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a b s t r a c t

In this paper we derive a suboptimal estimation for continuous–discrete bilinear systems. One of the
motivations of this work is that the bilinear system has the simplest structure in the nonlinear class
in some sense. Similar to the Kalman filter, our algorithm includes prediction and updating step. We
show rigorously that our algorithm gives an unbiased estimate, the a-priori estimate approaches to the
conditional expectation exponentially fast, and the posterior estimateminimizes the conditional variance
error in the linear space spanned by the a-priori estimate and the innovation. Our algorithm is also
applicable to solve the nonlinear filtering problems. The efficiency of our method is illustrated by the
cubic sensor problem and Lorenz systemwith discrete observation. The results have been compared with
the extended Kalman filter and the unscented Kalman filter.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

How to get the instantaneous and accurate estimation of the
states of a stochastic system from the polluted measurements by
the noise is of central importance in engineering and this is also
the central problem in the field of filtering. A continuous–discrete
filtering problem is modeled by the following Itô stochastic differ-
ential equation:{
dx(t) = f (x(t))dt + g(x(t))dv(t)
y(tk) = h(x(tk)) + w(tk),

(1.1)

where v(t) is Brownian motion with proper dimension, x(t) ∈ Rn

is the state, 0 = t0 < t1 < · · · < tK = T , y(tk) ∈ Rm is the
measurement, tk, k = 1, 2, . . . , K are instants when the measure-
ments arrive and w(tk) ∈ Rm is white noise. When the function
f (x) and h(x) are linear functions of x and g(x) is constant, we call
(1.1) a linear filtering problem and its study can be traced back
to early 1960s when Kalman [1], Kalman and Bucy [2] published
two most influential papers and proposed the classical Kalman
filter and Kalman–Bucy filter. We refer the readers to the book [3]
for excellent introduction to filtering theory. Though the linear
filtering problem is completely solved in [1,2,4], the nonlinear fil-
tering (NLF) problems are much more complicated and important
in applications since most practical models are nonlinear.
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One class of methods to solve NLF problems is the so-called
global approaches which try to find out the conditional density
function of the states by solving the Duncan–Mortensen–Zakai
(DMZ) equation [5–7]. Based on the DMZ equation, more research
articles follow this direction such as [8–13]. Numerical methods to
solve this problem can also be found such as in [14].

Another class of methods to solve the NLF problems is referred
as local approaches, which construct suboptimal filters in some
sense. There are many approximate methods including unscented
Kalman filter (UKF) [15,16], ensemble Kalman filter [17], parti-
cle filter [18] and the most widely used extended Kalman filter
(EKF) [3,19], which is basically the Kalman–Bucy filter applied to a
linearized system. However, EKF can only performwell if the initial
estimation error and the disturbing noises are small enough due to
its local nature.

Continuous–discrete filter, which is for stochastic differential
systems with sampled measurements, is also of great significance
and hasmany applications such as in tracking and finance since the
measurements always come in discretely. There has been increas-
ing interest in this system and many continuous–discrete filters
can be found in the literatures, such as continuous–discrete EKF [3],
continuous–discrete UKF [15], continuous–discrete Gaussian fil-
ter [20] and continuous–discrete cubature Kalman filter [21]. And
the comparison of these different methods can refer [22].

Our motivations to study the bilinear system are two folds: on
the one hand, many important processes, not only in engineering
but also in socio-economics, biology and ecology, may be modeled
by bilinear systems [23]. On the other hand, the bilinear structure
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seems to be the simplest and closest one to the linear one among
all the nonlinearities. Thus, some well-established techniques can
be extended to bilinear systems [24]. The estimation theory for bi-
linear system can also be used to solve NLF problems. For example,
the nonlinear analytical system can be approximated by a bilinear
system using Carleman approach [25].

Notice that [24] only deals with the continuous–continuous
systems. Recently, the first and the last author of this paper [26,27]
proposed a novel algorithm for solving the continuous NLF prob-
lems based on the idea in [24]. In this paperwe derive a suboptimal
filter for the continuous–discrete bilinear systems. Compared with
the work of Cacace and his collaborators, we consider the filter
rather than state predictor [28] and the bilinear system (3.1) in our
algorithm is more general than that in [29]. We call the estimate
obtained in this paper suboptimal linear estimate (SLE). Similar
to EKF, our algorithm consists of two steps including predicting
and updating. We call the estimate after prediction the a-priori
estimate, while that after updating the posterior estimate. The
suboptimality of our algorithm in the following sense: essentially,
we show that under some mild conditions SLE has the following
properties:

1. Both the a-priori and the posterior estimates are unbiased;
2. The a-priori estimate approaches to the conditional expec-

tation exponentially fast;
3. The posterior estimate minimizes the conditional variance

error in a linear space.

This paper is organized as follows. Our algorithm is described in
Section 2.1. The suboptimality of SLE has been shown rigorously in
Section 2.2. Section 3 presents the application of our algorithm to
representative NLF problems, where we compare the performance
of the proposed filterwith EKF andUKF.Wearrive at the conclusion
in Section 4.

2. Suboptimal algorithm

The bilinear continuous–discrete system considered in proba-
bility space (Ω,F , P) is as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dX(t) =AX(t)dt + Ndt +

b∑
j=1

(BjX(t) + Fj)dWj(t), t ∈ [0, T ],

Y (tk) =CX(tk) + D +

b∑
j=1

GjVj(tk), k = 0, 1, . . . , K ,

(2.1)

where 0 = t0 < t1 < · · · < tK = T ,A ∈ Rn×n,N ∈

Rn×1,Bj ∈ Rn×n, Fj ∈ Rn×1, C ∈ Rm×n,D ∈ Rm×1,G ∈ Rm×1

are constant matrices. X(t) ∈ Rn is the state with the initial value
X0 whose mean is X̄0 and covariance matrix is P̄0, Y (tk) ∈ Rm

is discrete measurement, Vj(tk) ∼ N(0, Rj(tk)), Rj(tk) ∈ R, k =

0, 1, . . . , K , are independent one-dimensional white noises and
Wj(t), j = 1, . . . , b, are independent standard Brownian motions.
Let Ftk be the σ -field generated by the observations, i.e. Ftk ≜
σ {Y (t0), Y (t1), . . . , Y (tk)}. Kronecker algebra is used for concise
notation and derivation. Its properties can be found in [30].

