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In this work, we investigate wave transmission property through a zero index metamaterial

(ZIM) waveguide embedded with rectangular dielectric defects. We show that total reflection and

total transmission (cloaking) can be achieved by adjusting the geometric sizes and/or

permittivities of the defects. Our work provides another possibility of manipulating wave

propagation through ZIM in addition to the widely studied dielectric defects with cylindrical

geometries. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804201]

Since the construction of the first metamaterial with neg-

ative refractive index in 2000,1 the study of metamaterials

has been a very hot research topic across different disciplina-

ries due to many potentially revolutionary applications in

areas such as perfect lens, invisibility cloaks, and subwave-

length imaging devices. Details can be found in some recent

monographs (e.g., Refs. 2 and 3), and references therein. The

most studied metamaterials are the so-called double negative

index media, whose permittivity � and permeability l are

negative over some common frequencies. Recently, scien-

tists found that zero index metamaterials (ZIMs), whose per-

mittivity and permeability are simultaneously or individually

near zero, also have many exciting anomalous properties4 as

double negative index metamaterials. For example,

Ziolkowski5 showed that a matched ZIM slab can be used to

transform curved wave fronts into planar ones. Zhu et al.6

demonstrated that the radiation from a point source embed-

ded in a system of ZIM with gain inserts can be effectively

amplified. Several scientists have also shown that ZIMs can

be used to control electromagnetic (EM) wave transmission.

It is shown that EM waves can be perfectly bended and trans-

mitted by using ZIMs,7,8 the radiation of a line current sur-

rounded by a ZIM shell can be greatly enhanced or

completely suppressed,9 and ZIMs can be used to squeeze

electromagnetic energy.10–12 Total transmission (which

results in cloaking13,14) and total reflection (which results in

wave blocking) can also be realized with ZIMs embedded

with proper defects.15–19 For ZIMs embedded with dielectric

defects, so far only cylindrical geometry has been utilized to

achieve such intriguing transmission properties.17–19

In this paper, we investigate how perfect transmission or

reflection of EM waves can occur by adjusting the size or the

material parameters of the embedded rectangular dielectric

object in a ZIM. Theoretical analysis is provided to guide the

design of dielectric defects, and numerical simulations are

then carried out to justify our theory. Our finding opens the

possibilities of embedding rectangular defects in ZIMs to

block wave or conceal objects.

Consider an EM wave incident from the left into a

waveguide structure illustrated in Fig. 1. The ZIM region is a

metamaterial, whose relative permittivity and permeability

are described by the so-called Drude model3,15

�1 ¼ l1 ¼ 1�
x2

p

xðxþ iCÞ ;

where x is the excitation angular frequency, xp denotes the

plasma frequency, and C denotes the loss parameter. On both

sides of the ZIM region are the free space regions 0 and 3.

The defects in region 2, which is embedded in ZIM, are com-

posed of N rectangles with permittivity and permeability of

�2;k and l2;k; k ¼ 1; 2; � � � ;N, respectively. Assuming

expð�ixtÞ time harmonic factor, the EM wave in each region

satisfies the Maxwell’s equations: For any m¼ 0,1,2,3,

Hm ¼
1

ixl0lm

r� Em; Em ¼
i

x�0�m
r�Hm: (1)

We can simplify Eq. (1) to the vector Helmholtz

equation

ð@xx þ @yy þ k2
0�mlmÞUm ¼ 0; (2)

where Um ¼ Em or Hm, and k0 ¼ x
ffiffiffiffiffiffiffiffiffi
�0l0

p
is the wave vector

in free space.

Assume that the walls of the waveguide are made of per-

fect electric conductor, and the waveguide supports the fun-

damental transverse magnetic mode, i.e., H field is polarized

in the z direction. Suppose the incident wave propagates to

the right along the x direction, we can write the H field in

region 0 as a sum of the incident and reflected waves which

satisfy Eq. (2)

H0 ¼ ẑH0½eik0ðxþdÞ þ Re�ik0ðxþdÞ�; (3)

where H0 denotes the amplitude of the incident field, and R
is the reflection coefficient.
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By Eq. (1), we obtain the corresponding electric field in

region 0 as

E0 ¼ ŷg0H0½eik0ðxþdÞ � Re�ik0ðxþdÞ�; (4)

where g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=�0

p
is free space impedance.

