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In this article, we consider the time-dependent Maxwell’s equations modeling wave propagation in meta-
materials. One-order higher global superclose results in the L? norm are proved for several semidiscrete
and fully discrete schemes developed for solving this model using nonuniform cubic and rectangular edge
elements. Furthermore, L superconvergence at element centers is proved for the lowest order rectangular
edge element. To our best knowledge, such pointwise superconvergence result and its proof are original, and
we are unaware of any other publications on this issue. © 2011 Wiley Periodicals, Inc. Numer Methods Partial
Differential Eq 28: 1794-1816, 2012
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. INTRODUCTION

The metamaterials we are interested in are those artificially constructed electromagnetic nanoma-
terials with negative refraction index. The successful demonstration of such metamaterials in 2000
triggered a big wave in further study of such metamaterials and exploration of their applications
in diverse areas such as subwavelength imaging and design of invisibility cloak. More details can
be found in monographs such as [1-4] and references cited therein.

Because of the tremendous cost of metamaterials, numerical simulation plays a very important
role in the investigation of wave propagation involving metamaterials. However, simulations are
almost exclusively based on either the classic finite-difference time-domain (FDTD) method or
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commercial packages such as HFSS and COMSOL [5, p. 12]. Because of their limited capabilities
(e.g., FDTD is not well suited for problems involving complex geometries, and COMSOL runs out
memory so quickly for 3D simulations), there is an urgent need for developing more efficient and
reliable software for metamaterial simulations [5, p. 28]. To our best knowledge, although there
are many excellent work for the Maxwell’s equations in vacuum (see, e.g., articles [6—11], books
[12—14], and references cited therein), there is not much work devoted to the development and
analysis of finite element methods (FEMs) for the Maxwell’s equations involving metamaterials.
Fernandes and Raffetto [15, 16] initiated the study of well posedness and finite element analy-
sis for time-harmonic Maxwell’s equations involving metamaterials. In recent years, we made
some initial effort in developing and analyzing some FEM for time-domain Maxwell’s equations
involving metamaterials [17-19].

In our recent numerical experiments [17, 18], we found that superconvergence phenomena exist
for metamaterial simulations using FEMs. It is well known [20-22] that superconvergence results
often happen when the underlying differential equations have smooth solutions and are solved
on very structured meshes such as rectangular grids or strongly regular triangular grids. Many
excellent superconvergence results have been obtained for elliptic and parabolic problems (e.g.,
[23-26]). However, there exist not many superconvergence results for Maxwell’s equations. In
1994, Monk [27] obtained the first superconvergence result for Maxwell’s equations in vacuum.
Later, Brandts [28] presented another superconvergence analysis for 2D Maxwell’s equations in
vacuum. Also, Lin and Coworkers [29-31] systematically developed some global superconver-
gence results using the so-called Lin’s integral identity technique [21,32-34] developed in early
1990s. In 2008, Lin and Li [35] extended the superconvergence result for the vacuum case to
three popular dispersive media models. However, all existing results are limited to semi-discrete
schemes and obtained only in the L2-norm. Here, we extend our previous work [35] to the meta-
material case. Superconvergence results are obtained for both semidiscrete and fully discrete
schemes based on nonuniform cubic meshes. Furthermore, the present results are improved in
that the convergence constant depends on time linearly, instead of exponentially because of the
use of Gronwall’s inequality.

In this article, C > 0 denotes a generic constant, which is independent of the finite element
mesh size & and time step size t. We also introduce some common notation [14]

H(div;Q) = {v e (L*(Q)’; V-ve (LY (Q)},
H(curl; Q) = {v e (L*(Q))* V xve (L} (Q)},
Hy(curl; Q) = {v € H(curl; 2); n x v =0o0n0dR2},
where @ > 0 is a real number, and Q2 is a rectangular-type domain in R* with boundary 9<2.
Let (H%(R2))? be the standard Sobolev space equipped with the norm || - ||, and seminorm
| - |o. Specifically, || - |lo will mean the (L2(£2))*-norm. We equip H (curl; Q) with the norm

Ivllg.curl = (IvII§ + llcurl v]|§)"/%. For clarity, in the rest of this article we introduce the vector
notation

LX) = (LX), H*Q) = (H(Q)’.

The rest of this article is organized as follows. In Section II, we present the governing equa-
tions for metamaterials. In Section III, we develop two different semidiscrete schemes and prove
the superclose results for both schemes. Then, in Section IV, we present a fully discrete scheme
and its superclose analysis. Because of some major differences between the 2D and 3D cases,
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1796 HUANG, LI, AND LIN
in Section V, we extend the 3D results to 2D. Especially, we prove the L* superconvergence at

element centers for the lowest order rectangular edge element. Finally, we conclude the article in
Section VI.

Il. THE GOVERNING EQUATIONS
The governing equations for modeling wave propagation in metamaterials are [19]:

oE

@ =VxH-J inQx(.T). @
oH .

MO?:—VXE—K, in 2 x (0,7), 2)

8.J s

o +Ted =@ B, inQx0,7), 3)

K ) .

— T TnK = ooy H,  inQx (©0,7), @

where € and (1, are the permittivity and permeability in vacuum respectively, w,. and @,y are
the electric and magnetic plasma frequencies, respectively, I'. and I'y, are the electric and mag-
netic damping frequencies, respectively, E (x,t) and H (x, t) are the electric and magnetic fields,
respectively, and J (x, ) and K (x, t) are the induced electric and magnetic currents, respectively.
For simplicity, we assume that the boundary of 2 is perfect conducting so that

nx E=0 onodLQ, 4
where n is the unit outward normal to 0<2. Furthermore, we assume that the initial conditions are

E(x,0) = E¢(x), H(x,0) = Hy(x), (6)
J(x,0) = Jo(x), K(x,0)=Ky(x), (7N
where Ey, Hy, J, and K, are some given functions.