Recall that the probability space (Ω,F ,P) with finite second
moment, with scalar product ⟨x, y⟩ = E[xTy] and norm ∥x∥ :=

E1/2
[xT x] is a Hilbert space, denoted as L2(Ω,F ,P). Suppose that

the state X(t) ∈ L2(Ω,F ,P). In our algorithm, we shall obtain a
linear recursive estimate in the similar fashion of EKF. As explained
in [28], the prediction of the state on the observation history is
indeed a random variable. After the approximation of the condi-
tional expectation of the nonlinear drift term f (xt ) coarsely in EKF,
i.e. E[f (xt )|Ftk−1 ] ≈ f (E[xt |Ftk−1 ]), for t > tk−1, it makes the state
estimate satisfy an deterministic ordinary differential equation.

This is the essential reason why all the estimates in our algorithm
will be treated in a deterministic way. Let us clearly define the
linear recursive estimate of X(t) based on the observation history
{Y (t0), Y (t1), . . . , Y (tk−1)} first:

Definition 2.1. We call X̂(tk|tk) the linear recursive estimate of
X(tk) based on the observation {Y (t0), Y (t1), . . . , Y (tk)}, if

1. The a-priori estimate, denoted as X̂(t|tk−1), t ∈ [tk−1, tk],
is linearly dependent of the previous posterior estimate
X̂(tk−1|tk−1), i.e.

X̂(t|tk−1) = H1(t)X̂(tk−1|tk−1) + H2(t), (2.2)

where H1 and H2 are matrices of proper dimensions;
2. The posterior estimate X̂(tk|tk) lives in the linear space

spanned by 1, the a-priori linear estimate X̂(tk|tk−1) and the
innovation Y (tk) − Ŷ (tk|tk−1), where Ŷ (tk|tk−1) = CX̂(tk|tk−1)
+ D. That is,

X̂(tk|tk) = H3X̂(tk|tk−1) + H4(Y (tk) − Ŷ (tk|tk−1)) + H5, (2.3)

where H3,H4 and H5 are constant matrices of proper dimen-
sions.

2.1. Algorithm

Our algorithm consists of two steps: prediction and updating.
Throughout the process, we assume that

(As) A and Aex are Hurwitz, where Aex :=
∑b

l=1(Bl ⊗ Bl) + In ⊗

A + A ⊗ In.

We state our algorithm first:

(Al-1) Prediction In the interval [tk−1, tk), the a-priori estimate
X̂(t|tk−1) of X(t) based on data {Y (t0), Y (t1), . . . , Y (tk−1)}
satisfies
˙̂X(t|tk−1) =AX̂(t|tk−1) + N, (2.4)

Q̇ (t|tk−1) =AQ (t|tk−1) + Q (t|tk−1)AT (2.5)

+

b∑
j=1

[
BjQ (t|tk−1)BT

j

+

(
BjX̂(t|tk−1) + Fj

)
×

(
BjX̂(t|tk−1) + Fj

)T
]
,

with the initial value X̂(tk−1|tk−1) and Q (tk−1|tk−1) from
previous updating, X̂(t0|t0) := X̄0, and Q (t0|t0) := P̄t0 .

(Al-2) Updating The posterior estimate X̂(tk|tk) of X(tk) based on
the observation history Ftk satisfies

X̂(tk|tk) = X̂(tk|tk−1) + Kk

[
Y (tk) − Ŷ (tk|tk−1)

]
, (2.6)

with Ŷ (tk|tk−1) = CX̂(tk|tk−1)+D, and the gain function Kk
is given by

Kk = Q (tk|tk−1)CT

×

⎡⎣CQ (tk|tk−1)CT
+

b∑
j=1

GjRj(tk)(Gj)T

⎤⎦−1

. (2.7)

Meanwhile, the matrix Q (tk|tk) is updated by

Q (tk|tk) = (In − KkC)Q (tk|tk−1). (2.8)

where In is the identity matrix of dimension n × n.
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Remark 2.1. The matrix Q (t|tk−1) plays the role of the conditional
variance

P(t|tk−1) := E
[
(X(t) − X̂(t|tk−1))(X(t) − X̂(t|tk−1))T

⏐⏐⏐ Ftk−1

]
in the algorithm. However, in general, Q (t|tk−1) ̸= P(t|tk−1), t ∈

(tk−1, tk), even if with the same initial value at t = tk−1. This can be
seen from the delicate analysis of eQP in the proof of Proposition 2.1.

2.2. Suboptimality

Under Assumption (As), our algorithm (Al-1)–(Al-2) gives a
suboptimal linear estimate (SLE) in the following sense:

(S-1) If X̂(t0|t0) is unbiased, so is X̂(tk|tk) in the usual sense. That
is,

E
(
X̂(tk|tk) − X(tk)

)
= 0, (2.9)

for k = 1, . . . , K .
(S-2) The a-priori estimate X̂(t|tk−1), for t ∈ [tk−1, tk]

approaches the conditional expectation E
(
X(t)|Ftk−1

)
component-wisely and exponentially fast with respect to t .
Also Q (t|tk−1) approaches the conditional variance P(t|tk−1)
component-wisely and exponentially fast with respect to t .

(S-3) The posterior estimate X̂(tk|tk) minimizes the conditional
variance error tr P(tk|tk) in the linear space spanned by
{1, X̂(tk|tk−1), Y (tk) − Ŷ (tk|tk−1)}, where tr ⋆ denotes the
trace of ⋆.

