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1. Introduction

In early 2006, Pendry et al. [33] and Leonhardt [24] independently presented the blueprints for making objects invisible to
electromagnetic waves by using metamaterials. The basic idea is to use the Maxwell equations’ form invariant property to
design the permittivty and permeability of the metamaterial. The cloaked region is surrounded by this cloaking metamate-
rial, and the light will be guided around the cloaked region as if nothing were there. In late 2006, the first practical realization
of such a cloak was demonstrated by Schurig et al. [35] over a band of microwave frequencies for a 2-D cloak constructed
using artificially structured metamaterials. At present, there is a tremendous interest in the study of invisibility cloaks and
their striking applications. We refer readers to (e.g., [8,15,16,29,23,28,30]) for more details about this rapidly growing field
and more complete literature.

Numerical simulation plays a very important role in designing the invisibility cloaks and validating theoretical predic-
tions. Due to its flexibility in handling complex geometrical domains and its solid mathematical theory, the finite element
method (FEM) is one of the most popular techniques in solving electromagnetic wave propagation problems. To date, the
FEM cloaking simulation seems to be dominated by the commercial package COMSOL. To our best knowledge, not much re-
search has been devoted to developing more efficient and robust FEMs for cloaking simulation. In 2011, Zhai et al. [40] devel-
oped an efficient finite element method for solving 3D axisymmetrical invisibility cloaks and concentrators. Recently,
Demkowicz and Li [12] extended the Discontinuous Petrov-Galerkin (DPG) method to show the effectiveness of the DPG
method in cloak simulations. Some simple h-adaptivity has been introduced for our DPG method, however theoretical jus-
tification of the effectiveness of h-adaptive was not investigated there.
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In this paper, a reliable and efficient recovery type a posteriori error estimator is developed for time-harmonic Maxwell’s
equations. Our estimator is the so-called recovery type, which was originally introduced by Zienkiewicz and Zhu [42] and has
been extensively developed and analyzed by various authors [38,39] for many partial differential equations except Maxwell’s
equations. More specifically, our error estimator is based on the superconvergence result obtained for time-harmonic Max-
well’s equations solved by the lowest order triangular edge element. Comparing to those existing superconvergence results
for Maxwell’s equations (e.g., [17,34], [32, p. 201], and [[27, Ch. 5]), our superconvergence result is original. We then use this
a posteriori error estimator in our adaptive edge element method and the effectiveness is demonstrated by several cloaking
simulations. We like to remark that there are some excellent works on a posteriori error estimators [4,7,9,10,41] and adap-
tive FEM [1,11,21,36] for Maxwell’s equations, but they are mainly the residual types for a simple medium such as vacuum
and have not used for such complicated problems as our cloaking simulations.

The rest of the paper is organized as follows. In Section 2, we provide the superconvergence analysis for time-harmonic
Maxwell’s equations solved by the lowest order triangular edge element. Then in Section 3, we apply the superconvergence
result to derive the recovery type a posteriori error estimator, and use the error estimator to develop an adaptive finite ele-
ment method for electromagnetic cloaking simulations. Extensive numerical experiments are presented in Section 4 to jus-
tify our theoretical analysis and demonstrate the effectiveness of our adaptive method. We conclude the paper in Section 5.

2. Superconvergence analysis for time-harmonic Maxwell’s equations

First let us introduce some common notations. We assume that Q is a bounded and simply connected Lipschitz polyhe-
dron of R? (d = 2 or 3) with connected boundary 8Q and unit outward normal n. For m,p > 1, we denote the standard Sobolev
space by W™P(Q). When p = 2, we usually write H™(Q) = W™?(Q). Furthermore, we need some other Sobolev spaces:

Ho(curl;Q) = {v € (1*(Q))%; V x v € (I*(Q))", nx v =0 on 0Q},
H(curl; Q) = {w € (H'(Q)); V x ve (H(Q)"}, Vs> 0.
The above spaces are equipped with norms
19l = (1215 + 11V x 2|]0)'* Vo € Ho(curl; Q),
19/l ey = (12lis0) + IV % #llEs0)"? Vo € H(curl; Q),

where || - ||o.q (or simply || - ||,) denotes the (L*(Q))? norm.
2.1. The modeling equations and some preliminaries

Modeling of electromagnetic phenomena at a fixed frequency w is governed by the full Maxwell’s equations:
VxE+iouH =0, inQ, (2.1)
V xH-—iweE=], inQ, (2.2)

where i = V-1, E(x) and H(x) are the electric and magnetic fields, ¢ and u are the permittivity and permeability of the mate-
rial, and J is the applied current density.
Eliminating H from (2.1) and (2.2), we obtain

