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Abstract

In this paper we propose a finite element time-domain method for modeling the optical black holes (OBHs) coupled with the
perfectly matched layer (PML) technique. Stability analysis is carried out for the proposed scheme. Simulations of cylindrical,
elliptical and square black holes demonstrate that our method is quite effective in modeling OBHs in time domain. To our best
knowledge, this is the first OBHs simulation realized by the finite element time-domain method.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In 2000, the metamaterials with negative refraction index were successfully constructed. Since then metamaterials
have been a very hot research topic due to its many potential applications, such as invisible cloaks (cf. [1,2]),
electromagnetic absorbers [3], electrically small resonators, waveguides that can go beyond the diffraction limit,
perfect lens, and subwavelength imaging. Details on metamaterials can be found in many recently published
monographs (e.g., [4–7]). In 2009, based on metamaterial structures, Narimanov and Kildishev [3] proposed an
approach for broad-band omnidirectional electromagnetic wave absorption. The devices designed by them are called
the optical black holes (OBHs), which can efficiently absorb the wave coming from all directions, including wave
scattered from the natural environment. Such OBHs can find many potential applications in photovoltaics, solar energy
harvesting, and optoelectronics.
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Numerical simulations of OBHs play a very important role in seeking new designs and theoretical predictions.
Due to its simplicity, the finite difference time domain (FDTD) method is one of the most popular techniques used
for electromagnetic wave propagation simulation in general media and metamaterials [8]. For example, Argyropoulos
et al. [9] demonstrated the excellent absorption for spherical OBHs using a radially dependent FDTD simulation
technique. Qiu et al. [10] studied the radiative properties of optical board periodically embedded with OBHs with
the FDTD method. However, the FDTD method is also famous for the staircase effect when dealing problems with
complex geometries [8,11]. In these cases, engineers and physicists often resort to the popular commercial finite
element based multiphysics package COMSOL. However, COMSOL is very inefficient in solving time dependent
Maxwell’s equations. Hence developing efficient finite element time-domain (FETD) methods plays a very important
role in simulating wave propagation in general media and metamaterials.

Though there exist many excellent works on finite element methods for solving Maxwell’s equations in various
media (e.g., papers [12–24,11], books [25–28] and references cited therein), to our best knowledge, we are unaware
of any FETD methods developed for simulating OBHs. In this paper, we extend our recent efforts on developing
FETD methods for metamaterials (e.g., [7,29,30]) to solve the two-dimensional (2D) OBHs. Specifically, we first
derive the modeling equations and prove the stability. Then we develop a FETD algorithm to simulate the wave
absorbing phenomenon for OBHs.

The rest of the paper is organized as follows. In Section 2, we present the governing equations for the OBHs and
the perfectly matched layer (PML). Then we prove the stability of the modeling equations. In Section 3, we develop
a FETD scheme with edge elements to solve our modeling equations. A discrete stability for the scheme is proved.
Then in Section 4, many interesting simulations of cylindrical, elliptical and square black holes by our FETD method
are provided. Finally, we conclude the paper in Section 5.

2. Governing equations of the OBHs

The modeling of the optical black hole is based on Faraday’s Law and Ampere’s Law, which are written as
follows:

∂B
∂t

= −∇ × E, (2.1)

∂D
∂t

= ∇ × H, (2.2)

and the constitutive relations

D = ε0εr E, (2.3)

B = µ0µr H, (2.4)

where E and H are the electric and magnetic fields, respectively, D and B are the electric displacement and magnetic
induction, respectively, εr and µr are the relative electric permittivity and magnetic permeability, respectively, and ε0
and µ0 are the electric permittivity and magnetic permeability in vacuum, respectively.

Let us first consider a two-dimensional (2D) cylindrical optical black holes. This device is divided into two regions:
the shell region is used to change the direction of wave propagation, and the core region is usually used to absorb
the wave. The radially dependent electric permittivity distribution of the cylindrical black holes was proposed by
Narimanov and Kildishev [3]:

εr (r) =


ε1, r > Rs

ε1


Rs

r

n

, Rc ≤ r ≤ Rs

ε2 + iγ r < Rc,

(2.5)

where ε1 is the relative electric permittivity of the surrounding medium, ε2 > ε1 is the relative electric permittivity of
the core, γ > 0 is the loss, n is a positive integer, r is the radial distance from the center of the black hole, and Rs and
Rc are the radii of the shell and core of the black hole, respectively. To reduce the reflection of the electromagnetic
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waves, Rc is chosen to satisfy the identity

Rc = Rs
n


ε1

ε2
.

In [3], Narimanov used the semiclassical transformation optics to design the metamaterials which can collect the
light from all directions, including light scattered from the natural environment. One advantage of the optical black
hole is that it can be realized by existing ordinary materials. From (2.5), we can see that the real part of the relative
electric permittivity εr is larger than one. Note that the relative magnetic permeability µr is equal to one for ordinary
media. Since the electric permittivity is complex-valued, the current density

J = σE,

should be added to Eqs. (2.2), where σ = ω · I m(εr ) ·ε0 = 2π f · I m(εr ) ·ε0 is the conductivity, and f is the operating
frequency. Hence we can obtain the governing equations of the optical black hole: Find E = (Ex , Ey)

′ and H = Hz
satisfy

µ0
∂H

∂t
= −∇ × E, (2.6)

ε0 Re(εr )
∂E
∂t

+ σE = ∇ × H. (2.7)

For simplicity, here and below we use the 2D curls ∇ × E =
∂Ey
∂x −

∂Ex
∂y and ∇ × H = ( ∂H

∂y ,−
∂H
∂x )

′.
To model OBHs, we have to reduce an unbounded physical domain to a bounded domain. Here we use the perfectly

matched layer (PML) technique to absorb waves leaving the computational domain without introducing reflections.
The governing equations of the two dimensional Berenger’s split PML can be written as [31]: In the PML region
Ωpml ,

ε0ε1
∂Ex

∂t
+ σy Ex =

∂Hz

∂y
, (2.8)

ε0ε1
∂Ey

∂t
+ σx Ey = −

∂Hz

∂x
, (2.9)

µ0
∂Hzx

∂t
+ σmx Hzx = −

∂Ey

∂x
, (2.10)

µ0
∂Hzy

∂t
+ σmy Hzy =

∂Ex

∂y
, (2.11)

where the original magnetic field Hz is split into two components, i.e., Hz = Hzx + Hzy . Here the parameters σi and
σmi (i = x, y) are homogeneous to the electric and magnetic conductivities in the x and y directions, respectively.