To simplify the presentation and numerical simulation, we first rescale the governing equations
(1)—(4). By introducing the notation

= = ~2 2 =2 2
P = Fn/éotro, I'e = Ten/€o o, 0 = €0ltowpy,, @ = €0lhoWpes

E=JemwE, H=wH, J=ulJ, K-=/auK,

it is not difficult to check that the Egs. (1)—(4) can be written as

oF VxH-J (8)
—_— = X —J,

o7

oH L

o7
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-t I.J =&E, (10)
0K - - .
W—i—FmK:J)ZmH, (11)

which have the same form as the original governing equations (1)-(4) if we set €g = o = 1 in
(1)—(4). In the rest of this article, our discussion is based on the nondimensionalized form (8)—(11)
by dropping all those tildes.

We like to remark that solving the metamaterial model (8)—(11) is quite challenging, because
the governing equations cannot be reduced to a simple vector wave equation as in vacuum. Solving
(10) yields

t ~
Jx,t)y=eT' Jo+ a)gf e "I E(x,5)ds = — f + J(E). (12)
0
Similarly, from (11) we have

t ~
K(x,t)=e™Ky+ / e ™I H(x,5)ds = —g + K(H). (13)

0

Differentiating (8) with respect to ¢ and substituting (9) and (12) into it, we obtain
O=E,—-VxH +],

t
=E,+VXxVXE+VxK+oE-T, (ﬂe’]o +w§/ e‘Fe(’_”E(x,s)ds> . (14)
0

Taking curl of (13) and substituting (8) into it, we have
t
VxK=eTVxK, +a)12n/ e MU= (E, + I(x,s)ds. (15)
0

Then replacing J of (15) by (12) and substituting the result into (14), we can obtain an equation
involving one variable E. As the resulting equation is so complicated, it is not a good idea of
solving just one variable for the Maxwell’s equations when metamaterials are involved. Hence,
we better resort to the mixed FEM instead of the standard FEM.

lll. 3D SUPERCLOSE ANALYSIS FOR SEMIDISCRETE SCHEMES

In this section, we will discuss two different ways of solving the Maxwell’s equations involving
metamaterials. One way is to solve (8)—(11) directly. Another way is to reduce the system of
(8)—(11) to two unknowns by using (12) and (13), i.e., in the integral-differential equation form:

OE z
oH 2
= =" VxE-K(H) +g a7
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1798 HUANG, LI, AND LIN

To design our mixed FEM, we partition © by a family of regular cubic meshes T" with
maximum mesh size k. Consider the Raviart-Thomas-Nédélec cubic elements (e.g., [36] and [ 14]):

U,= {W e H(div; Q) 1 ¥,lx € Ora—1x-1 X Or—thi-1 X Qr—14-14» YK € Th} s
Vi={¢, € Hcurl: Q) :  ¢,lx € Qrotux X Qua—1h X Quas—1» VK €T"}.

Here, Q; ;« denotes the space of polynomials whose degrees are less than or equal to i, j, k in
variables x, y, z, respectively. It is easy to see that

VXV;,CU;,. (18)

For superclose analysis, we need to define two operators. The first one is the standard
L*(2)-projection operator: For any H € L*(Q), P, H < U, satisfies

(PhH—H,ilfh)ZO, thEUh.

Another one is the Nédélec interpolation operator IT,, which is defined as: For any E €
H(curl; ), IT, E € V,, satisfies [36, p. 331]:

f(E “MLE)-tqdl =0, Vge P ()i=1,... 12,
li
/ ((E—-IILE) xn-qdo =0, Vq & Qr_2;-1(0;) X Or_1x-2(03),i =1,...,6,
/(E —I4E) -qdK =0, Vq € Qr1j-2k-—2 X Qr—ap—1jh—2 X Qr—2k—24—15
K

where /; and o; are the edges and faces of an element K, t is the unit tangent vector along the
edge /;, and n is the unit normal vector on face o;.
Furthermore, our superclose analysis depends on the following two fundamental results.

Lemma 3.1. [30, Lemma 3.1]. On any cubic element K, for any E € H*™*(K), we have
/KV X (E = ,E) - ydxdydz = OW* )| Ellax ¥ llox, V¥Ix € Un(K).
Lemma 3.2. [30, Lemma 3.2]. On any cubic element K, for any E € H*! (K), we have
fK(E — I, E) - ¢dxdydz = O | Ellesi kIdllok.  Vdlx € Vi(K)

Note that in [30], the results of Lemmas 3.1 and 3.2 were stated for the whole domain €2. But,
the proofs of [30] actually show that the results hold true element-wisely. Readers can consult
the original proofs of [30] and our detailed proof for rectangular elements presented in Section
V. Below, we will discuss two different ways of solving the Maxwell’s equations (8)—(11).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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A. The Semidiscrete Scheme for an Integral-Differential Formulation

The first way is to solve the system (8)—(11) in the reduced integral-differential equation form:

IE z
S =VxH-JE) ], (19)
aH >
o = —-VxE—-K(H)+g. (20)

Assuming existence of smooth solutions to (19) and (20), we can obtain its corresponding
weak formulation: For any ¢ € (0, T], find the solution (E, H) € Hy(curl; Q) x L*(S2) such that

(E..¢) — (H,V x ) + (J(E).$) = (f.4). V¢ e Hy(curl; ), 1)
(H, )+ (V x E,¥) + (K(H),¥) = (2.9), V¢ € L), (22)

with the initial conditions
E(x,0) = Eq(x), H(x,0) = Hy(x), VxeQ. (23)