V x (U'V x E) — w*¢E = —iwJ in Q. (2.3)

Let us denote the wavenumber k = w,/¢fi. To avoid the technicality and simplify the presentation, we assume that € and
W are constants, in which case we can simplify the problem (2.3) to:

V x (VxE)—KE=F=—ioy inQ. (2.4)
Moreover, we assume that the problem (2.4) is subject to the perfectly conducting (PEC) boundary condition
nxE=0 onoQ. (2.5)
The variational formulation of the problem (2.4) and (2.5) is to find E € Ho(curl; Q) such that
a(E, ) = (F,¢) V¢ € Ho(curl;Q), (2:6)
where
a(E,¢) = (V x E,V x ¢) — K*(E. ). (2.7)

Here and below (-,-) denotes the inner product in (L*(Q))".

To design a finite element method, we assume that Q is partitioned by a regular mesh T}, of tetrahedra in R® (or triangles
in R?), where h is the mesh size. Due to the low regularity of the solution for Maxwell’s equations, we just consider the low-
est-order Nédélec curl conforming element (often called edge element) space:

Vi, = {¢y € Ho(curl; Q) : ¢y = span{4 V5 — 4;Vii}, VK € Ty}, (2.8)
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where /; denotes the barycentric coordinate at the ith vertex of the tetrahedron or triangle K.
Now we can define the standard finite element method for solving the problem (2.4) and (2.5): Find E; € V}, such that
a(Ey, o) = (F,¢y) Vo, € V. (2.9)
Denote the solution error e, = E — E;. The following lemmas present the well-posedness of the problem (2.6) and some

fundamental error estimates.

Theorem 2.1 [32]. Assume that Q is a bounded and simply connected Lispschitz polyhedron with connected boundary, and E and
Ej, satisfy (2.6) and (2.9), respectively. If k is not an interior Maxwell eigenvalue, then the variational problem (2.6) has a unique
solution E € Hy(curl; Q) such that

|l 1curt) < ClIFlo,

where the constant C > 0 is independent of E and F but dependent on k. Moreover, if E € H' (curl; Q), then there exists a constant
C > 0 independent of h such that

|IE = Enllucuriey < ChIIEI]

(curl:Q)*

Lemma 2.1 [32, Lemma 7.7]. For sufficiently small h, there exist constants C > 0 and o € (0,1] such that

|(en, on)| 172
sup T < Ch(H / HehHH curl;Q)

eV, | ‘ U ‘ |H curl;Q)

2.2. Superclose analysis for the lowest-order triangular edge element

Let us denote u; € V), for the standard Nédélec interpolation operator of u. For the lowest-order triangular edge element,
we can write

3
g (x,y) = Z(

=

/u ‘c,dl) i(x,y) VK eTy, (2.10)

lj

where 7; is the unit tangent vector on edge I;, and N; is the corresponding basis function.
Using the Stoke’s formula and the definition of u;, we have.

Lemma 2.2. For any function u € H(curl; Q) , we have
/V x (w—u)dxdy=0 VK e T.
K
For a triangular mesh formed by parallelograms, we have the following elementwise superclose identity.
Lemma 2.3 [18, Theorem 3.3]. Assume that the domain Q is covered by a triangular mesh formed by parallelograms. On any

parallelogram ¢, for any function u € (H>(¢))? and ¢, € Vy,, then we have

/(> (1 — wp)ydxcy < C [ e o2 bl

Lemma 2.4. Assume that the domain Q is covered by a triangular mesh formed by parallelograms, and E and E, satisfy (2.6) and
(2.9), respectively. If h is sufficiently small, then there exist constants C > 0 and ¢ € (0,1/2] such that

IEr = Enllu ety < C(H 1Bl oy + 1" llenlbanan ) (11)

Proof. Let ¢, = E; — E;,. From (2.7), we have

lonlli curtey = A(Bns dn) + (1 +K%) (b 1)
= a(E; — E, ¢y) + A(E — En, ¢) + (1 + k) (¢, )
= a(E; — E.y) + (1 +K%)(by, 1)
= (V x (E—E),V x ¢) + (E; —E. ;) + (1 + K*)(E — Ep, )

3
= Ermi. (2.12)
i=1
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Note that V x ¢, is a constant on each element, using Lemma 2.2 we easily have
Erry =(V x (E,—E),V x ¢,) =0. (2.13)