Now we combine the governing equations in both the PML region and the black hole region into a unified form:

ε0ε
∗
r
∂E
∂t

+ σ ∗E = ∇ × Hz, (2.12)

µ0
∂Hzx

∂t
+ σ ∗

mx Hzx = −
∂Ey

∂x
, (2.13)

µ0
∂Hzy

∂t
+ σ ∗

my Hzy =
∂Ex

∂y
, (2.14)

where

σ ∗
=



σ 0
0 σ


in Ωc,

σy 0
0 σx


in Ωpml ,

ε∗r =


Re(εr ), in Ωc
ε1, in Ωpml ,

σ ∗

m,i =


0, in Ωc,

σm,i , in Ωpml ,
(i = x, y),

where Ωc denotes the black hole region and the surrounding medium region (cf. Fig. 2.1).
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Fig. 2.1. The setup of the optical black hole model.

For simplicity, we assume that the boundary of Ω = Ωc ∪ Ωpml is perfectly conducting so that

n × E = 0, on ∂Ω , (2.15)

where n is the unit outward normal to ∂Ω , and the initial conditions for the system (2.12)–(2.14) are assumed to be

E(x, 0) = E0(x), Hzx (x, 0) = Hx0(x), Hzy(x, 0) = Hy0(x),

where E0, Hx0, Hy0 are some given functions.

Denote k1 =
σ ∗

mx
µ0
, k2 =

σ ∗
my
µ0
. Under the assumption that σ ∗

mx is independent of t , we can solve Hzx from (2.13) to
have

Hzx (x, t) = Hx0e−k1t
+

1
µ0

 t

0


−
∂Ey

∂x


e−k1(t−s)ds. (2.16)

Similarly, solving Hzy from (2.14), we have

Hzy(x, t) = Hy0e−k2t
+

1
µ0

 t

0


∂Ex

∂y


e−k2(t−s)ds. (2.17)

Substituting (2.16) and (2.17) into (2.12), we have

ε0µ0ε
∗
r
∂2E
∂t2 + σ ∗

∂E
∂t

+ ∇ × ∇ × E + ∇ × S = 0, (2.18)

where we denote

S = σ ∗
mx Hx0e−k1t

+ σ ∗
my Hy0e−k2t

+

 t

0


−
∂Ey

∂x


e−k1(t−s)ds +

 t

0


∂Ex

∂y


e−k2(t−s)ds.

Now we can form a weak formulation of (2.18): Find E ∈ H0(curl;Ω) such that

ε0µ0


ε∗r
∂2E
∂t2 ,φ


+


σ ∗
∂E
∂t
,φ


+ (∇ × E,∇ × φ)+ (S,∇ × φ) = 0, (2.19)

holds true for any φ ∈ H0(curl;Ω). The governing equation (2.19) is a vector wave integro-differential equation
involving just one unknown E, which can be used for the three dimensional simulation. But developing a fully discrete
finite element scheme for (2.19) is quite complicated (cf. [7]), below we will design a simpler and more effective finite
element scheme for the 2D OBHs.
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The original split PML (2.8)–(2.11) was found to be only weakly well posed, and it may suffer explosive instability
for long time simulations [32]. Hence, here we use an unsplit PML for our OBHs simulation [29]:

ε0ε
∗
r
∂E
∂t

+ σ ∗E = ∇ × Hz, (2.20)

µ0
∂Hz

∂t
+


σ ∗

mx + σ ∗
my


Hz + ∇ × E + σ ∗

mxσ
∗
my Qz + σ ∗

my
∂Py

∂x
− σ ∗

mx
∂Px

∂y
= 0, (2.21)

µ0
∂P
∂t

= E, (2.22)

µ0
∂Qz

∂t
= Hz . (2.23)

This model was developed in our previous work [29], and P = (Px , Py)
′ and Qz are auxiliary variables.

Taking the time derivative of (2.21), and substituting (2.22) and (2.23) into (2.21), we have

ε0ε
∗
r
∂E
∂t

+ σ ∗E = ∇ × Hz, (2.24)

µ0
∂2 Hz

∂t2 +


σ ∗

mx + σ ∗
my

 ∂Hz

∂t
+
σ ∗

mxσ
∗
my

µ0
Hz + ∇ ×

∂E
∂t

+ ∇ × E∗
= 0, (2.25)

where E∗
= (k1 Ex , k2 Ey)

′.

The weak formulation of Eqs. (2.24)–(2.25) can be written as follows: find E ∈ H0(curl;Ω), Hz ∈ L2(Ω) such
that

ε0


ε∗r
∂E
∂t
,φ


+ (σ ∗E,φ) = (Hz,∇ × φ), (2.26)

µ0


∂2 Hz

∂t2 , ϕ


+


(σ ∗

mx + σ ∗
my)

∂Hz

∂t
, ϕ


+


σ ∗

mxσ
∗
my

µ0
Hz, ϕ


+


∇ ×


∂E
∂t

+ E∗


, ϕ


= 0, (2.27)

hold true for any φ ∈ H0(curl;Ω), and ϕ ∈ L2(Ω).
Next, we will give a stability result for the problem (2.26)–(2.27).

Theorem 2.1. For the solution of (2.26)–(2.27), the following stability holds true:∂Hz

∂t
(t)

2

0
+

σ ∗
mxσ

∗
my Hz(t)

2

0
+

∂E
∂t
(t)

2

0
+ ∥∇ × Hz(t)∥

2
0 + ∥E(t)∥2

0 ≤ C F(0), (2.28)

where C > 0 is a constant, and the function F(0) depends on initial conditions Hz(0),E(0), ∂E
∂t (0),

∂Hz
∂t (0) and

∇ × Hz(0). Here and below we denote ∥E(t)∥2
0 = ∥Ex∥

2
0 + ∥Ey∥

2
0. Similar notation is used for L2 norm of other

vectors such as ∂E
∂t (t).

