πd/2

Γ( d
2 +1)

rd is the volume of a ball in Rd with radius r. Then one sees

from equation (3.24), upon integrating in Rd, that

m(t) = m(0)eG0t . (3.30)

In d = 2, m simply reduces to m = π(r2
+ − r2

−).
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Given the form of p∞ in (3.29), one immediately gets the moving speed. Specif-
ically, at the inner boundary, we have

v
∣∣
r=r−

= −p′∞n̂
∣∣
r−

= p′∞(r−) = −G0

2
r− +

G0m

4πr− (ln r+ − ln r−)
;

whereas in the outer boundary, we have

v
∣∣
r=r+

= −p′∞n̂
∣∣
r+

= −p′∞(r+) =
G0

2
r+ −

G0m

4r+π (ln r+ − ln r−)
.

Note carefully here that the inner boundary moves at speed v
∣∣
r−

in the negative

direction along the radius, and the outer boundary moves at the speed of v
∣∣
r+

in

the positive direction along the radius. Therefore, we have the following results
concerning the change in radius r+ and r−:

∂tr− = −v|r− =
G0

2
r− −

G0m

4πr− (ln r+ − ln r−)
, (3.31)

∂tr+ = v|r+ =
G0

2
r+ −

G0m

4r+π (ln r+ − ln r−)
. (3.32)

Moreover, one can easily check that

∂tm = 2π (r+ṙ+ − r−ṙ−) = 2π
G0

2
(r2

+ − r2
−) = G0m,

which recovers the exponential growth of the total mass as displayed in (3.30).

Example 3. a double-annulus in dimension 2. In this example, we extend the
single annulus into a double annulus shape with four boundaries r1, r2, r3 and r4,
where r1 < r2 characterize the inner annulus and r3 < r4 defines the outer annulus.
Then similar to the previous example, we can only compute the front propagation
speed via the limit model (3.25). Indeed, from (3.29), one has

p∞(r) = −r
2

4
G0 + a ln r + b ,

where a and b are determined by the boundary conditions. Specifically, for the inner
annulus, the boundary conditions are

p(r1) = p(r2) = 0 ,

which leads to

p∞(r) = −r
2

4
G0 +G0

r2
2 − r2

1

4(ln r2 − ln r1)
ln r −G0

r2
2 ln r1 − r2

1 ln r2

4(ln r2 − ln r1)
r1 ≤ r ≤ r2 .

Therefore, the governing equations of r1 and r2 are given by

∂tr1 = −v|r1 = −p′∞(r2) =
G0

2
r1 −

G0(r2
2 − r2

1)

4r1 (ln r2 − ln r1)
,

∂tr2 = v|r2 = −p′∞(r2) =
G0

2
r2 −

G0(r2
2 − r2

1)

4r2 (ln r2 − ln r1)
.

Likewise, r3 and r4 satisfy the following equations

∂tr3 = −v|r3 = −p′∞(r3) =
G0

2
r3 −

G0(r2
4 − r2

3)

4r3 (ln r4 − ln r3)
,

∂tr4 = v|r4 = −p′∞(r4) =
G0

2
r4 −

G0(r2
4 − r2

3)

4r4 (ln r2 − ln r3)
.
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And p∞(r) for r ∈ [r3, r4] takes the form

p∞(r) = −r
2

4
G0 +G0

r2
4 − r2

3

4(ln r4 − ln r3)
ln r −G0

r2
4 ln r3 − r2

3 ln r4

4(ln r4 − ln r3)
r3 ≤ r ≤ r4 .

3.2. 1D radial symmetric model with linear growth function. In this sec-
tion, we assume that the growing factor G(c) is a linear function in c

G(c) = G0c , G0 > 0 (3.33)

so that it satisfies the conditions (1.2). Then the tumor growth model (1.1) in 1D
reduces to

∂tn = ∂x (n∂xp(n)) +G0cn , p(n) = nγ .

In the limit γ →∞, we have the limit density n∞ solving

∂

∂t
n∞ = ∂x (n∞∂xp∞) + n∞G0c.

and p∞ in (1.12) satisfying{
−∂xxp∞ = G0c, in D∞(t),
p∞ = 0, on ∂D∞(t),

(3.34)

where D∞(t) = {p∞(t) > 0}. The free boundary of D moves with normal velocity

v = −∂xp∞ · n̂ (3.35)

with n̂(x, t) being the unit outer normal vector to the boundary. In the following
two examples, we derive the analytical solutions for the limiting models obtained
from two different cases: in vitro and in vivo. For simplicity, in this section we use
ψ(n) = n for the nutrient model. And we assume this for the rest of the paper,
unless specified otherwise.

