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Abstract. The main goal of this paper is to understand finer properties of the
effective burning velocity from a combustion model introduced by Majda and
Souganidis [20]. Motivated by results in [4] and applications in turbulent combus-
tion, we show that when the dimension is two and the flow of the ambient fluid
is either weak or very strong, the level set of the effective burning velocity has
flat pieces. Due to the lack of an applicable Hopf-type rigidity result, we need to
identify the exact location of at least one flat piece. Implications on the effective
flame front and other related inverse type problems are also discussed.

1. Introduction

We consider a flame propagation model proposed by Majda and Souganidis [20]
described as follows. Suppose that V : Rn → Rn is a given smooth, mean zero,
Zn-periodic and incompressible vector field. Let T = T (x, t) : Rn × [0,∞) → R be
the solution of the reaction-diffusion-convection equation

Tt + V ·DT = κ∆T +
1

τr
f(T ) in Rn × (0,∞)

with given compactly supported initial data T (x, 0). Here κ and τr are positive
constants proportional to the flame thickness, which has a small length scale denoted
by ε > 0. The nonlinear function f(T ) is of KPP type, i.e.,

f > 0 in (0, 1), f < 0 in (−∞, 0) ∪ (1,∞),

f ′(0) = inf
T>0

f(T )

T
> 0.

In turbulent combustions, the velocity field usually varies on small scales as well. We
write V = V

(
x
εγ

)
and, since the flame thickness is in general much smaller than the

turbulence scale, as in [20], we set γ ∈ (0, 1) and write κ = dε and τr = ε for some
given d > 0. To simplify notations, throughout this paper, we set f ′(0) = d = 1.
The corresponding equation becomes

T εt + V
( x
εγ

)
·DT ε = ε∆T ε +

1

ε
f(T ε) in Rn × (0,∞),
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which has a unique solution T ε. It was proven in [20] that T ε → 0 locally uniformly
in {(x, t) : Z < 0}, as ε → 0, and T ε → 1 locally uniformly in the interior of
{(x, t) : Z = 0}. Here, Z ∈ C(Rn × [0,+∞)) is the unique viscosity solution of
a variational inequality. Moreover, the set Γt = ∂{x ∈ Rn : Z(x, t) < 0} can be
viewed as a moving front and it is shown to move with normal velocity:

v~n = α(~n),

where α, the so-called effective burning velocity, is defined as follows: for p ∈ Rn,

(1.1) α(p) := inf
λ>0

1 +H(λp)

λ
.

Here, H : Rn → R is a convex function called the effective Hamiltonian. For each
p ∈ Rn, H(p) is defined to be the unique constant (ergodic constant) such that the
following cell problem

(1.2) H(p+Du, x) = |p+Du|2 + V (x) · (p+Du) = H(p) in Tn = Rn/Zn

admits a periodic viscosity solution u ∈ C0,1(Tn). See [18] for the general statement.
There is no viscous term in (1.2) because γ < 1 (see [20, Proposition 1.1]). Note that
α, by definition, has positive homogeneity of degree 1. By the level-set approach,
the effective flame front Γt can be described as the zero level set of F = F (x, t),
which satisfies

Ft + α(DF ) = 0

with Γ0 = {F (x, 0) = 0}. Thus, α(p) can be viewed as one way to model turbulent
flame speed, a quantity of significant importance in turbulent combustion. See
[11, 25] for comparisons between α(p) and the turbulent flame speed modeled by
the G-equation (a popular level-set approach model in combustion community).

The original Hamiltonian H(p, x) = |p|2 + V (x) · p is similar to the so called
Mañé Hamiltonian (or magnetic Lagrangian) in the dynamical system community.
Throughout this paper, we assume that V is smooth, Zn-periodic, incompressible
and has mean zero, i.e.,

(1.3) div(V ) = 0 and

∫
Tn
V dx = 0.

Under these assumptions, it is easy to check that

H(0) = 0, H(p) ≥ |p|2 and α(p) ≥ 2|p|.

Moreover, α(p) is convex. See Lemma 2.1.
Practically speaking, it is always desirable to get more information of the turbu-

lent flame speed (effective burning velocity). In combustion literature, the turbulent
flame speed is often considered to be isotropic and various explicit formulas have
been introduced to quantify it. See [1, 2] and the references therein. So it is natural
to ask whether there exist some non-trivial V such that the corresponding α(p) is
isotropic. In addition, from the mathematical perspective, it is a very interesting
and challenging problem to rigorously identify the shape of the effective Hamilton-
ian or other effective quantities. In this paper, we are interested in understanding
some refined properties of the effective burning velocity α(p). In particular,
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Question 1. If the flow is not at rest, that is, the velocity field V is not constantly
zero, can the convex level set {p ∈ Rn : α(p) = 1} be strictly convex? A simpler
inverse type question is whether α(p) = c|p| for some c > 0 (i.e., isotropic) implies
that V ≡ 0.