Proof. Choosing ϕ =
∂Hz
∂t in (2.27), and noting that σ ∗

mx and σ ∗
my ≥ 0, we obtain

µ0


∂2 Hz

∂t2 ,
∂Hz

∂t


+


σ ∗

mxσ
∗
my

µ0
Hz,

∂Hz

∂t


+


∇ ×

∂E
∂t
,
∂Hz

∂t


+


∇ × E∗,

∂Hz

∂t


≤ 0. (2.29)

Using the fact that ε1 ≤ ε∗r ≤ ε2, and choosing φ =
∂E
∂t in the time derivative of (2.26), ∇ ×

∂Hz
∂t and E in (2.26),

respectively, we have

ε0

2


ε∗r
∂2E
∂t2 ,

∂E
∂t


≤

1
2


∇ ×

∂Hz

∂t
,
∂E
∂t


, (2.30)

1
2ε0ε∗r

∇ ×
∂Hz

∂t
,∇ × Hz


=

1
2


Et ,∇ ×

∂Hz

∂t


+


σ ∗

2ε0ε∗r
E,∇ ×

∂Hz

∂t


, (2.31)



506 W. Yang et al. / Comput. Methods Appl. Mech. Engrg. 304 (2016) 501–520

4ε0ε1ε2C2
x


∂E
∂t
,E


≤ 4ε2C2
x (∇ × Hz,E), (2.32)

where the constant Cx = max(γω,C p), and C p = maxΩ (
σ ∗

mx
µ0
,
σ ∗

my
µ0
).

Summing up (2.29)–(2.32), and integrating the resultant over [0, t], we obtain

µ0

2

∂Hz

∂t
(t)

2

0
+

1
2µ0

σ ∗
mxσ

∗
my Hz(t)

2

0
+
ε0ε1

4
∥Et (t)∥

2
0 +

1
4ε0ε2

∥∇ × Hz(t)∥
2
0 + 4ε0ε1ε2C2

x ∥E(t)∥2
0

≤ g(0)−

 t

0


E∗,∇ ×

∂Hz

∂t


dt +

 t

0


σ ∗

2ε0ε∗r
E,∇ ×

∂Hz

∂t


dt + 4ε2C2

x

 t

0
(∇ × Hz,E)dt, (2.33)

where

g(0) =
µ0

2

∂Hz

∂t
(0)

2

0
+

1
2µ0

σ ∗
mxσ

∗
my Hz(0)

2

0
+
ε0ε2

4
∥Et (0)∥2

0

+
1

4ε0ε1
∥∇ × Hz(0)∥2

0 + 4ε0ε1ε2C2
x ∥E(0)∥2

0.

Using integration by parts, we have t

0


E∗,∇ ×

∂Hz

∂t


=


Ω

 t

0
E∗

d

dt
∇ × Hz

=


∇ × Hz(t),

∂E∗

∂t
(t)


− (∇ × Hz(0),E∗(0))−

 t

0


∂E∗

∂t
,∇ × Hz


dt

≤


∇ × Hz(t),

∂E∗

∂t
(t)


− (∇ × Hz(0),E∗(0))+

Cx

2

 t

0

∂E
∂t

2

0
+

Cx

2

 t

0
∥∇ × Hz∥

2
0.

It is easy to see that

(∇ × Hz(0),E∗(0)) ≤
Cx

2
∥E(0)∥2

0 +
Cx

2
∥∇ × Hz(0)∥2

0,

and

(∇ × Hz(t),E∗(t)) ≤ δ1ε0∥E∗(t)∥2
0 +

1
4ε0δ1

∥∇ × Hz(t)∥
2
0

≤ δ1ε0C2
x ∥E(t)∥2

0 +
1

4ε0δ1
∥∇ × Hz(t)∥

2
0,

where we used the basic arithmetic–geometric mean inequality. The small parameter δ1 > 0 is to be determined.
Similarly, we can obtain t

0


σ ∗

2ε0εr
E,∇ ×

∂Hz

∂t


dt =


Ω

 t

0

σ ∗

2ε0εr
E

d

dt
∇ × Hz

≤


∇ × Hz(t),

σ ∗

2ε0εr
E(t)


−


∇ × Hz(0),

σ ∗

2ε0εr
E(0)


+

Cx

4ε1

 t

0

∂E
∂t

2

0
dt +

Cx

4ε1

 t

0
∥∇ × Hz∥

2
0dt,

∇ × Hz(t),
σ ∗

2ε0εr
E(t)


≤
δ2C2

x

2ε1
ε0∥E(t)∥2

0 +
1

8δ2ε1ε0
∥∇ × Hz(t)∥

2
0,

∇ × Hz(0),
σ ∗

2ε0εr
E(0)


≤

Cx

4ε1
∥E(0)∥2

0 +
Cx

4ε1
∥∇ × Hz(0)∥2

0,

and

4ε0C2
x

 t

0
(∇ × Hz,E)dt ≤ 2ε0C2

x

 t

0
∥E∥

2
0 + 2ε0C2

x

 t

0
∥∇ × Hz∥

2
0.
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Substituting the above inequalities into (2.33), we have

µ0

2

∂Hz

∂t
(t)

2

0
+

1
2µ0

σ ∗
mxσ

∗
my Hz(t)

2

0
+
ε0ε1

4

∂E
∂t
(t)

2

0
+

1
4ε0ε2

∥∇ × Hz(t)∥
2
0 + 4ε0ε2C2

x ∥E(t)∥2
0

≤ F(0)+ 2ε0C2
x

 t

0
∥E∥

2
0dt +


Cx

2
+

Cx

4ε1

 t

0

∂E
∂t

2

0
dt +


δ1C2

x +
δ2

2ε1
C2

x


ε0∥E(t)∥2

0

+


Cx

2
+

Cx

4ε1
+ 2ε0C2

x

 t

0
∥∇ × Hz∥

2
0 +


1

4δ1ε0
+

1
8ε0ε1δ2


∥∇ × Hz(t)∥

2
0, (2.34)

where F(0) = g(0)+ (Cx
2 +

Cx
4ε1
)∥E(0)∥2

0 + (Cx
2 +

Cx
4ε1
)∥∇ × Hz(0)∥2

0.