Example 4. 1D in vitro model. In the 1D in vitro models, equations (1.15)
(1.16) become

−∂xxc+ ψ(1)c = 0, forx ∈ D∞(t);

c = cB , forx ∈ R\D∞(t) ,

and we have formally assumed that on D∞(t), n ≡ 1 if initially n is a characteristic
function [25, 24].

Recall that, we have assumed ψ(n) = n for simplicity, then at a certain time t
(we hereafter suppress the t dependence whenever it does not cause any confusion),
by direct calculation we have

c =

{ cB
cosh(R(t)) cosh(x), x ∈ [−R(t), R(t)];

cB , x /∈ [−R(t), R(t)].

To proceed, plugging the above solution for c into the p∞ equation (3.34), we get

−∂xxp∞ = G0c =
cBG0

cosh(R(t))
cosh(x), x ∈ [−R(t), R(t)] ,

whose general solution is given by

p∞ = − cBG0

cosh(R(t))
cosh(x) + ax+ b.
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Again, by symmetry, one has ∂xp(0) = 0, which leads to a = 0. Then the boundary
condition p∞(±R(t)) = 0 gives rise to b = cBG0. Therefore, we have

p∞ =

{
− cBG0

cosh(R(t)) cosh(x) + cBG0, x ∈ [−R(t), R(t)];

0, x /∈ [−R(t), R(t)].
(3.36)

Then the propagation speed of the R(t) can be obtained using (3.35)

v(R(t)) = −p′∞(R(t)) = cBG0 tanh(R(t)).

and thus

∂tR(t) = cBG0 tanh(R(t)) . (3.37)

As R(t)→∞, one sees that the limiting speed is cBG0.

Example 5. 1D in vivo model. We now repeat the calculation for the in vivo
model, in which nutrient varies according to

−∂xxc+ ψ(1)χD(t)c = χ{p(t)=0}(cB − c).

With the same assumptions as in the previous example, we can obtain that

c =

{
cB
eR(t) cosh(x), x ∈ [−R(t), R(t)];

cB − cB sinh(R(t))e−|x|, x /∈ [−R(t), R(t)].

As before, plugging the expression of c into (3.34) to get p∞

−∂xxp∞ = G0c =
cBG0

eR(t)
cosh(x), x ∈ [−R(t), R(t)]

whose general solution is given by

p∞ = −cBG0

eR(t)
cosh(x) + ax+ b.

Then symmetry implies ∂xp(0) = 0, which further leads to a = 0. And the boundary
condition p∞(±R(t)) = 0 implies b = cBG0 cosh(R(t))e−R(t). Altogether, we get

p∞ =

{
− cBG0

eR(t) cosh(x) + cBG0

eR(t) cosh(R(t)), x ∈ [−R(t), R(t)];
0, x /∈ [−R(t), R(t)].

(3.38)

And the propagation speed of R(t) is obtained by direct calculation

v(R(t)) = −p′∞(R(t)) = cBG0
sinh(R(t))

eR(t)
= cBG0

cosh(R(t))

eR(t)
tanh(R(t))

≤ cBG0 tanh(R(t)) ,

and thus

∂tR(t) = cBG0
sinh(R(t))

eR(t)
, (3.39)

In view of the above result, we notice that the propagation speed in the in vivo
model is slower than that in the in vitro model. Moreover, as R(t) → ∞, the
limiting speed is 1

2cBG0, which is a half of the limiting speed in the in vitro model.
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3.3. 2D radial symmetric model with linear growth. As in the last section,
we consider linear growth function (3.33) but in 2D radial symmetric case. Then
(1.1) simplifies to

∂tn =
1

r
∂r (nr∂rp(n)) +G0cn, p(n) = nγ

and its limit reads

∂tn∞ =
1

r
∂r (r∂rp∞) + n∞G(c) ,

where p∞ satisfies {
− 1
r (r∂rp∞) = G(c) in D(t) ,

p∞ = 0 on ∂D(t) .
(3.40)

The equation for c varies depending on the model we consider. In the following two
examples, we provide analytical solution for the limiting system.

