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a b s t r a c t

In this paper, we shall investigate a novel suboptimal nonlinear filtering with augmented states via
probabilists’ Hermite polynomials (HP). The estimation of the original state can be extracted from the
augmented one. Our method is motivated by the so-called Carleman approach (Germani et al., 2007).
The novelty of our paper is to augment the original state with its probabilists’ HPs, instead of its powers
as in Carleman approach. Then we form a bilinear system of the first ν generalized Hermite polynomials
(gHP) to yield the degree-ν approximation.Wedemonstrate that the neglect of the probabilists’ gHPswith
high degree is more reasonable by showing that the expectation of the HPs with degree n tends to zero,
as n goes to infinity, if the density function belongs to certain function class. Moreover, we discuss the
choice of the scaling and translating factors to yield better resolution. The benchmark example, 1d cubic
sensor problem with zero initial condition, has been numerically solved by various methods, including
the most widely used extended Kalman filter and particle filter. Our method with adaptive scaling factor
outperforms the other methods in accuracy.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear filtering (NLF) problem has a long history back to
1960s, immediately after the discovery of the optimal estimation of
linear filtering problem, the so-called Kalman filter (Kalman, 1960)
and Kalman–Bucy filter (Kalman & Bucy, 1961). Many physical and
engineering problems are naturallymodeled by nonlinear stochas-
tic dynamic systems. The general NLF problem can be expressed by
the Itô stochastic differential equation (SDE):{

dxt = f (xt , t)dt + g(xt , t)dwt

dyt = h(xt , t)dt + dvt ,
(1.1)

where xt is the state vector in Rn, yt is the observation in Rm.
wt ∈ Rp and vt ∈ Rm are independent standard Brownianmotions
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with respect to an increasing family of σ -algebra, i.e. {Ft , t ≥ 0}.
We further assume that f : Rn

× R+
→ Rn, g : Rn

× R+
→ Rn×p

and h : Rn
× R+

→ Rm are smooth nonlinear maps.
It is well known that in general the optimal estimation of NLF in

the sense of minimal mean square error (MSE) cannot be obtained
by finite many statistical quantities. The typical example is the
cubic sensor problem (Hazewinkel, Marcus, & Sussmann, 1983),
on which we shall investigate as a benchmark example in this
paper for numerical comparison purpose. The finite-dimensional
NLF problems have been studied in a series of papers by the second
author in 1990s, see Wong and Yau (1999) and the references
therein. Since 1966, Duncan (1967), Mortensen (1966) and Zakai
(1969) have independently derived the SDE of the unnormalized
conditional density function, which is so-called DMZ or Zakai’s
equation in the literature nowadays. To overcome the heavy com-
putation, one has to use certain suboptimal implementable fil-
tering algorithm (Ito, 1996). Some further improvements in this
direction include the splitting-upmethod (Gyongy&Krylov, 2003),
the S3 algorithm (Lototsky, Mikulevicius, & Rozovskii, 1997), Yau–
Yau’s on- and off-line algorithm (Luo & Yau, 2013a, b; Yau & Yau,
2008), etc. Besides the DMZ equation, the most popular method
is the particle filter (PF) (Arulampalam, Markell, Gordon, & Clapp,
2002), which is originated from Monte Carlo simulations. In the
literature, one refers those methods which directly approximate
the posterior conditional density function of the states as the global
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approaches, see exhaustive discussion in the survey paper of the
first author (Luo, 2014).

Compared with the global approaches, the more handy and
efficient ones are the so-called local approaches, such as the ex-
tended Kalman filter (EKF) (Gelb, 1984), Gaussian sum filter (Ito &
Xiong, 2000), unscented Kalman filter (Julier & Uhlmann, 2004),
ensemble Kalman filter (Evensen, 2003), etc. Recently, Germani,
Manes, and Palumbo (2007) used the Carleman approximation to
form a bilinear system (linear drift and multiplicative noise) of
the appropriate augmented states. The suboptimal estimation of
the bilinear SDE has been developed in Carravetta, Germani, and
Shuakayev (2000). The suboptimal linear estimate for continuous–
discrete bilinear system has been studied in Chen, Luo, and Yau
(2017). To form a closed system, one has to ignore all the higher
moments. Themoments of degree greater than ν+1 are ignored to
yield the νth approximation. Intuitively, the larger ν one chooses,
the more moments one keeps, and the more accurate estimation
should be obtained. However, it may be inappropriate to do so
for most NLF problems. Actually, as early as in 1967, it is Kushner
(1967)who considered themoment sequences (see further discus-
sions inAkhiezer&Krein, 1962),which states that even for the one-
dimensional random variable, the moment sequence has to satisfy
the following inequalities:

m2 > 0, m4 > m2
2, m6 > m2

4/m2, . . . ,

where ms, s = 1, 2, . . . , represent the s-moment of the random
variable. In particular, in the case that the standard Gaussian dis-
tribution is obeyed, all the highermoments of this randomvariable
can be computed explicitly:

ms =

{
0, all odd s ≥ 1

(s − 1)!!ms
2, all even s ≥ 2,

(1.2)

where (s − 1)!! = 1 · 3 · 5 · · · (s − 1). It is easy to see that no
matter how small m2 is, the even moments grow without bound
as s → ∞. Therefore, it is inappropriate to let all the higher
moments to be zero. In Luo, Jiao, Chiou, and Yau (2015, 2016),
the authors considered to augment the original states with their
central moments instead.

In this paper, we shall focus on the system of one dimensional
state, i.e. x ∈ R, and improve the Carleman approach by augment-

ing the original states via its gHPs
{
Heα,β

j (x)
}∞

j=0
(defined in (2.3)).

