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Abstract. In this paper we present a rigorous derivation of the material parameters
for both the cylinder and rectangle cloaking structures. Numerical results using
these material parameters are presented to demonstrate the cloaking effect.
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1 Introduction

In recent years, inspired by the pioneering work of Pendry et al. [15] and Leon-
hardt [10], there are lots of work devoted to the study of using metamaterials
(e.g., [5, 7, 11]) to construct invisibility cloaks of different shapes (e.g., [1, 9, 14, 18–20]).
More details and references on cloaking can be found in recent reviews [2, 6]. The ba-
sic principal behind this is the so-called transformation optics [10, 15], which uses the
coordinate transformation to design the material parameters to steer the light around
some regions. Unfortunately, very few papers provided a clear derivation of the ma-
terial parameters so that many researchers wasted a great deal of time on guessing
those parameters and still could not obtain nice cloak results.

The main goal of this paper is to present a rigorous derivation of the material pa-
rameters for both the cylinder and rectangle cloaking structures. Detailed numeri-
cal results are provided to demonstrate our correct derivation and the cloaking effect
achieved using these material parameters. Hopefully these will serve as benchmark
problems so that other researchers can easily reproduce these models and inspire fur-
ther advance in this area.
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2 The mathematical formulation

Modeling of electromagnetic phenomena at a fixed frequency ω is governed by the
full Maxwell’s equations (assuming a time harmonic variation of exp(iωt)):

∇× E + iωµH = 0, ∇× H − iωϵE = 0, (2.1)

where E(x) and H(x) are the electric and magnetic fields, ϵ and µ are the permittivity
and permeability of the material.

A very important property for Maxwell’s equations is that Maxwell’s equations are
form invariant under coordinate transformations [16]. More specifically, under a coor-
dinate transformation x′ = x′(x), the Eq. (2.1) keeps the same form in the transformed
coordinate system [14]:

∇′ × E′ + iωµ′H ′ = 0, ∇′ × H ′ − iωϵ′E′ = 0, (2.2)

where all new variables are given by

E′(x′) = A−TE(x), H ′(x′) = A−T H(x), A = (Aij), Aij =
∂x′i
∂xj

, (2.3)

and

µ′(x′) =
Aµ(x)AT

det(A)
, ϵ′(x′) =

Aϵ(x)AT

det(A)
. (2.4)

2.1 Cylindrical cloak

Following [15], cloaking a central cylindrical region R1 by a concentric cylindrical re-
gion of radius R2 can be done using the following coordinate transformation:

r′(r, θ) =
R2 − R1

R2
r + R1, (2.5a)

θ′(r, θ) = θ. (2.5b)

Since the COMSOL solver is based on Cartesian coordinates, we have to transform
the material parameters given in polar coordinates to Cartesian coordinates. In polar
coordinates, we have

r =
√

x2
1 + x2

2, θ = tan−1 x2

x1
, (2.6)

where we use the traditional notation: a point (x1, x2) in Cartesian coordinate system
corresponds to a point (r, θ) in polar coordinate system.

From (2.6) and the relation x1 = r cos θ, x2 = r sin θ, we can obtain

∂r
∂x1

=
x1

r
= cos θ,

∂r
∂x2

=
x2

r
= sin θ, (2.7a)

∂θ

∂x1
= − x2

r2 = −sin θ

r
,

∂θ

∂x2
=

x1

r2 =
cos θ

r
. (2.7b)
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For the transformation (2.5), by chain rule we can obtain

∂x′1
∂x1

=
∂x′1
∂r′

∂r′

∂r
∂r

∂x1
+

∂x′1
∂θ′

∂θ′

∂θ

∂θ

∂x1
= cos θ · R2 − R1

R2
· cos θ − r′ sin θ ·

(
− sin θ

r

)
=

R2 − R1

R2
cos2 θ +

r′

r
sin2 θ =

R2 − R1

R2
+

R1

r
sin2 θ.

Using the same technique, we have

∂x′1
∂x2

=
∂x′1
∂r′

∂r′

∂r
∂r

∂x2
+

∂x′1
∂θ′

∂θ′

∂θ

∂θ

∂x2
= cos θ · R2 − R1

R2
· sin θ − r′ sin θ ·

(cos θ

r

)
=

R2 − R1

R2
sin θ cos θ − r′

r
sin θ cos θ = −R1

r
sin θ cos θ.