Using Lemma 2.3, we immediately have
Erry = (Ei — E. ¢y) < Ch*|[El| 1p 214 lo- (2.14)
Finally, using Lemma 2.1, we have

Errs = (1 +k*)(E — Ep, ¢y)

en, U
< Csup &m0l
eV HthH(curl;Q)

54172
<Ch l1en!lrccurto |Er — Enllgcur,0)-

Er — Enl lur (2.15)

The proof is completed by substituting (2.13)-(2.15) into (2.12). O
Note that the estimate (2.11) is a superclose result between the interpolation E; and the finite element solution Ej, since
by Theorem 2.1 we only have [|E — En||yunq) < Ch, which is one order less than ||E; — En||ycur.0)-

Let us introduce the discrete I, norm [ul,, o = (5 Y ker, Yoxc [U(Xe)| )1/ where X, is the midpoint of the interior edge e
and N, is the total number of interior edges. Moreover, let the averaging operator R(u(x.)) = (w(Xe)|, +u(Xe)li,)/2, where
K, and K, are the two triangles sharing the middle edge point X..

Extending Lemma 2.4, we can have the following superclose result.

Lemma 2.5. Under the same assumption as Lemma 2.4, for sufficiently small h, there exist constants C > 0 and ¢ € (0,1/2] such
that

() IR(E: — Enl,g < (Bl o 0l ).
(i) IRV (B~ En)lyi < (I Ellyp e + 1 el s ).

Proof. Let ¢, =E, — Ey,and S; = O(‘%‘) be the area of the element 7, where N denotes the total number of the elements in the
mesh Tj.
Using the quadrature identity (cf. [25, p.194]):

. 3
[ wixyixdy =353 wiw) e
JT i1

and the fact that ¢, is linear on each element 7, we have

Y R (gn(xe) - S:/3 < ZZ% X.)S/3 = / gdxdy.

TETXeET T =1

which along with the fact §¢ = O(1) yields

¢1 XE S 3N
ZZ ’ = ZZRZ Pn(%e)) 3 (mwe) C/ drdxdy.

TeTyXe €T TeTyXe €T

Finally, using Lemma 2.4, we easily obtain

1/2
¢ Xe 0
IR(E; — En)l, 0 = (ZZ g < Clignllon < C(II[El s 0z + b llenllneuna )

TeTyXe €T

which completes the proof of (i). Applying the same technique to ¢, = V x (E; — E,), we can prove (ii). O

2.3. Superconvergence analysis for the lowest-order triangular edge element

In this section, we will use the superclose results obtained in last section to prove some superconvergence results for the
time-harmonic Maxwell’s equations solved by the lowest-order triangular edge element.
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First, we present a result on line integrals.

Lemma 2.6. Consider a parallelogram formed by vertices A-D, where X, = (X¢,y.) is the midpoint of AC, « = ZBAC, and 2I; and
213 denote the lengths of AB and AG, respectively (see Fig. 2.1). Furthermore, let t;; denote the unit tangent vector along edge ij,
where i,j = A, B,C,D. Then for any function u = (uy,u,)" € (W>*(Q))%, we have
. 15 cos a)* 28 sinocos? B sin® o cos o
(i) / U - Tacds = 213 cos o (Xe) + %aﬂu] (Xe) + %&Wu] (Xe) + %myu] (Xe) + 213
AC
B sin® o

B3 sin o cos?
3

o
3 axx u; (xe )

2L sin® o cos o
+ S

3 Optiz () + ('),

x sin oy (X,) + Oxyla(Xe) +

3
(ii) / u - tepds = —2lLuy () + 2(lf — li15 cos o) dxuy (Xe) — 21115 sin odyuq (Xe) + (Zlflg CcoS oL — ﬁ -1 l§
cD

3
x €082 0)Delly (Xe) + 2(B 13 sinor — [ 2 cos o sin o) Dy iy (Xe) — 11 5 sin® oy uy (Xe) + O(h*),

(iif) / u - Tpads = 2(I — 5 cos )iy (X) + 2(l 13 cos ot — ),y (%) + 11_13% (417 — 2L I3 cos o + 2
DA

b — s cosa (213 cos ausin o0 — 21y I3 Sin o) Dy iy (Xe) + b~k cosa I;COS x (&

X €082 o) Delly (Xe) + 3

% sin® o)ty (Xe) — 215 sin oty (X,) + 21413 sin oDyt (X,) — b s;n x (417 — 2Ll cos o+ 5

(21 cos asin o — 21y L5 Sin o) Dy Uiz (X,) — e s;n % (B sin? o)ty (Xe)