With the choice δ1 = 2ε2 and δ2 =
2ε2
ε1

, we can see that all left hand side terms of (2.34) are larger than the
corresponding right hand side terms. Hence by the Gronwall inequality, we conclude the proof. �

3. A fully-discrete finite element scheme and its stability analysis

To design our time-domain finite element method, we first partition Ω by a family of regular meshes Th with
maximum mesh size h. To accommodate the optical black hole simulation easily, we use a hybrid mesh with mixed
types of elements: rectangles in the PML region; triangles elsewhere. For simple implementation, we only use the
lowest order Raviart–Thomas–Nédélec’s mixed finite element spaces Uh and Vh given as follows: for any rectangular
element e ∈ Th , we choose

Uh = {ψh ∈ L2(Ω) : ψh |e ∈ Q0,0,∀ e ∈ Th},

Vh = {φh ∈ H(curl;Ω) : φh |e ∈ Q0,1 × Q1,0,∀ e ∈ Th},

where Qi, j denotes the space of polynomials whose degrees are less than or equal to i and j in variables x and y,
respectively. While on a triangular element, we choose

Uh = {ψh ∈ L2(Ω) : ψh |e is a constant,∀ e ∈ Th},

Vh = {φh ∈ H(curl;Ω) : φh |e = span{λi∇λ j − λ j∇λi }, i, j = 1, 2, 3,∀ e ∈ Th},

where λi denotes the standard barycentric coordinate at vertex i of element e. To impose the perfect conducting
boundary condition n × E = 0, we introduce the space

Vh = {φh ∈ Vh : n × φh = 0 on ∂Ω}.

To define a fully-discrete scheme, we divide the time interval I = [0, T ] into N uniform subintervals Ii = [ti−1, ti ]
by points tk = kτ, k = 0, 1, ..., N , where τ =

T
N . Furthermore, we denote Ek

= E(· , tk), and introduce some
difference operators:

δτEk+1
=

Ek+1
− Ek

τ
, δ2

τEk
=

Ek+1
− 2Ek

+ Ek−1

τ 2 ,

δ2τEk
=

Ek+1
− Ek−1

2τ
, E

k+
1
2 =

Ek+1
+ Ek

2
.

Now we construct a leap-frog type scheme for solving the modeling Eqs. (2.20)–(2.23): for k = 1, 2, . . . , find

Ek+1
h ∈ V0

h, H
k+

3
2

z,h ∈ Uh such that

ε0


ε∗r

Ek+1
h − Ek

h

τ
,φh


+


σ ∗E

k+
1
2

h ,φh


=


H

k+
1
2

z,h ,∇ × φh


, (3.1)

µ0
P

k+
3
2

h − P
k+

1
2

h

τ
= Ek+1

h , (3.2)
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µ0
Qk+1

h − Qk
h

τ
= H

k+
1
2

z,h , (3.3)

µ0

H
k+

3
2

z,h − H
k+

1
2

z,h

τ
, ψh

+


(σ ∗

mx + σ ∗
my)H

k+1
z,h , ψh


+


∇ × Ek+1

h , ψh


+ (σ ∗

mxσ
∗
my Qk+1

h , ψh)+ µ0


∇ × P

∗,k+1
h , ψh


= 0, (3.4)

hold true for any φh ∈ V0
h and any ψh ∈ Uh , where P∗

= (k1 Px , k2 Py)
′.

In the rest of this section, we carry out the stability analysis for our scheme (3.1)–(3.4).

Theorem 3.1. Denote the wave speed in free space by Cv =
1

√
ε0µ0

, and Cinv > 0 for the constant in the standard
inverse inequality:

∥∇ × vh∥0 ≤ Cinvh−1
∥vh∥0, ∀ vh ∈ Vh . (3.5)

If the time step τ satisfies the constraint

τ ≤ min


h

3CinvCv
,

h

3CinvCx
,

1

5µ0ε1C2
x
,

1
4Cv

,
1

12ε2Cx
,

2ε1Cv
35ε2

2C2
x

,
7hε2

2Cx

3ε1CinvC2
v


, (3.6)

then for any n ≥ 1 we have

ε0∥δτEn
h∥

2
0 + ε0∥En

h∥
2
0 + µ0∥δτ H

n+
1
2

z,h ∥
2
0 + µ0∥H

n+
1
2

z,h ∥
2
0

+µ0∥P
n+

1
2

h ∥
2
0 + µ0∥δτP

n+
1
2

h ∥
2
0 + µ0∥Qn

h∥
2
0 + µ0∥δτ Qn

h∥
2
0 ≤ C Fh(0),

where C > 0 is a constant, and the function Fh(0) depends on initial conditions E0
h , δτE0

h , H
1
2

z,h , δτ H
1
2

z,h , P
1
2
h ,

δτP
1
2
h , Q0

h, δτ Q0
h , ∇ × E0

h , ∇ × E−1
h , ∇ × δτE0

h , ∇ × P
1
2
h , and ∇ × δτP

−
1
2

h .

Proof. Subtracting Eqs. (3.1) and (3.4) from themselves with k reduced by 1, respectively, then dividing the resultants
by τ , we have

ε0


ε∗r
δτEk+1

h − δτEk
h

τ
,φh


+


σ ∗δ2τEk

h,φh


=


δτ H

k+
1
2

z,h ,∇ × φh


, (3.7)

µ0


δ2
τ H

k+
1
2

z,h , ψh


+


(σ ∗

mx + σ ∗
my)δ2τ H

k+
1
2

z,h , ψh


+


∇ × δτEk+1

h , ψh


+ (σ ∗

mxσ
∗
myδτ Qk+1

h , ψh)+ µ0


∇ × δτP

∗,k+1
h , ψh


= 0. (3.8)

Choosing φh = 2τδ2τEk
h = Ek+1

h − Ek−1
h = τ(δτEk+1

h + δτEk
h) and ψh = 2τδ2τ H

k+
1
2

z,h in (3.7) and (3.8),
respectively, we have

ε0


∥

ε∗r δτEk+1

h ∥
2
0 − ∥


ε∗r δτEk

h∥
2
0


≤ 2τ


δτ H

k+
1
2

z,h ,∇ × δ2τEk
h


, (3.9)

µ0


∥δτ H

k+
3
2

z,h ∥
2
0 − ∥δτ H

k+
1
2

z,h ∥
2
0


≤ −2τ


∇ × δτEk+1

h , δ2τ H
k+

1
2

z,h


− 2τ


σ ∗

mxσ
∗
myδτ Qk+1

h , δ2τ H
k+

1
2

z,h


− 2τµ0


∇ × δτP

∗,k+1
h , δ2τ H

k+
1
2

z,h


. (3.10)
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Choosing φh = τ(Ek+1
h + Ek

h) and ψh = τ(H
k+

3
2

z,h + H
k+

1
2

z,h ) in (3.1) and (3.4), respectively, we obtain

ε0


∥

ε∗r Ek+1

h ∥
2
0 − ∥


ε∗r Ek

h∥
2
0


≤ τ


H

k+
1
2

z,h ,∇ × (Ek+1
h + Ek

h)