Example 6. 2D radial symmetric in vitro model. In the in vitro model, we
have

−1

r
∂r(r∂rc) + ψ(1)c = 0, forx ∈ D(t); (3.41)

c = cB , forx ∈ R2\D(t). (3.42)

We also assume that the initial density n is a characteristic function with radial
symmetry, i.e., n∞(x, 0) = χBR0

, and we expect that the density remains a charac-
teristic function with a moving boundary n∞ = χBR(t)

.

For fixed t, (we thus suppress the t dependence in the calculation in the following)
when x ∈ BR(t), we have

−1

r
∂r(r∂rc) + c = 0.

The boundedness of c at r = 0 implies the following general solution

c(r) = aI0(r),

where Im(r) is the modified Bessel function of the first kind. The undetermined
coefficient c comes from the boundary condition at c(R(t)) = cB , which leads to

a =
cB

I0(R(t))
.

Therefore,

c =

{ cB
I0(R(t))I0(r), r ∈ [0, R(t)];

cB , r > R(t).

To proceed, plugging the solution c into (3.40), then we have, for x ∈ BR(t)

−1

r
∂r(r∂rp∞) =

cBG0

I0(R(t))
I0(r),

whose general solution is given by

p∞ = − cBG0

I0(R(t))
I0(r) + a ln r + b.

The boundedness of p∞ at r = 0 implies a = 0, and the boundary condition
p∞(±R(t)) = 0 implies b = cBG0. In sum, we get

p∞ =

{
− cBG0

I0(R(t))I0(r) + cBG0, r ∈ [0, R(t)];

0, r > R(t).
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Then the propagation speed of the R(t) is

v(R(t)) = −p′∞(R(t)) = cBG0
I1(R(t))

I0(R(t))
,

and thus

∂tR(t) = cBG0
I1(R(t))

I0(R(t))
. (3.43)

Note that limiting speed is cBG0 as R(t)→∞.

Example 7. 2D radial symmetric in vivo model. We now repeat the
calculation for the in vivo model:

−1

r
∂r(r∂rc) + ψ(1)χD(t)c = χ{p(t)=0}(cB − c).

With the same assumptions as in the previous section, for fixed t, and when x ∈
BR(t), we have

−1

r
∂r(r∂rc) + c = 0.

The boundedness of c at r = 0 implies the following solution,

c(x) = a0I0(r).

However, unlike the previous case, we can not specify the constant a0 with the right
boundary condition. Instead, we have, for x > R(t),

−1

r
∂r(r∂rc) = cB − c,

and thus the general solution is given by

c = cB + a1K0(r) + a2I0(r),

where Km(r) denotes the modified Bessel function of the second kind. With the far
field assumption c→ cB as x→ ±∞, we know a2 = 0. By continuity of c and ∂xc
at x = R(t), we get

a0 =
cBK1(R)

K0(R)I1(R) +K1(R)I0(R)
, a1 = − cBI1(R)

K0(R)I1(R) +K1(R)I0(R)
.

Therefore,

c =

{
cBK1(R)

K0(R)I1(R)+K1(R)I0(R)I0(r), r ∈ [0, R];

cB − cBI1(R)
K0(R)I1(R)+K1(R)I0(R)K0(r), r > R.

Plugging it to (3.40), then for x ∈ BR(t), we have

−1

r
∂r(r∂rp∞) = G0c =

cBG0K1(R)

K0(R)I1(R) +K1(R)I0(R)
I0(r),

whose general solution is given by

p∞ = − cBG0K1(R)

K0(R)I1(R) +K1(R)I0(R)
I0(r) + a ln r + b.

The boundedness of p∞ at r = 0 implies a = 0, and the boundary condition
p∞(±R(t)) = 0 indicates

b =
cBG0K1(R)I0(R)

K0(R)I1(R) +K1(R)I0(R)
.
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In sum, we get

p∞ =

{
− cBG0K1(R)
K0(R)I1(R)+K1(R)I0(R)I0(r) + cBG0K1(R)I0(R)

K0(R)I1(R)+K1(R)I0(R) , x ∈ [−R(t), R(t)];

0, x /∈ [−R(t), R(t)].

