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Abstract—In this paper, we investigate the proper
orthogonal decomposition (POD) method to numerically
solve the forward Kolmogorov equation (FKE). Our method
aims to explore the low-dimensional structures in the
solution space of the FKE and to develop efficient
numerical methods. As an important application and
our primary motivation to study the POD method to FKE,
we solve the nonlinear filtering (NLF) problems with a
real-time algorithm proposed by Yau and Yau combined
with the POD method. This algorithm is referred as POD
algorithm in this paper. Our POD algorithm consists of
offline and online stages. In the offline stage, we construct
a small number of POD basis functions that capture the
dynamics of the system and compute propagation of
the POD basis functions under the FKE operator. In the
online stage, we synchronize the coming observations
in a real-time manner. Its convergence analysis has also
been discussed. Some numerical experiments of the NLF
problems are performed to illustrate the feasibility of our
algorithm and to verify the convergence rate. Our numerical
results show that the POD algorithm provides considerable
computational savings over existing numerical methods.

Index Terms—Duncan–Mortensen–Zakai equation, non-
linear filtering (NLF) problems, proper orthogonal decom-
position (POD), real-time algorithm.
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I. INTRODUCTION

NONLINEAR filtering (NLF) problem is originated from
the problem of tracking and signal processing. The funda-

mental problem in the NLF is to give an instantaneous and accu-
rate estimation of the states based on the noisy observations [20],
[38]. Further investigation on the filtering of backward and
forward–backward stochastic differential equations can refer
to [36]. In this paper, we proposed an efficient numerical method
to solve the forward Kolmogorov equation (FKE) arising from
the NLF problem [19]. Our method is based on the proper
orthogonal decomposition (POD) method [7], [35], [37], which
is an effective tool in exploring the intrinsic low-dimensional
structures of high-dimensional solutions. We start from the
following signal based model:{

dxt = f(xt, t)dt+ g(xt, t)dvt

dyt = h(xt, t)dt+ dwt

(1)

where xt ∈ Rn is the state of the system at time t, the initial state
x0 satisfying some initial distribution, yt ∈ Rm is the observa-
tion at time twith y0 = 0, and vt andwt are vector-valued Brow-
nian motion processes with covariance matrices E[dvtdv

T
t ] =

Q(t)dt ∈ Rn×n and E[dwtdw
T
t ] = S(t)dt ∈ Rm×m, S(t) >

0, respectively. Furthermore, we assume that x0, dwt, and dvt
are independent. The most popular method so far to solve (1) is
the particle filter (PF), see [2], [3], [13] and references therein.
However, the main drawback of the PF is that it is hard to be
implemented as a real-time solver due to its nature of the Monte
Carlo simulation.

In 1960s, Duncan [11], Mortensen [29], and Zakai [41] in-
dependently derived the so-called Duncan–Mortensen–Zakai
(DMZ) equation (or Zakai equation), which asserts that the
unnormalized conditional density function of the states xt, de-
noted by σ(x, t), satisfies the following Ito stochastic partial
differential equation (SPDE){

dσ(x, t) = Lσ(x, t)dt+ σ(x, t)hT (x, t)S−1dyt

σ(x, 0) = σ0(x)
(2)

where σ0(x) is the density of the initial states x0, and

L(·) := 1

2

n∑
i,j=1

∂2

∂xi∂xj

(
(gQgT )ij ·

)− n∑
i=1

∂(fi·)
∂xi

. (3)
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The DMZ equation laid down the solid foundation to study the
NLF problem from the viewpoint of SPDE. However, the DMZ
equation cannot be solved analytically in general. Many efforts
have been made to develop efficient numerical methods. One of
the commonly used method is the splitting-up method originated
from the Trotter product formula, which was first introduced
in [6] and has been extensively studied later, see [14], [18], and
[30]. In [24], the so-called S3 algorithm was developed based
on the Wiener chaos expansion, by separating the computations
involving the observations from those dealing only with the sys-
tem parameters. The boundedness of the drift term f , diffusion
term g, and observation term h is required for the technical
proof.

To overcome this restriction, the third author and his
coworker [39] developed a novel algorithm to solve the DMZ
equation. Specifically, for each given realization of the observa-
tion process denoted by yt, they made an invertible exponential
transformation

σ(x, t) = exp
(
hT (x, t)S−1(t)yt

)
u(x, t) (4)

and transformed the DMZ (2) into a deterministic partial differ-
ential equation with stochastic coefficients⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂
∂tu(x, t) +

∂
∂t (h

TS−1)ytu(x, t)

= exp
(− hT (x, t)S−1(t)yt

)(L − 1
2h

TS−1h
)

· ( exp (− hT (x, t)S−1(t)yt
)
u(x, t)

)
u(x, 0) = σ0(x)

. (5)

Equation (5) is the so-called pathwise robust DMZ equation.
The boundedness of the drift term f (contained in the oper-
ator L(·)) and observation term h is replaced by some mild
growth conditions in this case. Nevertheless, they still make the
assumption that the drift term, the observation term, and the
diffusion term are time invariant, which means that f , h, and
g in (1) cannot explicitly depend on time. Later on, in [26],
the second and the third author of this paper generalized the
algorithm in [39] to more general settings of the NLF problems,
namely, the time-dependent ones. In this paper, we refer it as
offline and online method.

Let us assume that the observation time sequences 0 = t0 <
t1 < · · · < tNt

= T are given. Notice that the observation data
{ytj} at each observation time tj , j = 1, . . . , Nt are unknown
until the online experiment runs. Therefore, in each time interval
tj−1 ≤ t < tj , one freezes the stochastic coefficientyt to beytj−1

in (5) and makes the exponential transformation

uj(x, t) = exp
(
hT (x, t)S−1(t)ytj−1

)
u(x, t).

It is easy to deduce that uj satisfies the FKE

∂

∂t
uj(x, t) =

(
L − 1

2
hTS−1h

)
uj(x, t) (6)

where the operator L is defined in (3). In [27], the offline and
online method has been put into practice by the second and the
third author of this paper. They investigated the Hermite spectral
method to numerically solve the one-dimensional (1-D) FKE (6)
and analyzed the convergence rate of the proposed method.