Remark 1.1. When n = 2, α(p) is actually C1 away from the origin (Lemma 2.1).
If the initial flame front is the circle S1 = {x ∈ R2 : |x| = 1}, then, owing to
Theorem 2.4, the effective front at t > 0 is Γt = {x+ tDα(x) : x ∈ S1} which is a
C1 and strictly convex curve. Obviously, if α is Euclidean, that is α(p) = |p|, then
Γt is round for all t > 0. If the level curve {α(p) = 1} contains a flat piece, then
there exist x0, x1 ∈ S1 such that

Dα(xs) ≡ Dα(x0) for xs = (1− s)x0 + sx1 and s ∈ [0, 1] .

In view of the positive homogeneity of α, Dα(p) = Dα(x0) = Dα(x1) for all p ∈ S1

between x0 and x1, i.e. (p − x0) · (p − x1) < 0. Owing to the representation of
Γt, the arc between x0 and x1 of S1 is translated in time and is contained in the
front Γt. This somehow implies that along the direction Dα(x0), the linear transport
overwhelms the nonlinear reaction term and dominates the spread of flame, i.e., the
propagation behaves like Ft +Dα(x0) ·DF = 0.

Before stating the main results, we review some related works that partly motivate
the study of the above questions from the mathematical perspective. Consider the
metric Hamiltonian H(p, x) =

∑
1≤i,j≤n aij(x)pipj with smooth, periodic and posi-

tive definite coefficient (aij). It was proven in a very interesting paper of Bangert
[4] that, for n = 2, if the convex level curve {p ∈ R2 : H(p) ≤ 1} is strictly convex,
then (aij) must be a constant matrix. The argument consists of two main ingre-
dients. First, through a delicate analysis using two dimensional topology, Bangert
showed that if the level set is strictly convex at a point, then the corresponding
Mather set of that point is the whole torus T2 and it is foliated by minimizing
geodesics pointing to a specific direction. Secondly, a well-known theorem of Hopf
[17], which says that a periodic Riemannian metric on R2 without conjugate points
must be flat, was then applied for the conclusion. Part of Bangert’s results (e.g.
foliation of the 2d torus by minimizing orbits) was extended to Tonelli Hamiltonians
in [21] for more general surfaces. Combining with the Hopf-type rigidity result in
[6] for magnetic Hamiltonian, still for n = 2, it is easy to derive that the level set
of the H associated with the Mañé-type Hamiltonian (1.2) must contain flat pieces
unless V ≡ 0. We would like to point out that the non-strict convexity has not been
established for general Tonelli Hamiltonian due to the lack of Hopf’s rigidity result
for Finsler metrics. See [26, 24] for instance.

The main difficulty in our situation is that the effective burning velocity α is
related to the effective Hamiltonian H through a variational formulation; see (1.1).
In particular, the level set of α is not the same as that of H and Hopf-type rigidity
results are not applicable. In contrast to the proof in [4], we need to figure out
the exact location of at least one flat piece in our proofs, which is of independent
interest.

In this paper, we establish some results concerning Question 1 when the flow is
either very weak or very strong. The first theorem is for any dimension.
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Theorem 1.1. Assume that V is not constantly zero. Then there exists ε0 > 0
such that when ε ∈ (0, ε0), the level curve Sε = {p ∈ Rn : αε(p) = 1} is not round
(or equivalently, the function αε is not Euclidean). Here, αε is the effective burning
velocity associated with the flow velocity εV .

In two dimensional space, thanks to Lemma 2.1, α(p) ∈ C1(R2\{0}). We prove
further that the level curve of α is not strictly convex under small or strong ad-
vections by identifying the location of at least one flat piece. To state the result
precisely, we recall that, for a set S ⊂ Rn, a point p is said to be a linear point of
S if there exists a unit vector q and a positive number µ0 > 0 such that the line
segment {p+ tq : t ∈ [0, µ0]} ⊆ S. In addition, k ∈ Zn is called a frequency of V if∫

(0,1)n
V e−i2πk·x dx 6= 0. Write k⊥ as the rotation of k by π

2
counterclockwise and

(1.4) FV = { k
⊥

|k⊥|
: k is a frequency of V}.

Theorem 1.2. Assume that n = 2 and V is not constantly zero. Then

(1) (weak flow) there exists ε0 > 0 such that when ε ∈ (0, ε0), the level curve
Sε = {p ∈ R2 : αε(p) = 1} contains flat pieces. Here, αε is the effective
burning velocity associated with the flow velocity εV . In particular, for any
q ∈ FV , there exists εq > 0 such that when ε ∈ (0, εq), any p ∈ Sε which has
q as its outward normal vector is a linear point of Sε.