By direct calculation, we find the front propagation speed

−p′∞(R(t)) = cBG0
K1(R)I1(R)

K0(R)I1(R) +K1(R)I0(R)
≤ cBG0

K1(R)I1(R)

K1(R)I0(R)
= cBG0

I1(R)

I0(R)

which implies that the speed in the in vivo model is slower than that in the in vitro
model. And the limiting speed is 1

2cBG0 as R(t)→∞. Finally, we write

∂tR(t) = cBG0
K1(R)I1(R)

K0(R)I1(R) +K1(R)I0(R)
. (3.44)

4. Numerical method. In this section, we discuss the numerical method for the
cell density equations (1.1). Our goal is to obtain a numerical approximation to
the cell density model with big γ such that it can be compared with the analytical
solution derived in the last section to the limiting Hele-Shaw flow. Note that a
direct simulation of the cell density model can be very challenging due to the high
nonlinearity and degeneracy, in which case the space and time steps have to be
small enough to overcome the numerical error or instability induced by large γ.

Here we adopt the numerical methods for sub-critical Keller-Segel equations pro-
posed in [20] to the tumor growth models, which is positivity preserving and con-
servative when G = 0, so that it can handle the moving transient front nicely with
correct growth in total mass. Besides, it uses a semi-implicit discretization in time
so that it is free from nonlinear solvers when the consumption function Ψ is lin-
ear in c. More specifically, we consider a 2D case in the following without loss of
generality. Denote

M = exp (−nγ) ,

then equation (1.1) can be formulated as

∂

∂t
n = ∇ ·

[
nM∇ 1

M

]
+ nG(c)

= ∇ ·
[
nM∇ n

nM

]
+ nG(c) ,

which, together with (1.3), can be solved by a semi-discrete semi-implicit scheme

nk+1 − nk

∆t
= ∇ ·

[
nkMk∇ nk+1

nkMk

]
+ nk+1G(ck+1), (4.45)

−∆ck+1 = −Ψ
(
nk, ck+1

)
. (4.46)

Here the superscript k stands for the numerical solution at t = tk = k∆t. Notice
that one can compute ck+1 first from (4.46), and then compute nk+1 from (4.45),
and thus no nonlinear solver is needed as long as Ψ(n, c) is linear in c. Clearly, the
three models that we have studied satisfies this condition. Besides, we emphasize
that, the cell density model is highly nonlinear but with the proposed semi-implicit
scheme, the semi-discrete system becomes decoupled, and thus only a standard
elliptic solver is needed for a full discrete scheme.

For spatial discretization, we notice that a standard five point discretization of
(4.46) guarantees boundedness of numerical approximations of c. That being said,
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if we denote the fully discrete approximation of c at (xi, yj , tk) by ckij , denote ∆x
and ∆y the spatial grid, then (4.46) is discretized as

−
ck+1
i+1,j − 2ck+1

i,j + ck+1
i−1,j

∆x2
−
ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1

∆y2
= Ψ(nki,j , c

k+1
i,j ) ,

and we have

0 ≤ ckij ≤ cB .

Note that, equation (4.45) can be reformulated as(
1−∆tG(ck+1)

)
nk+1 −∇ ·

[
nkMk∇ nk+1

nkMk

]
= nk. (4.47)

Clearly, if ∆t satisfies the following condition

∆t < min
x
{1/G(ck+1)} =

1

G(cB)
=

1

Gm
, (4.48)

the left hand side of (4.47) is a positive definite operator of nk+1. Therefore, as long
as the spatial discretization can preserve this property, the fully discrete numerical
scheme is positivity preserving. For instance, we take the symmetric framework in

[18, 17]. Denote M̃ = nM , and let hk+1 = nk+1√
M̃k

, then (4.45) is discretized into

hk+1
i,j + ∆tSk+1

i,j − h
k+1
i,j G(ck+1

i,j )∆t =
nki,j√
M̃k
i,j

where

Sk+1
ij =

1

∆x2
√
M̃k+1
i,j

√
M̃k+1
i+1,jM̃

k+1
i,j

 hk+1
i+1,j√
M̃k+1
i+1,j

−
hk+1
i,j√
M̃k+1
i,j


− 1

∆x2
√
M̃k+1
ij

√
M̃k+1
i,j M̃k+1

i−1,j

 hk+1
i,j√
M̃k+1
i,j

−
hk+1
i−1,j√
M̃k+1
i−1,j


+

1

∆y2
√
M̃k+1
i,j

√
M̃k+1
i,j+1M̃

k+1
i,j

 hk+1
i,j+1√
M̃k+1
i,j+1

−
hk+1
i,j√
M̃k+1
i,j


− 1

∆y2
√
M̃k+1
i,j

√
M̃k+1
i,j M̃k+1

i,j−1

 hk+1
i,j√
M̃k+1
i,j

−
hk+1
i,j−1√
M̃k+1
i,j−1

 .