Although for the extremely low-dimensional state, the offline
and online method [27] is very efficient as to accuracy and CPU

time compared with PF, the bottle-neck of the algorithm in [26] is
to solve high-dimensional FKE accurately and compute a huge
amount of numerical integrations online, if the state in NLF
problems is high dimensional. The real-time manner can be
heavily deteriorated by the so-called curse of dimensionality.
Yueh et al. [40] proposed a numerical scheme based on the
quasi-implicit Euler method for solving the high-dimensional
FKE, which took more than 131 min to solve a 6-D problem in
time interval [0, 20] with observation time step Δτ = 0.01 on a
desktop computer, which is far from being real time.

This motivates us to investigate the possible low-dimensional
structures in the high-dimensional FKEs arising from NLF
problems, so that we can design more efficient numerical
methods. In fact, many high-dimensional problems have cer-
tain low-dimensional structures, which suggest the existence
of reduced-order models (ROMs) and better formulations for
efficient numerical methods. Inspired by the recent work of the
last author in this paper who has developed problem-dependent
basis functions to solve SPDEs [8]–[10], we propose to use the
POD method to explore the low-dimensional structures of the
solutions to FKE. This in turn will help us obtain an efficient
numerical method to solve the NLF problems.

The POD algorithm in this paper constructs the basis from the
snapshots of some reference solutions, obtained either by finite
difference method (FDM) [40] or by spectral method [27]. The
basis is called POD basis in the sequel, which represents the most
energetic structures of the FKE and provides an efficient way to
explore the low-dimensional structures of the FKE solutions.
With the POD basis at hand, the offline and online method can
be applied by replacing the prescribed basis, say generalized
Hermite functions (GHF) in [27].

The advantage of the POD algorithm is that with much fewer
POD basis, most dynamics of the system can be captured well.
Therefore, the POD algorithm significantly reduces the degree
of freedom (DOF) in the online computation. For example, in
Section IV, the number of the POD basis for the 2-D almost
linear problem and 2-D cubic sensor problem are only 70 and
100, respectively. If simply tensor-producting the GHF in [27]
for 2-D problems, it would be 625 basis for almost linear problem
and 2025 basis for cubic sensor problems, respectively. Hence,
by exploring low-dimensional structures in the solution space,
the POD algorithm helps us alleviate the curse of dimensionality
to a certain extent.

We should point out that the number of the POD basis depends
on the decay speed of the eigenvalues of the correlation matrix
(14) and is problem-dependent. Due to its energy-minimizing
property in the sense that the POD basis minimizes the total
mean squared error and gives the optimal representation of
solution snapshots, our POD algorithm provides considerable
computational savings over existing numerical methods. In other
words, the POD algorithm can be viewed as the optimization
of the offline and online method by elaborately constructing
the problem-dependent basis. After the POD basis functions
have been constructed, we only need to solve a much smaller-
scaled FKE in the offline stage and much fewer numerical
integrations in the online stage. We shall demonstrate the per-
formance of our algorithm through numerical experiments in
Section IV.
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The rest of this paper is organized as follows. In Section II, we
recall the basic idea of the POD method and the established facts
of the well-posedness of the pathwise robust DMZ equation.
In Section III, we describe the POD algorithm in detail. The
convergence and effectiveness analysis of the proposed algo-
rithm will also be discussed. In Section IV, we present numerical
results to demonstrate the accuracy and efficiency of our method.
Conclusions are drawn in Section V.

II. PRELIMINARIES

In this section, we shall first introduce the POD method for
solving a deterministic and nonparametric dynamical system. To
make this paper self-contained, we also introduce the existence
and uniqueness of the solution to DMZ equation and the offline
and online algorithm for time-varying NLF problems.

A. Proper Orthogonal Decomposition

The POD, also known as Karhunen–Loève expansion in
stochastic process and signal analysis [21], [23], or the principal
component analysis in statistics [1], or singular value decompo-
sition in linear algebra, or the method of empirical orthogonal
functions in geophysical fluid dynamics [15], [31], has first been
introduced in solving the turbulence in fluid dynamics. It aims
to generate optimally ordered orthonormal basis functions in
the least squares sense for a given set of theoretical, experi-
mental, or computational data. ROMs or surrogate models are
then obtained by truncating this optimal basis functions, which
provide considerable computational savings over the original
high-dimensional problems. We refer the interested readers
to [5], [7], [17], [35], [37], [42], and references therein for more
details.

Let X be a Hilbert space equipped with the inner product
(·, ·)X and norm || · ||X . Let u(·, t) ∈ X , t ∈ [0, T ] the solution
of a dynamic system. In practice, we approximate the space X
with a linear finite dimensional space V with dimV = d, where
d represents the DOF of the solution space. We should point
out that d can be extremely large for high-dimensional problem.
Given a set of snapshot of solutions, a linear spaces V can be
spanned

V = span{u(·, t0), u(·, t1), . . ., u(·, tNt
)} (7)

where t0, . . . , tNt
∈ [0, T ] are different time instances. The POD

method aims to build a low-dimensional orthonormal basis func-
tions {φk}Npod

k=1 with Npod � min(d, (Nt + 1)) that optimally
approximates the solution snapshots. Specifically, the POD basis
functions {φk}Npod

k=1 minimize the following error:

1

Nt + 1

Nt∑
i=0

∣∣∣∣u(·, ti)−
Npod∑
k=1

(u(·, ti), φk(·))Xφk(·)
∣∣∣∣2
X

(8)

subject to the constrains that (φm(·), φn(·))X = δmn, 1 ≤
m,n ≤ Npod.

In this paper, we shall use the method of snapshots [35]
to construct POD basis from the training solution snapshots
and generate a low-dimensional subspace to approximate the

solutions of FKE in our NLF problems. More details will be
provided in the Section III-A.