(2) (strong flow) there exists A0 > 0 such that when A ≥ A0, the level curve
SA = {p ∈ R2 : αA(p) = 1} contains flat pieces. Here, αA is the effective
burning velocity associated with the flow velocity AV . In particular, if the
flow ξ̇ = V (ξ) has a swirl (i.e., a closed orbit that is not a single point), any
p ∈ SA which has a rational outward normal vector is a linear point of SA
when A ≥ A0.

It is interesting to point out that, in the above Case (2) with a swirl, the outer
normal vector behaves like a Cantor function. We conjecture that flat segments
should exist for all amplitude parameters A ∈ (0,∞). So far, we can only show this
for some special flows. Precisely speaking,

Theorem 1.3. Assume either

(1) (shear flow) V (x) = (v(x2), 0) for x = (x1, x2) ∈ R2, where v : R → R is a
1-periodic smooth function with mean zero, or

(2) (cellular flow) V (x) = (−Kx2 , Kx1) with K(x1, x2) = sin(2πx1) sin(2πx2) for
x = (x1, x2) ∈ R2.

Then for any fixed A 6= 0, the level curve SA = {p ∈ R2 : αA(p) = 1} contains flat
pieces. Here, αA is the effective burning velocity associated with the flow velocity
AV . In particular, for (1), flat pieces appear at least at the location where the
outward normal vector is (±1, 0) and for (2), flat pieces appear at least at the location
where the outward normal vector is (±1, 0) or (0,±1).

We would like to point out that for the cellular flow in part (2) of Theorem 1.3,
it was derived by Xin and Yu [25] that

lim
A→+∞

αA(p) logA

A
= C(|p1|+ |p2|).



EFFECTIVE BURNING VELOCITY 5

for p = (p1, p2) ∈ R2 and a fixed constant C. See Remark 2.1 for front motion
associated with the Hamiltonian H(p) = |p1|+ |p2|. Moreover, it remains an inter-
esting question to at least extend the above global result to flows which have both
shear and cellular structures, e.g., the cat’s eye flow. A prototypical example is
V (x) = (−Kx2 , Kx1) with K(x1, x2) = sin(2πx1) sin(2πx2) + δ cos(2πx1) cos(2πx2)
for δ ∈ (0, 1).

General inverse problems. In general, the effective burning velocity cannot
determine the structure of the ambient fluid. The reason is that the function α(p)
is homogeneous of degree one and only depends on the value of H from (1.2) in a
bounded domain. So α(p) cannot see the velocity field V in places where it rotates
very fast. See Claim 1 in the proof of Theorem 1.2. See also (9.5) in [3] for a related
situation. Nevertheless, we can address the following inverse type problem for the
effective Hamiltonian H(p).

Question 2. Assume that Hi(p, y) = |p|2 +Vi(y) ·p. Assume further that H1 = H2,
where H i is the corresponding effective Hamiltonian of Hi for i = 1, 2. Then what
can we conclude about the relations between V1 and V2? Especially, can we identify
some common “computable” properties shared by V1 and V2?

This kind of questions was posed and studied first in Luo, Tran and Yu [19] for
Hamiltonians of separable forms, i.e., when Hi(p, y) = H(p) + Wi(y) for i = 1, 2.
Here H(p) is the kinetic energy and Wi is the potential energy. As discussed in [19],
a lot of tools from dynamical systems, e.g. KAM theory, Aubry-Mather theory, are
involved in the study and the analysis of the problems. For Question 2, we conclude
that if the Fourier coefficients of Vi for i = 1, 2 decay very fast, then

H1 = H2 ⇒
∫
Tn
|V1|2 dy =

∫
Tn
|V2|2 dy.

This follows from the approach of “asymptotic expansion at infinity” introduced in
[19]. The key idea is to expand H i “near” ∞. Consider H i(sp) with s� 1:

|sp+Dw|2 + Vi(x) · (sp+Dw) = H i(sp).

Dividing s2 on both sides,

|p+Dws|2 +
1

s
Vi(x) · (p+Dws) =

H i(sp)

s2
,

where ws := w
s
. Then we can perform asymptotic expansions of ws and Hi(sp)

s2
with

respect to the small parameter ε = 1
s

and compare coefficients of εk for k = 0, 1, 2
which involve Fourier coefficients of Vi. Since the proof is similar to that of (3) in
Theorem 1.2 of [19], we omit it here.