2.2.1. Proof of (S-1)
Before we proceed, we need the following lemma.

Lemma 2.1 (Proposition 2.10, [31]). If f (t) ∈ L2 and f (t) is adapted
with respect to (w.r.t.) F̃t ≜ σ {Bτ , τ ≤ t}, where {Bτ } is a Brownian
motion, then I(t) =

∫ t
t0
f (t)dBt is a martingale w.r.t. F̃t and we have

E
[∫ t

t0

f (t)dBt

⏐⏐⏐⏐ F̃t0

]
= 0. (2.10)

If f (t) ∈ L2,and f (t) is adapted w.r.t. F̃t , then we have

E
[∫ t

s
f (u)du

⏐⏐⏐⏐ F̃s

]
=

∫ t

s
E[f (u)|F̃s]du. (2.11)

Proof of (S-1) (By Induction). It is sufficient to show that if
X̂(tk−1|tk−1) is unbiased, so is X̂(tk|tk), for k = 1, 2, . . . , K − 1.

Solving the first equation in (2.1), we can obtain [32]

X(t) =eA(t−tk−1)X(tk−1) +
(
eA(t−tk−1) − I

)
A−1N

+

b∑
j=1

∫ t

tk−1

eA(t−τ )(BjX(τ ) + Fj)dWj(τ ), (2.12)

since A−1 exists by Assumption (As). We claim that the a-priori
estimate X̂(tk|tk−1) is unbiased. In (Al-1), the solution of (2.4) is in
the form (2.2) with

H1(t) = eA(t−tk−1), H2(t) =
(
eA(t−tk−1) − I

)
A−1N. (2.13)

It is easy to see that

E(X(tk))
(2.12),(2.13)

= H1(tk)E(X(tk−1)) + H2(tk)

=H1(tk)E(X̂(tk−1|tk−1)) + H2(tk) = E(X̂(tk|tk−1)),
(2.14)

where the second equality follows from the assumption that
X̂(tk−1|tk−1) is unbiased, for all k = 1, 2, . . . , K . Next, we show that

the posterior estimate X̂(tk|tk) is unbiased. In (Al-2), we have

E
(
X̂(tk|tk)

)
(2.6)
= E

(
X̂(tk|tk−1)

)
+ KkE

(
Y (tk) − Ŷ (tk|tk−1)

)
=E(X(tk)) + KkCE(X(tk) − X̂(tk|tk−1))

(2.14)
= E(X(tk)).

That is, X̂(tk|tk) is unbiased. This completes our induction. □

2.2.2. Proof of (S-2)
Let us first derive the evolution equation of the conditional

expectation

X̃(t|tk−1) := E[X(t)|Ftk−1 ],

and the conditional covariance matrix

P̃(t|tk−1) := E
[(

X(t) − X̃(t|tk−1)
)(

X(t) − X̃(t|tk−1)
)T

⏐⏐⏐⏐ Ftk−1

]
.

Lemma 2.2. In the time interval [tk−1, tk), suppose that the state
propagates according to (2.1). Then the conditional expectation and
covariance matrix evolves according to the following equations:
˙̃X(t|tk−1) =AX̃(t|tk−1) + N, (2.15)
˙̃P(t|tk−1) =AP̃(t|tk−1) + P̃(t|tk−1)AT

+

b∑
j=1

E
[
(BjX(t) + Fj)(BjX(t) + Fj)T

⏐⏐ Ftk−1

]
=AP̃(t|tk−1) + P̃(t|tk−1)AT (2.16)

+

b∑
j=1

[
BjP̃(t|tk−1)BT

j + (BjX̃(t|tk−1) + Fj)

× (BjX̃(t|tk−1) + Fj)T
]
.

We omit the proof of this lemma, since it is standard. The
following proposition shows that the difference between the a-
priori estimate in our algorithm and the conditional expectation
vanishes fast.

Proposition 2.1. In the interval t ∈ [tk−1, tk], let us denote
eX (t|tk−1) := X̂(t|tk−1)− X̃(t|tk−1) and eQP := Q (t|tk−1)− P(t|tk−1).
Then under Assumption (As), we have

eX (t|tk−1) → 0, (2.17)
eQP (t|tk−1) → 0, (2.18)

component-wisely and exponentially fast, as t → ∞.

Proof. The proof of (2.17) is straightforward. Due to the linearity
of (2.4) and (2.15), we have

ėX (t|tk−1) = AeX (t|tk−1), (2.19)

with the initial condition eX (tk−1|tk−1). It can be solved explicitly
that

eX (t|tk−1) = eA(t−tk−1)eX (tk−1|tk−1). (2.20)

Thus, (2.17) follows immediately from Lemma A.3, since A is Hur-
witz. Similar to the derivation of (2.16), one obtains that

Ṗ(t|tk−1) =AP(t|tk−1) + P(t|tk−1)AT

+

b∑
j=1

E
[
(BjX(t) + Fj)(BjX(t) + Fj)T

⏐⏐ Ftk−1

]
. (2.21)

Comparing (2.21) and (2.15), it is easy to see that ePP̃ (t|tk−1) :=

P(t|tk−1) − P̃(t|tk−1) satisfies

ėPP̃ (t|tk−1) = AePP̃ (t|tk−1) + ePP̃ (t|tk−1)AT . (2.22)
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Vectorizing (2.22) yields that
d
dt

vec
(
ePP̃ (t|tk−1)

)
= vec

(
ėPP̃ (t|tk−1)

)
= (In ⊗ A + A ⊗ In)vec

(
ePP̃ (t|tk−1)

)
,

where vec(◦m×n) is themn×1 column vector obtained by stacking
the columns of the matrix ◦ on top of one another. Thus, we have

vec
(
ePP̃ (t|tk−1)

)
=e(In⊗A+A⊗In)(t−tk−1)vec

(
ePP̃ (tk−1|tk−1)

)
(2.23)

=e(In⊗A)(t−tk−1)e(A⊗In)(t−tk−1)vec
(
ePP̃ (tk−1|tk−1)

)
→0n2×1,

component-wisely and exponentially by Lemma A.3. The second
equality follows from the fact that eA+B

= eAeB, if A and B commute
with each other.