B. Pathwise Robust DMZ Equation

As we briefly mentioned in the introduction that the solution
of the DMZ (2) is the key to solve the NLF problems completely.
However, it is impractical to be solved in an efficient way. With a
given observation path, one can derive the pathwise robust DMZ
(5) easily with an exponential transform (4). The existence and
uniqueness of (5) has been investigated by many researchers.
The well-posedness is guaranteed when the drift term f ∈ C1

and the observation term h ∈ C2 are bounded in [32]. Later
on, similar results were obtained under weaker conditions. For
instance, the well-posedness results on the pathwise robust DMZ
equation with a special class of unbounded coefficients were
obtained in [4] and [12], but the results were for 1-D case.
Moreover their results cannot even cover the linear case. In [39],
the third author of this paper and his collaborator established the
well-posedness result under the condition that f and g have at
most linear growth. The second and third author of this paper
used more delicate analysis to give a time-varying analogous
well-posedness result to the pathwise-robust DMZ equation
under some mild growth conditions on f and h in [26].

Although compared to the DMZ (2), the pathwise robust DMZ
(5) should be easier to solve, since the stochastic term has been
transformed into the coefficients, it is still difficult to obtain an
analytic solution in general. Many efforts have been devoted to
develop efficient and robust numerical methods to solve the FKE
(6), see [6], [14], [18], [24], [30], and references therein.

C. Offline and Online Algorithm

In 2013, the second and third author of this paper developed
the offline and online algorithm for the time-varying NLF prob-
lems, where the GHF are used as the prescribed orthogonal basis
in solving the cubic sensor problem [27]. The offline computing
means that it can be performed without any online observation or
experimental data. On the contrary, the online computing needs
the observation data that is only available during the experiment.
We briefly recall this algorithm and summarize it in Algorithm 1.
Let {ψk}Nb

k=1 denote the prescribed orthogonal basis, say the
generalized Hermite functions in [27], and I [tj−1,tj ], the prop-
agator defined by solving (9) on a domain D, where the initial
data are chosen as each basis ψk.

Remark 2.1: If (9) is time-invariant and the observation in-
tervals are uniform, i.e., tj+1 = tj +Δt, ∀j, we only need to
calculate the propagator (9) once in the ofline stage. That is, the
first for-loop in Algorithm 1 is unnecessary.

III. OUR POD ALGORITHM TO SOLVE THE NLF PROBLEMS

The novelty of our algorithm is to construct a set of problem-
dependent orthogonal basis in the offline stage by the POD algo-
rithm, where the solution snapshots are chosen from reference
solutions. The choice of a numerical method for the reference
solution is not crucial since all the computation are implemented
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Algorithm 1: Off- and On-Line Computing [27].
1: for j = 1 → Nt do %Off-line stage
2: for k = 1 → Nb do
3: Solve the FKE on the domain D⎧⎪⎨

⎪⎩
∂φ

∂t
(x, t) =

(
L − 1

2
hTS−1h

)
φ(x, t),

φ(x, tj−1) = ψk(x)

(9)

on [tj−1, tj ] by FDM, and get I [tj−1,tj ]ψk(x).
4: Store I [tj−1,tj ]ψk.
5: end for
6: end for
7: Set up the initial distribution of x0. %on-line stage
8: for j = 1 → Nt do
9: Project u(·, tj−1) onto the prescribed basis

functions, and obtain the a priori solution at tj :

u−(x, tj) =
Nb∑
k=1

(u(·, tj−1), ψk(·))L2(D)I
[tj−1,tj ]ψk(x).

10: Assimilate the new observation data ytj into the a
priori solution u−(x, tj):

u(x, tj)

= exp[hT (x, tj)S
−1(tj)(ytj − ytj−1

)]u−(x, tj).
(10)

11: Calculate related statistics by using u(x, tj) as the
unnormalized density function at time tj .

12: end for

in the offline stage. In the online stage, our algorithm provides
huge savings since the number of POD basis is much smaller.

A. Description of Our POD Algorithm

In this section, we shall state the construction of the POD basis
by the method of snapshots in detail. Again let X be a Hilbert
space equipped with the inner product (·, ·)X and norm || · ||X .
Let (Ω,A,P ) be a probability space. Denote u(·, t, ω) ∈ X , t ∈
[0, T ], ω ∈ Ω, be the solution of a random dynamic system, i.e.,
(5), where the randomness is associated with the observations
in yt. We aim to construct a set of POD basis, still denoted by
{φk}Npod

k=1, so that the projection error in X , i.e.,

u(·, t, ω)−
Npod∑
k=1

(u(·, t, ω), φk(·))Xφk(·)

is minimized in the norm L2
F (0, T ;X), which is defined as

|| ◦ ||2L2
F (0,T ;X) = E

[∫ T

0

|| ◦ ||2Xdt
]
. (11)

The POD basis has an optimal approximation property in the
sense of minimizing the projection error. However, it is not easy

to be obtained analytically. In the sequel, we shall use the method
of snapshots [35] to construct the POD basis numerically.

We approximate the space X by a linear finite dimensional
space V with dimV = d, where d is the DOF of the physical
space. We choose the time instances as 0 = t0 < t1 < · · · <
tNt

= T and generate a set of Monte Carlo realizations of the
random observations {yti(ωj)}with 0 ≤ i ≤ Nt, 1 ≤ j ≤ Nmc.

To obtain solution snapshots, we use FDM to solve (5) along
each sample path of the random observation. This procedure
provides us with sufficient amount of snapshots {u(·, ti, ωj)},
with the cardinality N = (Nt + 1)Nmc. These solution snap-
shots are assumed to capture the information of the solution
space (or manifold) of the (5) well. We remark that Monte Carlo
realizations {yti(ωj)} are served as training purpose, which can
be replaced by the historical collected observations data.

Given the set of snapshots of solutions, a linear space V can
be spanned, denoted as

V = span{u(x, ti, ωj) : x ∈ Rn, ti ∈ [0, T ], ωj ∈ Ω

i = 0, . . . , Nt, j = 1, . . . , Nmc}. (12)

To construct the POD basis {φk}Npod

k=1, we need to find the
minimizers of the following minimization problem

min
{φk}

Npod
k=1

1

(Nt + 1)Nmc

Nmc∑
j=1

Nt∑
i=0∣∣∣∣∣∣

∣∣∣∣∣∣u(·, ti, ωj)−
Npod∑
k=1

(
u(·, ti, ωj), φk(·)

)
X
φk(·)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

X

(13)

subject to the constrains that (φm(·), φn(·))X = δmn, 1 ≤
m,n ≤ Npod.