Outline of the paper. For readers’ convenience, we give a quick review of Mather
sets and the weak KAM theory in Section 2. Some basic properties of α(p) (e.g.
the C1 regularity) will be derived as well. In Section 3, we prove Theorems 1.1 via
perturbation arguments. Theorems 1.2 and 1.3 will be established in Section 4. The
use of two dimensional topology is extremely essential here and we do not know yet
if the results of Theorems 1.2 and 1.3 can be extended to higher dimensional spaces.
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2. Preliminaries

For the reader’s convenience, we briefly review some basic results concerning the
Mather sets and the weak KAM theory. See [10, 12, 14] for more details. Let
Tn = Rn/Zn be the n-dimensional flat torus and H(p, x) ∈ C∞(Rn × Rn) be a
Tonelli Hamiltonian, i.e., it satisfies that

(H1) (Periodicity) x 7→ H(p, x) is Tn-periodic;
(H2) (Uniform convexity) There exists c0 > 0 such that for all η = (η1, ..., ηn) ∈

Rn, and (p, x) ∈ Rn × Rn,

n∑
i,j=1

ηi
∂2H

∂pi∂pj
ηj ≥ c0|η|2.

Let L(q, x) = supp∈Rn{p · q − H(p, x)} be the Lagrangian associated with H. Let
W denote the set of all Borel probability measures on Rn × Tn that are invariant
under the corresponding Euler-Lagrangian flow.

For each fixed p ∈ Rn, an element µ in W is called a Mather measure if∫
Rn×Tn

(L(q, x)− p · q) dµ = min
ν∈W

∫
Rn×Tn

(L(q, x)− p · q) dν,

that is, if it minimizes the action associated to L(q, x) − p · q. Denote by Wp the
set of all such Mather measures. The value of the minimum action turns out to be
−H(p), where H(p) is the unique real number such that the following Hamilton-
Jacobi equation

(2.5) H(p+Du, x) = H(p) in Tn

has a periodic viscosity solution u ∈ C0,1(Tn). Equation (2.5) is usually called the
cell problem and H is called the effective Hamiltonian.

The Mather set is defined to be the closure of the union of the support of all
Mather measures, i.e.,

M̃p =
⋃
µ∈Wp

supp(µ).

The projected Mather set Mp is the projection of M̃p to Tn. The following basic
and important properties of the Mather set are used frequently in this paper.

(1) For any viscosity solution u of equation (2.5), we have that

(2.6) M̃p ⊂ {(q, x) ∈ Rn × Tn : Du(x) exists and p+Du(x) = DqL(q, x)}.
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Moreover u ∈ C1,1(Mp). More precisely, there exists a constant C depending only
on H and p such that, for all y ∈ Tn and x ∈Mp,

|u(y)− u(x)−Du(x) · (y − x)| ≤ C|y − x|2,
|Du(y)−Du(x)| ≤ C|y − x|.

(2) For any orbit ξ : R→ Tn such that (ξ̇(t), ξ(t)) ∈ M̃p for all t ∈ R, we lift ξ to
Rn and denote the lifted orbit on Rn still by ξ. Then, ξ is an absolutely minimizing
curve with respect to L(q, x)− p · q +H(p) in Rn, i.e., for any −∞ < s2 < s1 <∞,
−∞ < t2 < t1 < ∞ and γ : [s2, s1] → Rn absolutely continuous satisfying γ(s2) =
ξ(t2) and γ(s1) = ξ(t1) the following inequality holds,∫ s2

s1

(
L(γ̇(s), γ(s))− p · γ̇(s) +H(p)

)
ds ≥

∫ t2

t1

(
L(ξ̇(t), ξ(t))− p · ξ̇(s) +H(p)

)
dt

which is equivalent to

(2.7)

∫ s2

s1

(
L(γ̇(s), γ(s)) +H(p)

)
ds ≥

∫ t2

t1

(
L(ξ̇(t), ξ(t)) +H(p)

)
dt.

Moreover, if ξ is a periodic orbit, then its rotation vector

(2.8)
ξ(T )− ξ(0)

T
∈ ∂H(p).

Here T is the period of ξ and ∂H(p) is the subdifferential of H at p, i.e., q ∈ ∂H(p)
if H(p′) ≥ H(p) + q · (p′ − p) for all p′ ∈ Rn.

A central problem in weak KAM theory is to understand the relation between
analytic properties of the effective Hamiltonian H and the underlying Hamiltonian
system (e.g. structures of Mather sets). For instance, Bangert [3] gave a detailed
characterization of Mather and Aubry sets on the 2-torus T2 for metric or mechanical
Hamiltonians (i.e., H(p, x) =

∑
1≤i,j≤n aijpipj+W (x) with a positive definite (aij).).