, (3.11)

µ0


∥H

k+
3
2

z,h ∥
2
0 − ∥H

k+
1
2

z,h ∥
2
0


≤ −τ


∇ × Ek+1

h , H
k+

3
2

z,h + H
k+

1
2

z,h


− τ


σ ∗

mxσ
∗
my Qk+1

h , H
k+

3
2

z,h + H
k+

1
2

z,h


− τµ0


∇ × P

∗,k+1
h , H

k+
3
2

z,h + H
k+

1
2

z,h


. (3.12)

Denote the constant Ck = 7
ε2

2C2
x

ε1C2
v
. From Eqs. (3.2)–(3.3), we easily obtain

µ0


∥P

k+
3
2

h ∥
2
0 − ∥P

k+
1
2

h ∥
2
0


= τ


Ek+1

h ,P
k+

3
2

h + P
k+

1
2

h


, (3.13)

µ0Ck


∥δτP

k+
3
2

h ∥
2
0 − ∥δτP

k+
1
2

h ∥
2
0


= τCk


δτEk+1

h , δτP
k+

3
2

h + δτP
k+

1
2

h


, (3.14)

µ0


∥Qk+1

h ∥
2
0 − ∥Qk

h∥
2
0


= τ


H

k+
1
2

z,h , Qk+1
h + Qk

h


, (3.15)

µ0


∥δτ Qk+1

h ∥
2
0 − ∥δτ Qk

h∥
2
0


= τ


δτ H

k+
1
2

z,h , δτ Qk+1
h + δτ Qk

h


. (3.16)

Adding up (3.9)–(3.16), and summing up the result for k from 0 to n − 1, we obtain

ε0


∥

ε∗r δτEn

h∥
2
0 − ∥


ε∗r δτE0

h∥
2
0


+ ε0


∥

ε∗r En

h∥
2
0 − ∥


ε∗r E0

h∥
2
0


+µ0


∥δτ H

n+
1
2

z,h ∥
2
0 − ∥δτ H

1
2

z,h∥
2
0


+ µ0


∥H

n+
1
2

z,h ∥
2
0 − ∥H

1
2

z,h∥
2
0


+µ0


∥P

n+
1
2

h ∥
2
0 − ∥P

1
2
h ∥

2
0


+ µ0Ck


∥δτP

n+
1
2

h ∥
2
0 − ∥δτP

1
2
h ∥

2
0


+µ0


∥Qn

h∥
2
0 − ∥Q0

h∥
2
0


+ µ0


∥δτ Qn

h∥
2
0 − ∥δτ Q0

h∥
2
0


≤

n−1
k=0

2τ

δτ H

k+
1
2

z,h ,∇ × δ2τEk
h


−


∇ × δτEk+1

h , δ2τ H
k+

1
2

z,h



−

n−1
k=0

2τ

σ ∗

mxσ
∗
myδτ Qk+1

h , δ2τ H
k+

1
2

z,h


−

n−1
k=0

2τµ0


∇ × δτP

∗,k+1
h , δ2τ H

k+
1
2

z,h



+

n−1
k=0

τ


H

k+
1
2

z,h ,∇ × (Ek+1
h + Ek

h)


−


∇ × Ek+1

h , H
k+

3
2

z,h + H
k+

1
2

z,h



−

n−1
k=0

τ


σ ∗

mxσ
∗
my Qk+1

h , H
k+

3
2

z,h + H
k+

1
2

z,h


−

n−1
k=0

τµ0


∇ × P

∗,k+1
h , H

k+
3
2

z,h + H
k+

1
2

z,h



+

n−1
k=0

τ


Ek+1

h ,P
k+

3
2

h + P
k+

1
2

h


+

n−1
k=0

τ


H

k+
1
2

z,h , Qk+1
h + Qk

h



+

n−1
k=0

τCk


δτEk+1

h , δτP
k+

3
2

h + δτP
k+

1
2

h


+

n−1
k=0

τ


δτ H

k+
1
2

z,h , δτ Qk+1
h + δτ Qk

h



=

10
i=1

Erri . (3.17)
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Below we will estimate all Erri terms. First, note that

Err1 =

n−1
k=0

2τ

δτ H

k+
1
2

z,h ,∇ × δ2τEk
h


−


∇ × δτEk+1

h , δ2τ H
k+

1
2

z,h



= τ

n−1
k=0


δτ H

k+
1
2

z,h ,∇ × δτEk
h


−


δτ H

k+
3
2

z,h ,∇ × δτEk+1
h



= τ


δτ H

1
2

z,h,∇ × δτE0
h


− τ


δτ H

n+
1
2

z,h ,∇ × δτEn
h


. (3.18)

Using the Cauchy–Schwarz inequality and the inverse inequality (3.5), we obtain

τ


δτ H

n+
1
2

z,h ,∇ × δτEn
h


≤ τCinvh−1Cv ·

√
ε0∥δτEn

h∥0 ·
√
µ0∥δτ H

n+
1
2

z,h ∥0

≤
τCinvh−1Cv

2


ε0∥δτEn

h∥
2
0 + µ0∥δτ H

n+
1
2

z,h ∥
2
0


,

from which and (3.18), we have

Err1 ≤
τCv

2


µ0∥δτ H

1
2

z,h∥
2
0 + ε0∥∇ × δτE0

h∥
2
0


+
τCinvh−1Cv

2


ε0∥δτEn

h∥
2
0 + µ0∥δτ H

n+
1
2

z,h ∥
2
0


.

Using the Cauchy–Schwarz inequality and the definition of Cx , we easily have

Err2 = −

n−1
k=0

2τ

σ ∗

mxσ
∗
myδτ Qk+1

h , δ2τ H
k+

1
2

z,h


= −τ

n−1
k=0


σ ∗

mxσ
∗
myδτ Qk+1

h , δτ H
k+

3
2

z,h + δτ H
k+

1
2

z,h



≤
τµ0C2

x

2

n−1
k=0

µ0∥δτ Qk+1
h ∥

2
0 + τµ0C2

x · µ0∥δτ H
n+

1
2

z,h ∥
2
0 + 2τµ0C2

x

n−1
k=0

µ0∥δτ H
k+

1
2

z,h ∥
2
0.