By Sirovich [35], we know that the optimization problem (13)
can be reduced to an eigenvalue problem

Kv = λv (14)

where K ∈ RN×N is the correlation matrix with the (i1Nmc +
j1, i2Nmc + j2)th element

Ki1Nmc+j1,i2Nmc+j2 =
1

N
(u(·, ti1 , ωj1), u(·, ti2 , ωj2))X .

We sort the eigenvalues in a decreasing order as λ1 ≥ λ2 ≥
· · · ≥ λN > 0 and denote the corresponding eigenvectors by vk,
k = 1, . . . , N . It can be shown that the POD basis {φk}Npod

k=1 are
constructed by

φk(·) = 1√
λk

Nmc∑
j=1

Nt∑
i=0

(vk)iNmc+ju(·, ti, ωj) (15)

for 1 ≤ k ≤ N , where (vk)l is the lth component of the eigen-
vector vk. In addition, we have the follow estimate for the
projection error.

Proposition 3.1 (Sec. 3.3.2, [16] or p. 502, [5]): Let λ1 ≥
λ2 ≥ · · · ≥ λN > 0 denote the positive eigenvalues of K in
(14). Then, {φk}Npod

k=1 constructed according to (15) are the POD
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Algorithm 2: Construction of the Basis.
1: for j = 1 → Nmc do % Generation of the solution

snapshots
2: Generate random observations {yti(ωj)} with

0 ≤ i ≤ Nt, 1 ≤ j ≤ Nmc.
3: Compute the solution u(x, t, ωj) of the pathwise

robust DMZ (5) by FDM on a domain D.
4: Store the snapshots of u as U = {u(·, ti, ωj)}i,j ,

i = 0, . . . , Nt.
5: end for
6: Compute the eigen-decomposition of the correlation

matrix K in (14), where the eigen-pairs are denoted by
(λk, vk), k = 1, . . . , (Nt + 1)Nmc. % The method of
snapshots

7: Set a tolerance tolρ, and let ρ = 0.
8: while ρ < tolρ do

9: Increase Npod and calculate ρ =
∑Npod

k=1 λk
∑N

k=1 λk
.

10: end while
11: Store the first Npod eigen-pairs {λk, vk}Npod

k=1.
12: for k = 1 → Npod do
13: Construct the basis {ϕk}Npod

k=1 as in (15).
14: end for

basis and we have the following error formula:

1

N

Nmc∑
j=1

Nt∑
i=0

∣∣∣∣∣∣
∣∣∣∣∣∣u(·, ti, ωj)−

Npod∑
k=1

(
u(·, ti, ωj), φk(·)

)
X
φk(·)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

X

=

∑N
k=Npod+1 λk∑N

k=1 λk

⎛
⎝ 1

N

Nmc∑
j=1

Nt∑
i=0

||u(·, ti, ωj)||2X

⎞
⎠ .

(16)

In our POD algorithm, the snapshots of solutions u(x, ti, ωj)
s are obtained by numerical methods. Therefore, the POD basis
{φk}Npod

k=1 are computed and represented based on the numerical
solutions u(x, ti, ωj).

To determine the number of POD basisNpod, we use the decay
property of eigenvalues in λk and choose the firstNpod dominant
eigenvalues such that the ratio

ρ =

∑Npod

k=1 λk∑N
k=1 λk

(17)

is big enough so that 1− ρ is less than a prescribed error
threshold tolρ, say tolρ = 1%. One would prefer the eigenvalues
decaying as fast as possible so that the fewer basis can ensure
the higher accuracy. We refer the interested reader to [33] for
some estimates on the rate of decay of the eigenvalues in the
Karhunen–Loève expansion, which are essentially the eigenval-
ues in POD algorithm. Finally, we summarize the construction
of the POD basis in Algorithm 2.

In our numerical experiments in Section IV-B, we observed
that in the asymptotic regime, the accumulated ratio (17) ob-
tained using our constructed basis approaches one exponentially

fast as Npod increases, i.e.,

1− ρ ∼ e−cNpod , c > 0. (18)

This can significantly reduce the number of the basis involving
in the online computation.

Remark 3.1: In Section III-B, we shall prove that under mild
assumptions the error between the solution obtained by the POD
basis {φk}Npod

k=1 and the reference solution has exponential decay
property.

Remark 3.2: We assume that the number of time instances
(Nt + 1) and the number of sample paths Nmc are chosen in
such a way that the solution snapshots capture the information
of the solution space (or manifold) of the (5). The choice of
parameter sample points is a critical question that arises in the
POD method to compute the basis, especially for systems with
time-dependent and/or stochastic parameters; see [5, Sec. 6].
Our strategy in choosing the sample points may not be optimal
though, the numerical results reveal that the (5) has certain low
dimensional structures in the solution space. Our result can be
viewed as a recent progress in the POD method for solving
stochastic dynamic problems.

Remark 3.3: If the stochastic dynamic problems possess
some kind of ergodicity property, one can choose any one sample
path of the observation yt and replace the norm L2

F (0, T ;X) by
L2(0, T ;X) in computing the projection error of the POD basis.
That is, given any ω0 ∈ Ω, the POD basis {φk}Npod

k=1 minimizes
the error

∫ Tmix

0

∣∣∣∣∣∣
∣∣∣∣∣∣u(·, t, ω0)−

Npod∑
k=1

(u(·, t, ω0), φk(·))Xφk(·)
∣∣∣∣∣∣
∣∣∣∣∣∣
2

X

dt

where Tmix should be beyond the mixing time.