Let us mention some known results in this direction which are more relevant to
this paper. As an immediate corollary of [7, Proposition 3], we have the following
result concerning the level curves of H in two dimensional space.

Theorem 2.1. Assume that n = 2. If H(p) = c > minH, then the set ∂H(p) is a
closed radial interval, i.e., there exist a unit vector q ∈ R2 and 0 < s1 ≤ s2 such that
∂H(p) = [s1q, s2q]:= {sq : s ∈ [s1, s2]}. In particular, this implies that the level set
{p ∈ R2 : H(p) = c} is a closed C1 convex curve and q is the unit outward normal
vector at p.

The following theorem was first proven in [12, Theorem 8.1]. It says that the
effective Hamiltonian is strictly convex along any direction that is not tangent to
the level set.

Theorem 2.2. Assume that p1, p2 ∈ Rn. Suppose that H(p2) > minH and H is
linear along the line segment connecting p1 and p2. Then

H(tp1 + (1− t)p2) ≡ H(p2) for all t ∈ [0, 1].

In dynamical system literature, the effective Hamiltonian H and its Lagrangian
L are often called α and β functions respectively. Since Q ∈ ∂H(P )⇔ P ∈ ∂L(Q),
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that L is not differentiable at Q implies that H is linear along any two vectors in
∂L(Q). Accordingly, as an immediate outcome of [21, Corollary 1], we have that

Theorem 2.3. Let n = 2, c > minH and p ∈ Γc = {H = c}. If the unit normal
vector of Γc at p is a rational vector and p is not a linear point of Γc, then Mp

consists of periodic orbits which foliate T2.

For metric or mechanical Hamiltonians (i.e., H(p, x) =
∑

1≤i,j≤n aijpipj +W (x)),

the above result was first established in [4]. See also [22] for a closely related result
about twist maps.

In this paper we have the Mañé Hamiltonian H(p, x) = |p|2 + V (x) · p, with
smooth periodic velocity field V satisfying (1.3), and the main objective is to study
the properties of the effective burning velocity α(p) given by (1.1) and (1.2). In
particular, H satisfies (H1)–(H2) and, hence, the previous theorems in this section
apply. We conclude this section with some useful properties of α.

Lemma 2.1. Fix p ∈ Rn\{0}. The followings hold.

(1) α : Rn → R is convex, and there exists a unique λp > 0 such that

α(p) =
1 +H(λpp)

λp
.

Moreover, there exists q ∈ ∂H(λpp) such that

q · λpp = H(λpp) + 1.

(2) Assume that n = 2. Then α(p) ∈ C1(Rn\{0}).
(3) Assume that n = 2. Then p is a linear point of the level curve {α = 1} if

and only if λpp is a linear point of the level curve {H = λp − 1}.

Proof. (1) Taking integration on both sides of (1.2), since V is incompressible and
has zero mean, we have that

H(p) ≥ |p|2.
The existence of λp is clear. For the convexity of α, fix p0, p1 ∈ Rn\{0} and choose
λ0, λ1 > 0 such that

α(p0) =
1 +H(λ0p0)

λ0

and α(p1) =
1 +H(λ1p1)

λ1

.

For θ ∈ [0, 1], write pθ = θp1 + (1 − θ)p0. If pθ = 0, the convexity is obvious
since α(0) = 0 and α(p) ≥ 2|p|. So we assume pθ 6= 0. Choose λθ > 0 such that
1
λθ

= θ
λ1

+ 1−θ
λ0

. It follows immediately from the definition of α and the convexity of

H that

α(pθ) ≤
1 +H(λθpθ)

λθ
≤ θα(p1) + (1− θ)α(p0).

The convexity of α is proved.
Next we prove the uniqueness of λp. Assume that for λ, λ̄ > 0, we have that

α(p) =
1 +H(λp)

λ
=

1 +H(λ̄p)

λ̄
.
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Then ∂α(p) ⊆ ∂H(λp) and ∂α(p) ⊆ ∂H(λ̄p). Therefore, ∂H(λp)∩ ∂H(λ̄p) 6= ∅. So
H is linear along the line segment connecting λp and λ̄p. Then by Theorem 2.2,
H(λp) = H(λ̄p), which immediately leads to λ = λ̄.

Next we prove the second equality in Claim (1). For λ > 0, denote by w(λ) =
H(λp) ≥ λ2|p|2 and

h(λ) =
1 + w(λ)

λ
.

Since w(λ) is convex, there exists a decreasing sequence {λm} such that λm ↓ λp
and w is differentiable at λm and h′(λm) ≥ 0. Clearly,

w′(λm) = qm · p for any qm ∈ ∂H(λmp).