I3 sino
3

X OS2 ) Dellz (Xe) —
+0(h"),
(iv) /AB u - tapds = 2luq (Xe) + 2(lf — lLi15 cos o) dxu (Xe) — 21113 sin dyu; (Xe)
3

3
—+ (ﬁ - 21?13 coso+ 1 l§ cos? O() Oxxln (Xe) — 2(1?13 sino — [y l% COS o Sin o) Dy U1 (Xe) + lllﬁ

x sin® ady,u; (Xe) + O(h%),

(v) / u - Tpcds = 2(I3 cos o — Iy )uy (Xe) + 2(ly15 cos o — lf)axul (%) + % (4lf —2lLl3cos o+ l§
BC
X €OS? ) Dl (Xe) + % (213 cos ausin o0 — 2145 Sin o) Dy g (Xe) + % (&

BSINY 42 o cosa+ 1

% sin? 00)dyyls (Xe) + 25 sin ottty (X, ) + 2115 sin ooz (X, ) +

bsina (215 cos orsin o — 2115 sin o) Dy Uz (Xe) + b s;n % (B sin® o)y ()

3

X COS? 00) Dyl (X)) +

+0(h*).

Fig. 2.1. The exemplary parallelogram.
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Proof.
(i) Using Tac = (cos a, sina), we have
Xc Xc
/ U - Tacds :/ (u1dx + uydy) :/ (uq + Uy tan a)dx.
AC XA XA

Using the Taylor expansions of u; (i=1,2):

Ui = Ui(Xe) + (X — Xc)OxUi(Xe) + (¥ 7yc)8yui(xe)

1

5 [ = X P ti(®e) + 23 = X)W = YD ti(Re) + (v — ye) Oy th(xe)| + O(H)

2
and the equation of line AC: y = (tana)(x — Xc) + Y., we have
Xc Xc 1
/ udx = / [Ui(Xe) + (X — Xc)OxUhi(Xe) + tan ou(X — Xc ) Oy Ui(Xe) + 5 ((X = X)* Ouclli(Xe) + 2 tan au(x
X4 X
— X2 O li(Xe) + tan® a(x — X.)20y, ui(X,)) + O(h)]dx.

Using thexidentities
e

Xc+l3 cosa
(x —xc)dx = (x —xc)dx =0,
Jxq JXc—lI3 cosa
*e 1 28 cos® o
2 _ 3 \Xc+l3cosa _ “~'3
/ (X_XC) dX—§(X—XC) xi—l;cosaf* 3
XA

and Eqgs. (2.16)—(2.18), we finish the proof of (i).
(ii) From t¢p = (—1,0), we have

Xc
/ u~rCDds:—/ udx,
cD Xp

which, along with (2.17), the equation of line CD: y = y. + I3 sina, and the facts

Xc Xc+13 coso
/ (x—xc)dx:/ (x — x.)dx = 21115 cos o — 212,
Xp X

c+l3 cos -2l

Xc Xc+l3 coso
/ Y-y )dx = / (Ve +I3sino —y.)dx = 2l1l5 sina,
Xp X

c+l3 cosa—214

Xc
/ (y 7yc)2dx = 211 (13 sin 0()2,

XD

Xc ~Xc+l3 cos o
/ (x — Xo)2dx = / (x — x.)%dx = 21, 2 cos® o — 41215 cos ot + §lf,

Jxp J Xc+l13 cos -2l 3

we complete the proof of (ii).
(iii) The proof is completed by using the equation of line DA:

X=X +I3coso— 2l + (2L — 23 cos a)t,
Y=Y+ Lsino— (2l3sina)t,

the Taylor expansion of u;(i = 1,2):

ui(x,y) = ui(xe) + (Is cos oo — 2l + (21 — 213 cos a)t)dxui(Xe) + (I3 sinow — (215 sin a)t)dyu;(Xe) + % ((ls cos o — 24

+ (2L — 21508 ) t)* Dlhi (Xe) + 2(X — Xc) (I3 sin ot — (213 sin o)) Dy Ui (Xe) + (I3 sina — (213
x sina)t)?d,yui(Xe)) + O(h*)

and the identities:

1 1
/ [l cosa — 21y + (21; — 213 cos a)t]dt = —Iy, / [lssina — (2l sina)t]dt = 0,
0 0

1
I3 coso — 2l + (21; — 215 cosa (2dt =2 —%1113 cosac+112cos2 o,
31 3 33
0

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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! . . 1, . 1 .
[lscoso — 2l + (2 — 2l3 cos a)t][ls sin o — (25 sin ) t]dt = §l3 cososino — §ll I3sina,
0

1

2 02
3l3sm o,

1
/ [l sino — (213 sin o) t]*dt =
0
in the integral

1
/ U - Tppds = / [2(l; — I3 cos a)uy — 2I5 sin ou,)dt.
DA 0

(iv) [,pu - T4pds can be obtained by a similar argument to (ii).
(V) [ycut- Tacds can be proved by a similar argument to (iii). O

Using Lemma 2.6, we can prove the following pointwise superconvergence result between the curl of one function and its
Nédélec interpolation.