Next, we look at the difference between Q (t|tk−1) and P̃(t|tk−1).
Let us denote eQ P̃ (t|tk−1) := Q (t|tk−1) − P̃(t|tk−1). Subtracting
(2.16) from (2.5), we get

ėQ P̃ (t|tk−1) =AeQ P̃ (t|tk−1) + eQ P̃ (t|tk−1)AT
+

b∑
j=1

BjeQ P̃ (t|tk−1)BT
j

+

b∑
j=1

[
(BjX̂(t|tk−1) + Fj)(BjX̂(t|tk−1) + Fj)T

−(BjX̃(t|tk−1) + Fj)(BjX̃(t|tk−1) + Fj)T
]
.

(2.24)

Let us denote the last summation on the right-hand side of (2.24)
as I1. According to (2.4), X̂(t|tk−1) can be solved explicitly, i.e.

X̂(t|tk−1) =eA(t−tk−1)X̂(tk−1|tk−1) − A−1 (
I − eA(t−tk−1)

)
N

=eA(t−tk−1)
(
X̂(tk−1|tk−1) + A−1N

)
− A−1N, (2.25)

so does X̃(t|tk−1), with the same expression above replacing X̂ by
X̃ . Substituting (2.25) to I1 and suppressing the notation (tk−1|tk−1)
in X̂(tk−1|tk−1) and X̃(tk−1|tk−1) in the sequel, it yields that

I1 =

b∑
j=1

[(
BjeA(t−tk−1) ¯̂X + F̄j

)(
BjeA(t−tk−1) ¯̂X + F̄j

)T

−

(
BjeA(t−tk−1) ¯̃X + F̄j

)(
BjeA(t−tk−1) ¯̃X + F̄j

)T
]

=

b∑
j=1

BjeA(t−tk−1)
(

¯̂X ¯̂XT
−

¯̃X ¯̃XT
)
eA

T (t−tk−1)BT
j

+

b∑
j=1

BjeA(t−tk−1)
(

¯̂X −
¯̃X
)
F̄Tj +

b∑
j=1

F̄j
(

¯̂X −
¯̃X
)T

eA
T (t−tk−1)BT

j

=:II1 + II2 + II3,

where ¯̂X = X̂ + A−1N, ¯̃X = X̃ + A−1N and F̄j = −BjA−1N + Fj.
Vectorizing (2.24), one obtains that
d
dt

vec
(
eQ P̃ (t|tk−1)

)
= Aexvec

(
eQ P̃ (t|tk−1)

)
+ Nex(t), (2.26)

where Aex is given in Assumption (As) and Nex(t) = vec(I1(t)). The
solution of (2.26) can be expressed in the integral form:

vec
(
eQ P̃ (t|tk−1)

)
=eAex(t−tk−1)vec

(
eQ P̃ (tk−1|tk−1)

)
+ eAext

∫ t

tk−1

e−Aexτvec(II1 + II2 + II3)dτ .

(2.27)

The first term on the right-hand side of (2.27) tends to 0
component-wisely and exponentially by Lemma A.3 and Aex is

Hurwitz. In the sequel, we shall analyze the integral on the right-
hand side of (2.27) one-by-one. Let us first consider the term
containing vec(II2):

eAext
∫ t

tk−1

e−Aexτvec(II2)dτ

=

b∑
j=1

eAext
∫ t

tk−1

e−Aexτvec
(
BjeA(τ−tk−1)eX F̄Tj

)
dτ

=

b∑
j=1

∫ t

tk−1

eAex(t−τ )
[
(eA(τ−tk−1)eX F̄Tj )

T
⊗ In

]
vec

(
Bj

)
dτ

=

b∑
j=1

{∫ t

tk−1

eAex(t−τ )
[
F̄jeTX ⊗ In

]
e
(
AT

⊗In
)
(τ−tk−1)dτ

}
vec

(
Bj

)
,

(2.28)

where eX =
¯̂X −

¯̃X = X̂ − X̃ . The last equality follows from the fact
that eA ⊗ In =

∑
∞

k=0
Ak

k! ⊗ In =
∑

∞

k=0
(A⊗In)k

k! = eA⊗In . For short, let
us denote Fj := F̄jeTX ⊗ In in the sequel. Vectorizing the integral in
(2.28), we have

vec

[∫ t

tk−1

eAex(t−τ )Fje
(
AT

⊗In
)
(τ−tk−1)dτ

]

=

[∫ t

tk−1

e(A⊗In)(τ−tk−1) ⊗ eAex(t−τ )dτ

]
vec(Fj)

(A.3)
= vec−1

n4×n4

{(
P|J∗M

)−1

R
J∗M

−1 {
P vec

[
In2 ⊗

(
eAex(t−tk−1)A−1

ex

)
−e(A⊗In)(t−tk−1) ⊗ A−1

ex

]}⏐⏐
J∗M

}
· vec(Fj), (2.29)

where vec−1
m×n is the inverse operator of vec such that vec−1

m×n
(vec(◦m×n)) = ◦m×n. The notations J∗M and ◦|J∗M

are specified in
Lemma A.2, with M = In8 − AT

⊗ In5 ⊗ A−1
ex in this term. The

conditions in Lemma A.2 are satisfied, since log
(
eA⊗In

)
= A ⊗ In

and Aex is invertible by Assumption (As). According to Lemma A.3,
eAex(t−tk−1), e(A⊗In)(t−tk−1) → 0 component-wisely, as t → ∞, so
does the left-hand side of (2.28).