The new state is defined as

Heα,β

1:ν (xt ) =

[
Heα,β

1 (xt ) He
α,β

2 (xt ) · · · Heα,β
ν (xt )

]T
.

Wederive the evolution system ofHeα,β

1:ν (xt ) and obtain the estima-
tion ofHeα,β

1:ν (xt ), instead of the original stateHPs xt . It can be shown

that E
[
Heα,β

j (ξ )
]
tends to zero, as j → ∞, if α, β are chosen prop-

erly, when the density function of the random variable ξ belongs
to certain class of functions. Thus, compared with the Carleman
approach, we believe that it is more appropriate by letting all
Heα,β

j (ξ ) ≡ 0, j > ν to be zero in our degree-ν approximation, and
our method can yield more accurate estimations. Furthermore, we
have twomore parameters, the scaling factor α and the translating
factor β , to be tuned to yield even better results.

Theoretically, this algorithm can also be applied to the high-
dimensional state, by augmenting the original state xt ∈ Rd with
its Kronecker product of HPs:

Heα,β

1:ν = ⊗
d
i=1He

αi,βi
1:ν,i ,

where Heαi,βi
1:ν,i =

[
Heαi,βi

1 (xi) He
αi,βi
2 (xi) · · · Heαi,βi

νi (xi)
]T

, i = 1, 2,

. . . , d. However, due to the fact that the product of two HPs is
no longer a HP, see (2.7), the matrices (3.27)–(3.30) may not be

evaluated efficiently, compared to the Carleman approach, where
the Kronecker algebra serves as a powerful tool.

Our paper is organized as follows. In Section 2, we state some
facts of the gHPs. In Section 3, we formulate our method of degree-
ν in detail, and we show the fact that the expectation of the HPs
in random variable ξ tends to zero, as the degree approaches
infinity, when the density function of ξ belongs to the exponential
decay class. Section 4 is devoted to the numerical experiments. The
cubic sensor problem has been solved numerically as a benchmark
example by different methods. The conclusions are drawn in the
last section.

2. Preliminaries

In this section, we shall give some basic and useful facts of the
generalized probabilists’ Hermite polynomials (gHP). We call

Heα,β
n (x) = Hen (α(x − β)) (2.3)

the gHP, where {Hen(x)}∞n=0 are the Hermite polynomials (HP), α >
0 is the scaling factor and β ∈ R is the translating factor. The
following properties hold:(
Heα,β

n (x)
)′

= αnHeα,β

n−1(x), (2.4)

Heα,β

n+1(x) = α(x − β)Heα,β
n (x) − nHeα,β

n−1(x), (2.5)

and∫
R
Heα,β

n (x)Heα,β
m (x)wα,β (x)dx =

√
2πn!δnm, (2.6)

where wα,β (x) = e−
α2(x−β)2

2 . For any nonnegative integers n andm,
we have

Heα,β
n (x)Heα,β

m (x) =

∑
p≤n∧m

An,m,pHe
α,β

n+m−2p(x), (2.7)

where

An,m,p =
n!m!

p!(n − p)!(m − p)!
. (2.8)

The next lemma is the key observation, which explains why we
choose to augment the original state by its gHPs. Essentially, it says
that E

(
Heα,β

j (ξ )
)

→ 0, as j → ∞, with properly chosen α and

β , if the density function of the random variable ξ obeys Gaussian
distribution. Similar statement and proof can be found in Lemma
2.3, Luo (2006).

Lemma 1. Suppose that the random variable ξ ∼ N (a, b2). Then for
any µ ∈ R, we have

E
[
He1/b,an (ξ + µ)

]
=

(µ

b

)n
.

In particular, for any |µ| < b,

lim
n→∞

E
[
He1/b,an (ξ + µ)

]
= 0. (2.9)

The above lemma suggests that if the appropriate scaling factor
1
b is chosen according to µ, then the expectation of HPs can be
arbitrarily small, provided the order of the polynomial is high
enough. That is to say, the higher order terms are negligible in some
sense.

3. Degree-ν approximation via gHPs

In this section, we shall derive the degree-ν suboptimalmethod
via gHPs. We begin with showing that the expectation of the gHP
tends to zero as the degree goes to infinity, if the density function of
the state belongs to the exponential decay class (see Definition 1).
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3.1. Functions of exponential decay class

Let us define the so-called functions of exponential decay and
show that if the density function of the random variable ξ is in this
class, the similar result as (2.9) also holds.

For any function f (x) ∈ L2(R), it can be represented as

f (x) =

∞∑
i=0

f̂iH
α,β

i (x), (3.10)

where Hα,β

i (x) are the generalized Hermite function

Hα,β

i (x) :=
1

√
2π i!

Heα,β

i (x)e−
α2(x−β)2

2 ,

and the so-called Fourier–Hermite coefficients are

f̂i :
(2.6)
=

∫
R
f (x)Heα,β

i (x)dx. (3.11)

Definition 1. We say the density function p(x) ∈ L2(R) belongs
to the exponential decay class with respect to (α, β), if for any
|µ| < 1

α
, there exists some constant C > 0 and η ∈ (0, 1 − α|µ|),

such that

|p̂i| ≤ Cηi, (3.12)

where p̂i, i = 0, 1, 2, . . ., are Fourier–Hermite coefficients of p(x).

Remark 1.

(1) It is not hard to see that the exponential decay class is non-
empty, since the standard Gaussian belongs to this class with
respect to (1, 0), due to the fact that p̂0 = 1 and p̂i = 0,
for all i ≥ 1. Actually, there are infinitely many functions in
this class. For instance, all Hα,β

i (x), i = 1, 2, . . ., belong to the
exponential decay class with respect to (α, β), since

(̂Hα,β

i )j =

{
1, j = i
0, otherwise.