Similar to Err1, we have

Err4 =

n−1
k=0

τ


H

k+
1
2

z,h ,∇ × (Ek+1
h + Ek

h)


−


∇ × Ek+1

h , H
k+

3
2

z,h + H
k+

1
2

z,h



= τ

n−1
k=0


H

k+
1
2

z,h ,∇ × Ek
h


−


H

k+
3
2

z,h ,∇ × Ek+1
h



= τ


H

1
2

z,h,∇ × E0
h


− τ


H

n+
1
2

z,h ,∇ × En
h


≤
τCv

2


µ0∥H

1
2

z,h∥
2
0 + ε0∥∇ × E0

h∥
2
0


+
τCinvh−1Cv

2


ε0∥En

h∥
2
0 + µ0∥H

n+
1
2

z,h ∥
2
0


.

Similar to Err2, we can obtain

Err5 = −

n−1
k=0

τ


σ ∗

mxσ
∗
my Qk+1

h , H
k+

3
2

z,h + H
k+

1
2

z,h



≤
τµ0C2

x

2

n−1
k=0

µ0∥Qk+1
z,h ∥

2
0 + τµ0C2

x · µ0∥H
n+

1
2

z,h ∥
2
0 + 2τµ0C2

x

n−1
k=0

µ0∥H
k+

1
2

z,h ∥
2
0.
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Using the Cauchy–Schwarz inequality, we easily have

Err7 = τ

n−1
k=0


Ek+1

h ,P
k+

3
2

h + P
k+

1
2

h



≤
τCv

2

n−1
k=0

ε0∥Ek+1
h ∥

2
0 + 2τCv

n−1
k=0

µ0∥P
k+

1
2

h ∥
2
0 + τCv


µ0∥P

n+
1
2

h ∥
2
0


,

and

Err8 = τ

n−1
k=0


H

k+
1
2

z,h , Qk+1
h + Qk

h



≤
τ

2µ0

n−1
k=0

µ0∥H
k+

3
2

z,h ∥
2
0 +

2τ
µ0

n−1
k=0

µ0∥Qk
h∥

2
0 +

τ

µ0
· µ0∥Qn

h∥
2
0.

Similar to Err2, we can obtain

Err9 = τ

n−1
k=0

Ck


δτEk+1

h , δτP
k+

3
2

h + δτP
k+

1
2

h



≤
τCvCk

2

n−1
k=0

ε0∥Ek+1
h ∥

2
0 + τCvCkµ0∥δτP

n+
1
2

z,h ∥
2
0 + 2τCvCk

n−1
k=0

µ0∥δτP
k+

1
2

z,h ∥
2
0,

and

Err10 =

n−1
k=0

τ


δτ H

k+
1
2

z,h , δτ Qk+1
h + δτ Qk

h



≤
τ

2µ0

n−1
k=0

µ0∥δτ H
k+

1
2

z,h ∥
2
0 + τ∥δτ Qn

h∥
2
0 +

2τ
µ0

n−1
k=0

µ0∥δτ Qk
h∥

2
0.

Now we just need to estimate the last two difficult terms Err3 and Err6. Let us consider Err3 first. Adding up

Err3 and (3.7) with φh = τµ0δτ (
P

∗,k+
3
2

h +P
∗,k−

1
2

h
2 + P

∗,k+
1
2

h ), we have

Err3 = −

n−1
k=0

2τµ0


∇ × δτP

∗,k+1
h , δ2τ H

k+
1
2

z,h



=

−

n−1
k=0

2τµ0

∇ × δτ

P
∗,k+

3
2

h + P
∗,k+

1
2

h

2

 , δ2τ H
k+

1
2

z,h


+

n−1
k=0

τµ0

δτ H
k+

1
2

z,h ,∇ × δτ

P
∗,k+

3
2

h + P
∗,k−

1
2

h

2
+ P

∗,k+
1
2

h


−

n−1
k=0

τµ0

ε0ε
∗
r δ

2
τEk

h, δτ

P
∗,k+

3
2

h + P
∗,k−

1
2

h

2
+ P

∗,k+
1
2

h



−

n−1
k=0

τµ0

σ ∗δ2τEk
h, δτ

P
∗,k+

3
2

h + P
∗,k−

1
2

h

2
+ P

∗,k+
1
2

h

 =

3
i=1

rhsi . (3.19)
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Using the fact that P
n−