Lemma 2.7. Under the same assumption as Lemma 2.6, for any function u = (uy,u;)" € (W3‘°‘J(Q))2 and any parallelogram
center X., we have

IV x u(x,) — R(V x uy(x,))| < Ch*.

Proof. For the lowest-order triangular edge element basis function ¢;;, where i,j = A, B, C,D, we have (cf. [18, Lemma 2.1]):
(V X hac)(Xe) = (V X §cp)(Xe) = (V X ¢pa)(Xe) = 1/5,, (2.21)
By the Nédélec interpolation definition (2.10), and (2.21), we have

/ u- ‘CAcdS + / u- TCDdS + / u- TDAd5:| /ST1 . (222)
AC D DA

By the same argument, we have

(V x|, (%) =

(7 x )], (%) = U U Typds +/ u- Tyeds + / u. rCAds} /s (2.23)
AB BC A
Taking the average of (2.22) and (2.23), and using the fact S;, = S;, = 213 sina, we obtain
RV x w)(x,) = / u-TABd$+/ u-chds+/ u-rCDds+/ u-rDAds}/(4lll3 sin o). (2.24)
AB JBC (o) JpA

Using Lemma 2.6 in (2.24), we have
R(V x uy)(Xe) = Oxliz(Xe) — Oy (Xe) + O(h4)/4l1 Issino =V x u(x,) + O(hz),

which concludes the proof. O
Using the same technique as above, we have proved the following pointwise superconvergence result between one func-
tion and its Nédélec interpolation in our early work [18].

Lemma 2.8 [18, Theorem 3.4]. Under the same assumption as Lemma 2.6, for any function u = (uy,u)" € (W?>(Q))? and any
parallelogram center x,, we have

lu(x.) — R(w(x.))| < Ch*.
With the above preparations, we can obtain the following superconvergence result between the analytic solution E of
(2.6) and the postprocessed solution Ej, of (2.9).

Theorem 2.2. Assume that the domain Q is covered by a triangular mesh formed by parallelograms, and E and E,, satisfy (2.6) and
(2.9). IfE € (W>>(Q))? and h is sufficiently small, then we have

|IE = R(Ew)|[, 0 + ||V x E = R(V x En)|,, o < Ch”. (2.25)
Proof. Using the triangle inequality, Lemmas 2.5, 2.8 and 2.7, we easily have

|IE — REW)|, 0+ IV % E=R(V x En)llya < (W I1Ell .02 + 1" llenl e )-

Letting 5 = 1/2 for a smooth solution and using Theorem 2.1, we complete the proof. O
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3. Application to adaptive FE method for cloaking simulation

In the section, we will use the superconvergence results obtained above to an adaptive finite element method for cloaking
simulation.

3.1. Model equations of electromagnetic cloaking
A very important property for Maxwell’s equations is that Maxwell’s equations are form invariant under coordinate trans-

formations [31]. More specifically, under a coordinate transformation & = x¥'(x), the modeling Eqs. (2.1) and (2.2) keep the
same form in the transformed space:

V' x E +iouH =0, 3.1)
V' xH —iweE =0, (3.2)
where all new variables are given by
/(] - 1) _ )4
E(X)=A"Ex), HX)=ATHX), A=Ay, Aj=Z! (3.3)
]
and
W) =AuAT jdet(A), & (X) = AeAT /det(A). (3.4)

Combining Egs. (3.1) and (3.2) into an equation involving just one unknown E’, we obtain:
V' x ((u')”v’ x E’) — w?¢E =0, (3.5)
whose weak formulation is to find E' € Ho(curl; Q') such that

b(E,¢)= () 'V xE V' x ¢) — 0 (€E,¢) =0 V¢ € Ho(curl; Q). (3.6)

3.2. The posterior error estimate

We use the recovery type a posterior error estimator

1/2
n= (Znﬁ) : (3.7)