(2) Condition (3.12) is not so restrictive as it seems to be. Sim-
ilar as Riemann–Lebesgue lemma claims, the coefficients
approach to zero rapidly, provided the function is smooth
enough. In Boyd (1984), Boyd claimed that if f (z) is an entire
function in complex plane and decays as super-Gaussian at
±∞ on the real-axis, i.e. f (x) ∼ O(e−C |x|k ), x ∈ R, for
some k > 2, then the convergence rate of the Nth Hermite
coefficient (3.11) is faster than the order O(e−CNr

), for some
constant C > 0 and r ≤

k
2(k−1) .

Theorem 1. Given α > 0, β ∈ R. If random variable ξ has density
function p(x) ∈ L2(R) and belongs to the exponential decay class with
respect to (α, β), then for any |µ| < 1

α
, we have

lim
n→∞

⏐⏐E [
Heα,β

n (ξ + µ)
]⏐⏐ = 0. (3.13)

Proof. With similar computation in Lemma 2.3, Luo (2006), we
have

E
[
Heα,β

n (ξ + µ)
]

=

n∑
i=0

(αµ)i

i!
n!

(n − i)!
E

[
He1,0n−i (α(ξ − β))

]
=

n∑
i=0

(αµ)i

i!
n!

(n − i)!
p̂n−i, (3.14)

where the last equality follows from the fact that

E
[
Heα,β

k (ξ )
]

(3.10)
=

∫
R
Heα,β

k (x)
∞∑
i=0

p̂iH
α,β

i (x)dx = p̂k.

Since the density function p(x) belongs to the exponential decay
class with respect to (α, β), we have for any |µ| < 1

α
, there exists

some constant C > 0 and η ∈ (0, 1 − α|µ|) such that (3.12) holds.
Hence, we have⏐⏐E [

Heα,β
n (ξ + µ)

]⏐⏐ (3.14)
≤ C

n∑
i=0

(α|µ|)i

i!
n!

(n − i)!
ηn−i

= C(α|µ| + η)n. (3.15)

Eq. (3.13) follows immediately by taking limit on both sides of
(3.15) and the fact that η ∈ (0, 1 − α|µ|). □

3.2. Derivation of degree-ν approximation for 1-d NLF problems

The basic idea of our method is to augment the original state
via its gHPs. The augmented states satisfy an infinite-dimensional
bilinear system. To form a closed system, we ignore all the HPs of
degree greater than ν.

It is well known that {Hek(x)}∞k=0 form an orthogonal basis of
L2(R), so do {Heα,β

k (x)}∞k=0, for given α > 0 and β ∈ R. Assume
that f , g and h ∈ C∞

(
[0, T ]; L2 (R)

)
. One can always expand these

functions with respect to the gHPs:

◦ (x, t) =

∞∑
k=0

◦
α,β

k (t)Heα,β

k (x), (3.16)

where ◦
α,β

k are smooth functions of t , which can be computed by

◦
α,β

k (t) =
1

√
2πn!

∫
R

◦(x, t)Hekα,β (x)e−
α2(x−β)2

2 dx, (3.17)

where ◦ represents f , g and h. For conciseness of notation, we will
drop the superscriptα, β in f α,β

k , gα,β

k and hα,β

k in the sequel, if there
is no confusion.

According to Itô lemma (Jazwinski, 1970), we have

dHeα,β

j (xt )

(1.1),(2.4)
=

[
αj Heα,β

j−1(xt )f +
1
2
α2j(j − 1)Heα,β

j−2(xt )(gQg)
]
dt

+ αj Heα,β

j−1(xt )gdwt

(3.16)
= αj

∞∑
k=0

fk He
α,β

j−1(xt )He
α,β

k (xt )dt

+
1
2
α2j(j − 1)Q

·

∞∑
i=0

∞∑
k=0

gigk He
α,β

j−2(xt )He
α,β

i (xt )He
α,β

k (xt )dt

+ αj
∞∑
k=0

gk He
α,β

j−1(xt )He
α,β

k (xt )dwt

=: I + II + III, (3.18)

for j = 0, 1, 2, . . . , with the convention that Heα,β

j (xt ) ≡ 0, when
j < 0.

In the proposition below,we shallmerge the double summation
into one by reordering.
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Proposition 1. For any integer j ≥ 0, (3.18) can be rewritten as

d Heα,β

j (xt )

= αj
∞∑

l=−j+1

Bj−1,l(f )He
α,β

j−1+l(xt )dt

+
1
2
α2j(j − 1)Q

∞∑
r=−j+2

Cj,r (g)He
α,β

j−2+r (xt )dt

+ αj
∞∑

l=−j+1

Bj−1,l(g)He
α,β

j−1+l(xt )dwt , (3.19)

where

Cj,r (g) =

∞∑
l=−(j−2)

Bj−2,l(g)Bj−2+l,r−l(g), (3.20)

and

Bj,l(◦) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j∑
p=−l

(◦)l+2pAj,l+2p,p, if − j ≤ l ≤ 0

j∑
p=0

(◦)l+2pAj,l+2p,p, if 1 ≤ l,

(3.21)

where (◦)k and An,m,p are defined in (3.17) and (2.8), respectively.
With convention, Bj,l(◦) = 0, if j < 0.