In the radial symmetric case, let r be the radius, the system changes to

∂tn =
γ

γ + 1

1

r

∂

∂r

(
r
∂

∂r
nγ+1

)
+ nG(c),

− 1

r

∂

∂r

(
r
∂

∂r
c

)
= −Ψ (n, c) .

Again, denote

M = exp (−nγ) ,



16 JIAN-GUO LIU, MIN TANG, LI WANG AND ZHENNAN ZHOU

we can reformulate

∂tn =
1

r

∂

∂r

(
rnM

∂

∂r

1

M

)
+ nG(c)

=
1

r

∂

∂r

(
rnM

∂

∂r

n

nM

)
+ nG(c).

Therefore, the corresponding semi-discrete semi-implicit scheme becomes

nk+1 − nk

∆t
=

1

r

∂

∂r

(
rnkMk ∂

∂r

nk+1

nkMk

)
+ nk+1G(ck+1), (4.49)

− 1

r

∂

∂r

(
r
∂

∂r
ck+1

)
= −Ψ

(
nk, ck+1

)
. (4.50)

Similar analysis can be applied to the radial symmetric case. The readers can refer
to [20] for a more general discussion.

In the rest of this section, we provide a heuristic explanation of what conditions
a scheme for the cell density model should satisfy such that it can capture its front
speed correctly for large γ. We use the Lax-Wendroff type argument. To explain,
let us consider the following model problem:

∂tn+ ∂xf(n) = g(n) , (4.51)

where n(x, t) is the density function, x ∈ R and t ≥ 0. The flux function f and the
growth factor g may depend on functions of n, nonlocal transform of n and their
spacial derivative. A weak form of (4.51) reads∫ ∞

0

dt

∫
R
dx (φtn+ φxf + φg) = 0 , (4.52)

where φ is a smooth test function in R× [0,∞) with compact support.
The numerical scheme is represented as

ρk+1
j = ρkj −

τ

h

(
Fj(n

k, nk+1)− Fj−1(nk, nk+1)
)

+ kGj(n
k, nk+1), (4.53)

with τ , h being respectively the time and space steps. To lighten the notations, we
denote F kj = Fj(n

k, nk+1), Gkj = Gj(n
k, nk+1). Multiply (4.53) by φkj := φ(xj , t

k),
and sum over j ∈ Z and k ∈ N, and we get

∞∑
k=0

∞∑
j=−∞

φkj (nk+1
j − nkj ) = − τ

h

∞∑
k=0

∞∑
j=−∞

φkj (F kj − F kj−1) + τ
∞∑
k=0

∞∑
j=−∞

φkjG
k
j .

With summation by parts, we obtain

−
∞∑
k=0

∞∑
j=−∞

(φkj −φk−1
j )nkj =

τ

h

∞∑
k=0

∞∑
j=−∞

(φkj+1−φkj )F kj + τ

∞∑
k=0

∞∑
j=−∞

φkjG
k
j . (4.54)

Consider a family of discretization parameter sets {τ`, h`}`∈N. We assume that
τ` → 0 and h` → 0 as ` → ∞. Denote the piecewise constant reconstruction of
the solution by ñ`(x, t), and we assume that as `→∞, ñ` converges to a piecewise
smooth function ñ. Moreover, we assume the piecewise constant construction of
the flux F` and the growth G` converge to f(ñ) and g(ñ). Then, (4.54) implies, as
`→∞, ∫ ∞

0

dt

∫
R
dx (−φtñ− φxf(ñ) + φg(ñ)) = 0.
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This means that, if the numerical solutions converge and the flux functions and
growth functions converge consistently, the numerical solutions converge to the
weak solution of the model equation. Then by standard argument, if the numerical
solution converges to a solution which is discontinuous at X(t), the propagation of
the discontinuity is governed by

Ẋ(t) =
[f(ñ)]

[ñ]
,

where [s] denotes the jump of s at the discontinuity.
It is interesting to apply the above result to a simple 1D case of (1.1), wherein

we denote ñγ the limit of the numerical approximation in the vanishing mesh size
limit. Then sending γ →∞, we expect that, for a general class of initial conditions,

ñγ → ñ∞ = χD∞(t),

where D∞(t) is defined in (1.13). Without loss of generality, we look at the right
endpoint of D(t) and obtain