B. Convergence Analysis

Our POD algorithm significantly improves the performance
of the offline and online algorithm developed in [26]. In this
section, we shall first discuss the connection between the offline
and online algorithm in [26] and the splitting-up method in [6],
so that the convergence of the DMZ (2) in L2

F (0, T ;H
1(Rn))

is applicable in our POD algorithm, where H1(Rn) denotes
Sobolev space W 1,2(Rn). Furthermore, under the assumption
of certain ergodicity property in Remark 3.3, we can also show
the convergence of the POD algorithm to the pathwise robust
DMZ (5) in L2 norm without the boundedness condition on f ,
g, and h as in Assumption [As-1]-[As-2].

1) Analysis Based on the Splitting-Up Method: Let us
assume that the observation time sequences are uniform, namely
tj+1 − tj = Δt, j = 0, . . ., Nt − 1. The observation data at
time tj is denoted by ytj and Δyj = ytj − ytj−1

. Let us recall
the splitting-up method briefly. To be consistent with the settings
in [6], we assume in this section that S = I , the identity matrix.
The DMZ (2) has been decomposed into two processes U
and U− in the time intervals [ti−1, ti), i = 1, . . . , Nt, which
satisfy
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dU(t) =
(
LU − μ

2
U
)
dt

U(ti−1) =

{
U−(ti−1), if i = 2, 3, . . . , Nt

σ0, if i = 1
(19)

and

dU−(t) +
μ

2
U−dt = U−hT dwt

= U−hT dyt − U−hThdt

U−(ti−1) = U(ti) (20)

respectively, where L is the operator in (3) and σ0 is the un-
normalized conditional density function of the initial state x0.
Notice the following two important facts:

1) U satisfies FKE (6) or (9) in Algorithm 1 with μ = hTh
in (19);

2) U− can be solved explicitly, i.e.,

U−(t) = U−(ti−1)e
∫ t
ti−1

hT dys+
1
2

∫ t
ti−1

(hTh−μ)ds.

If μ = hTh, then

U−(t) = U−(ti−1)e
∫ t
ti−1

hT (s)dys

≈ U−(ti−1)e
hT (ti−1)Δyi .

This is exactly the initial update (10) in Algorithm 1.
Now, we recall the convergence result in [6]. Let (Ω,A,P ) be

a probability space. Let us make the following generic assump-
tions on the drift and observation terms as those in [6].

[As-1] The drift term and the diffusion term are bounded,
i.e.,

f ∈ L∞(Rn × (0,∞);Rn)

g ∈ L∞(Rn × (0,∞);L(Rn,Rn))

with f and g be Lipschitz in x, uniformly in t.
[As-2] The observation term is also bounded, i.e., h ∈

L∞(Rn × (0,∞);Rm).
[As-3] The operator gQgT is uniformly elliptic, i.e., for all

ξ ∈ Rn, there exists a constant α > 0 such that

ξT (gQgT )ξ ≥ α|ξ|2.
Remark 3.4: Although [As-1] and [As-2] seem to be very

restrictive, as [6] claimed in the end, “this limitation is purely
technical” for the mathematical proof. For further discussions
on the growth of f and h, we refer the interested readers to [26]
and references therein.

Proposition 3.2 (Th. 3.1, [6]): Assume [As-1]-[As-3] hold,
then we have

1) U,U− → σ as Δt→ 0 in L2
F (0, T ;H

1(Rn)) and
L2
F (0, T ;L

2(Rn)), respectively;
2) U(t), U−(t) → σ(t) as Δt→0 in L2(Ω,A,P ;L2(Rn)),

∀t ∈ [0, T ];
where σ is the solution to the DMZ (2), the norms of

L2
F (0, T ;V ) and L2(Ω,A,P ;V ) are defined as in (11) and

||σ||2L2(Ω,A,P ;V )(t) = E||σ||2V (t)
respectively, where V is some function space in concern.

Let us denote UNpod the approximation solution to U ob-
tained by the Galerkin method in the linear space spanned
by the POD basis {φk}Npod

k=1. We expect that UNpod → U in
L2
F (0, T ;H

1(Rn)), as Npod → ∞.
Recall the estimate of the projection error in the linear space

spanned by the GHF [28]. We define the n-dimensional GHF as

Hα,β
k (x) :=

n∏
j=1

Hαj ,βj

kj
(xj)

where x = (x1, . . ., xn)
T ∈ Rn, k = (k1, . . ., kn), and

Hα,β
k (x) =

(
α

2kk!
√
π

) 1
2

Hk(α(x− β))e−
1
2α

2(x−β)2

with Hn(x) be the univariate physical Hermite polynomials, α,
β are two parameters.

Suppose the prescribed orthonormal basis are {Hα,β
k

(x)}k∈ΩNh
, where Nh is the total number of the basis

and ΩNh
:= {k : |k|∞ ≤ N

1
n

h } with |k|∞ = maxi∈{1,...,n} ki.
Then, we have the following error estimate on the projection
error.

Proposition 3.3 (Th. 2.1, [28]): Given U ∈W r
α,β(R

n), we
have for any 0 ≤ l ≤ r∣∣∣∣∣∣Pα,β

Nh
U − U

∣∣∣∣∣∣
W l

α,β(R
n)

� N
l−r
2n

h |U |W r
α,β(R

n) (21)

where Pα,β
Nh

is the projection operator

Pα,β
Nh

: W l
α,β(R

n) → span
{
Hα,β

k ,k ∈ ΩNh

}
defined as

Pα,β
Nh

U(x) :=
∑

k∈ΩNh

(Hα,β
k , U)W l

α,β(R
n)Hα,β

k (x)

and the norm and seminorm of W r
α,β(R

n) are defined as

||U ||2W r
α,β(R

n) :=
∑

0≤|k|1≤r

||Dr
xU ||2

|U |2W r
α,β(R

n) :=
n∑

j=1

||Dr
xj
U ||2

with Dr
x :=

∏n
i=1 Dri

xi
and Dxi

= ∂xi
+ α2

i (xi − βi).
Remark 3.5: The space W 0

α,β(R
n) = L2(Rn) and

W r
α,β(R

n) ⊂ Hr(Rn) by [28, Corollary 3.2], where Hr(Rn)

denotes Sobolev space W r,2(Rn).
It is clear to see that if the solution U is extremely smooth,

then the projection error decreases faster than polynomials of any
degreeNh. That is, it may present exponential convergence with
respect to Nh. Notice that the basis here is prescribed without
any information of the solution U . One can expect that the
elaborately selected Npod POD basis according to the solution
snapshots of U will yield a smaller projection error.