Proof. Term I and term III on the right-hand side of (3.18) can be
written as

I
(2.7)
= αj

∞∑
k=0

fk
∑

p≤k∧(j−1)

Aj−1,k,p He
α,β

k+j−1−2p(xt )dt

= αj
∞∑

l=−(j−1)

Bj−1,l(f )He
α,β

j−1+l(xt )dt, (3.22)

where Bj,l(f ) is in (3.21). Similarly, we have

III = αj
∞∑

l=−(j−1)

Bj−1,l(g)He
α,β

j−1+l(xt )dwt . (3.23)

By re-ordering the summations twice, term II becomes

II
(2.7)
=

1
2
α2j(j − 1)Q

·

∞∑
k=0

gk
∞∑

l=−(j−2)

Bj−2,l(g)He
α,β

j−2+l(xt )He
α,β

k (xt )dt

=
1
2
α2j(j − 1)Q

∞∑
l=−(j−2)

Bj−2,l(g) (3.24)

∞∑
s=−(j−2+l)

Bj−2+l,s(g)He
α,β

j−2+l+s(xt )dt

=
1
2
α2j(j − 1)Q

∞∑
l=−(j−2)

∞∑
r=−(j−2)

Bj−2,l(g)Bj−2+l,r−l(g)He
α,β

j−2+r (xt )dt

=
1
2
α2j(j − 1)Q

∞∑
r=−(j−2)

Cj,r (g)He
α,β

j−2+r (xt )dt,

by letting r = l + s, where Cj,r (g) is in (3.20). Combining (3.22)–
(3.24), (3.19) follows directly. □

It is clear to see from (3.19) that dHeα,β

j (xt ), j ≥ 1 forms
an infinite-dimensional system, which cannot be solved, unless
certain approximation is used. Let us introduce the degree-ν ap-
proximation (for any ν ≥ 2) by keeping only the first ν equations
in (3.19).

Let us denote

Heα,β

1:ν (xt ) =

[
Heα,β

1 (xt ) He
α,β

2 (xt ) · · · Heα,β
ν (xt )

]T
. (3.25)

From (3.19) and the degree-ν approximation,Heα,β

1:ν (xt ) satisfies the
following bilinear system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dHeα,β

1:ν (xt ) =

(
FνHe

α,β

1:ν (xt ) + F0,ν
)
dt

+

(
GνHe

α,β

1:ν (xt ) + G0,ν

)
dwt

dyt =

(
HνHe

α,β

1:ν (xt ) + H0

)
dt + dvt

, (3.26)

where

Fν(j, :) = αjBj−1,−(j−1)+1:ν−(j−1)(f ) (3.27)

+
1
2
α2j(j − 1)QCj,−(j−2)+1:ν−(j−2)(g),

F0,ν(j) = αjBj−1,−j+1(f )

+
1
2
α2j(j − 1)QCj,−j+2(g), (3.28)

Gν(j, :) = αjBj−1,−(j−1)+1:ν−(j−1)(g), (3.29)
G0,ν(j) = αjBj−1,−(j−1)(g), (3.30)

for 1 ≤ j ≤ ν, and

Hν = [h1 h2 · · · hν], H0 = h0, (3.31)

with hk in (3.16). The notations ∗(j, :) and (∗)j,a:b represent the jth
row of the matrix ∗ and the a to b’s column in jth row of matrix ∗,
respectively.

It is clear to see that (3.26) is a bilinear system of (ν + 1)
equations. The suboptimal estimation for bilinear system has been
investigated in Carravetta et al. (2000). For the sake of clarity, we
state the theorem below and its proof is given in Theorem 4.4,
Carravetta et al. (2000).

Theorem 2. For any given α > 0 and β ∈ R. Let us denote the
optimal estimate conditioned on the observation history of Heα,β

1:ν (xt )

as Ĥeα,β

1:ν (xt ) := E
(
Heα,β

1:ν (xt )
⏐⏐⏐Ft

)
, satisfies the equation

dĤeα,β

1:ν (xt )

=

(
Fν Ĥe

α,β

1:ν (xt ) + F0,ν
)
dt

+
(
Gνmα,β

ν (t) + G0,ν + Pα,β
ν (t)HT

ν

)
· R−1

[
dy −

(
Hν Ĥe

α,β

1:ν (xt ) + H0

)
dt

]
, (3.32)

where mα,β
ν := E

(
Heα,β

1:ν (xt )
)
satisfying the following equations

ṁα,β
ν (t) = Fνmα,β

ν (t) + F0,ν (3.33)

with the initial values mα,β
ν (0) = E

(
Heα,β

1:ν (x0)
)
, and Pα,β

ν (t) is the
conditional error covariance matrix

Pα,β
ν (t) = E

[(
Heα,β

1:ν (xt ) − Ĥeα,β

1:ν (xt )
)

·

(
Heα,β

1:ν (xt ) − Ĥeα,β

1:ν (xt )
)T

⏐⏐⏐⏐⏐Ft

]
evolving according to the equation

Ṗα,β
ν (t) = FνPα,β

ν (t) + Pα,β
ν (t)FTν + Q (t)

−
(
Gνmα,β

ν (t) + G0,ν + Pα,β
ν (t)HT

ν

)
· R−1(Gνmα,β

ν (t) + G0,ν + Pα,β
ν (t)HT

ν

)T
, (3.34)

with Pα,β
ν (0) = Ψ

α,β
ν (0).
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Remark 2. For ν = 1, (3.32)–(3.34) coincide with the extended
Kalman–Bucy filter (EKBF). However, the degree-2 approximation
in (3.32)–(3.34) is different from the so-called second order EKBF.
In the second order EKBF, a second order Taylor approximation is
used in the state process (Gelb, 1984), while both in our method
and the degree-2 Carleman approximation (Germani, Manes, &
Palumbo, 2005; Germani et al., 2007), the second order state incre-
ments are substitutedwith the components of the error covariance
matrix provided by the Riccati equation (3.34).

The estimation of the augmented states can be used to construct
that of the original state, due to the fact that

α(xt − β) = [1 0ν−1] · Heα,β

1:ν (xt ), (3.35)

where [1 0ν−1] is a row vector of size 1 × ν with all its elements 0,

except the first one being 1. That is, if the estimation Ĥeα,β

1:ν (xt ) of

the extended state Heα,β

1:ν (xt ) is obtained, then x̂t = β + Ĥeα,β

1:ν (1)/α

is the estimation of the original state, where Ĥeα,β

1:ν (1) represents

the first component of the vector Ĥeα,β

1:ν .