[n∞] = −1, [−n∞∂xp] = ∂xp,

where ∂xp is understood as the sided limit of ∂xp from the interior of the support.
Then, we conclude,

Ẋ(t) = −∂xp(X(t)),

which agrees with the front propagation speed of the Hele-Shaw flow model.
Note that the Lax-Wendroff type argument above does not give us the criterion

to check convergence, but it suggests that the discretization of the density equation
from the conservative form (4.51) should be the key to capture the correct front
propagation speed. We shall numerically verify in the next sections that, in various
cases, the proposed numerical method gives numerical solutions with accurate mov-
ing boundaries. We also remark that, it is not clear to us that whether the entropy
condition is satisfied when certain spatial discretization is applied, which we may
study in the future. However, the entropy condition has been analyzed in another
recent paper by us [21], in which a fundamentally different numerical method for
the tumor growth models is introduced.

5. Numerical examples. In this section, we conduct several numerical experi-
ments to further investigate the behavior of the tumor growth model with various
nutrient dependence. Note that, in Section 5.1, Section 5.2 and Section 5.3, we have
arranged numerical examples in agreement with explicit solutions in Section 3, and
we have provided some numerical tests to explore geometric motion of the tumor
density in 2D in Section 5.4.

5.1. 2D radial symmetric case with constant growth. We first consider the
radial symmetric case in 2D. Here r is chosen in [0, 3]. For different γ, ∆t is chosen
small enough such that the scheme is stable. Neumann boundary condition is taken
at r = 0 and Dirichlet condition n(r = 3, t) = 0 is taken at the right boundary
r = 3. We also take the growing factor G(c) ≡ 1.

Example 1. an expanding ball Here the initial profile in n is taken as

n(r, 0) =

{
0.99 0 ≤ r ≤ 0.8

0 0.8 < r ≤ 3
, (5.55)

so that it resembles a characteristic function in the region 0 ≤ r ≤ 0.8. Fig.1 on
the left displays the comparison of numerical solution with different γ, where one
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sees that the numerically obtained n has a closer shape of a characteristic function
for bigger γ, as we expected. Next we compare the numerical solution with the
analytical solution adopted from (3.26). Specifically, given the fact that n remains
a characteristic function on the support of 0 ≤ r ≤ R(t), one can write the analytical
solution as

n(r, t) = χ0≤r≤R(t), R(t) = 0.8et/2 . (5.56)

The results are collected in Fig.1 on the right, where a remarkable agreement on the
front propagation speed is observed, despite that the numerical solution is always
below 0.99, due to the reason that γ is not large enough.

0 0.5 1 1.5 2 2.5 3
r

0

0.2

0.4

0.6

0.8

1

n

analytical
γ=20
γ=40
γ=80

0 0.5 1 1.5

r

0

0.2

0.4

0.6

0.8

1

n
t=0.0975

t=0.2975

t=0.4975

Figure 1. Example 1: expanding disk with constant nutrient and
initial data (5.55). Left: plot of solution at time t = 0.5 with
different γ = 20, 40, 80. Here ∆r = 0.05, and ∆t = 5 × 10−5 for
γ = 20, 40 and ∆t = 2.5 × 10−5 for γ = 80. Right: comparison
of the numerical solution with γ = 80 with the analytical solution
(5.56) at different times t = 0.0975, t = 0.2975, t = 0.4975. Here
the black solid curve is the numerical solution and the red dashed
curve is the analytical solution.

Example 2. a single annulus In this example, we take initial tumor density to
be

n(r, 0) =

{
0.99 0.6 ≤ r ≤ 1

0 otherwise
. (5.57)

Then there are two boundaries, one is inside the annulus with initial position
r−(0) = 0.6, and the other is outside the annulus with initial position r+(0) = 1.
Again, we conduct two tests, one is with varying γ, and the other is comparing
the numerical solution with the analytical one at different times. The former test
produces a result plotted on the left figure in Fig.2. As we expected, when γ gets
larger, the numerical solution get closer the analytical limiting solution. In the
latter test, to get an analytical solution, recall that in Section 3, the boundaries
will move according to (3.31) (3.32). Thus we numerically solve these coupled ODE
system at every time step to get the front position r−(t) and r+(t), and recover the
analytical solution as

n(r, t) = χr−(t)≤r≤r+(t) . (5.58)

Fig. 2 displays such a comparison at different times, where good agreement of the
front speed is observed.
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Figure 2. Example 2: a single annulus with constant nutrient
and initial data (5.57). Left: plot of solution at time t = 0.6 with
different γ = 20, 40, 80. Here ∆r = 0.05, and ∆t = 2.5 × 10−5.
Right: comparison of the numerical solution with γ = 80 with the
analytical solution (5.58) at different times t = 0.2494, t = 0.4994,
t = 0.8. Here we use ∆r = 0.025 and ∆t = 6.25× 10−6. The black
solid curve is the numerical solution and the red dashed curve is
the analytical solution.