Furthermore, we have

∂x′2
∂x1

=
∂x′2
∂r′

∂r′

∂r
∂r

∂x1
+

∂x′2
∂θ′

∂θ′

∂θ

∂θ

∂x1
= sin θ · R2 − R1

R2
· cos θ + r′ cos θ ·

(
− sin θ

r

)
=

R2 − R1

R2
sin θ cos θ −

(R2 − R1

R2
r + R1

)
r−1 sin θ cos θ = −R1

r
sin θ cos θ,

and

∂x′2
∂x2

=
∂x′2
∂r′

∂r′

∂r
∂r

∂x2
+

∂x′2
∂θ′

∂θ′

∂θ

∂θ

∂x2
= sin θ · R2 − R1

R2
· sin θ + r′ cos θ ·

(cos θ

r

)
=

R2 − R1

R2
sin2 θ +

(R2 − R1

R2
r + R1

)
r−1 cos2 θ =

R2 − R1

R2
+

R1

r
cos2 θ.

From the derived ∂x′i/∂xj, we obtain the transformation matrix

A =


R2 − R1

R2
+

R1

r
sin2 θ −R1

r
sin θ cos θ

symmetric
R2 − R1

R2
+

R1

r
cos2 θ

 , (2.8)

which has determinant

det(A) =
R2 − R1

R2

(R2 − R1

R2
+

R1

r

)
=

(R2 − R1

R2

)2
· r′

r′ − R1
. (2.9)

Substituting (2.8)-(2.9) into (2.4), we obtain the relative permittivity in the transformed
space

ϵ′ =

(
ϵ′xx ϵ′xy
ϵ′yx ϵ′yy

)
=

AAT

det(A)

=
1

det(A)

 ( R2−R1
R2

)2
+ R1

r
(
2 R2−R1

R2
+ R1

r
)

sin2 θ − R1
r
(
2 R2−R1

R2
+ R1

r
)

sin θ cos θ

symmetric
( R2−R1

R2

)2
+ R1

r
(
2 R2−R1

R2
+ R1

r
)

cos2 θ

 .
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In summary, the material parameters in Cartesian coordinates become as follows:

ϵ′xx =
[(R2 − R1

R2

)2
+

R1

r

(
2

R2 − R1

R2
+

R1

r

)
sin2 θ

]
[det(A)]−1,

ϵ′xy = ϵ′yx =
[
− R1

r

(
2

R2 − R1

R2
+

R1

r

)
sin θ cos θ

]
[det(A)]−1,

ϵ′yy =
[(R2 − R1

R2

)2
+

R1

r

(
2

R2 − R1

R2
+

R1

r

)
cos2 θ

]
[det(A)]−1,

and ϵ′z = 1/det(A). The permeability µ′ has the same formula as permittivity ϵ.

2.2 Square cloak

The same idea as the circle cloak can be used for design of a square-shaped cloak with
inner square width 2S1 and outer square width 2S2. It can be seen that the coordinate
transformation [18]

x′1(x1, x2) = x1
S2 − S1

S2
+ S1, (2.10a)

x′2(x1, x2) = x2

(S2 − S1

S2
+

S1

x1

)
, (2.10b)

mapped the right triangle in the original space into the right-subdomain in the trans-
formed space (see Fig. 1).

(a) (b)
Figure 1: (a) The original space; (b) The transformed space.

It is easy to prove that the transformation matrix in this case is

Ar =

 S2−S1
S2

0

− x2S1
x2

1

S2−S1
S2

+ S1
x1

 , (2.11)

which has determinant

det(Ar) =
S2 − S1

S2

(S2 − S1

S2
+

S1

x1

)
. (2.12)



J. C. Li and Y. Q. Huang / Adv. Appl. Math. Mech., 4 (2012), pp. 93-101 97

Mapping the unit permittivity tensor ϵ = I by (2.4), we obtain

ϵ′r =
Ar AT

r
det(Ar)

=

 ( S2−S1
S2

)2 − x2S1
x2

1
· S2−S1

S2

symmetric
( x2S1

x2
1

)2
+

( S2−S1
S2

+ S1
x1

)2

 [det(Ar)]
−1. (2.13)

Corresponding formulas for the upper, left and bottom sub-domain of the cloak can
be similarly obtained by applying rotation matrix

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
to the right sub-domain with rotation angles θ = π/2, π and 3π/2, respectively.

For the upper sub-domain, we have(
x̃1
x̃2

)
= R

(π

2

)(
x1
x2

)
=

(
−x2
x1

)
,

applying which to (2.10a)-(2.10b), we have the coordinate transformation for the upper
sub-domain as follows:

x̃′1 = −x′2 = −x2

(S2 − S1

S2
+

S1

x1

)
= x̃1

(S2 − S1

S2
+

S1

x̃2

)
,

x̃′2 = x′1 = x1
S2 − S1

S2
+ S1 = x̃2

S2 − S1

S2
+ S1,

which leads to

Au =

 S2−S1
S2

+ S1
x̃2

− x̃1S1
x̃2

2

0 S2−S1
S2

 , det(Au) =
(S2 − S1

S2
+

S1

x̃2

)
· S2 − S1

S2
, (2.14)

and

ϵ′u =

 ( S2−S1
S2

+ S1
x̃2

)2
+

( x̃1S1
x̃2

2

)2 − S2−S1
S2

· x̃1S1
x̃2

2

symmetric
( S2−S1

S2

)2

 [det(Au)]
−1.