Proposition 3.4: If for almost all w ∈ Ω, t ∈ [0, T ], U ∈
L2
F (0, T ;W

r
α,β(R

n)), then we get
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∣∣∣∣UNpod − U
∣∣∣∣2
L2

F (0,T ;H1(Rn))

� N
1−r
n

pod (1 + T ) ||U ||2L2
F (0,T ;W r

α,β(R
n)) . (22)

Proof: It is clear to see that∣∣∣∣UNpod − U
∣∣∣∣2
L2

F (0,T ;H1(Rn))

�
∣∣∣∣UNpod − U

∣∣∣∣2
L2

F (0,T ;W 1
α,β(R

n))

≤
∣∣∣∣∣∣Pα,β

Φ U − U
∣∣∣∣∣∣2
L2

F (0,T ;W 1
α,β(R

n))

+
∣∣∣∣∣∣Pα,β

Φ U − UNpod

∣∣∣∣∣∣2
L2

F (0,T ;W 1
α,β(R

n))

≤
∣∣∣∣∣∣Pα,β

Npod
U − U

∣∣∣∣∣∣2
L2

F (0,T ;W 1
α,β(R

n))

+
∣∣∣∣∣∣Pα,β

Φ U − UNpod

∣∣∣∣∣∣2
L2

F (0,T ;W 1
α,β(R

n))

� N
1−r
n

pod E

{∫ T

0

|U |2W r
α,β(R

n)dt

+

∫ T

0

∫ t

0

|U |2W r
α,β(R

n)dsdt

}
(23)

where the first inequality follows by Remark 3.5, the third
inequality is due to the minimizer property of POD basis and
the last inequality is obtained by (21) and the similar argument
in [28, Th. 3.3]. �

Remark 3.6: The similar result in Proposition 3.4 can be
obtained for bounded domain D ⊂ Rn. We refer the interested
readers to [34].

From Propositions 3.2 and 3.4, we get
Theorem 3.5: Assume [As-1]–[As-3] hold, then we have
1) UNpod → σ in L2

F (0, T ;H
1(Rn)), as Npod → ∞ and

Δt→ 0 subsequently;
2) UNpod(t) → U(t) in L2(Ω,A,P ;H1(Rn)), for all t ∈

[0, T ].
2) Analysis Based on the Offline and Online Algorithm

of the Pathwise Robust DMZ Equation: Suppose the assump-
tion in Remark 3.3 holds, then we obtain the POD basis {φk}Npod

k=1

from one given sample pathω0 ∈ Ω. The boundedness condition
in [As-1]–[As-3] can be replaced by some mild growth condi-
tion.

For all (x, t) ∈ Rn × [0, T ]:
[As-4]

N(x, t) +
3

2
n||gQgT ||∞ + |f −DwK| ≤ C1

[As-5]

e−
√

1+|x|2 [14n||gQgT ||∞ + 4|f −DwK|] ≤ C2

where

K(x, t) := hT (x, t)S−1(t)yt(w0)

N(x, t) := − ∂

∂t
(hTS−1)yt(ω0)− 1

2
D2

wK

+
1

2
DwK · ∇K − f · ∇K − 1

2
(hTS−1h)

with

D2
w(◦) :=

n∑
i,j=1

(gQgT )ij
∂2◦

∂xi∂xj

Dw(◦) :=
⎡
⎣ n∑
j=1

(gQgT )ij
∂◦
∂xj

⎤
⎦
n

i=1

.

Moreover, let BR ∈ Rn be the ball centered at the origin with
the radius R > 0, we assume further that on any BR, we have

[As-6] N(x, t) ≤ C3,
[As-7] There exists some α ∈ (0, 1) such that

|N(x, t)−N(x, t; t̄)| ≤ C4|t− t̄|α

for all (x, t) ∈ D × [0, T ], t̄ ∈ [0, T ], where N(x, t;
t̄) is N(x, t) with yt = yt̄.

In [26, Ths. 3.1 and 3.2], the second and the third author
of this paper show that for any T > 0, the solution of the
pathwise robust DMZ (5) in Rn × [0, T ], denoted as u(x, t), can
be approximated by the solution to (5) restricted on the ball BR

with Dirichlet boundary condition, denoted asuR. Moreover,uR
can be approximated in L1 sense by the solution of (5) freezing
yt in [tj , tj+1] to be ytj , j = 0, . . . , Nt − 1.

Our POD algorithm is performed on some bounded domain
D ⊂ Rn. In [25], the second author and her coworker showed
if we solve (9) by ofline and online algorithm with generalized
Jacobi polynomial for scalar NLF problem, then the error of the
approximate solution decays exponentially fast with respect to
the number of the basis, if the solution of (9) is smooth enough.
We claim that this result is also valid for x ∈ Rn, n ≥ 1, under
the assumption that

[As-8]

1

2

n∑
i,j=1

∂2

∂xi∂xj
(gQgT )ij −∇·f− 1

2
hTS−1h≤C5

[As-9]

1

2
(gQgT )∇

(
ln

(
gT g

w−1,−1

))
− f ≤ C6

where w−1,−1 is the weight associated with the Jacobi polyno-
mials, w−1,−1 =

∏n
i=1(1− xi)

−1(1 + xi)
−1.

If the POD basis {φk}Npod

k=1 obtained by minimizing the pro-
jection error in the norm X =W r

w−1,−1
(I) in (13), I = [−1, 1],

with Remark 3.3, one can argue similarly as in (23) to get that

∣∣∣∣uNpod − u
∣∣∣∣2
L2

(
0,T ;W 1

w−1,−1

) ≤ C∗N2(1−r)
pod (24)

where uNpod is the numerical solution obtained by the
Galerkin method in the spanned linear space span{φk(x),
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k = 1, . . . , Npod}, and

|| ◦ ||2W r
w−1,−1

(I) =
r∑

k=0

| ◦ |2W r
w−1,−1

(I)

| ◦ |2W r
w−1,−1

(I) = 〈∂ru, ∂ru〉w−1+r,−1+r
.