Similarly, we can obtain the H field and in E field region

3 as

H3 ¼ ẑH0T eik0ðx�dÞ; E3 ¼ ŷg0H0T eik0ðx�dÞ; (5)

where T is the transmission coefficient.

In region 1 (the ZIM region), when the frequency

x � xp, Reð�1Þ is almost zero (assume very small loss

C � 0). Hence to guarantee a finite E1, by Eq. (1), r�H1

must be zero, which leads to rHz
1 ¼ 0, i.e., the magnetic

field in ZIM region is a constant denoted as H1. Then by

using Eqs. (3) and (5), and the tangential continuity of the

magnetic field at interfaces x¼ – d and x¼ d, we have

ðR þ 1ÞH0 ¼ H1; T H0 ¼ H1; (6)

which leads toRþ 1 ¼ T :
Applying Faraday-Maxwell law and Stokes’ theorem, we

can show that the transmission coefficient is given by18

T ¼ 1

1� ð1=2wH1Þ
PN
k¼1

þ
@S2;k

E2;k � dlk

; (7)

where w is the width of the waveguide, and @S2;k denotes the

boundary (oriented clockwise) of each defect.

To evaluate T , we need to find the electric field E2;k,

which can be obtained from Eq. (1) once we know the mag-

netic field H2;k in each defect region. Note that H2;k satisfies

Eq. (2) with Dirichlet boundary condition H2;k � t̂ ¼ H1,

where t̂ is the unit tangential vector along the boundary of

each defect region.

Using the method of separation of variables, we can

obtain the solution H2;k on a rectangular defect region

½0; a� � ½0; b� with permittivity �2 and permeability l2

H2;kðx; yÞ ¼ ẑ

�
H1 þ

P
n;m�1

Cn;m/n;mðx; yÞ
�
; (8)

where the coefficient

Cn;m ¼
�4k2

2H1

nmðk2
2 � kn;mÞp2

½1� ð�1Þn�½1� ð�1Þm�: (9)

Here, we denote k2
2 ¼ x2

0�2l2, kn;m ¼ ðnp
a Þ

2 þ ðmp
b Þ

2
, and

/n;mðx; yÞ ¼ sin npx
a sin mpy

b :
From Eqs. (1) and (8), we have

E2;kðx; yÞ ¼
i

x�0�2

x̂
P

n;m�1

Cn;m

@/n;m

@y
� ŷ

P
n;m�1

Cn;m

@/n;m

@x

" #
:

(10)

From Eqs. (7) and (10), we see that if any Cn;m � 1,

then T � 0, in which case total reflection happens. To have

this, one possible solution is that both n and m are odd inte-

gers, and k2
2 ¼ kn;m, which leads to

FIG. 1. The schematic description of the waveguide structure with vacuum

(regions 0 and 3), ZIM (region 1), and an arbitrary number of rectangular

defects.

FIG. 2. One rectangular defect case with m¼ 1, n¼ 1 (top row), and m¼ 1, n¼ 3 (bottom row): (left column) whole Hz field; (right column) zoomed-in electric

fields.
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�2 ¼
np
a

� �2

þ mp
b

� �2
� �.

ðk2
0l2Þ: (11)

To justify the analysis, in the following, we carry out

extensive numerical simulations using the commercial finite

element package COMSOL. We assume that the computational

domain is ½�0:07; 0:07�m� ½�0:02; 0:02�m, the ZIM region

is ½�0:03; 0:03�m� ½�0:02; 0:02�m, the excitation plane

wave has a frequency of f¼ 15 GHz and all defects are non-

magnetic (i.e., l2;k ¼ 1). All our computations are based on

triangular elements with the quadratic basis function.