It is clear to see that IIT2 = II3. Similar argument can be applied
to II3, which gives

eAext
∫ t

tk−1

e−Aexτvec(II3)dτ

=

b∑
j=1

[∫ t

tk−1

eAex(t−τ )F ′

j e
(
In⊗AT

)
(τ−tk−1)dτ

]
vec

(
BT
j

)
=

b∑
j=1

vec−1
n2×n2

{
vec−1

n4×n4

{(
P|J∗M

)−1

R
J∗M

−1

{
P vec

[
In2 ⊗

(
eAex(t−tk−1)A−1

ex

)
−e(In×A)(t−tk−1) ⊗ A−1

ex

]}⏐⏐
J∗M

}
·vec(F ′

j )
}
vec

(
BT
j

)
→ 0, (2.30)

as t → ∞, component-wisely and exponentially, where F ′

j :=

In ⊗
(
F̄jeTX

)
by Assumption (As), Lemmas A.3 and A.2 with M =

In8 − In ⊗ AT
⊗ In4 ⊗ A−1

ex here. The terms P , P|J∗M
and J∗M in (2.30)
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are different from those in (2.29). Finally, let us consider the term
containing vec(II1) in (2.27):

eAext
∫ t

tk−1

e−Aexτvec(II1)dτ

=

b∑
j=1

[∫ t

tk−1

eAex(t−τ )
(
Bj ⊗ Bj

) (
eA ⊗ eA

)τ−tk−1dτ

]
vec(eXX )

(A.3)
=

b∑
j=1

vec−1
n2×n2

{
vec−1

n4×n4

{(
P|J∗M

)−1

R
J∗M

−1

{
P vec

[
In2 ⊗

(
eAex(t−tk−1)A−1

ex

)
− eA

T (t−tk−1) ⊗ eA
T (t−tk−1)

⊗A−1
ex

]}⏐⏐
J∗M

}
· vec

(
Bj ⊗ Bj

)}
· vec(eXX ) → 0

(2.31)

component-wisely and exponentially, as t → ∞, by Lemmas A.3

and A.2 with M = In8 −

(
log(eA

T
⊗ eA

T
)
)T

⊗ In4 ⊗ A−1
ex , where

eXX :=
¯̂X ¯̂X

T
−

¯̃X ¯̃X
T
, if log

(
eA

T
⊗ eA

T
)

exists and unique. In

fact, the existence of the logarithm of
(
eA

T
⊗ eA

T
)

is equivalent
to its invertibility (Theorem 1.27, [33]), which is guaranteed by
Assumption (As). Its logarithm is unique with all its eigenvalues
lying in the strip {z ∈ C : −π ≤ Im(z) ≤ π} (Theorem 1.31,[33]),
since its eigenvalues are eλi(A)+λj(A), i, j = 1, . . . , n, with real part
to be positive, by Assumption (As) again.

Eq. (2.18) follows from (2.23) and (2.27)–(2.31) and the fact that
eQP (t|tk−1) = eQ P̃ (t|tk−1) − ePP̃ (t|tk−1). □

Remark 2.2. According to (2.20), if our posterior estimate at tk−1
is exactly the conditional expectation, then our estimate coincides
with the conditional expectation for all t ∈ [tk−1, tk].

2.2.3. Proof of (S-3)

Proposition 2.2. At t = tk, the posterior estimate X̂(tk|tk) in the form
(2.6) with Kk in (2.7)minimizes tr P(tk|tk).

Proof. First, we derive the evolution equation for P(tk|tk):

P(tk|tk) = E
[(

X(tk) − X̂(tk|tk)
)(

X(tk) − X̂(tk|tk)
)T

⏐⏐⏐⏐ Ftk

]
(2.1),(2.3)

= P(tk|tk−1) − KkCP(tk|tk−1) − P(tk|tk−1)CTK T
k

+ Kk

⎡⎣CP(tk|tk−1)CT
+

b∑
j=1

GjRj(tk)(Gj)T

⎤⎦ K T
k . (2.32)

Suppose there exists K̃k ̸= 0n×n such that

Kk = P(tk|tk−1)CT

⎡⎣CP(tk|tk−1)CT
+

b∑
j=1

GjRj(tk)GT
j

⎤⎦−1

+ K̃k

and substituting it into (2.32), we get

P(tk|tk)
=P(tk|tk−1)

− P(tk|tk−1)CT

⎡⎣CP(tk|tk−1)CT
+

b∑
j=1

GjRj(tk)GT
j

⎤⎦−1

CP(tk|tk−1)

+ K̃k

⎡⎣CP(tk|tk−1)CT
+

b∑
j=1

GjRj(tk)GT
j

⎤⎦ K̃ T
k . (2.33)

It is clear that the expression in the bracket of the last term on the
right-hand side of (2.33) is positive semidefinite, so the trace of the
last term never vanishes unless K̃k ≡ 0n×n. Therefore, according to
(2.33), P(tk|tk) is minimized by choosing Kk in (2.7) with Q (tk|tk−1)
replaced by P(tk|tk−1). □

Remark 2.3. In our algorithm,Q (t|tk−1) takes the place of P(t|tk−1).
In Proposition 2.1 we show that Q (t|tk−1) approaches to P(t|tk−1)
exponentially fast. Presumably, Q (tk|tk−1) is close to P(tk|tk−1). In
Proposition 2.2, we show that trP(tk|tk) is minimized by properly
chosen Kk. Intuitively, Q (tk|tk) is ‘‘almost minimized’’ by choosing
Kk in (2.7), since Q (tk|tk−1) is close to P(tk|tk−1).

3. Application to nonlinear filtering problems (NLF)

It is showed in [25] that the nonlinear systems can be ap-
proximated by the bilinear system via Carleman approach. This
technique will be briefly recalled in Section 3.1. Section 3.2 is de-
voted to illustrate our algorithmby numerically solving two typical
nonlinear examples, i.e., the cubic system with scalar nonlinear
observation and three dimensional Lorenz system. The results have
been compared with the widely used EKF and UKF.

3.1. Bilinear approximation of nonlinear systems

The continuous–discrete NLF problem considered here is as
follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dxt = φ(xt )dt +

b∑
j=1

FidWj(t)

y(tk) = h(xtk ) +

b∑
j=1

GjVj(tk)

, (3.1)

where xt is the state vector in Rn, y(tk), k = 1, 2, . . . , K are the
discrete measurements in Rm and φ : Rn

↦→ Rn, h : Rn
↦→ Rm

are smooth nonlinear maps. Vj(tk) ∼ N(0, Rj(tk)) are independent
one dimensional white noises,Wj(t), j = 1, . . . , b are independent
standard Brownian motion.