Note that the above derivation used the Stokes’ formula
/Vx¢~de=/¢-Vdex+/n><¢~Hds. (24)
Q Q 0Q

Let Vg ={veV,:vxn=0o0n0dR}. Now we can construct a semidiscrete mixed FEM for
solving (21) and (22): For any ¢ € (0, T1, find the solution (E", H") € V! x U, such that

(E.¢,) — (H".V x §,) + (J(E").9,) = (/.4,). Vo, € V), 25)
(H!9,) + (Y x E" ) + (KH").¥,) = (.9,). V¥, €Uy, (26)
with the initial conditions
E"(x,0) =T,Eo(x), H"(x,0) = P,Hy(x), VxeQ. 27
For this scheme, we have the following superclose result:

Theorem 3.1. Let (E, H) and (E", H") be the analytic and finite element solutions of (21) and
(22) and (25) and (26) at time t € (0, T, respectively. Under the regularity assumptions

E, € L¥0,T; H"'(Q)), E € L®0,T; H"(Q)),

where k > 1 is the order of the basis functions in spaces U, and V. Then, there exists a constant
C > 0 independent of the mesh size h but linearly dependent on T, such that

ITT,E — E"|| +PH - H"|

Lo L @) Lo, L% @)

k+1
<
< CH* (1B 1y + VB D o2 )
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1800 HUANG, LI, AND LIN

Proof. Denote £ = I1,E — E",n = P,H — H". Choosing¢p = ¢, =& and ¢ = ¢, = nin
(21) and (25), (22), and (26), respectively, and rearranging the resultants, we obtain the following

error equations
En8) — (Y x &) + (J(),6) = (IL,E — E),.&) — (P,H — H,V x £)
+ (J(N,E — E).¢),

M) +(V x&,n)+ (sz(n),n) =((PH - H),,n)

+(V x (T,E — E), ) + (K(P,H — H), 7).

Using the L2-projection property, and the fact that V x V, C U}, we have

1d

5 2 (615 + 1) + (J©).8) + (K. 1)

< (ILE — B),,&) + (J(L,E — E),&) + (V x (I,E — E),n).

By Lemma 3.2 and the Cauchy-Schwarz inequality, we have

(LE = E),§) < CHYE oo o IE o2 e

and

GLE — E).&) = o f ¢TI, E — E.£)ds
0

t
waf e CH Y Ellgsa € llods
0

< CHE| &1

Lo H @) 'S Moo, L2 ()

where in the last step we used the estimate

t
/ eTerogs = Loy < L
o r r

€ €

and absorbed the physical parameters w, and I'. into the generic constant C.
Similarly, by Lemma 3.1 we have

(Vx (IE - E),n) < CK|E| Il

rooo.r: H ) oo LA @)

(28)

Integrating (28) from O to ¢, using the fact that £(0) = 7(0) = 0 and substituting the above

estimates into the resultant, we obtain

1(IIE(I)II2 + In@g) <t-Ch™! (IIE [ 13
2 o T 1Mo} = oo, H* ' (@) 15 oo 0,7: L% @)

HIEN o 0.0, B4 oy 18l o 0.7 L2 T ”E”LO%OI;H"”(Q))”r’”LOO(o,T;LZ(Q))) ’
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where we used the inequality

/ J&).8)dt = 0, / (K (). m)dt = 0, 29)
0 0

which results from Remark 3.1.
Finally, using the arithmetic-geometry mean inequality (ab < %az + 8b?), then taking the
maximum with respect to ¢, we have

€12 + il e (A +IEI? )

reo,7: L% @) L1 L7 @) — e, H () Lo, H (@)

where C is linearly dependent on T2. The proof completes by using the triangle inequality and
the standard interpolation and projection error estimates. ]

Remark 3.1. According to [37, (1.2)], a real-valued kernel B(r) € L(0,T) is called
postive-definite if for each T > 0, 8 satisfies

T t
f </>(t)/ Bt —s)¢(s)dsdt =0, V¢ e C[0,T]. (30
0 0
From Plancherel’s theorem, for any kernel 8 € L,(0, 0o), (30) holds if and only if

/ooﬁ(t)cos(at)dt >0, Va>0. 31D
0

It is easy to check that the kernel B(¢) = e’ satisfies (31), hence the § in Jisa positive-definite
kernel.

Remark 3.2.  Applying the interpolation estimates and inverse inequality to the superclose
result, we can easily obtain the following optimal L* error estimate

h h k
IE—E ||L°O(0,T;L°°(Q)) +IIH - H ||LO°(0,T;L°°(Q)) = Cn".

Using the postprocessing operators fIZh and IT,, defined in [30, 35], we can achieve the
following global superconvergence result:

< Chk+l.

2 h
T E — E*|| reor: L3 @) =

h
oLy T 1T H — HY|

B. The Semidiscrete Scheme for a Pure Differential Formulation

Here, we consider a semidiscrete scheme for solving the system (8)—(11) directly. Its correspond-
ing weak formulation is as follows: For any ¢t € (0, T], find the solutions E € Hy(curl; 2),
J € H(curl; Q), H, and K € L*(R2) such that

(E..¢) — (H.V x ¢) + (J,$) =0, V¢ € Hy(curl;2), (32)
(H,¥)+ (VX E,¥)+ (K, ¥)=0, Yy eL*(Q), 33)
(Jo$) +Te(J. $) — 0} (E.$) =0, V¢ € H(curl; Q), (34)
(K0 %) + Tn(K, ¥) — 0l (H, %) =0, Vi € L*(Q), (35)

with the initial conditions (6) and (7).