Up to a subsequence, we may assume that qm → q+ ∈ ∂H(λpp). Then in light of
the fact that h′(λm) ≥ 0, we deduce

q+ · λpp ≥ H(λpp) + 1.

Similarly, by considering an increasing sequence that converges to λp, we can pick
q− ∈ ∂H(λpp) such that

q− · λpp ≤ H(λpp) + 1.

Since ∂H(λpp) is a convex set, we can find q ∈ ∂H(λpp) which satisfies

q · λpp = H(λpp) + 1.

(2) Apparently,

(2.9) q̂ ∈ ∂α(p) ⇒ q̂ ∈ ∂H(λpp).

Owing to Theorem 2.1, ∂α(p) is also a closed radial interval. Since α(p) is homo-
geneous of degree 1, any q ∈ ∂α(p) satisfies p · q = α(p). Since p 6= 0 and α(p) > 0,
this interval can only contain a single point; it follows that α is differentiable at p.

(3) “⇒”: This part is true in any dimension. Clearly, that p is a linear point of
S = {α = 1} implies that there exists p′ ∈ S such that p 6= p′ and

∂α(p) ∩ ∂α(p′) 6= ∅.
By (2.9), ∂α(p) ⊆ ∂H(λpp) and ∂α(p′) ⊆ ∂H(λp′p

′). Hence H is linear along the
line segment connecting λpp and λp′p

′. Then Theorem 2.2 implies that H(λpp) =
H(λp′p

′) and λp = λp′ . The necessity then follows.
Now we prove the sufficiency which relies on the 2-dimensional topology. For

p ∈ R2, assume that λpp is a linear point of the level curve Cp = {H = λp − 1},
i.e., there exists a distinct vector λpp

′ ∈ Cp such that the line segment lp,p′ =
{sp+ (1− s)p′ : s ∈ [0, 1]}, which connects p and p′, satisfies lp,p′ ⊂ {G = 1}. Here
for q ∈ R2,

G(q) =
1 +H(λpq)

λp
≥ α(q).

By Theorem 2.1 and Dα(p) ∈ ∂G(p) = ∂H(λpp), we have that

∂G(p) = {sDα(p) : s ∈ [θ1, θ2]}
for some 0 < θ1 ≤ θ2. Therefore Dα(p) · (p′ − p) = 0, which implies that

1 = G(q) ≥ α(q) ≥ α(p) +Dα(p) · (q − p) = α(p) = 1
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for any q ∈ lp,p′ . Hence lp,p′ ⊂ {α = 1} and p is a linear point.
�

The following result characterizes the shape of the moving front when the initial
front is the unit circle in R2.

Theorem 2.4. Suppose that n = 2 and α : R2 → R is convex, coercive and positive
homogeneous of degree 1. Let u ∈ C(R2 × [0,+∞)) be the unique viscosity solution
to {

ut + α(Du) = 0 in Rn × (0,+∞)

u(x, 0) = |x| − 1.

Then u(x, t) = max{−tα(p) + x · p : |p| ≤ 1} − 1 and its zero level set is

(2.10) Γt := {x ∈ R2 : u(x, t) = 0} = {p+ tq : p ∈ S1, q ∈ ∂α(p)}.
Also Γt is C1. Moreover,

(2.11) α ∈ C1(R2\{0}) ⇐⇒ Γt is strictly convex.

Proof. We first prove the representation (2.10). Due to the 1-homogeneity of α(p),
p · q = α(p) for any q ∈ ∂α(p). The formula of u(x, t) then follows directly from
Theorem 3.1 in [5]. Clearly, if u(x, t) > −1, then

u(x, t) = max{−tα(p) + x · p : |p| = 1} − 1.

Now fix x ∈ R2 such that u(x, t) = 0. Choose |p̄| = 1 such that

(2.12) u(x, t) = p · x− tα(p)− 1 = 0.

By the Lagrange multiplier method, we get x − tq = sp for some q ∈ ∂α(p) and
some s ∈ R. We use (2.12) to deduce further that s = 1, and hence x = p+ tq.

Conversely, if x = p + tq for some p ∈ S1 and q ∈ ∂α(p), we want to show that
u(x, t) = 0. In fact, in the representation formula of u, choosing p = p̄ immediately
leads to u(x, t) ≥ 0. On the other hand, for any |p| = 1, q ∈ ∂α(p) implies

α(p) ≥ α(p̄) + q · (p− p̄).
Therefore

−tα(p) + x · p ≤ −tα(p̄)− tq · (p− p̄) + x · p = p · p̄ ≤ 1.

So u(x, t) ≤ 0. Hence we proved that u(x, t) = 0.