3.3. Discussion on the choice of scaling and translating factor

We shall solve (3.33), (3.32) and (3.34) numerically by Euler
forward scheme in the total experimental time [0, T ]. The estima-
tions are obtained at equi-distant discrete time tk, k = 0, 1, . . . , K ,
where t0 = 0, tK = T . Let us denote the new state Xk := Heαk,βk

1:ν (xt )
in each time interval [tk, tk+1], k = 0, 1, . . . , K .

As we mentioned in (3.35), x̂tk can be obtained by X̂k−1

⏐⏐⏐
tk
.

That is,

x̂tk =

X̂k−1

⏐⏐⏐
tk
(1)

αk−1
+ βk−1, (3.36)

where X̂k−1

⏐⏐⏐
tk
(1) represents the first component of X̂k−1 at time tk.

At the beginning of the time interval [tk, tk+1], we have

X̂k

⏐⏐⏐
tk
(1) =

αk

αk−1
X̂k−1

⏐⏐⏐
tk
(1) + αk(βk−1 − βk), (3.37)

which follows from (3.36) and x̂tk =
X̂k|tk (1)

αk
+ βk also holds. We

suggest to letβk = x̂tk . The reason is from the following: if
⏐⏐x̂tk ⏐⏐ > 1

and xtk ∼ N (x̂tk , 1), then

E
[
He1,0n (xtk )

]
= E

[
He1,0n

((
xtk − x̂tk

)
+ x̂tk

)]
= x̂ntk ↛ 0,

as n → ∞, where the last equality follows by Lemma 1. However,
if we let βk = x̂tk at tk, then

E
[
He1,βk

n (xtk )
]

= E
[
He1,0n (xtk − x̂tk )

]
=

{
1, n = 0
0, otherwise.

Intuitively, even if xtk ≁ N (x̂tk , 1), as long as its density is not
far from N (x̂tk , 1), it may still hold that E

[
He1,βk

n (xtk )
]

→ 0, as
n → ∞.

Next, we discuss the choice of the scaling factor. Although it
seems a good idea to change the scaling factor at every time step,
it needs to update the matrices Fν , F0,ν , Gν and G0,ν in (3.33), (3.32)
and (3.34), and H , H0 in (3.31).

Let us compare the computational complexity with that of
Carleman approximation. Suppose we have obtained the bilinear
system in Carleman approach:

dXν,ex = Aν(α, β)Xν,exdt + Bν(α, β)Xν,exdwt ,

and the one-to-one transformation between gHPs and the powers

Heα,β

0:ν = PνXν,ex,

where Xν,ex =

⎡⎢⎣
1
α(x − β)
.
.
.

αν (x − β)ν

⎤⎥⎦ and Heα,β

0:ν =

⎡⎢⎢⎣
1
Heα,β

1
.
.
.

Heα,β
ν

⎤⎥⎥⎦ as defined in

(3.25), then it can be easily derived that

dHeα,β

0:ν = PνAν(α, β)P−1
ν Heα,β

0:ν dt
+ PνBν(α, β)P−1

ν Heα,β

0:ν dwt . (3.38)

The only extra computation in our algorithm is the multiplication
of the transformation matrix Pν and its inverse in the evolution
system (3.38).

We propose to set a threshold value so that the scaling factor
is only altered if necessary. It is called the adaptive scaling factor
technique in the sequel. Notice that the choice of the scaling factor
αk in Xk is closely related to the covariance, so does Xk−1|tk (2) =

α2
k−1(xtk − βk−1)2 − 1, where βk−1 = x̂tk−1 . Therefore, we suggest

that if⏐⏐Xk−1|tk (2)
⏐⏐ > Cthreshold × α2

k−1, (3.39)

then let αk =

√
1 + 0.5 ×

⏐⏐Xk−1|tk (2)
⏐⏐, where adding 1 in the

previous expression is to avoid singularity of the covariance.1
Numerical investigation on the choice of Cthreshold is in Section 4.1.
We suggest to set Cthreshold ∈ (0, 1.2]. In a sum, the initial data at
the time interval [tk, tk+1] for (3.33), (3.34) and (3.32) are

mν,k
⏐⏐
tk

=
αk

αk−1
mν,k−1

⏐⏐
tk
,

Pαk,βk
ν,k = Xk|tk · Xk|

T
tk ,

and

Xk|tk =
αk

αk−1
Xk−1|tk

+ αk−1

[
He1,01:ν (x̂k−1) − He1,01:ν (x̂k)

]
,

respectively.
The algorithm with adaptive scaling factor has been summa-

rized in Table 1.

4. Numerical simulations

In this section, we shall compare our algorithms with existing
NLF methods, such as the most widely used EKF, PF and the Carle-
man approximation (Germani et al., 2005, 2007). To obtain better
resolutions of the Carleman approach, we set x̄ = x̂tk in Lemma 2,
Germani et al. (2007), in each time interval [tk, tk+1], similar as the
translating factor β in our algorithm.

In Hazewinkel et al. (1983), the cubic sensor problem has been
shown to be essentially infinite-dimensional. That is, it cannot be
solved exactly by any finite-dimensional statistical quantities. This
problem is in the form{

dxt = dwt

dyt = x3t dt + dvt ,
(4.40)

where E(dwtdwT
t ) = E(dvtdvT

t ) = 1. The initial state x0 has been
chosen to be 0 and the initial covariance is 0.1. The true state
is generated by the Euler–Maruyama method (Higham, 2001) in
the time interval [0, 5] with time discretization △t = 5 × 10−4.