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1802 HUANG, LI, AND LIN

We can construct a semidiscrete mixed method for solving (32)—(35): For any ¢ € (0, T], find
the solutions E”" € V9, J" € V,,, H", K" € U}, such that

(El.¢,) — (H".V x¢,)+ (J".¢,) =0, V¢, eV, (36)
(H.¥,)+( xE" ¢+ K" ¥,)=0, V¥, U, (37)
(J1.¢4) +Te(J". ;) — 02(E", $,) =0, Vg, €V, (38)
(K" ¥,) + Tu(K", ¥,) — 2 (H" ¥,) =0, V¥, € U,, (39)

with the initial approximations

E)(x) =T1,E¢(x), H}(x)= P,Hy(x),
Jox) = Jo(x), Ki(x) = P,Ko(x).

For this scheme, we have the following superclose result:

Theorem 3.2. Let (E,H, J,K) and (Eh, Hh,Jh,Kh) be the analytic and finite element
solutions of (32)—(35) and (36)—(39) at time t € (0,T], respectively. Under the regularity
assumptions

E.J,,J € L0, T; H(Q)), E e L®0,T;H""*(Q)),

where k > 1 is the order of the basis functions in spaces U, and V. Then, there exists a constant
C > 0 independent of the mesh size h but linearly dependent on T, such that

IT,E — E"| + | P,H — H"|

reo,7;:L% @) L0, T'Lz(Q))

1 n h
- aTe”HhJ I eoriLiey T ”P"K L PSS AT

k+1
<
<Ch (||E,||Lw<0m B e T o 1 0 FVE o 20 FI e oo Hk+1(9))).

Proof. Denote & = II,E — E",n = P,H — H", E =110 —J", and 7 = P,K — K".
Choosing ¢ ¢h = £ in (32) and (36), ¥ = ¥, = n in (33) and (37), ¢ ¢,, = E in (34) and
(38), and 1ﬁ 1ﬁ » = 1 in (35) and (39), respectively, and rearranging the resultants, we obtain
the error equations

&.6) — .V x &) + (£.&) = (ILE — E),.§) — (P,H — H,V x &) + (I, J — J.%),
M) + (V x &) + (in) = (P.H — H),.n) + (V x (IL,E — E),n) + (P,K — K. 1),
E.6) + TG, 8) — l(6.6) = (I d — D). &) + Te(yJ — J.&) — }(ILE — E.§),
(2 1) + T (7. 1) — 0, (0, 7)) = (PuK = K),.7) + Tn(P,K — K. 7)) — o, (P, H — H. 7).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Dividing the last two equations by w? and w?, respectively, then adding the above four equations
together, we obtain

1 d 2 2 [ 2 1 ~12 Fe =02 Fm -2
EE(”5””””””6(7”5“”67”””0 +w—§||$||0+w—2||’7||o

€ m m

= (E — E), &) + (I, J — J,6) + (V x (I,E — E),n)
1 . T, ~ ~
+ E((HhJ - Dné) + E(Hh.] - J.§) - (,E - E,§), (40)

where we used the L2-projection property in the above derivation.
Using Lemmas 3.1 and 3.2 and the Cauchy-Schwarz inequality, we have

(MLE — E)0.§) < CHNEN o i1 o) 1 e 0. L2 0

k+1
(M d = J,8) = CH TN e JE Do L2 ey

k+1
(V x (,E = E), ) < CHYEN g 10,120

1 z 1 k1
E((Hh.] —Dé) = pel Ch |1l

e

oo H @y €l 1L @)’

Fe HJ_J’é <Fe Chk+| J pat
075( " B =g (CAVISIYS ; SEESL LSS LSS

€

P k+1 £
(ME — E,§) < CHMEN o g o 1€ e 0120

Substituting the above estimates into (40) and following the same technique as we used in
Theorem 3.1, we obtain

1 - 1
£ 1> + lInll? +E”§”2 +w—2||n||2

roo.r:L @) L©.1;:L* @) L.1:L* @) ro©.1;:L* @)

= Cr?* (JIE, 12 + 112

e, H (@) L. H (@)

+IEI + I ).

L. H @) L. H" @)

where the constant C is linearly dependent on T2. ]

Remark 3.3. The same remark as Remark 3.2 holds true for this case.

IV. 3D SUPERCLOSE ANALYSIS FOR FULLY DISCRETE SCHEMES

To define our fully discrete scheme, we divide the time interval (0, 7') into M uniform subintervals
by points 0 = #) < t; < --- < tyy = T, where t,, = mt, and denote the m-th subinterval by
I, = [tyu—_1,tm]. Moreover, we define u™ = u(-,mt) for 0 < m < M, and the notation:

u" — um—l

1
&[um — , ﬁm — _(um + umfl)'
T 2

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1804 HUANG, LI, AND LIN

Now we can formulate the Crank-Nicolson mixed finite element scheme for solving (32)—(35):
Form =1,2,...,M, find E}' € Vg, » eV, H; K} €U, such that

(5.Ey.¢,) — (H, .V x,)+ (] .9,) =0, Vo, eV, (41)
(6 H¥,) + (V x E),¥,) + (K, ¥,) =0, V¥, €U, (42)
(8:73. 1) + Te(T3. 81) — i (E}.6,) =0, Ve, €V, (43)
(8. K ¥,) +Tu(K, ¥,) — 2 (H, ¥,) =0, V¥, €U, (44)

subject to the initial approximations
E)(x) =T, Eo(x), H)(x)= P,H(x), (45
() = TJo(x),  Kj(x) = P Ko(x). (46)
For this fully discrete scheme, we have the following superclose result:

Theorem 4.1. Let (E™,H",J", and K") and (E}', H}', J}', and K}') be the analytic and
finite element solutions of (32)—(35) and (41)—(44) at time t,, respectively. Under the regularity
assumptions

E.J..J € L0, T; H" (), E € L>¥0,T; H"*(Q),
E.,H, J,K,VxE,VxH,eLQ, T;Lz(Q)),

where k > 1 is the order of the basis functions in spaces U, and V ;. Then, there exists a constant
C > 0 independent of the mesh size h but linearly dependent on T, such that

max (|TI,E" — E}

l<m<M

P = B | = g+ P - K

Iy lo

k+1
< A
= CH (1B B 01 DB oy VE D g 2 gy H I o )

+ 1l + IV X Eyl

reeo.r:L* @) reeor:L* @)

2
+Crt (”V X H”||L0°(0,T;L2(Q))

1Kl o2+ Vit 2y + it gL 2 )

Proof. Integrating (32)—(35) in time over I, and dividing all by t, we have

6. E", ) - (% / Hs,V x ¢) + (% / J(s)ds,¢> ~o, 7)
. H", ¥) + (v x %/[m E(s)ds,r//) + (% /[m K(s)ds,¢> —0, (48)
(6.".$) +T. (% /Im J(s)ds,«i) o (% flm E(s)ds,¢3> 0, (49)
K", ) + T, (% f,m K(s)ds, wﬁ) —o? (% /,m H(s)ds, Jf) 0. (50)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Denote " = I, E™ — E}',n) = P,H" — H}/, "’ =I1,J" = J),and j)} = PhK”‘ K.
Subtracting (41)—(44) from (47)—(50) with ¢ = ¢h, v =1, ¢ ¢h, and 1// 1#,,, we can
obtain the error equations

i (5 — (7Y x 8,) + (E. )
— m 1
= (8. (I,E" — E™),¢,) — (P,,H — ;/ H(s)ds,V x (bh)
[lﬂ

om 1
+<Hh.] ——/ J(S)ds,¢h>,
T Im

i (Sen W) + (V< &) + (17 94)
1
= (. (P,H" — H"),¥,) + <V X <1_I/1E - ;/ E(s)ds) J/’h)
Im

+ (PhIZ;” — 1/ K(s)dsnlfh> ,
T Im
iii. (5.8".8,) + T 8,) — 2(E).$))
. w1 ~
_ (Sr(nh.]m _ Jm)’¢h) + I (Hh-] — ;/ J(s)ds,(b,,)
Im
—w? (n,,EZ’ - l/ E(s)ds,c/}h> ,
T Im
iv. (87, 94) + Tl W) — 0 (779
i —m 1 e
= (ST(Pth—Km)a'ph)“‘Fm (PhK _;/ K(S)ds"ph>
[lTI

w1 -
- <PhHh — —/ H(s)ds,lﬁh).
T Im

Choosing ¢, = ré_':, Y, =T, qz;,, = tg,f”, and 1/7,1 = rf;}f in the above error equations, divid-
ing the last two equations by w? and w?, adding the resultants together, and using the property of
operator Pj,, we obtain

[HS 16— &5~ 15 N1 — Ny =115 + (||§ I5 = 157"~"15) + —2(|I~"’I|o — I ~1Ig )]
T(ar(nhEm_E"1),§:1)_T<Hm_;/ H(S)ds,vxgzyl)
I

+r<1'[h ——/ J(s)ds, .§h>+r<Vx<HhE —%/ E(s)ds) >
Im

< ——/ K (s)ds, ’711) (5 (T J™" = J’”),S_;Z”)
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I, | =
> (Hh - = J(S)ds E > (HhEh - —/ E(S)ds,é’;’,”>
We T Jin
Ty
+a)_2< ——/ K (s)ds, nh>—t( ——/ H(s)ds, nh)
10
= ZErr,-. (D
i=1
Now we just need to estimate all Err;,i = 1,...,10. By the Mean-Value Theorem and

Lemma 3.2, we have
Erry = (8, (,E" — E™),&,) = t1((I,E — E),(x,tn, — 07),, )
< T CHNE ot = 0D it [ )y < 7 CH T NE it o 16 e a2
where we introduced the notation

1nllo0 2y = lglnagiw ||El’1n ”0‘

Using integration by parts and the formula [18, Lemma 5.1]

3 m
S%/'WMWIWGW@hﬁQL
1,

”l(u(-,tm_l>+u(~,rm)> ! / " wdr
2 T

In—1

0 m—1
(52)
we obtain
el /) 1 om el /) 1 om
Em, =1 <H — —/ H(s)ds,V x $h> =T (V x H — —/ V x H(s)ds,éh)
T Im T Im
73 vz
<o (5 [ v xmois) 1€,
Im

3
< —
=3 IV x Htt”Loc(oyT;Lz(Q))”sh“lOO(Lz)'

Using the inequality (52) and Lemma 3.2, we have

zm 5m 3 m l om
Err3:t<l'IhJ -J +J —;/ J(s)ds,gh)
Im

3
T
k+1
= (T CH M oo o 4 @) T 5 ”J”||L°°(0,T;L2(Q))) 18illee a2

By similar arguments, we have

—m —m — m 1 —
Eru:t(Vx (I,E" —E +E ——/ E(s)dS),n;">
T Im

3

T
. k+1 _
(r CHYNEN gt gy + 51V E,,nm(oj;Lzm))) o2y,

IA
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and

—m 1 —m 'L'3
Errs =1 <Kh — ;/[. K (s)ds, 7];,) = ?“K”||L°0(0,T;L2(Q))”nhnl&([‘z)‘

Similar to Err;, we have

‘[ m
Errg = —2(51(1_[}1.] —
13

€

= T
k+1
TE) < = O ot g Il
€

Similar to Errz, we have

I,
Err, = (Hu —J+J’——/J@Msé>

w?