Let (Ω,F , P) be a probability space, {Ftk} with tk ∈ [0, T ] be
a family of nondecreasing σ -algebras of F . Moreover, the initial
state x0 is an F0-measurable random variable and independent of
Wi(t), i = 1, . . . , b.

Under the assumption of analyticity of φ and h, Eq. (3.1) can be
rewritten using the Taylor expansion at a given state x̃:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dxt =

∞∑
i=0

Φi(x̃)(xt − x̃)[i]dt +

b∑
j=1

FidWj(t)

y(tk) =

∞∑
i=0

Hi(x̃)(xt − x̃)[i] +

b∑
j=1

GjVj(tk)

(3.2)

with

Φi(x) =
1
i!

(
∇

[i]
x ⊗ φ

)
,Hi(x) =

1
i!

(
∇

[i]
x ⊗ h

)
, (3.3)

where ⋆[i] is the Kronecker power defined as

M [0]
= 1, M [i]

= M ⊗ M [i−1]
= M [i−1]

⊗ M, (3.4)

and the operator ∇
[i]
x ⊗ applied to a functionψ = ψ(x) : Rn

→ Rm

is defined as

∇
[0]
x ⊗ ψ = ψ, ∇

[i+1]
x ⊗ ψ = ∇x ⊗

(
∇

[i]
x ⊗ ψ

)
, i ≥ 1 (3.5)

with ∇x = [∂/∂x1, . . . , ∂/∂xn].
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Fig. 1. Estimations of the state in the cubic sensor problem (3.8) via UKF, EKF and
SLE with ν = 1, 2, 3.

Given a positive integer ν, let Y ν(tk) = y(tk) and the original
state xt is augmented as new state

Xν(t) =

⎡⎢⎢⎢⎢⎢⎣
x[1]
t

x[2]
t
...

x[ν]
t

⎤⎥⎥⎥⎥⎥⎦ ∈ Rnν , nν =

ν∑
i=1

ni. (3.6)

The evolution of the augmented state Xν(t) satisfies the following
bilinear system.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dXν(t) =Aν(x̃)Xν(t)dt + Nν(x̃)dt

+

b∑
j=1

(Bνj X
ν(t) + Fνj )dWj(t)

Y ν(tk) =Cν(x̃)Xν(tk) + Dν(x̃) +

b∑
j=1

Gνj Vj(tk)

, (3.7)

with Xν0 =

[
xT0, . . . , x

[ν]T
0

]T
and Aν,Nν,Bνj , F

ν
j , C

ν,Dν and Gνj are
constant matrices. The specific expressions of these matrices can
be found in [25].

Our algorithmwill be used to solve (3.7) in the next subsection.
The computational complexity of (3.7) is the same as EKF if the
augmented state Xν is with the same size of the state in EKF. If
ν = 1, then our algorithm bears the same computational cost as
that of EKF. Of course, the higher ν is, the more computational
demanding our algorithm is. But one can see from Lorenz system
in Section 3.2.2, even with ν = 1 (with the same computational
cost as EKF), our algorithm gives more satisfactory estimates, see
Fig. 2(c).

Notice that the estimation of the component x[1]
t of Xν(t) in (3.6)

is the estimate of the original state x(t).

3.2. Simulation

In this subsection, we use two classical examples including the
cubic sensor problem and Lorenz system to show the efficiency of
our proposed filter and compare the results with those of EKF and
UKF.

3.2.1. Cubic sensor
The cubic sensor problem is a benchmark example of essentially

infinite-dimensional NLF problem:{
dx(t) = dv(t)
y(tk) = x3(tk) + w(tk),

(3.8)

where x(t) ∈ R is the state and x(t0) ∼ N (0.2, 1), v ∈ R is standard
Brownian motion, and y(tk) ∈ R is the discrete measurement
disturbed by the white noise w(tk) ∼ N (0, 1).

It can be easily known that the proposed filter with ν = 1 is
reduced to the classical EKF since the drift term is φ ≡ 0 in (3.1).
Besides, it is widely known that EKF always fails in solving this
problem [11]. The approximated bilinear system (3.7) in the cubic
sensor problem with ν = 2 is with Xν =

[
x[1], x[2]

]T and

A =

[
0 0
0 0

]
,N =

[
0
1

]
,B

[
0 0
2 0

]
, F =

[
1
0

]
,

C =
[
−3x̃2, 3x̃

]
,D = x̃3;

(3.9)

while that in the case ν = 3, the corresponding bilinear system
(3.7) is with Xν =

[
x[1], x[2], x[3]

]T and

A =

[0 0 0
0 0 0
3 0 0

]
,N =

[0
1
0

]
,B =

[0 0 0
2 0 0
0 3 0

]
,

F =

[1
0
0

]
,

C = [0, 0, 1],D = 0.

(3.10)

Remark 3.4. It is worthy to notice that the system (3.8) is exactly
transformed to the bilinear system (3.10) when ν = 3 without any
truncation or approximation.

All ODEs in the simulations are solved by Euler method with
initial values x̂(t0|t0) = 0.2 and P(t0|t0) = 0.1Iν , Iν ∈ Rν×ν is the
identity matrix. The observations are obtained at discrete times
tk = k∆ with ∆ = 0.005 on the interval [0, T ] with T = 10.
The results of different methods for one realization are displayed
in Fig. 1. It can be clearly seen that EKF, UKF and SLE with ν = 1
are identical and they all fail completely, while SLE with ν = 2,3
can track the real state quite well. Let us define the mean of the
squared estimation error (MSE) for one realization

µx =
1

K + 1

K∑
k=0

(xtk − x̂tk )
2, (3.11)

and the MSE averaged over 100 simulations for different methods
are listed in Table 1. It is clear that our method outperforms EKF in
the average sense and the higher ν yields the better estimate.