1 The scalar 1 can be replaced by other positive numbers. Here, we choose 1, due
to the fact that if

⏐⏐Xk−1|tk (2)
⏐⏐ is close to zero, then αk is reset to some value close to

1, the same value as α0 .
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Table 1
Algorithm with adaptive scaling factor.

Algorithm with adaptive scaling factor

Initiate α0 = 1 and β0 = x0 .
Start withmν = X0 = Heα,β

1:ν (x0) and Pν,0 = 0.1 × Iν , where Iν is the
identity matrix with size ν × ν.
For k = 0 : K , K = the total time steps in T .

− Solve (3.33), (3.32) and (3.34) using Euler forward method.
Denote the solution as Xk .

− The estimation of x̂k+1 = Xk|tk+1 (1)/αk + βk is obtained, where
Xk|tk+1 (1) is the first component of Xk|tk+1 .

− If
⏐⏐Xk|tk+1 (2)

⏐⏐ > Cthreshold × α2
k

αk+1 =

√
1 + 0.5 ×

⏐⏐Xk|tk+1 (2)
⏐⏐ (△)

else
αk+1 = αk

End
− Let βk+1 = x̂k+1 .
− Update mν,k+1 = αk+1/αkmν,k ,

Xk+1|tk+1
= αk+1/αk · Xk|tk+1 + αk

[
He1,01:ν (x̂k−1) − He1,01:ν (x̂k)

]
,

and Pν,k+1 = Xk|tk+1 · Xk|
T
tk+1

.

− Update the coefficients in Fν , F0,ν , Gν and G0,ν in (3.33), (3.32)
and (3.34), and H , H0 in (3.32), if necessary.
End

The simplest numerical scheme, Euler forward method, is used to
solve ODEs in EKF, Carleman approach and our algorithms. The
performance of each realization is evaluated by the MSE:

EMSE :=
1

K + 1

K∑
k=0

(x̂tk − xtk )
2, (4.41)

where K = T/△t and x̂tk is the estimation obtained by various
methods at tk. The mean and standard deviation of MSE over NMC
Monte Carlo runs are given by

MeanMSE :=
1

NMC

NMC∑
i=1

EMSE,i,

StdMSE :=

√ 1
NMC

NMC∑
i=1

(EMSE,i − MeanMSE)2, (4.42)

where EMSE,i is the MSE of the ith realization in the Monte Carlo
runs.

4.1. The choice of Cthreshold in (3.39)

In this subsection, we take cubic sensor problem (4.40) as an
example to test the choice of the threshold Cthreshold in (3.39). In
Table 2, we list several important indicators, such as MeanMSE ,
StdMSE etc., versus different Cthreshold. Sometimes the NaN in Matlab
is obtained, in which case, we say this method fails or diverges in
this realization and we record the number of failures of different
methods out of 500 runs. In Section 4.3, we shall discuss the diver-
gence phenomena in detail. When Cthreshold = 0.1, 0.5, 0.8 and 1.2,
the number of failures are either 0 or 1, and themean and standard
deviation of MSE over successful Monte Carlo runs are nearly the
same. The smaller Cthreshold is, the more frequent the scaling factor

changes, and the heavier computation itwould be, if the truncation
ν is large. In Table 2, with Cthreshold = 0.1, the averaged changing
times ofα can be asmany as 9300 out ofN = 10 000. So one expect
as large Cthreshold as possible if the number of failures and the MSE
keep small. It seems that our algorithm is robust at least within
certain range of threshold, say Cthreshold ∈ (0, 1.2].

4.2. Comparison with different methods

Wecompared our algorithmswith andwithout adaptive scaling
factor with EKF, PF with 50 particles and Carleman approximation.
The PF used in our experiment is the SIR algorithm, see Algorithm
4, Arulampalam et al. (2002). It is worth noting that there have
been much progresses after (Arulampalam et al., 2002). The SIR
algorithm is used only for comparison purpose. In both Carleman
approach and our method, the cubic sensor problem reformu-
lated as (3.26) with ν = 3. All the methods have been run 500
times, where the realizations of the true states are generated by
randn(‘state’,s) with s = 1 to 500 in MatLab. The MeanMSE , StdMSE ,
CPU times and the number of failures within 500 runs are listed in
Table 3. The averaged CPU times,MeanMSE and StdMSE are computed
within the successful runs. Our algorithm with adaptive scaling
factor has the least failures. The EKF fails completely, since no
matter what true states are, it always yields 0 as its estimation
all the time, as long as it starts with 0. Recall the mechanics of
EKF, the linearization at the estimation 0 gives F = H = 0, if the
estimation is zero at the initial time. In this case, the Kalman gain
is zero. Consequently, the optimal estimation is obtained without
any innovation and keeps zero if F = 0. Themore general situation
is that the state estimation keeps constant (not necessarily to be
zero), if the critical point of the nonlinear drift function f is the
same as that of the observation function h, and the initial state
estimation is exactly at the critical point. In other words, the state
without drifting stayed at the critical point is not observable. PF
gives as bad estimation as EKF, since their MeanMSE and StdMSE are
comparably large.

In Fig. 1, the absolute values of errors EAE averaged over all
successful Monte Carlo runs from different methods versus time
are displayed in various colors.

EAE(tk) :=
1

NMC

NMC∑
i=1

⏐⏐x̂tk − xtk
⏐⏐ , (4.43)

k = 1, . . . , K . It indicates that our algorithm with/without adap-
tive scaling factor yields the best averaged estimation. In Fig. 2, we
display the EAE versus time obtained by Carleman approach, our
algorithm with fixed scaling factor α = 1 and adaptive scaling
factor with Cthreshold = 0.5, when the true state is generated
by randn(‘state’,130). It is clear to see that our algorithm with
adaptive scaling factor is more stable with EMSE ≈ 0.4620, though
the scaling factor has been changed 6768 times, while both the
Carleman approach and our algorithmwith fixed scaling factor fail
completely around t = 1.5. Both Carleman approach and our algo-
rithmwith fixed scaling factor yield NaN inMatLab simultaneously
for x̂tk at k = 2924.