€

L - CR T K+ + T—3||J I 2 1€nllj00 2
w2 oo H @) T o Wil L @) | 1511w

€

IA

and
—~m —~mn —~Mn 1 ~
Erg=t|\ILE, —E, + E, —— | E(s)ds,§
T J

3

T ~
k+1
< . J—
= (T Ch ”E”LOO(O,T;H"“(Q)) + ) ||E””L°O(0,T;L2(Q))> ||‘§h||1°<>(L2)~

Similar to Errs, we have

T Fm 73 .
Brry = 2t (K" = 2 | KOsy ) < 230 T 1Kl .12 Vil
and
Errp =7 ( - / H(s)ds, 7 ) =5 ||Hn "LOO(OTL2(Q))||77h”]°°(L2)

Substituting the above estimates into (51), summing up the result fromm = 1toanyn < M

with the fact that
0 0__ £0 _ =0
Ei=m=5&=n,=0,
then using the arithmetic-geometric mean inequality and taking the maximum with respect to n

we obtain

2 2 £ 2 ~ 2
1612 2, + 12z, + 1B s, + Il e,

E 2
HUEN . or B 0)

< ChZ(k+l) ( E
< l ”LM(OTH"“(Q)) +11J ”L°°(0T H" @)

2 4
CT(VXH
o Hm(m)) ot (] o orrzen I 2

+IIJ:

VxE )
HIV X Bl e ARGl o S NEGR o U

which concludes the proof. Note that C linearly depends on T2. ]
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Remark 4.1. Similarly, we can formulate the leap-frog mixed finite element scheme for
1 1
solving (32)—(35): Given initial approximations E{, K, H?, and J?, form = 1,2,..., find
m l m l
E'ev).J, eV, H, ? and KI' € U, such that

E" — E"! m—1 m—t

(%,m) CHEV X8+ (S b) =0, Ve, € VY, (53)
Hm+% _ Hm—%
%nﬁh + (VX E}¥,)+ (K;.¥,) =0, V¥, eU, (54
Jm+% - Jm_% 7 1 m-%—l m—L rt rd It
%,«m + L <§(Jh ‘+ T, 2),¢h) —w (E}.$,) =0, V¢, €V, (55

K" — Km—l - 1 B ol - N
(B ) ra (G + Ky ) b () ) =0, i, < UL 56)
subject to the initial approximations (45) and (46). Combining the above proof techniques with
that developed for the leap-frog scheme [18], we can obtain the following superclose result:

m L mt
max (|1 E" — B} |+ [ PH" 2 — H2 4 [0 = 27+ [ Rk = K7 )

1<m

lo

S C(T2 + I’lk+1).

V. POINTWISE SUPERCONVERGENCE FOR 2D RECTANGULAR EDGE ELEMENTS

In this section, we first show that the superclose results obtained for cubic elements can be
extended to rectangular elements in a two-dimensional domain. Then, we prove the pointwise
superconvergence at the element centers for the lowest order edge element. Note that in the 2D
Maxwell’s equations, one field is a vector, whereas the other one has to be a scalar. Without loss
of generality, we assume that the electrical field E is a vector, whereas the magnetic field H is a
scalar. To make the extension clearly, we define the 2D curl operators:

0H oH\ dE, OJE,
VxH=|—,—), VXE=——-—, VE=(E,E). 57
ay ox ox ay

For a 2D domain 2, we partition it by a family of regular rectangular meshes 7" with maximum
mesh size h. The corresponding Nédélec rectangular elements can be defined as: For any k > 1,

Uy={Yn € L*(Q): Yulxk € Qi1s1, YK €T"},
Vi={¢, € Hcur; Q) : ¢,lx € Qi_1x X Qrs—1, VK € T"}.

Here, Q; ; denotes the space of polynomials whose degrees are less than or equal to i, j in variables
x,y, respectively. It is easy to see that V x V,, C U, still holds.
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For the 2D case, we need to modify the definition for the operator I1, E € V,, as follows:

/(E —I,E) -tgdl =0, Vqe P._(),i=1,...,4, (58)
li

/(E —I4E) -qdxdy =0, VYq € Qr 112X Qr2s4-1, (59)
K

where /; are the edges of an element K, t is the unit tangent vector along the edge /;. Whenk = 1,
I1, E is defined by (58) only.
The 2D superclose analysis depends on the following fundamental results.

Lemma 5.1. Foranyu € H(curl; K) and g € Qyx_1x-1(K),k > 1, we have
/ V x (u —Iyu) - gdxdy = 0.
K
Proof. The proof follows from the Stokes’ formula
/ V x (u—Iu) - gdxdy = (u — Tyu) - tgdl + / (u — Myu) - (V x g)dxdy
K K K
and the property (58) and (59) for the operator IT,. ]

Let P, be the L2-projection operator onto the space U,. Then, we have

Lemma 5.2. Foranyw € L*(K) and ¢|x € Qi_1x X Qri_1,k > 1, we have
f (w— Pyw) -V x ¢dxdy = 0.
K

Lemma 5.3. Let K = [x. — hy,x. + h] x [y, — hy,y. + hy] be an arbitrary rectangular
element. Then for any u € H(curl; K) and ¢|x € Qi_1x X Qrx—1,k > 1, we have

/K (0 — (Maydrdady = O (R [0 |, ok, (60)
fK (U — (M) adxdy = O (B[ 3 s | N lloks (61)
where uy,u, and ¢, ¢, are the two components of u and ¢, respectively. Hence, we have
[ = ) gaxdy = Ol o
Proof. Note that
/K(u — Myu) - pdxdy = /K(ul — (ITyu) ) p1dxdy + '/I;(Mz — (ITyu))rdxdy.