3.2.2. Lorenz system
The Lorenz equation considered here is as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx1(t) =σ (x2(t) − x1(t))dt + dv1(t)
dx2(t) =(ρx1(t) − x2(t) − x1(t)x3(t))dt + dv2(t)
dx3(t) =(x1(t)x2(t) − βx3(t))dt + dv3(t)
y(tk) =[x1(tk)x2(tk) + x1(tk)x3(tk) + x2(tk)x3(tk)]/100

+ w(tk),

(3.12)

where σ = 5, β = 8/3, ρ = −2 are parameters and X(t) =

[x1(t), x2(t), x3(t)]T is the state of three dimension. The vi, i =

1, 2, 3 are three independent standard Brownian motions. y(tk)
is the discrete measurement where tk is the instant when mea-
surement arrives and the w(tk) ∼ N (0, 0.12) is the white noise.
The numerical realization of system (3.12) is achieved in the
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Fig. 2. Estimations of the state x1 in Lorentz system (3.12) via different methods,
including SLE with ν = 1, UKF and EKF.

time interval [0, 20] with initial value X0 = [x10, x20, x30]T =

[1.508870,−1.531271, 25.46091]T and time step∆ = 0.002.

Table 1
The average of the MSE over 100 simulations of cubic sensor problem with initial
value x̂(t0|t0) = 0.2 and P(t0|t0) = 0.1Iν .

Algorithm Average MSE

Our method with ν = 1 –
Our method with ν = 2 2.353321
Our method with ν = 3 0.994113
EKF –
UKF –

Table 2
MSE of Lorenz system by our method.

Initial value MSE of x1 MSE of x2 MSE of x3
N(X0, I3/10) 0.2615 0.3298 0.3226

When ν = 1 the new state is Xν(t) = X [1]
= X(t) ∈ R3 and

similarly we can get the approximated bilinear system (3.1) with

A =

[
−σ σ 0
ρ − x̃3 −1 −x̃1

x̃2 x̃1 −β

]
,N =

[ 0
x̃1x̃3
x̃1x̃2

]
,

Bi =

[0 0 0
0 0 0
0 0 0

]
, i = 1, 2, 3,

F1 =

[1
0
0

]
, F2 =

[0
1
0

]
, F3 =

[0
0
1

]
,

C =
[
x̃2 + x̃3, x̃1 + x̃3, x̃1 + x̃2

]
/100,

D = (−x̃1x̃2 − x̃1x̃3 − x̃2x̃3)/100.

(3.13)

It is easy to verify that Assumption (As) in SLE has been satisfied.
The initial value for both our method with ν = 1 is X̂(t0|t0) ∼

N (X0, I3/10). All the ODEs in the simulations are solved by Euler
method with step size ∆ = 0.002 in the time interval [0, 2]. We
only display the estimation result of state x1 in Fig. 2 due to thepage
limit, and those for x2, x3 are similar. Compared the performance
of SLE with UKF and EKF, EKF blows up, while SLE can track as well
as UKF. The averaged MSE of SLE over 100 simulations are showed
in Table 2.

4. Conclusion

In this paper, we construct a SLE for the continuous–discrete bi-
linear system and apply this algorithm to NLF problems. We show
rigorously that the SLE obtained by our algorithm in the prediction
is asymptotically approaching to the minimum variance estimate,
the conditional expectation, component-wisely and exponentially
fast, under the assumption that essentially the system is stable.
The update step gives theminimum variance estimate in the linear
space spanned by the previous predict estimate and the innovation
of observation. The simulations show the efficiency of our method
compared to the classical EKF and UKF.
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Appendix

Lemma A.1 derives the formula of integration by parts for Kro-
necker product.
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Lemma A.1. Suppose A and B are square matrices of size n, then∫ t

0
A(τ ) ⊗ (dB(τ )) = A(τ ) ⊗ B(τ )

⏐⏐⏐⏐t
0
−

∫ t

0
(dA(τ )) ⊗ B(τ ). (A.1)

Proof. It is clear that the integration by parts holds for matrix-
valued functions, i.e.∫ t

0
A(τ )dB(τ ) = A(τ )B(τ )

⏐⏐⏐⏐t
0
−

∫ t

0
(dA(τ ))B(τ ), (A.2)

since for every i, j = 1, . . . , n, the integration by parts holds for the
scalar-valued functions:(∫ t

0
A(τ )dB(τ )

)
ij

=

n∑
k=1

∫ t

0
aik(τ )

(
dbkj(τ )

)
=

n∑
k=1

aik(τ )bkj(τ )

⏐⏐⏐⏐⏐
t

0

−

n∑
k=1

∫ t

0
(daik(τ )) bkj(τ ),

where aik and bkj are the (ik)th element of A and the (kj)th element
of B, respectively. Let us look at the (ij)th block of A ⊗ dB, i, j =

1, . . . , n:∫ t

0
aij(τ )(dB(τ ))

(A.2)
= aij(τ )B(τ )

⏐⏐⏐⏐t
0
+

∫ t

0
daij(τ )B(τ ).

Thus, (A.1) follows immediately. □

The integral of the matrix-valued function in Lemma A.2 ap-
pears frequently in the proof of Proposition 2.1.We compute it here
directly using Lemma A.3.

Lemma A.2. Suppose A and B are square matrices of size n. Assume
that the unique log A exists and unique B−1 exists. Suppose M :=

In4 − (log A)T ⊗ In2 ⊗ B−1 is similar to the Jordan canonical form JM ,
i.e. M = P−1JMP, with rank(M) = m ≤ n2. Then we have∫ t

0
Aτ ⊗ eB(t−τ )dτ

=vec−1
n2×n2

{(
P|J∗M

)−1

R
J∗M

−1 {
P vec

[
In ⊗

(
eBtB−1)

− At
⊗ B−1]}⏐⏐

J∗M

+

[
In2 −

(
P|J∗M

)−1

R
P|J∗M

]
w

}
, (A.3)

for arbitrary w ∈ Cn2 , where J∗M is the square submatrix containing
only the non-zero Jordan blocks in JM ,◦|J∗M

is the rectangular submatrix
of ◦ keeping the rows which are the non-zeros in JM , and right inverse(
P|J∗M

)−1

R
:= P|

T
J∗M

(
P|J∗M

P|
T
J∗M

)−1
.