IV. NUMERICAL RESULTS

In this section, we are interested in investigating the approxi-
mation properties of our POD algorithm and the computational
savings over existing methods. The experiments are performed
in 2-D NLF problems. We shall clarify the settings of these two
problems first.

Example 1. Almost linear problem: This problem is modeled
by an SDE in the Ito as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dx1 = dv1

dx2 = dv2

dy1 = x1(1 + 0.2 cos(x2))dt+ dw1

dy2 = x2(1 + 0.2 cos(x1))dt+ dw2

(25)

where E[dwtdw
T
t ] = I2dt, E[dvtdv

T
t ] = 0.1I2dt, with w =

[w1, w2]
T , v = [v1, v2]

T , I2 be the identity matrix of size 2× 2.
The states are two independent standard Brownian motions.
The initial state is x(0) = [x1(0), x2(0)]

T = [1, 1.2]T . We shall
denote the state in vector form x(t) = [x1(t), x2(t)]

T . The total
experimental time is T = 20.

Example 2. Cubic sensor problem: The observations in cubic
sensor problem have higher nonlinearity than those in (25),
which may cause problem when using the conventional extended
Kalman filter (EKF). It is modeled in the following equation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dx1 = (−0.4x1 + 0.1x2)dt+ dv1

dx2 = −0.6x2dt+ dv2

dy1 = (x31 + x2)dt+ dw1

dy2 = (x32 + x1)dt+ dw2

(26)

where E[dwtdw
T
t ] = I2dt and E[dvtdv

T
t ] = 0.1I2dt. The ini-

tial state is x(0) = [x1(0), x2(0)]
T = [0.1, 0.05]T . The total

experimental time is T = 10.
Remark 4.1: It can be easily verified that Examples 1 and 2

satisfy the Assumptions [As-4]–[As-9].

A. Comparison With Existing Methods

In this section, we shall mainly compare the estimation per-
formance and real-time manner of our POD algorithm with the
reference solutions, EKF and PF in two examples (25) and (26),
respectively.

In both examples, the real state is generated by solving the
SDE (25) or (26) for x in the time interval [0, T ] (T = 20
or 10) with time step dt = 0.01 using the Euler–Maruyama
method [22]. This provides us the values of the real state at
discrete times tj = jdt, j = 1, . . ., 2000 (or 1000).

Example 1. Almost linear problem: To obtain sufficient
amount of snapshots, as described in Algorithm 2, we partition
the time interval [0,20] with observation time step Δt = 0.2,

Fig. 1. Estimations of the almost linear problem (25) obtained by our
POD algorithm (in red dashed line), the reference solution (in orange
dot), the EKF (in purple dashed line), and the PF with 5000 particles (in
green dot) versus time have been plotted. The blue line is the true state
generated by one realization.

generate Nmc = 500 random observations {ytj (ωi)} with 1 ≤
j ≤ 100, 1 ≤ i ≤ 500, and use FDM to solve FKE (6) with
initial density functionσ0(x) = exp(−2|x|2) along each sample
path ωi within the spacial domain [−5, 5]2 and 1-D mesh size
Δx = 10/128. The Courant–Friedrichs–Lewy (CFL) stability
condition of FDM is satisfied by choosing the time step as dt

10 .
The POD basis functions are constructed as in (15).

In Fig. 1, we plot the estimations of both two states in one
realization obtained by our POD algorithm with the number of
the POD basis Npod = 70. The reference solution is obtained
by solving FKE (6) directly online by FDM. It seems that all
methods give acceptable experimental results except for the
EKF. Yet our algorithm gives significant computational savings.
The CPU time of the reference method is 41.54 s, that of PF is
156.58 s, while that of our algorithm is only 2.97 s (the time
for online computing), which is almost 1

14 of the reference
method and 1

53 of the PF. We remark that the efficiency of
the PF is closely related to the number of particles. In this
example, we use 5000 particles to avoid explosion in the track-
ing, which might happen frequently if only 1000 particles are
used.
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Fig. 2. Estimations of the cubic sensor problem (26) obtained by our
POD algorithm (in red dashed line), the reference solution (in orange
dot), and the EKF (in purple dashed-dot), and the PF with 1000 particles
(in green dot) versus time have been plotted. The blue line is the true
state generated by one realization.

Example 2. Cubic sensor problem: In this example, the refer-
ence solution is also obtained by using FDM to solve FKE (6)
with initial density functionσ0(x) = exp(−|x|4/4). The spacial
domain is [−3, 3]× [−3, 3] with 1-D mesh size Δx = 6/128.
The time step is chosen to be dt

40 satisfying the CFL stability
condition. Npod = 100 basis are constructed according to (15)
after the similar training in Example 1.

In Fig. 2, we display the similar results as those in Fig. 1. The
CPU time of the reference method is 99.83 s, that of PF with 1000
particles is 14.94 s, while that of our algorithm is only 2.21 s.
Compared to Example 1, fewer particles are required to avoid
the explosion. This reveals that in some sense the random walk
is nontrivial, since it is harder to catch its behavior by Monte
Carlo simulation.

Remark 4.2: The CPU time of the reference solution in Ex-
ample 2 is significantly longer than that in Example 1, since the
time discretization in Example 2 is 4 times finer than that in
Example 1. We believe that the finer time discretization is due
to the higher nonlinearity. Notice that all the computations of
the reference solution are conducted in the online stage.

Fig. 3. Decay property of eigenvalues in the POD algorithm.

We repeat the experiments for Npath = 300 times and record
the mean square errors averaged over 300 sample paths. The
MSE for certain method is defined as

MSE(x) :=
1

300

300∑
i=1

1

Nt

Nt∑
j=1

|xi(tj)− xi
true(tj)|

where | · | is the Euclidean distance, xi is the numerical estima-
tion obtained by different methods for the ith sample path of
the true state xi

true. We find that the MSE of our POD algorithm
is 0.8849, that of the reference method is 0.8523, while that
of the PF with 1000 particles is 0.9188. Notice that the further
compression by POD algorithm has comparable accuracy with
the reference solution, which is only with the difference less
than 4%.