For the left sub-domain, we have the coordinate transformation:

x̃′1 = −x′1 = −
(

x1
S2 − S1

S2
+ S1

)
= x̃1

S2 − S1

S2
− S1,

x̃′2 = −x′2 = −x2

(S2 − S1

S2
+

S1

x1

)
= x̃2

(S2 − S1

S2
− S1

x̃1

)
,

which leads to

Al =

 S2−S1
S2

0
x̃2S1

x̃2
1

S2−S1
S2

− S1
x̃1

 , det(Al) =
S2 − S1

S2
·
(S2 − S1

S2
− S1

x̃1

)
, (2.15)
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and

ϵ′l =

 ( S2−S1
S2

)2 S2−S1
S2

· x̃2S1
x̃2

1

symmetric
( x̃2S1

x̃2
1

)2
+

( S2−S1
S2

− S1
x̃1

)2

 [det(Al)]
−1.

Similarly, we can obtain the coordinate transformation for the bottom sub-domain:

x̃′1 = x′2 = x2

(S2 − S1

S2
+

S1

x1

)
= x̃1

(S2 − S1

S2
− S1

x̃2

)
,

x̃′2 = −x′1 = −x1
S2 − S1

S2
+ S1 = x̃2

S2 − S1

S2
− S1,

which leads to

Ab =

 S2−S1
S2

− S1
x̃2

x̃1S1
x̃2

2

0 S2−S1
S2

 , det(Ab) =
(S2 − S1

S2
− S1

x̃2

)
· S2 − S1

S2
,

ϵ′b =

 ( S2−S1
S2

− S1
x̃2

)2
+

( x̃1S1
x̃2

2

)2 S2−S1
S2

· x̃1S1
x̃2

2

symmetric
( S2−S1

S2

)2

 [det(Ab)]
−1.

3 Numerical results

In this section, we present some results obtained by our derived material formu-
las in both cases. Our implementation is based on COMSOL Multiphysics package
(www.comsol.com) for 2-D transverse electric modeling, i.e., by combining (2.2) into an
equation just involving one variable E = Ez:

∇× (µ−1
r ∇× E)− k2

0ϵrE = 0, (3.1)

where µr and ϵr are the relative permeability and permittivity, and k0 denotes the wave
number of free space k0 = ω

√
ϵ0µ0 = ω/c0, here c0 is the speed of light in free space.

The results presented below were carried out using COMSOL installed on a Dell
Latitude D630 laptop with 2GB of RAM and 2.50GHz CPU. For comparison purpose,
all tests are done with 1GHz incident plane wave, quadratic elements, and an efficient
direct solver SPOOLES provided by COMSOL.

3.1 Cylinder cloak

For this test, the cylinder cloak shell is located at r ∈ (0.15, 0.3), i.e., R1 = 0.15m,
R2 = 0.3m, a PML with 0.5m thickness is used outside the box [−1.5, 1.5]2. We first
tested a big structure with 81280 elements, and 163041 degrees of freedom (DOFs),
whose solution time is 11.032s. To reduce the computational cost, we then put the
cloak shell inside a smaller rectangle [−1.5, 1.5]× [−1, 1], and impose a PML of 0.5m
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(a) (b)
Figure 2: The real part of the electric-field phasor obtained for the cylinder cloak: (a) A big structure; (b)
A small structure.

on each end. In this case, the total number of elements is 58496, DOFs are 117409 and
the solution time is 6.781s. The obtained electric field distributions for both cases are
shown in Fig. 2, which shows that the phase fronts are completely restored after the
wave moves out the cloaked area, i.e., this structure clearly demonstrates the cloaking
effect.

3.2 Square cloak

The square cloak has the same geometry as the cylindrical case, except that we replace
the circular shell by a rectangular shell with the same size. The big structure setting
uses 58760 elements, 118128 DOFs, and solution time of 7.172s. The small structure has
28800 elements, 44976 DOFs, and solution time of 2.453s. The obtained electric field
distribution is shown in Fig. 3, which also shows that this structure clearly demon-
strates the cloaking effect.

(a) (b)
Figure 3: The real part of the electric-field phasor obtained for the square cloak: (a) A big structure; (b) A
small structure.
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4 Concluding remarks

In this paper, we presented a rigorous derivation of the material parameters for both
the cylinder and rectangle cloaking structures. Detailed numerical results obtained
using COMSOL are presented to demonstrate the cloaking effect. Hopefully these
two will serve as benchmark problems for computational scientists who are interested
in this exciting area. More advanced computational algorithms (e.g., [4, 8, 12, 13, 17]
and references therein) developed for solving Maxwell’s equations in both free space
and dispersive media will be investigated for cloaking modeling in the future.
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