Next we show that Γt is C1. Fix t > 0. Owing to the above arguments, given
x ∈ Γt, there exists a unique unit vector px such that x = px+qx for some qx ∈ ∂α(px)
and

u(x, t) = −tα(px) + px · x− 1.

The uniqueness is due to the convexity of α which implies that (p− p′) · (q− q′) ≥ 0
for q ∈ ∂α(p) and q′ ∈ ∂α(p′). Hence x → px is a continuous map from Γt to the
unit circle. Combining with px ∈ ∂xu(x, t), px is the outward unit normal vector of
Γt at x and Γt is C1.

Next we prove the duality (2.11). Again fix t > 0. This direction “⇐” follows
immediately from the representation formula (2.10). So let us prove “⇒”. We argue
by contradiction. Assume that α is C1 away from the origin. If Γt is not strictly
convex, then there exist x, y ∈ Γt such that x 6= y and px = py. Hence qx 6= qy.
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However, qx = Dα(px) = Dα(py) = qy, which is a contradiction. This proves that
(2.11) holds. �

Remark 2.1. As mentioned in Remark 1.1, when n = 2, a flat piece on the level
set {α(p) = 1} leads to a translated arc of the unit circle on Γt. Moreover, singular
points of α (i.e., points where ∂α(p) contains a line segment) generate flat pieces
on Γt. For example, if α(p) = |p1|+ |p2| for p = (p1, p2), then the front Γ1 at t = 1
is the closed curve shown in Fig. 1:

(0,0)

Γ0

Γ1translated
arcs

a flat piece
from the

singular point (1, 0)

Figure 1. Front propagation and the shape of Γ1.

3. The Proof of Theorem 1.1

Fix p ∈ Rn to be an irrational vector satisfying a Diophantine condition, i.e.,
there exist c = c(p) > 0 and γ > 0 such that

|p · k| ≥ c

|k|γ
for all k ∈ Zn \ {0}.

For small ε, let Hε(p) be the effective Hamiltonian associated with |p|2 + εV ·p, i.e.,

(3.13) |p+Duε|2 + εV · (p+Duε) = Hε(p).

We now perform a formal asymptotic expansion in term of ε, which will be proved
rigorously by using the viscosity solution techniques. Suppose that

uε = εφ1 + ε2φ2 + · · ·
Hε(p) = a0(p) + εa1(p) + ε2a2(p) + · · ·

We then get that

a0(p) = |p|2(3.14)

a1(p) = 2p ·Dφ1 + V · p⇒ a1(p) = 0

a2(p) = 2p ·Dφ2 + |Dφ1|2 + V ·Dφ1 ⇒ a2(p) =

∫
Tn
|Dφ1|2 dx

· · ·
Set

V =
∑
k 6=0

vke
i2πk·x.
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We need vk · k = 0 for all k to have that divV = 0. Then we get

Dφ1 = −1

2

∑
k 6=0

(p · vk)ei2πk·xk
p · k

,

and

a2(p) =
1

4

∑
k 6=0

|p · vk|2|k|2

|p · k|2
.

Thus, formally, we can conclude that

Hε(p) ≈ |p|2 + ε2 1

4

∑
k 6=0

|p · vk|2|k|2

|p · k|2
+O(ε3).

We now prove this expansion formula rigorously. See related computations in [16].

Lemma 3.1. There exists τ > 0, such that for all p satisfying a Diophantine
condition and |p| ∈

[
τ, 1

τ

]
, we have

(3.15) Hε(p) = |p|2 + ε2 1

4

∑
k 6=0

|p · vk|2|k|2

|p · k|2
+O(ε3)

as ε→ 0. Here, the error term satisfies |O(ε3)| ≤ Kε3 for some K depending only
on τ , V and p

|p| .

Proof. As p satisfies a Diophantine condition, we are able to solve the following two
equations explicitly in Tn by computing the Fourier coefficients{

p ·Dφ1 = −1
2
V · p

p ·Dφ2 = 1
2

(a2(p)− |Dφ1|2 − V ·Dφ1) .

Here φ1, φ2 : Tn → R are unknown functions.
Set wε = εφ1 + ε2φ2. Then, in light of the properties of φ1, φ2, wε satisfies

|p+Dwε|2 + εV · (p+Dwε) = |p|2 + ε2a2(p) +O(ε3).

By looking at places where uε − wε attains its maximum and minimum and using
the definition of viscosity solutions, we derive that

Hε(p) = |p|2 + ε2a2(p) +O(ε3).

The error estimate can be read from the proof easily. �

It is obvious that a2(p) is not a constant function of p. Hence Theorem 1.1 follows
immediately from the following lemma.