First, we consider the simple case with one rectangular

defect region ½�0:01; 0�m� ½�0:01; 0:01�m, i.e., we have

a¼ 0.01, b¼ 0.02. Substituting this into Eq. (11) with

k0 ¼ x
ffiffiffiffiffiffiffiffiffi
�0l0

p ¼ 2pf=c ¼ 100p, we have

�2 ¼ n2 þ m

2

� �2

: (12)

Substituting m¼ 1, n¼ 1 and m¼ 1, n¼ 3 into Eq. (12)

yields �2 ¼ 1:25 and �2 ¼ 9:25, in both cases, we observed

total reflection as expected. The contour plot of the whole Hz

field and the zoomed-in electric fields (obtained with 3680

and 14 720 elements for n¼ 1 and n¼ 3, respectively) are

presented in Fig. 2. We would like to remark that in the total

reflection case, the H2 field is mainly dominated by the

mode /n;mðx; yÞ, which corresponds to the infinitely large

Cn;m. This fact is shown clearly in Fig. 2.

From Eq. (10) and some lengthy calculation, we obtain

the line integrals along the boundaries of the rectangular

defect

þ
lef t

þ
þ

right

¼ �i

w�0�2

P
n;m�1

Cn;m
nb

ma
½1� ð�1Þm�½1� ð�1Þn�;

þ
top

þ
þ

bottom

¼ �i

w�0�2

P
n;m�1

Cn;m
ma

nb
½1� ð�1Þm�½1� ð�1Þn�;

FIG. 4. Total reflection and transmission obtained with two rectangular defects: (top left) the Hz field with �L ¼ 1:25 (reflection defect) and �R ¼ 9:25 (reflec-

tion defect); (top right) the Hz field with �L ¼ 4:25 (transmission defect) and �R ¼ 1:25 (reflection defect); (bottom left) the Hz field with �L ¼ 1:25 (reflection

defect) and �R ¼ 4:25 (transmission defect); (bottom right) the Hz field with �L ¼ 4:25 (transmission defect) and �R ¼ 16:25 (transmission defect).

FIG. 3. One rectangular defect case with m¼ 1, n¼ 2 (top row) and m¼ 1, n¼ 4 (bottom row): (left column) whole Hz field; (right column) zoomed-in electric

fields.
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from which and Eq. (7), we see that when either n or m is

even with finite Cn;m, we have T � 1, in which case we have

a total transmission. Hence we can obtain invisibility cloak-

ing using such rectangular defects. Cloaking examples with

m¼ 1, n¼ 2 and m¼ 1, n¼ 4 are presented in Fig. 3, where

the size of the defect is identical to the one shown in Fig. 2,

but the dielectric constants are changed to 4.25 and 16.25,

respectively. In Fig. 3, we presented the whole Hz field and

the zoomed-in electric fields. We like to remark that in the

total transmission case, the H2 field is composed of multiple

modes, and not dominated by a single mode /n;mðx; yÞ, since

none of Cn;m � 1 in this case.

We would like to point out that while all the defects pre-

sented earlier are of the same size, it is indeed very flexible

to have different sizes as long as the conditions for the total

transmission/reflection are satisfied. Moreover, from Eq. (7),

total reflection and cloaking can still be obtained with multi-

ple embedded rectangular defects. If any of the defects

results in total reflection, then total reflection will always

happen regardless of whether the rest defects will induce

total transmission or total reflection. However, to achieve

total transmission with multiple defects, all the embedded

defects must cause total transmission. Results in Fig. 4 show

that total reflection and cloaking can be achieved with two

defects. Note that the positions of the non-overlapping

defects are arbitrary.

We like to mention that the above results hold true for

the square defect, which is a special case of the rectangular

defect and often used. In Fig. 5, we present some total

reflection and cloaking obtained with one square defect,

in which case we choose a¼ b¼ 0.01, which leads to

�2 ¼ n2 þ m2: To avoid non-uniqueness of the solution H2

easily caused due to the symmetry of squares, we choose

n¼m in Fig. 5.

In conclusion, we have demonstrated how to achieve

total reflection and total transmission of an EM wave

by embedding rectangular (including square) dielectric

defects in the zero index metamaterial. Extensive numerical

simulations confirm our theory. Our work provides more

choices for blocking wave or concealing objects by embed-

ding rectangular defects in ZIMs. In this work, we consider

simple dielectric material which is non-metallic. If the

defects are made of metal or a material with negative permit-

tivity, similar phenomena can be achieved under certain

circumstances.
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