Table 2
Different thresholds affect the performances of our degree-3 algorithm with adaptive scaling factor in the cubic sensor
problem (4.40).

Threshold Cthreshold in (3.39) ♯ of failures in 500 runs MeanMSE StdMSE Averaged changing times of α

0.1 1 0.4602 0.2744 9300
0.5 1 0.4503 0.2267 4867
0.8 1 0.4498 0.2690 435
1.2 0 0.4834 0.3669 265
2 45 0.6608 0.6802 159
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Table 3
The number of failures, averaged CPU times, MeanMSE and StdMSE from different methods within 500 Monte Carlo runs are listed.

PF with 50 particles EKF Carleman Our algorithm

With fixed α = 1 With adaptive scaling factor

♯ of failures in 500 runs 0 500a 15 6 1
Averaged CPU times 6.0623 0.0042 1.6895 2.7397 2.7959
MeanMSE 2.7942 2.4935 0.8892 0.4782 0.4503
StdMSE 2.9497 2.7867 0.7942 0.2487 0.2267

a The estimation given by EKF is 0 for all realization of true states, provided the initial state is 0.

Fig. 1. The y-axis is the absolute value of error averaged over all successful Monte
Carlo runs (within 500) from Carleman approach and our algorithm with and
without adaptive scaling factor have been displayed, while the x-axis is the time.

4.3. Discussions on divergence

In this subsection, we shall investigate the possible reason of
divergence in the numerical experiment for cubic sensor problem.
Motivated by Fitzgerald (1971), we examine the evolution equa-
tion of Pα,β

ν (3.34) and rewrite it in the following form:

Ṗα,β
ν (t) =

[
Fν − (Gνmα,β

ν + G0)R−1Hν

]
Pα,β

ν (t)
+ Pα,β

ν (t)
[
Fν − (Gνmα,β

ν + G0)R−1Hν

]T
− Pα,β

ν (t)HT
ν R

−1HνPα,β
ν (t)

+ Q (t) − (Gνmα,β
ν + G0)R−1(Gνmα,β

ν + G0)T . (4.44)

As mentioned in Fitzgerald (1971), the Potter’s ‘‘regularity’’ condi-
tions

(1) No eigenvector of Fν−(Gνm
α,β
ν +G0)R−1Hν whose eigenvalue

has a non-negative real part is a null vector of R−1Hν .
(2) No eigenvector of Fν−(Gνm

α,β
ν +G0)R−1Hν whose eigenvalue

has a non-negative real part is a null vector of Q (t) −

(Gνm
α,β
ν + G0)R−1(Gνm

α,β
ν + G0)T .

guarantee the unique positive semidefinite critical point, i.e.
Ṗα,β

ν,s = 0. However, in the cubic sensor problem it is easy to see
that rank

(
Fν − (Gνm

α,β
ν + G0)R−1Hν

)
≤ 2. According to MatLab,

Potter’s ‘‘regularity’’ condition (1) is violated, i.e. the eigenvector
corresponding to the zero eigenvalue is a null vector of R−1Hν . But
fortunately, rank

(
Fν − (Gνm

α,β
ν + G0)R−1Hν

)
= 2 and the other

two eigenvalues are negative all the time until the divergence.
The possible consequence of the violation is that the critical point
Pα,β

ν,s (t) is not unique, and heavily depends on the initial condition
Pα,β

ν (0). In fact, for arbitrary r ∈ R, Pα,β
ν,s + reeT is always a steady

Fig. 2. The y-axis is the absolute value of error obtained by Carleman approach
and our algorithmwith fixed scaling factor α = 1 are compared with our algorithm
with adaptive scaling factor, when the realization is generated by randn(‘state’,130),
while the x-axis is the time.

state of (4.44), provided that
[
Fν − (Gνm

α,β
ν + G0)R−1Hν

]
e =

R−1Hνe = 0. Thus, ∥Pα,β
ν,s + reeT∥∞ → ∞, as r → ∞, where

∥ · ∥∞ denotes the L∞ norm of the matrix. This undesirable fact
may cause the divergence of the estimation. Let us rewrite (3.32)
in the following form:

dĤeα,β

1:ν (xt )

=
[
Fν −

(
Gνmα,β

ν (t) + G0,ν
)
R−1Hν

]
Ĥeα,β

1:ν (xt )dt

− Pα,β
ν (t)HT

ν R
−1Hν Ĥe

α,β

1:ν (xt )dt
+

[
F0,ν −

(
Gνmα,β

ν (t) + G0,ν + Pα,β
ν (t)HT

ν

)
R−1H0

]
dt

+
(
Gνmα,β

ν (t) + G0,ν + Pα,β
ν (t)HT

ν

)
R−1dy. (4.45)

The divergence may be caused by the last two terms on the right-
hand side of (4.45), instead of the first two. Let us analyze term
by term. The first term is under control since in the numerical
experiment [Fν −

(
Gνm

α,β
ν (t) + G0,ν

)
R−1Hν] has one zero and two

negative eigenvalues, and the unstable eigenvector is a null vector
of R−1Hν . The coefficient in front of Ĥeα,β

1:ν (xt ) in the second term is
negative semi-definite all the time. Taking a close look at the terms
Pα,β

ν (t)HT
ν R

−1H0 and Pα,β
ν (t)HT

ν R
−1 in the third and fourth term on

the right-hand side of (4.45), let us replace Pα,β
ν with Pα,β

ν,s + reeT . If
without any round-off error in e and Hν , we have eTHT

ν R
−1

= 0.
Unfortunately, with a little perturbation in eT or Hν , this term
can go to infinity, as r → ∞. This situation may happen highly
dependent on the initial condition of Pα,β

ν .
Let us take a closer look at the possible cause of the divergence

in the experiment in Fig. 2. To examine the explosion of various
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Table 4
We list three important quantities in the analysis of divergence of various methods: the eigenvector e of the unstable mode, the examination of the null vector of R−1Hν

and the covariance Pα,β
ν .