KeTy

where

3 3 172
e = (SB_KZ(Eh(Xi) —R(En(x:)) %Z (V x Ep(%:) — R(V x Eh(xi)))2> : (3-8)
i=1

i=1

Here x; (i =1,2,3) denote the midpoints of those three edges of element K.
For any function u € H(curl; Q), denote

12
Sk & S
0l cunt = (;Zlu(&»)f + KZW X U(X;) ) . (3.9)
i=1

Theorem 3.1. Under the same assumptions as Theorem 2.2, if there exists a constant c(E) > 0 such that

IE — E|l, cunt > C(E), (3.10)
then there exists a constant C > 0 independent of h such that

R( E
w—l < Ch. (3.11)
‘E Ey, ‘ |lz curl

Proof. By Theorem 2.2, the definition (3.8), and the assumption (3.10), we have

|HR(E’1) _Ehle.curl
‘ HE - Ehle.curl

which completes the proof. O
Theorem 3.1 shows that # is an asymptotically exact error estimator.

1)< HE_R(Eh)le,curl <
HE 7Eh||lz.curl

N

Ch, (3.12)
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3.3. The adaptive finite element algorithm
The adaptive finite element algorithm for our cloaking simulation consists of the following steps:

Step 1. Solve (3.6) for the finite element solution E; (for simplicity we drop the prime in the rest of the paper) on the mesh
Th.

Step 2. For each edge mid-point x. shared by two elements K; and K,, calculate the postprocessed values
R(En)(xe) = 3 (En(Xe)lk, +Eh(xe)|,<z> and R(V x Ep(x.)) =1 (V x En(Xe)l, +V x En(Xe)ly, )-

Step 3. For each element, compute the récovery posterior error estimator 7, given by (3.8). UsSe it to direct how mesh gets
refined and return to Step 1 until the error is within a given error tolerance.

There are many mesh adaptivity algorithms developed over the years, here we use a triangular mesh adaptivity algorithm
that combines a posteriori error estimator with centroidal Voronoi-Delaunay tessellations (CVDT) of 2-D domains. In recent
years CVDT has become a popular method to generate an adaptive mesh [13,14,22]. The CVDT method has two nice features:
the solution errors are very well distributed over the triangles; the patch of each interior edge of the CVDT mesh forms nearly
a parallelogram, which property leads to superconvergence [19,20]. Similar superconvergence estimates have been proved
(e.g., [2]) for elliptic problems solved by piecewise linear finite elements on meshes where most pairs of triangles sharing a
common edge form approximate parallelograms.

3.4. The PML equation

To restrict the wave propagation to a bounded domain, we adopt the perfectly matched layer (PML) concept originally
introduced by Berenger [5] and further studied by many researchers (e.g., [3,6]).
The weak formulation of PML equation in the PML domain Q,,, is given as [32]: Find u € Ho(curl; Q) such that

%“WWFié [AV xu-V x ¢ —Bu-y]dx =0 Vi € Ho(curl; Q) (3.13)

where A =1/(d(x)d(y)), B = diag (%,%) Moreover, the stretching function d(x) = 1 +io(x), and the absorption function
o(x) is usually chosen as a polynomial fiinction of the distance from the PML interface.

4. Numerical results

In this section, we present five numerical examples to justify our theoretical analysis and demonstrate the effectiveness of
our adaptive edge element method used for cloaking simulations,

Example 1. This example is used to validate our theoretical analysis. For simplicity, we consider the domain
Q =[-1,1] x [-1,1]. To rigorously check the convergence rate, we construct the following analytical solution of (2.4) with
k=1:

E(x,y) = (cos(mx) sin(my), — sin(7x) cos(my))’,

which corresponds to a right hand source term
F(x.y) = (2n? — 1) cos(mx) sin(my), — (272 — 1) cos(my) sin(nx))r.

It is easy to see that the solution E satisfies the condition V - E = 0 in Q and the PEC boundary condition (2.5).

The obtained errors in the standard L, norm and the discrete [, norm are presented in Tables 4.1 and 4.2, respectively.
Table 4.1 justifies the classical convergence result stated in Theorem 2.1. Results in Table 4.2 clearly show the
superconvergence rates O(h?) for both ||E — R(Ep)l);, and ||V x E — R(V x Ep)||,,, which are consistent with Theorem 2.2.