Hence, we just need to consider the first inner product.
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i. First, let us consider the k = 1 case. In this case, ¢; € Oy, by the Taylor expansion, we

obtain

/(”1 - (Hhu)1)¢1dXdy = / (Lt1 - (Hhu)l)[¢1 (xr’ YC) + (y - yc)ay(pl(xca yc)]dXdy
K K

Denote the functions
1 2 2 1 2 2
A =[x =x)? = k], BO) = 5[ — )" = A]].
Note that in the proof below we will constantly use the facts that:
Ax)=0 onx=x.%+h,, B(y)=0 ony=y.h,.

Using integration by parts and the identity d,, B(y) = 1, (58) and (64), we have
/(ul — (IMyu) Ddxdy = / (u; — (ITyu) )0y, B(y)dxdy
K K

Xe+hy
- f () — () ), BOI, dx — / (ur — (TLy),),8, B(y)dxdy
X K

=xc—hy

— / (1 — (Tyu))yy B dxdy = / Bty - B(y)dxdy,
K K

where in the last step we used the fact that (IT,u); € Qo ;.
Similarly, by the identity y — y. = ¢8}(B?(y)) and integration by parts, we obtain

1
/(ul — (M) )(y = yo)dxdy = / (uy — (Iyu)y) - gai(Bz(y))dxdy
K K

Xe+hy 1 Yethy

=/ 0~ (M) - ¢

x=x¢c—hy

82(B*(»)

y=)’(‘—/’ly

1 1
= / (M] - (Hhu)])yy : gay(Bz()’))dXdy = / 8yyl’{l : E(BZ(Y)))rdXdy
K K

(62)

(63)

(64)

1
dr— [ = (M), - G2 ()dxdy
K

Substituting the above integral identities into (62) and using the inverse estimate, we have

/(ul — (IMyu) ) p1dxdy
K
1
_ / Bty - BY) - b (vor y)dxdy + / ot (B0, - 8y90 (xc vy
K K
_ / Byyity - BOY) - [ (s y) — (3 — y0)3, 1 (x, y)ldxdy
K

1
+/ dyylty - §B()’) (Y = Ye) 0y (x, y)dxdy
K
= O(13)l10yyurllox I d1llox-
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By the same arguments, we can have
/ (12 — (M) adxdy = O () [dutts o 19l
K

which completes the proof for the k = 1 case.
ii. Now we consider the proof for k > 2. In this case, ¢; € Q,_;, can be expanded as

’”“(x x)(y Ye)!
ACRIED DD : j“ 810] 1 (xe, o)
i=0 j=0 '
(= ¥ & (= x) (V= vk = (= x)
o > I e + Z 0104 (xe 30

i=0 ’ ’ i=0
By the interpolation property (59), we have

k=1 k=2

/(ul —(nhu)l)zz (x_x) b ]yc) 8,81 (xc, y)dxdy = 0.

i=0 j=

Using integration by parts, the interpolation property (58) and (59), and the identity

k

k=1
(y(k _ycl))! = i BN + P,

where P,_3(y) is a polynomial of degree k — 3, we obtain

I (y B yl‘)k_l — (x - xc)i a,‘ ak_l dxd
K(u| — (Iu)y) - T ; A 0y @1 (xe, ye)dxdy
Xc+hy Yethy k—
— _ = k k—1
_ / = ) (Zk),a‘( o Xoj &2 5161, (o)
_/Kay(”l (Iu)y) - mE))(Bk( ))Z xalvc Ly (e, yo)dxdy
et 2 et i yethy (x—x) iy
—_ / L, o = @ T B yc,,,,,;z—a 9161 (2 yo)dx
+/K3yy(ul (ITyu),) - ma;‘ I(Bk( ))Z raf ]¢1(xc,yc)dxdy

= (- 1)"*'/ 05 (uy (v )Z O X 51y (e yo)dxdy

(Zk)'
O ()85 s o c Nl
where in the last step we used the fact that (IT,u); € Q1.
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Similarly, using the identity 2=2<- “) = (22::;)!8;?“(3"“@)) + P> (y), where P,_»(y) is a
polynomial of degree k — 2, we obtaln

f(u—(nu))-(y_y“)kki:(x %) 5155 by (xes o)
K ] e k! il 11¥e> Ye Y

i=0
= (- 1)”'[ Oy (uy — (Tym)y) - 2 ———(B"'(y), Z )3 1931 (xc, ye)dxdy
(2k +2)! e

= O(H) |05 s |, b o

Combining the above estimates, we have

f () — (M) )rddxdy = O (A1) |05y | il
K

By the same arguments, we can obtain

[(Mz — (Myu))podxdy = O (R\") |05 uy ||0YK||¢2||0,1<,
K
which concludes the proof for the k > 2 case. ]

With Lemmas 5.1-5.3, we can see that Theorems 3.1, 3.2, and 4.1 hold true for 2D rectangular
elements. Below, we want to show that for the lowest order edge element (i.e., k = 1 in U, and
V1), we have one-order higher superconvergence in the L,,-norm at rectangular element centers.