Example 3. a double annulus As a direct extension of the second example, we
choose initial condition as

n(r, 0) =

{
0.99 0.6 ≤ r ≤ 0.9 or 1.5 ≤ r ≤ 1.8

0 otherwise
. (5.59)

so that it contains two annulus—the inner one with initial boundaries r1(0) = 0.6,
r2(0) = 0.9, and the outer one with initial boundaries r3(0) = 1.5, r4(0) = 1.8. For
brevity, we only compare the numerical solution with the analytical solution at dif-
ferent times. The results are given in Fig. 3, where the numerical solutions compare
favorably with the analytical solution, especially the positions of the boundaries.
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Figure 3. Example 3: a double annulus with constant nutrient
and initial data (5.59). Here we compare the numerical solution
(black solid curve) and analytical solution (red dashed curve) at
time t = 0.2495 (left) and t = 0.6 (right). Here we use ∆r = 0.025
and ∆t = 5× 10−6.
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5.2. 1D radial symmetric model with linear growth function. Next, we
test the cases when the growing function G(c) has the form (3.33) with G0 = 1,
i.e., G(c) = c. Here we only consider the one dimensional setting and let x ∈
[−5, 5]. Neumann boundary condition at both ends are used for n, whereas Dirichlet
boundary condition c = cB = 1 are used for c at both ends. The initial condition
takes the form

n(x, 0) =
0.99

2
(− tanh(100(x− 1)) + tanh(100(x+ 1))) (5.60)

such that the two boundaries initially settle at ±1.

Example 4. 1D in vitro model As above, we test two things here: one is to
examine the dependence of the solution on γ, and the other is to compare the
solution with the analytical result. In the left figure of Fig. 4 , we plot different
profiles of n with γ = 20, 40, 80, where again as expected, the larger γ leads to a
shape of n that is closer to the analytical limiting profile. The analytical solution
is obtained as

n(x, t) = χ−R(t)≤x≤R(t) , (5.61)

where R(t) is calculated via (3.37). Fig. 4 on the right plots the numerical solution
with the analytical one (5.61) with remarkable agreement.
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Figure 4. Example 4: a 1D in vitro model with linear grow-
ing function. Left: plots of n at time t = 0.5 with various
γ = 20, 40, 80. The red curve is the analytical solution (5.61).
Here ∆x = 0.05 and ∆t = 2.5e− 5.

Example 5. 1D in vitro model Similar to the previous example, we generate
two plots in Fig. 5. Here the analytical solution takes the same form as in (5.61)
but with R(t) obtained by calculating (3.39) instead. We also compare the front
propagation speed of the in vitro model and in vivo model. As predicted by (3.37)
and (3.39), in the long time limit, the front in the in vitro model will move twice
as fast as that in in vivo model, and it is confirmed by our Fig. 6. We remark that
due to coarse spactial grids in use, the numerical position of the density front takes
discrete values, which is why the front position in the plot looks like a “dashed”
staircase with jumps. And it also shows that the correct moving speed can be
captured without resolving the sharp transition layer near the boundary.
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Figure 5. Example 5: a 1D in vivo model with linear grow-
ing function. Left: plots of n at time t = 0.5 with various
γ = 20, 40, 80. The red curve is the analytical solution (5.61).
Here ∆x = 0.05 and ∆t = 2.5× 10−5.
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Figure 6. A comparison of the front propagation speed for 1D in
vitro model and in vivo model. The dots represent the position of
the right boundary at each time, and the curves are computed via
(3.37) and (3.39). Here ∆x = 0.05, ∆t = 2.5× 10−5, γ = 80.