Example 2. This example is used to check the effectiveness of our a posterior error estimator (3.8) using an analytical solu-
tion. We consider the non-convex L-shaped domain Q = [-1,1]*\ (0,1) x (—1,0), and solve (2.4) with k = 1 and an exact
solution given in polar coordinate system:

E(r,0) = V(r’sin(0)),

where 8 = 2/3. Note that the analytical solution E has a singularity at the re-entrant corner (0,0) and only has regularity
(H%’é(Q))z, where 6 > 0 is a very small number. Here we use the posterior error estimator #, given by (3.8) to guide our adap-
tive finite element method. The obtained adaptive meshes and the convergences are illustrated in Fig. 4.1, where DoFs de-
note the total number of degrees of freedom (DoFs).

Example 3. This example is used to check the effectiveness of our a posterior error estimator (3.8) for an inhomogeneous
medium problem. We choose domain Q = [-1,1]*, @ = 1, and the permittivity and permeability as follows:
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Table 4.1
Example 1. The L, errors of E obtained on uniformly refined triangular meshes.
Meshes ||E — Epllo Rate [V x (E - Ep)||o Rate
h=1/4 0.32298018117 - 1.61376416199 -
h=1/8 0.16065007694 1.0075 0.81852582872 0.9793
h=1/16 0.08020204442 1.0022 0.41073945140 0.9948
h=1/32 0.04008505709 1.0005 0.20555495590 0.9986
h=1/64 0.02004051420 1.0001 0.10280065248 0.9996
Table 4.2
Example 1. The discrete I, errors of E obtained on uniformly refined triangular meshes.
Meshes [[E — R(Ep)||y, Rate [[V x E—R(V x Ep)|l, Rate
h=1/4 0.24025530848 - 1.61376416199 -
h=1/8 0.06330436740 1.9241 0.81852582872 1.9085
h=1/16 0.01609920045 1.9753 0.41073945140 1.9701
h=1/32 0.00405015056 1.9909 0.20555495590 1.9890
h=1/64 0.00101514630 1.9962 0.10280065248 1.9954

(c)

IIE= Eh”curl

—o— E=REDI, .\
2
—~A— estimator n

uniform
N—1/2

Dofs

(d)

Fig. 4.1. Example 2. (a) The initial mesh; (b) the mesh after 2 adaptive refinements (668 DoFs); (c) the mesh after 4 adaptive refinements (5682 DoFs) and
(d) comparison of errors on uniformly refined meshes and adaptive meshes.
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Fig. 4.2. Example 3. (a) The initial mesh (1328 DoFs); (b) the adaptive mesh after 2 refinements (2807 DoFs); (c) the adaptive mesh after 4 refinements
(66,329 DoFs) and (d) the errors obtained on uniformly refined meshes and adaptive meshes.

e (1 +Xx* Xy _ 1
S\ xy 142 ) F=1iesy
such that (2.3) has an exact solution
y
24+y24+0.02
E— (x +y7;r )
x2+y2+0.02
Note that the solution E satisfies the condition V - E = 0 in Q. The source term of (2.3) is obtained by this exact E. Selected

adaptive meshes and the errors are illustrated in Fig. 4.2. Note that the adaptive meshes match the behavior of the analytical
solution E, which is shown in Fig. 4.3.

Example 4. Here we solve a cylindrical cloaking problem designed by Pendry et al. [33]. We select the domain
Q =[-2,2] x [-2,2], a cloaked object is put inside a perfectly conducting cylinder with radius R; = 0.3 m, then the cylinder
is wrapped by a cylindrical cloak with thickness R, — Ry, where R, = 0.6 m. The cloak is made with a metamaterial, whose
permeability and permittivity are given by Li and Huang [26]: For any R; <1 < R, 0 < 6 < 2,
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Fig. 4.3. Example 3. The exact solution E.

p=1/det(A),
(R —Ri\? R —Ri\> R \ ..
Exx = ( R, ) +<1+2< R, > R, sin” 0| u,
R, — Ry R
<1+2< R ) R)sm@cos@}u,

[ 2
€y = <R2R_2R1> + ( ( - R1> cos? 0} L,

€y = Epx = —

where

R, — Ry 2 r

A) = . .
det(A) ( R ) —-
To model the cloaking phenomenon, we use a PML around the outside of the physical domain. More specifically, here our

PML domain is chosen to be Q\ [-1.5,1.5] x [-1.5,1.5]. The absorption function ¢(x) is chosen as a linear function, i.e.,

1, if x| > 1.75,
o(x) =4 4(]x| - 1.5), if 1.5 < |x] <1.75, (4.1)
0, if x| < 1.5.

The cloaking simulation obtained using our adaptive method is illustrated in Fig. 4.4, which shows clearly that our adap-

tive algorithm works effectively.