Remark A.1. If M is invertible, then (A.3) is simplified as∫ t

0
Aτ ⊗ eB(t−τ )dτ = vec−1

n2×n2
{
M−1 vec

[
In ⊗

(
eBtB−1)

− At
⊗ B−1]} , (A.4)

where M := In4 − (log A)T ⊗ In2 ⊗ B−1 as in Lemma A.2.

Proof. For the sake of convenience, let us denote the left-hand side
of (A.3) Int for short. If the unique (log A) exists and B−1 exists, then
we have

Int =

∫ t

0
Aτ ⊗

[
−B−1d

(
eB(t−τ )

)]
= −

(
In ⊗ B−1) ∫ t

0
Aτ ⊗ d

(
eB(t−τ )

)
(A.1)
= −

(
In ⊗ B−1) [

Aτ ⊗ eB(t−τ )
⏐⏐t
0 −

∫ t

0
d(Aτ ) ⊗ eB(t−τ )

]

= −
(
In ⊗ B−1) [

At
⊗ In − In ⊗ eBt

−

(∫ t

0
Aτ ⊗ eB(t−τ )dτ

)
(log A ⊗ In)

]
= −

(
In ⊗ B−1) [

At
⊗ In − In ⊗ eBt

]
+

(
In ⊗ B−1) Int

× (log A ⊗ In), (A.5)

where the fourth equality follows from d(Aτ ) = Aτ log A. Moving
the term containing Int to the left-hand side and vectorizing both
sides of (A.5), we have(

In4 − (log A)T ⊗ In2 ⊗ B−1) vec(Int)
=

[
In4 − (log A ⊗ In)T ⊗

(
In ⊗ B−1)] vec(Int)

=vec
[
In ⊗

(
eBtB−1)

− At
⊗ B−1] . (A.6)

For short, let us denote M :=
(
In4 − (log A)T ⊗ In2 ⊗ B−1

)
in this

proof. If M−1 is invertible, (A.4) follows immediately. Otherwise,
suppose rank(M) = m < n4.Without loss of generality, we assume
that JM is the Jordan canonical formofM with the Jordan blocks Ji of
size ni, i = 1, . . . , k, such that

∑k
i=1ni = m < n4, i.e. M = P−1JMP .

Let us denote J∗M the square matrix of size m containing only the
non-zero Jordan blocks, say the first k diagonal blocks. Then (A.6)
becomes

P|J∗M
vec(Int) = [Pvec(Int)]|J∗M

=J∗M
−1 {

P vec
[
In ⊗

(
eBtB−1)

− At
⊗ B−1]}⏐⏐

J∗M
, (A.7)

where ◦|J∗M
is the m × n2 submatrix of ◦n2×n2 with the first m

rows, or ◦|J∗M
represents the first m elements, if ◦ is a n2 column

vector. It is easy to know that rank
(
P|J∗M

)
= m, thus there exists

a right inverse
(
P|J∗M

)−1

R
:= P|

T
J∗M

(
P|J∗M

P|
T
J∗M

)−1
such that (A.7) has

the general solution in the form

vec(Int) =

(
P|J∗M

)−1

R
J∗M

−1 {
P vec

[
In ⊗

(
eBtB−1)

− At
⊗ B−1]}⏐⏐

J∗M

+

[
In2 −

(
P|J∗M

)−1

R
P|J∗M

]
w,

for arbitrary w ∈ Cn2 exists, if and only if

P|J∗M
·

(
P|J∗M

)−1

R
= P|J∗M

P|
T
J∗M

(
P|J∗M

P|
T
J∗M

)−1
= Im. □

The differences such as eX (t|tk−1), ePP̃ (t|tk−1), eQ P̃ (t|tk−1), etc. in
Proposition 2.1 are claimed to converge to zero component-wisely
and exponentially as t → ∞, by repetitively using the following
lemma.

Lemma A.3. If A is a Hurwitz matrix of size n, t ∈ R+,R+ represents
all the positive real numbers, then all elements in the matrix eAt tends
to 0 exponentially fast as t → ∞.

Proof. It is sufficient to show that for all ei = (0, . . . , 1, . . . , 0)T ∈

Rn, i = 1, . . . , n, eAtei → 0 component-wisely and exponentially,
as t → ∞, since

(
eAt

)
ij = eieAtej, i, j = 1, . . . , n.

It is worth noticing that x(t) = eAtei is the solution to the
ordinary differential equation (ODE) ẋ(t) = Ax(t), with the initial
value x(0) = ei. Without loss of generality, we assume that A is
similar to the Jordan canonical form J , i.e. A = P−1JP . Let x̃(t) =

Px(t). It is clear to see that x̃(t) = eJtPei is the solution to ˙̃x(t) = J x̃(t)
with the initial condition x̃(0) = Pei.

Suppose that there are k Jordan blocks Jj of size nj, j = 1, . . . , k.
Then the ODE system of x̃ can be decomposed to k decoupled sub-
system, i.e. ˙̃x|Jj (t) = Jjx̃|Jj (t) with the initial value (Pei)|Jj , where
◦|Jj is the nj elements corresponding to Jj’s rows in J . Due to the
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special structure of Jj, x̃|Jj (t) can be solved explicitly from the njth
element to the 1st one. It is easy to see that all the elements x̃|Jj
are all of the form eλjtp(t), where λj is the diagonal element of Jj,
also one of the eigenvalues of A, and p(t) is a polynomial of t of at
most nj − 1 degree. All the elements of x̃|Jj decays exponentially
fast to 0, as t → 0, since A is Hurwitz, i.e. Re(λ(A)) < 0. So does
x(t) = P−1x̃(t) → 0. □
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