Time 1.4575 1.4595

Carleman approach
e

[
1.3322e−17 1.2000e−01 −9.9277e−01

] [
−8.9026e−17 5.3458e−01 −8.4511e−01

]
eR−1Hν 2.2204e−16 −2.2204e−16

Pα,β
ν

[
−4.8850e−18 −1.9296e−02 −1.4492e−01
−1.9296e−02 1.7696e+00 1.2715e+01
−1.4492e−01 1.2715e+01 9.1358e+01

] [
0 −1.1490e+05 −8.7693e+05
−1.1490e+05 −2.6404e+13 −2.0152e+14
−8.7693e+05 −2.0152e+14 −1.5380e+15

]

Our algorithm with fixed α = 1
eT

[
−1.1595e−16 1.3925e−01 −9.9026e−01

] [
3.0285e−17 2.7278e−01 −9.6208e−01

]
eR−1Hν −3.3307e−16 2.2204e−16

Pα,β
ν

[
1.9970e−04 −2.6916e−02 −1.6297e−01
−2.6916e−02 1.7025e+00 1.0042e+01
−1.6297e−01 1.0042e+01 5.9254e+01

] [
−1.6544e+07 −6.1527e+14 −3.8488e+15
−6.1527e+14 −2.2882e+22 −1.4313e+23
−3.8488e+15 −1.4313e+23 −8.9537e+23

]

Our algorithm with adaptive scaling factor

α 5.1343 5.4750

eT
[
1.3732e−17 2.6039e−02 −9.9966e−01

] [
1.7026e−18 2.4537e−02 −9.9970e−01

]
eR−1Hν 2.6021e−18 8.6736e−19

Pα,β
ν

[
1.1124e−30 3.0154e−14 1.3230e−13
3.0154e−14 8.1737e+02 3.5862e+03
1.3230e−13 3.5862e+03 1.5734e+04

] [
5.0093e−31 −1.9718e−14 −8.2313e−14
−1.9718e−14 7.7611e+02 3.2399e+03
−8.2313e−14 3.2399e+03 1.3525e+04

]

methods in Fig. 2, we record three important quantities in Table 4
and have the following observations:

(1) The eigenvector e corresponding to the zero eigenvalue of
Fν −

(
Gνm

α,β
ν (t) + G0,ν

)
R−1Hν keeps almost the same until

the explosion.
(2) The eigenvector e is approximately the null vector of R−1Hν ,

yet there is always a round-off error. By tuning the scaling
factor in our algorithm, e is more likely to reside in the null
space of R−1Hν .

(3) The covariance becomes larger and larger before explosion.

In other word, the choice of the initial value in (4.44) is crucial.
The discussion on the choice of scaling and translating factors in
Section 3.3 provides an effective way to avoid the explosion to
some degree.

4.4. The performance with respect to the truncation ν

Intuitively, the larger truncation mode ν is, the more accurate
the approximation x̂t is. Instead of the cubic sensor problem (4.40),
we numerically solve a slightly different one (4.46), since the cubic
sensor problem gives exactly the same Fν , F0,ν , Gν , G0,ν , Hν and H0
in (4.40) for all ν ≥ 3.

Let us consider{
dxt = x2t dt + dwt

dyt = x3t dt + dvt ,
(4.46)

where E
(
dwtdwT

t

)
= E

(
dvtdvT

t

)
= 1. The initial state x0 has been

chosen to be 0 and the covariance is 0.1.
The stochastic realization of system (4.46) is generated

by randn(‘state’,1), according to the Euler–Maruyama method
(Higham, 2001). The total experiment time is T = 2 with time
discretization△t = 2×10−4. The simplest numerical method, the
Euler forward method, is used to solve (3.33), (3.32) and (3.34). In
Fig. 3, the absolute value of errors EAE of our method with adaptive
scaling factor to different truncation modes ν = 3, 4 and 5 are
plottedwith respect to time. TheMSE for ν = 3, 4 and 5 are 0.3310,
0.2182, and 0.1413, respectively. It verifies our intuition that the
larger ν should give more accurate estimation.

5. Conclusions

In this paper we investigated a novel suboptimal method for
the NLF problem by augmenting the original state via its gHPs. The

Fig. 3. The absolute value of errors from different truncation ν = 3, 4 and 5 versus
time are displayed, when the realization is generated by randn(‘state’,1).

augmented state after truncation satisfies a bilinear system, whose
suboptimal filtering has been developed in Carravetta et al. (2000).
Our paper ismotivated by the key observation that in the Carleman
approach (Germani et al., 2007) it is in general inappropriate to
neglect all the highermoments. Andwe show that themore proper
way to augment the state is via its gHPs, due to the fact that the
expectation of these polynomials tends to zero as the degree goes
to infinity, if the density function of the original states is in the
exponential decay class. This makes the neglect of the gHPs with
high enough degree more reasonable. The numerical simulation of
the 1 d cubic sensor problemwith zero/nearly zero initial condition
is presented to show the superiority of our algorithms to the most
widely used methods, including EKF, PF and Carleman approxi-
mation. Our algorithm with adaptive scaling factor may be more
adequate for the NLF problems, whose linearized counterpart has
unstable and unobservable state.
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