Example 5. Encouraged by our adaptive results obtained for the cylindrical cloak. We further apply the adaptive algorithm

to a triangle cloak, which is more challenging, since we have sharp corners in this case.
For this example we choose the domain Q = [-2,2] x [-2, 2], the cloaked object is put inside a PEC triangle, whose
vertices are a sm 2ENT cog 201T) , i=1,2,3. Then this triangle is wrapped by a triangular cloak, whose vertices are given
- ) =1,2,3, where a = 0.2 and b = 0.6 are the radii of the circumcircles of the inner and

by points b(sm AT cog 21T
outer triangles respectlvely The permeability and permittivity of the cloak are given by Wu et al. [37]:

bu = |m? +am; 3 ai?my + <g cos <(2i - ])n>>2xz i 1
ri|ri 2 3 4
am (y sin ((Zigl)”) + X C0S (M» a? sin (g) cos <(2' 1) )(x2 +y%)
2i-1)m . 2
&y = |m? + 2amym, : (‘m) X+ <am2 sin((2'_3])n)> X ;_;yz U,
where m; =24, m, = cosZ, and r; = ycos(2' L )+xsm(( umyi—1,2,3
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Fig. 4.4. Example 4. (a) The initial mesh (2956 elements, 4351 DoFs); (b) the real part of E obtained on (a); (c) the mesh after 4 refinements (6390 elements,
9498 DoFs); (d) the real part of E obtained on (c); (e) The real part of E after 10 refinements (29,110 elements, 43,551 DoF) and (f) the real part of E after 16
refinements (156,443 elements, 234,504 DoFs).
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The obtained cloaking simulation is illustrated in Fig. 4.5, which demonstrates that our adaptive algorithm works
effectively even when the cloak has sharp corners.

()

1.5

Ik,

e) f)

Fig. 4.5. Example 5. (a) The initial mesh (4126 elements, 6097 DoFs); (b) the real part of E obtained on (a); (c) the mesh after 5 refinements (12,343
elements, 18,417 DoFs); (d) the real part of E obtained on (c); (e) The real part of E after 9 refinements (35,624 elements, 53,328 DoFs) and (f) the real part of
E after 14 refinements (145,806 elements, 218,582 DoFs).
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Fig. 4.6. Example 6. (a) The initial mesh (3026 elements, 4460 DoFs); (b) the real part of E obtained on (a); (c) the mesh after 4 refinements (6972 elements,
10,374 DoFs); (d) the real part of E obtained on (c); (e) the real part of E after 7 refinements (14,966 elements, 22,355 DoFs) and (f) the real part of E after 10
refinements (33,860 elements, 50,688 DoFs).
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Example 6. Our last example is to apply the adaptive algorithm to a pentagonal cloak. For this example, we choose the
domain Q=[-2,2] x[-2,2], and the cloaked object is put inside a PEC pentagon, which has vertices
asin2ir 5” cos 2“’5”" ,i=1,2,3,4,5. This pentagon is then wrapped by another pentagon cloak, whose vertices are
b(sin2V" cos 2T i =1,2,3,4,5, where a = 0.2 and b = 0.6 are the radii of the circumcircles of the inner and outer
pentagons. The cloak’s permeability and permittivity are given by Wu et al. [37]:

H= (m% + Lm]mZ))i],

1]
, cos &l (2i - DY\ \* % +y?
&x = |mM] + 2amym; 7y+ am; cos u,
ri|r| 5 r‘ll
am;m, (y sin <(2 ) + X COS ((2‘ )L )) (am,)? sin ((2 1) )cos ((2' L)L )(x2 +¥2)
oy = &1y = —
&y = |m? +2amym sin &5t X+ ( amysin Q- 1w\ % +y?
W R \r1| 2 5 r
where m; =29, m, = cos(Z), and r; =y cos (2Z7) 4 xsin (#57), i=1,2,3,4,5.

For this example, we also obtained excellent cloaklng phenomenon illustrated in Fig. 4.6, which further demonstrates that
our adaptive algorithm works effectively for this pentagonal cloak.

5. Conclusions

In this paper, we present an efficient adaptive finite element method for the time-harmonic Maxwell’s equations. The
mesh adaptivity is guided by the recovery type a posteriori error estimator based on the superconvergence result proved
for the lowest triangular edge element. Various numerical experiments are carried out and demonstrate that our method
works effectively even for cloaking simulations where the permittivity and permeability are highly anisotropic coefficients.
Rigorous proof of superconvergence in this case is very technical compared to the constant coefficient case, detailed proof
will be given in a separate theoretical paper.
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