5.3. 2D radial symmetric case with linear growth. Example 6&7. 2D
radial symmetric in vitro and in vivo model
Here we again consider linear growth with G(c) = c, and compute c either according
to in vitro or in vivo model. The initial data is taken as

n(r, 0) =

{
0.99 0 ≤ r ≤ 0.8

0 otherwise
. (5.62)

We choose the computational domain r ∈ [0, 3], and mesh size ∆r = 0.05. Neumann
boundary condition is used for both n and c at r = 0, and Dirichlet boundary
condition with n = 0 and c = 1 are used at r = 3. For brevity, we only plot the
wave front position versus time for these two models with γ = 80 in Fig. 7. Solutions
with different γ or at different times are very much similar to those in Example 1.
As seen in Fig. 7, the front propagates at a faster speed in the in vitro model than
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the in vivo model, which is consistent with what we have derived. Similar to Fig. 6,
we also observe that the position of the density front only takes discrete values due
to the coarse grids in use. We also observe a good match between the numerical
computed wave front and the analytical ones computed from the limiting model.
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Figure 7. A comparison of the front propagation speed in the
2D radial symmetric in vitro model and in vivo model. The dots
represent the the position of the right boundary at each time, and
the curve are computed via (3.43) and (3.44) . Here ∆x = 0.05,
∆t = 2.5× 10−5, γ = 80.

5.4. 2D geometric motion with constant growth in c. At last, we conduct
two 2D examples with constant nutrient, i.e., G = 1. The computational domain
is set to be (x, y) ∈ [−2, 2] × [−2, 2], and ∆x = ∆y = 2/30. The first example we
compute using the following initial data

n(x, y, 0) =

{
0.99 (x, y) ∈ [0, 0.5]× [0, 0.5] or [−0.6,−0.2]× [−0.2, 0.8]

0 otherwise
.

(5.63)
In Fig. 8, we plot n at different times t = 0, 0.0177, 0.0311, 0.05, and we see that as
times goes, the boundaries of tumors get smeared, and two tumors merge gradually.

In the second example we use initial data

n(x, y, 0) =

{
0.9

√
x2 + y2 − 0.5− sin(4 arctan(y/x))/2 < 0

0 otherwise
. (5.64)

and again we plot n at different times . The results are collected in Fig. 9. Here
it is important to note that since there exist no upper bound for the pressure and
γ is not large enough, the maximum density may exceed 1, which induces severe
accuracy and stability requirements of the mesh sizes and time steps. Designing
more efficient numerical schemes will be our future work.

6. Discussion. Depending on the available experimental data, both cell density
model and free boundary model have their own advantages. There is a huge
literature for both type of models, see the reviews [12, 24] and the references
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Figure 8. Plot of n at four different times with initial data (5.63).
From left to right, up to down, t = 0, t = 0.0177, t = 0.0311,
t = 0.05.

therein. Their connections were established in [25] and some subsequent works,
see [24, 26, 32]. Here, we provide several interesting examples of the Hele-Shaw
type free boundary limit and present their numerical simulations. We also remark
that, some innovative numerical method has been introduced for the Keller-Segel
equation [7], which may shed some light for more efficient simulation of the tumor
growth models.

In the two cell density models (1.4)-(1.6) and (1.9)-(1.10) under consideration, the
state equation p(n) = nγ indicates that as the cell density increases, the pressure
increases, while the linear growth rate is from the assumption that the cell can
divide without limitation when the nutrient is abundant. Both the state equation
and linear growth function are imposed inspired by experimental observations, but
are not verified by lab data yet. Thus the current work can only provide some
qualitative behavior of the tumor. More work needs to be done if one wants to
compare the mathematical models with experimental data, but the analytical and
numerical results give some valuable predictions of how the fronts evolve depending
on model parameters. For example, we observe that, with the same parameters
and boundary conditions, the propagation speed in the in vivo model is slower
than in the in vitro model. This is not surprising due to their different model
assumptions. The in vitro model assumes that the tumor is surrounded by a liquid
with constant nutrient concentration, while the in vivo model assumes that the
tumor is surrounded by heathy tissue and the nutrient can only diffuse into the
tissue from outside the vasculature network. When other parameters are the same,
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Figure 9. Plot of n at four different times with initial data (5.64).
From left to right, up to down, t = 0, t = 0.0177, t = 0.0311,
t = 0.05.

more nutrient is available for tumor cells in the in vitro model, thus its propagation
speed is faster.

Acknowledgments. M. Tang and L. Wang would like to thank Prof. Jose Carrillo
for fruitful discussions on free boundary problems.
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