1
2

h = P
n+

1
2

h − τδτP
n+

1
2

h = P
n+

1
2

h −
τ
µ0

En
h and the estimate

∥P∗,k
h ∥0 = ∥


k1 0
0 k2


Pk

h∥0 ≤ Cx∥Pk
h∥0,

we obtain

−τµ0

∇ × δτ
P

∗,n+
1
2

h + P
∗,n−

1
2

h

2
, δτ H

n+
1
2

z,h

 ≤
τµ0Cinvh−1Cx

2


δτ P

n+
1
2

h + P
n−

1
2

h

2


2

0

+ ∥δτ H
n+

1
2

z,h ∥
2
0


≤
τµ0Cinvh−1Cx

2


1
2
∥δτP

n+
1
2

h ∥
2
0 +

1
2
∥δτP

n−
1
2

h ∥
2
0 + ∥δτ H

n+
1
2

z,h ∥
2
0



=
τµ0Cinvh−1Cx

4
∥δτP

n+
1
2

h ∥
2
0 +

τµ0Cinvh−1Cx

4
∥δτP

n+
1
2

h −
τ

µ0
δτEn

h∥
2
0 +

τµ0Cinvh−1Cx

2
∥δτ H

n+
1
2

z,h ∥
2
0

≤
3τµ0Cinvh−1Cx

4
∥δτP

n+
1
2

h ∥
2
0 +

τ 3Cinvh−1Cx

2µ0
∥δτEn

h∥
2
0 +

τµ0Cinvh−1Cx

2
∥δτ H

n+
1
2

z,h ∥
2
0

=
3τµ0Cinvh−1Cx

4
∥δτP

n+
1
2

h ∥
2
0 +

τ 3Cinvh−1Cx C2
v

2
ε0∥δτEn

h∥
2
0 +

τµ0Cinvh−1Cx

2
∥δτ H

n+
1
2

z,h ∥
2
0,

substituting which into rhs1, we have

rhs1 = −

n−1
k=0

2τµ0

∇ × δτ

P
∗,k+

3
2

h + P
∗,k+

1
2

h

2

 , δ2τ H
k+

1
2

z,h



+

n−1
k=0

τµ0

δτ H
k+

1
2

z,h ,∇ × δτ

P
∗,k+

3
2

h + P
∗,k−

1
2

h

2
+ P

∗,k+
1
2

h



= τµ0

n−1
k=0

∇ × δτ
P

∗,k+
1
2

h + P
∗,k−

1
2

h

2
, δτ H

k+
1
2

z,h

−

∇ × δτ
P

∗,k+
3
2

h + P
∗,k+

1
2

h

2
, δτ H

k+
3
2

z,h



= τµ0

∇ × δτ
P

∗, 1
2

h + P
∗,− 1

2
h

2
, δτ H

1
2

z,h

− τµ0

∇ × δτ
P

∗,n+
1
2

h + P
∗,n−

1
2

h

2
, δτ H

n+
1
2

z,h


≤
τ

4


∥∇ × E∗,0

h ∥
2
0 + ∥∇ × E∗,−1

h ∥
2
0


+
τ

2
∥δτ H

1
2

z,h∥
2
0 +

3τCinvh−1Cx

4
µ0∥δτP

n+
1
2

h ∥
2
0

+
τ 3Cinvh−1Cx C2

v

2
ε0∥δτEn

h∥
2
0 +

τCinvh−1Cx

2
µ0∥δτ H

n+
1
2

z,h ∥
2
0, (3.20)

Using (3.2), we have

rhs2 = −

n−1
k=0

τµ0

ε0ε
∗
r δ

2
τEk

h, δτ

P
∗,k+

3
2

h + P
∗,k−

1
2

h

2
+ P

∗,k+
1
2

h


= −τ

n−1
k=0

ε0


ε∗r

Ek+1
h − 2Ek

h + Ek−1
h

τ 2 ,
E∗,k+1

h − 2E∗,k
h + E∗,k−1

h

2
+ 2E∗,k

h
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≤ −τε0

n−1
k=0


ε∗r

Ek+1
h − 2Ek

h + Ek−1
h

τ 2 , 2E∗,k
h


= −2ε0

n−1
k=0


ε∗r δτEk+1

h − ε∗r δτEk
h,E∗,k

h



= −2ε0


ε∗r δτEn

h,E∗,n−1
h


+ 2ε0


ε∗r δτE0

h,E∗,0
h


+ 2ε0

n−1
k=1


ε∗r δτEk

h,E∗,k
h − E∗,k−1

h


. (3.21)

By the arithmetic–geometric mean inequality, we have

−2ε0


ε∗r δτEn

h,E∗,n−1
h


= 2ε0


ε∗r δτEn

h, τδτE∗,n
h − E∗,n

h


= 2ε0


ε∗r δτEn

h, τδτE∗,n
h


− 2ε0


ε∗r δτEn

h, µ0δτP
∗,n+

1
2

h


≤ 2τCxε2ε0∥δτEn

h∥
2
0 + δ1ε2ε0∥δτEn

h∥
2
0 +

ε2C2
x

δ1C2
v

µ0∥δτP
n+

1
2

h ∥
2
0,

where δ1 > 0 is a small constant to be determined. Hence we have

rhs2 ≤ 2τCxε2ε0∥δτEn
h∥

2
0 + δ1ε2ε0∥δτEn

h∥
2
0 +

C2
xε2

C2
vδ1

µ0∥δτP
n+

1
2

h ∥
2
0

+ ε0ε2Cx∥E0
h∥

2
0 + ε0ε2Cx∥δτE0

h∥
2
0 + τε0ε2Cx

n−1
k=1

∥δτEk
h∥

2
0.

Similarly, we can obtain

rhs3 = −

n−1
k=0

τµ0

σ ∗δ2τEk
h, δτ

P
∗,k+

3
2

h + P
∗,k−

1
2

h

2
+ δτP

∗,k+
1
2

h


= −

τµ0

4

n−1
k=0


σ ∗(δτEk+1

h + δτEk
h), δτP

∗,k+
3
2

h + δτP
∗,k−

1
2

h + 2δτP
∗,k+

1
2

h


≤
τµ0C2

xε0ε1

8


∥δτEk+1

h + δτEk
h∥

2
0 + ∥δτP

k+
3
2

h + δτP
k−

1
2
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where we used the impedance matching condition σi
ε0ε1

=
σm,i
µ0

(i = x, y), and the fact ε1 ≥ 1.

Now let us consider Err6. Adding Err6 and (3.1) with φh = τµ0(
P

∗,k+
3
2

h +P
∗,k−

1
2

h
2 + P

∗,k+
1
2

h ), we have

Err6 = −τµ0

n−1
k=0


∇ × P

∗,k+1
h , H

k+
3
2

z,h + H
k+

1
2

z,h



= τµ0

n−1
k=0

−∇ ×
P

∗,k+
3
2

h + P
∗,k+

1
2

h

2
, H

k+
3
2

z,h

+

∇ ×
P

∗,k+
1
2

h + P
∗,k−

1
2

h

2
, H

k+
1
2

z,h


− τµ0ε0

n−1
k=0

ε∗r δτEk+1
h ,

P
∗,k+

3
2

h + P
∗,k−

1
2

h

2
+ P

∗,k+
1
2

h


− τµ0

n−1
k=0

σ ∗
Ek+1

h + Ek
h

2
,

P
∗,k+

3
2

h + P
∗,k−

1
2

h

2
+ P

∗,k+
1
2

h

 =

6
i=4

rhsi .



514 W. Yang et al. / Comput. Methods Appl. Mech. Engrg. 304 (2016) 501–520

Using P
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Similarly, using the definition of Cx and bounding P∗

h by Ph , we easily have
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and
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The proof is completed by substituting all the above estimates into (3.17) with the choice of time step τ satisfying
the constraint (3.6), and δ1 =

ε1
6ε2

so that all terms can be controlled by the left hand side terms, and then by using the
discrete Gronwall inequality. �

4. Simulation of optical black holes

In this section, we provide three examples showing the effectiveness of our FETD method. The cylindrical, elliptical
and square optical black holes are simulated.
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Fig. 4.1. Illustration of the elliptical and square OBHs.