B. More Discussions on Our POD Algorithm

In our POD algorithm, there are still some parameters to be
tuned in, for example, the number of the constructed basis, the
choice of the training snapshot solutions, etc. In this section,
we shall do the numerical experiments on Example 2, since
both examples present similar behaviors and low-dimensional
structure of Example 2 seems to be more difficult to be captured
due to the cubic observation function.

1) Decay Property of the Relative Errors Versus the
Number of the Basis: It has been shown in Proposition 3.1 that
the relative L2 error of the training solutions can be represented
by the quantity 1− ρ, where ρ is defined in (17)∑N

k=Npod+1 λk∑N
k=1 λk

= 1− ρ

where N and Npod are the total number of snapshots and that of
the POD basis. In Fig. 3, we plot the quantity of the eigenvalues
in decreasing order. One can see that the eigenvalues decay
exponentially fast, which implies that the quantity 1− ρ also
decays exponentially fast with respect to the number of the
basis. We use regression to fit the data and find the decay speed
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Fig. 4. Relative L2 errors of one realization versus time are plotted
with the number of the basis being Npod = 80, 110, 140, 170, and 200.

of the quantity 1− ρ is proportional to exp(−C1Npod), with
C1 = 0.0422.

In Section III-B, we show theoretically in Proposition 3.4 that
the relative error ∣∣∣∣UNpod − U

∣∣∣∣2
L2

F (0,T ;H1(Rn))

||U ||2L2
F (0,T ;W r

α,β(R
n))

(27)

is controlled by N
1−r
n

pod (1 + T ). In other words, if the reference
solution is smooth enough, the relative error (27) can present
exponential decay asNpod → ∞. Here, we generateNpath = 300
sample paths xt and observation paths yt. We record the relative
L2 error defined as

err(t) :=
||uref − upod||L2

||uref||L2

of the numerical solution obtained using fixed number of the
basis ranging from 1 to 200 and for each sample paths. For fixed
number of the basis, one averages the relative errors over all
these 300 sample paths.

We use regression to fit the averaged relative L2 errors over
Npath = 300 sample paths between two methods and find the
decay rate is proportional to exp(−C2Npod) with C2 = 0.0293
and 0.0195 for Examples 1 and 2, respectively, whereNpod is the
number of the basis. The relatively slow decay in the cubic sensor
problem may imply that it has more complicated structure than
the almost linear problem. This also explains why in Section IV-
A differentNpod are chosen to guarantee O(10−2) relative error
in two examples.

In Fig. 4, we plot the relative L2 error evolution of one
realization in the cubic sensor problem versus different number
of the basis. One finds that at each time discretization the error
decays monotonically as the number of the basis increases. More
significant observation is that just increasing the number of the
basis cannot improve resolutions, if the basis does not carry
enough information after the training. This phenomena can be
seen from Fig. 4 at time instant around t = 3.7 and 9.8, where

Fig. 5. Profiles of the first three basis in the cubic sensor problem
(26) from Nmc = 500 are displayed. (a) First basis. (b) Second basis.
(c) Third basis.

the peaking of the errors are not relieved even after doubling the
number of the basis.

2) Selection of the Training Solutions: The construction
of the basis depends highly on the training set. How the training
set affects the basis? Recall that we generateNmc = 500 sample
paths of the states and the observations, and the snapshots are
U = {u(·, tj , ωi)}, hereωi ∈ Ω, i = 1, . . . , Nmc, tj = jΔt, j =
1, . . . , Nt(=

T
Δt ) with Δt = 0.2. We also try to generate less

sample paths such asNmc = 125 orNmc = 250, and find that the

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 29,2020 at 14:57:11 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: POD METHOD TO NONLINEAR FILTERING PROBLEMS IN MEDIUM-HIGH DIMENSION 1623

first few dominant basis from variousNpod are hard to distinguish
by eyes from various Nmc.

In Fig. 5, we show the first three dominant basis obtained
with Nmc = 500. The higher order of the basis is, the more
local structures of the solutions have been captured. It would
be interesting and challenging to generate the snapshots capable
of capturing most of the variations of the solution space. This
issue will be investigated in our on-going work, especially in the
higher dimensional NLF problems.

V. CONCLUSION

The POD algorithm can be viewed as a compression in using
offline and online algorithm developed in [26]. The beforehand
numerical experiments or history data are necessary for the
training purpose. The low-dimensional structures in the solution
space of the FKE have been captured and used to build the basis
by the method of snapshots in advance. Similar as the offline and
online algorithm, in the offline stage, we not only construct the
basis, but also compute the propagation of the basis according
to the FKE operator. Then, in the online stage, we only need
to compute the projection coefficients of the solutions on the
basis and update the corresponding results with the new-coming
observations. Since the basis functions in the POD algorithm
are problem-dependent and more adaptive to the target solution
space, the DOF in the POD algorithm is much smaller than
other existing methods, which helps us alleviate the curse of
dimensionality to a certain extent. Therefore, the POD algorithm
enables us to solve the NLF problem in a real-time manner.

Under some generic assumptions as in [6], we provide the
convergence analysis of our POD algorithm theoretically. Two
2-D NLF problems: almost linear problem and cubic sensor
problem have been investigated numerically. The theoretical
convergence rate has been verified numerically. It is shown nu-
merically that our POD algorithm yields as good approximations
as the reference solution obtained by FDM. But our algorithm
can be much more efficient. We expect even better performance
of efficiency in higher-dimensional NLF problems, which is one
of our future topics.

Some further discussions on the POD algorithm, such as the
choice of number of POD basis, the number of snapshots, etc,
have been included. It seems that it is unnecessary to provide
a huge amount of snapshots for training in our numerical ex-
periments, but how to choose the parameter sample points in
computing the solution snapshots remains a challenging open
question, especially for systems with time-dependent and/or
stochastic parameters, which is also raised in a recent review
paper [5] and will be our future study.
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