Lemma 54. Let K = [x. — hy,x. + h] x [y. — hy,y. + hy] be an arbitrary rectangular
element. Then for any u € H(curl; K) and I ulx € Qo; x Qio, we have

(u — M) (x, ye) = O(h?). (65)

Proof. For the lowest order edge element Qg; x (Q, the interpolation IT,u of any
u € H(curl; K) can be written as

4

1
Mu(x,y) = Z (ll | / u-t dl) N;(x,y), (66)

where we denote /; the four edges of the element, which start from the bottom edge and orient
counterclockwisely. Furthermore, |/;| and ¢; represent the length of edge /; and the unit tangent
vector along [, respectively. The edge element basis functions /N ; are as follows:

(ethy)—y 0 (ye—=hy)—y 0
N, = 2hy , N,= ( x=(re—hy) > N; = 2hy , Ny= < v (rethy) )
O 2hy 0 2hy
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By (66) and the notation u = (u;, u,)’, we have

Hhu(xc’ yc)

1 Yethy)—ye 1 0
= s Ve —hy)dx - 2h ~ ¢ hxc, dy - Xe—(xc—hyx
th/zlul(x Y ydx Oy +2hy,/l;u2(x +he,y)dy ( (ZhX hy) )

1 ()’c*hy)*}'zf 1 O
—_ upx,ye + h dx . 2,1}' —_ / Uy X, — h)m d : ( Xe—(Xet+hx > ’
Zh// 6+ hy) i i | e ho iy (s

from which we obtain the first component

1 Xc+hy Xc+hx
(/ ui(x,y. —hy)dx—i—/ u|(x,yc+hy)dx>

4hx xe—hy Xe—hy

1 Xe+hy
= 4 (/ [ul(xc,yc —hy) + (x —x)0cu(xe, yo — hy) + O(hi)]dx

Xc—hyx

Xe+hy
+'/ [ul(-xc, Ye + hv) + ()C - xc)axul(-xc, Ye + hy) + O(h)z()]d-x)

xe—hyx

1
= E[ul(xc’ Ye — hy) + M](.X(-, Ye + h))] + O(h)zc)’

where we used the Taylor expansion and the fact that | et

vetiy (x — x.)dx = 0. Using the Taylor
expansion one more time, we can easily see that

1
(M) = un) (e, yo) = Sl (e, e = hy) + 1 (5, Ye )] = w1 (%, ye) + O (B)
= 0(h}) + O(n3).
By the same arguments, we can obtain the same estimate for the second component:

((Tu)s = u2) (xe, yo) = O(h3) + O(h3),

which completes the proof. |

Theorem 5.1.  Let (x.,y.) be the center of a rectangular element K = [x. — h,,x. + h,] X
[ye = hy,ye + hyl, and E" and H" be the lowest order finite element solution of (36)—(39), i.e.,
E'x € Qo1 X Q19 and H"|x € Qoyo. Under the assumption that the L* estimates of T, E — E"
and P,H — H" over element K is below the average over the whole domain Q2 or the L? estimates
are almost uniformly distributed, i.e.,

C
/|nhE—Eh|2dK < —/ I, E — E"dK,
K N Jo
h2 C h2
|P,H — H"?dK < — | |P,H — H"*dK, (67)
K N Jo
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where N denotes the total number of elements over Q2. Then on a quasi-uniform mesh we have
the L™ superconvergence

[(E — E")(xe, vl + |(H — H")(xc, yo)| < Ch?. (68)

Proof. Using the fact that the m-point Gaussian quadrature holds exactly for all polynomi-
als up to degree 2m — 1, and the Cauchy-Schwarz inequality, for the first component of error
I1,E — E" we easily have

|(MLE — E")y(xe, yo)| = ‘ /(HhE Eh)ldde‘

|K]

< L ( / |(MT,E — Ehmzdxdy) ( / 2dxdy>
K| \Jx X

1 1 hy (2 2 2

where we used Theorem 3.1 and the fact that N|K| ~ meas(2) = O(1). Here, we denote |K|
for the area of element K. Similar estimate can be obtained for the second component, i.e.,

(M, E — E")(xe, yo)| = O(h?),
from which and Lemma 5.1, we obtain
(E — E")(x;,y.) = (E — T E)(xc,y) + (ILE — E")(x, y.) = O(h).

Note that for any function f(x, y), by Taylor expansion, we have

IKI/f(X ydxdy — f(xe, ye) = Kl /(f( 2 ¥) = f (X, ye))dxdy (70)

= g T = 0BT (xe30) + (5 = 308, 5030 + O dxdy = 06, 7D
K
using which, the fact that f «(PnH — H)dxdy = 0 and similar arguments used in (69), we have

(H = H")(x,, y0) ~ |K|f<H H"(x, y)dxdy + O(h?)

= % / (P,H — H"(x, y)dxdy + O(h?)
K

1/2 1/2
|1<| ( / |P,H — H"? dxdy) ( / 12dxdy> + O(h*) < Ch?, (72)
K

which concludes the proof. ]

Remark 5.1. By similar arguments, for the fully discrete scheme (41)—(44) we have

max (|(E" = E) (v yo)| + |(H" = HI)(xer y0)|) < CR2 + 7).

I<m<M
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CONCLUSIONS

In this article, we consider the time-dependent Maxwell’s equations modeling wave propagation in
metamaterials. We presented detailed superconvergence analysis for this model solved by several
semidiscrete and fully discrete schemes. We believe that similar 3D L* superconvergence can
happen at the element centers or face centers; hopefully, detailed analysis and numerical results
will be presented in our future article.

The authors thank anonymous referees for their helpful comments that improved the article.
They also thank Professor John Whiteman’s kind help during the review process. This work is
inspired by the IPAM workshop “Metamaterials: Applications, Analysis and Modeling” held at
UCLA during January 25-29, 2010. As Co-chair of this workshop, Jichun Li highly appreciates
IPAM’s kind support for sponsoring this workshop.
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