Recall that the relative electric permittivity for the cylindrical optical black hole is given by (2.5). The relative
electric permittivity of the elliptical black hole (cf. Fig. 4.1) can be constructed similarly to the cylindrical black hole:

εr (r) =


ε1, x2

+ k2 y2 > A2,

ε1


A2

x2 + k2 y2

 n
2

, A2
c ≤ x2

+ k2 y2
≤ A2

ε2 + iγ x2
+ k2 y2 < A2

c,

(4.1)

where k =
A
B =

Ac
Bc

denotes the axis ratio.
The relative electric permittivity of a square OBH was developed in [33]:

εr (r) =



ε1, |x | >
L

2
or |y| >
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2
,

ε1


L

2|x |

n

,
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2
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2
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L

2|y|

n

,
Lc

2
≤ |y| ≤

L

2
and |x | < |y|

ε2 + iγ, |x | <
Lc

2
and |y| <

Lc

2
.

(4.2)

In all the simulations, the incident source wave is imposed as component Hz = 0.1sin(ωt), the parameter n = 2 is
fixed, and a PML with 12 cells in each direction around the physical domain is used.

Example 1 (Cylindrical OBHs). In this example, we consider that the cylindrical black hole is embedded in Si O2
(which has electric permittivity ε1 = 2.1), and the core of the device is composed of n-doped silicon with electric
permittivity ε2 + iγ = 12 + 0.7i . The physical domain is chosen to be [0, 45] µm × [0, 45] µm, and the physical

parameters Rc = 8.4 µm (micrometer), Rsh = Rc


ε2
ε1

. The computational mesh is obtained by uniformly refining the

coarse mesh given in Fig. 4.2 five times, and the time step is chosen as τ = 2.5 · 10−17 s, and the center frequency is
f = 100 THz.

To see how wave propagates in the black hole, we simulated two cases: Case 1 with the incident source wave
located at x = 0, y ∈ [37.6, 41.5] µm; Case 2 with the incident source wave located at x = 0, y ∈ [22.5, 25] µm. In
Figs. 4.3 and 4.4, we plot the calculated magnetic fields Hz at different time steps. In both cases, it is clear that the
electromagnetic waves bend rapidly toward the core of the black hole, and the waves are totally absorbed inside the
core of the device (cf. Figs. 4.3 and 4.4). Furthermore, we can easily see that there is almost no reflection, since the
device is designed to match the surrounding material. We like to remark that our results are similar to those obtained
by the FDTD method [9].
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Fig. 4.2. The sample coarse meshes for cylindrical and square OBHs (the real meshes used in our simulations are obtained by uniformly refining
the triangular elements five times).

Fig. 4.3. Case 1 of Example 1. Magnetic fields Hz at various time steps for the cylindrical OBHs simulation. Top left: 2800 steps. Top middle:
6000 steps. Top right: 8000 steps. Bottom left: 12,000 steps. Bottom middle: 16,000 steps. Bottom right: 20,000 steps.

Example 2 (Elliptical OBHs). In this example, we simulate the elliptical optical black hole by our FETD method.
The elliptical black hole is embedded in vacuum, in other words the relative electric permittivity ε1 = 1. The physical
domain is chosen to be [−15, 15] µm ×[−20, 20] µm, and the physical parameters in (4.1) are A = 2 µm, B = 8 µm,
ε2 = 16, and k =

1
2 . The time step is chosen as τ = 3 · 10−17 s, and the center frequency is f = 150 THz. There
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Fig. 4.4. Case 2 of Example 1. Magnetic fields Hz at various time steps for the cylindrical OBHs simulation. Top left: 2000 steps. Top middle:
4000 steps. Top right: 6000 steps. Bottom left: 10,000 steps. Bottom middle: 12,000 steps. Bottom right: 20,000 steps.

Fig. 4.5. Example 2. Magnetic fields Hz at various time steps for the elliptical OBHs simulation. Top left: 1600 steps. Top middle: 2400 steps. Top
right: 3600 steps. Bottom left: 4800 steps. Bottom middle: 5200 steps. Bottom right: 8000 steps.
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Fig. 4.6. Case 1 of Example 3. Magnetic fields Hz at various time steps for the square OBHs simulation. Top left: 1000 steps. Top middle: 2000
steps. Top right: 3000 steps. Bottom left: 4000 steps. Bottom middle: 6000 steps. Bottom right: 10,000 steps.

Fig. 4.7. Case 2 of Example 3. Magnetic fields Hz at various time steps for the square OBHs simulation. Top left: 500 steps. Top middle: 1000
steps. Top right: 2000 steps. Bottom left: 3000 steps. Bottom middle: 4000 steps. Bottom right: 10,000 steps.



W. Yang et al. / Comput. Methods Appl. Mech. Engrg. 304 (2016) 501–520 519

are two incident source waves in this simulation: one is located at x = −15 µm, y ∈ [10, 14.5] µm, and the other one
is located at x = 1.5, y ∈ [−14.5,−10] µm. The calculated magnetic fields Hz at various time steps are plotted in
Fig. 4.5, which shows that the two waves also rapidly bend toward the core of the device, and are totally absorbed by
the core. From this simulation, we can see that the optical black hole can absorb the electromagnetic waves radiating
from different locations.

Example 3 (Square OBHs). In this example, we consider the square optical black hole. The physical domain is
chosen to be [−15 µm, 15 µm]

2, the core domain is [−4 µm, 4 µm]
2, and the shell domain is [−12 µm, 12 µm]

2
\

[−4 µm, 4 µm]
2. The physical parameters ε2 = 9, γ = 0.7. The time step is chosen as τ = 4 · 10−17 s, and the

center frequency is f = 300 THz. We simulated two types of incident source waves in this example. In Case 1, the
source wave is generated by a Gaussian wave and located at x = −14 µm, y ∈ [10 µm, 13.125 µm]. While in Case
2, the second source wave is a plane wave located at x = −14 µm, y ∈ [−12 µm, 12 µm]. We present the calculated
magnetic fields Hz at different time steps in Figs. 4.6 and 4.7, which have the similar wave propagation pattern as
Figs. 4.3–4.5. From Figs. 4.6 and 4.7, we can see that the optical black hole can effectively absorb these two types of
electromagnetic waves, and there is no reflection in both cases.

5. Conclusions

In this paper, we study the mathematical formulation of optical black holes (OBHs). A finite element time domain
(FETD) method is designed to simulate OBHs, and the stability of our FETD method is established. Numerical
simulations of the cylindrical, elliptical and square OBHs are performed. Our numerical results demonstrate that our
FETD method is an effective tool for simulating OBHs in addition to the FDTD method.
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