Lemma 3.2. Let p ∈ Rn be a vector satisfying a Diophantine condition. For each
ε ∈ (0, 1], let αε be the effective burning velocity function defined by (1.1) with H
replaced by associated to Hε. Then

(3.16) lim
ε→0

αε(p)− 2|p|
ε2|p|

= a2(p).
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Proof. Since αε(p) is homogeneous of degree 1 and a2(p) is homogeneous of degree
0 (a2(p) = a2(λp) for all λ > 0), we may assume that |p| = 1. Thanks to Lemma
3.1, we can write

(3.17) Hε(p) = |p|2 + ε2 1

4

∑
k 6=0

|p · vk|2|k|2

|p · k|2
+O(ε3) = 1 + ε2a2(p) +O(ε3).

Owing to Lemma 2.1, there exists a unique constant λε = λε(p) > 0 such that

αε(p) =
1 +Hε(λεp)

λε
≥ λε +

1

λε
.

The second inequality is due to Hε(q) ≥ |q|2. By the definition, it is obvious that

αε ≤ 1 +Hε(p) = 2 + ε2a2(p) +O(ε3).

Hence it is easy to see that λε → 1 as ε→ 0. Then by Lemma 3.1 and λε + 1
λε
≥ 2,

αε(p) ≥ 2 + ε2a2(p) +O(ε3).

Therefore, the conclusion of the lemma holds. �

4. Proofs of Theorems 1.2 and 1.3

Before proceeding to the proofs, we would like to point out some connection but
more importantly a crucial difference between the studies of the flat pieces of the
level curves of H and those of α. Clearly, if the level curve {α = 1} of α is strictly
convex at p, the level curve {H = λp − 1} of H must be strictly convex at λpp,
where λp is determined by Lemma 2.1. Nevertheless, our results do not follow from
any rigidity result for H, namely that of [6]. Indeed, different p’s in {α = 1} might
correspond to different λp, which corresponds to different energy levels of H, but
the rigidity result from [6] can be applied only on the same energy level. A key
point of our proofs is to identify the exact location of at least one flat piece.

We first prove Claim (1) of Theorem 1.2.

Proof of Theorem 1.2 (1). We carry out the proof in a few steps.

Step 1: Due to Claim (2) of Lemma 2.1, the level curve Sε is C1. It is worth
keeping in mind that αε(p) is homogeneous of degree 1. For each p ∈ Sε, denote np
the outward unit normal vector at p to Sε.

Step 2: Fix q0 ∈ FV from (1.4). Then there exists k0 ∈ Z2 \ {0} such that k0 is
a frequency of V and q0 = k⊥0 /|k0|. We claim that if V is not constantly zero, then
there exists x0 ∈ R2 satisfying that

(4.18)

∫ |k0|

0

q0 ·DV (x0 + q0t) dt =

∫ 1

0

k⊥0 ·DV (x0 + k⊥0 t) dt 6= 0.

Here q0 ·DV = D(q0 · V ). Caution: q0 ·DV (x+ q0t) 6= dV (x+q0t)
dt

.

In fact, assume that V (y) =
∑

k∈Z2 vke
i2πk·y, where {vk} ⊂ R2 are the Fourier

coefficients of V . Since div(V ) = 0 and
∫
T2 V dx = 0, we have that v0 = 0 and

(4.19) k · vk = 0 for all k ∈ Z2.



14 W. JING, H. V. TRAN, AND Y. YU

Also, vk0 6= 0 since k0 is a frequency. Then for any q ∈ R2,

q ·DV (y) = D(q · V ) = 2πi
∑

k∈Z2\{0}

(q · vk)ei2πk·yk.

Now for the vector q0 = k⊥0 /|k0| that is fixed earlier, we deduce from the results
above that∫ 1

0

q0 ·DV (x+ k⊥0 t) dt = 0 for all x ∈ R2 ⇒ q0 · vk0 = 0.

Combining with (4.19), we deduce that vk0 = 0. This is a contradiction. So our
claim holds.

Step 3: For each ε > 0, choose pε ∈ Sε such that npε = q0 = k⊥0 /|k0|. To
simplify notations, we write nε = npε . We claim that when ε is small enough,
pε is a linear point of the set {αε = 1}. Suppose this is false, then there exists
a decreasing sequence εm ↓ 0 and a sequence {pεm} such that pεm is not a linear
point of the set {αεm = 1}. By (3) of Lemma 2.1, p̃εm = λεmpεm is not a linear
point of the level curve {Hεm = λεm − 1} either. Here λεm > 0 is from Lemma 2.1.
Clearly, the outward unit normal vector of the level curve {Hεm = λεm − 1} at p̃εm
is also q0. According to Theorem 2.3, the projected Mather set Mp̃εm is the whole
torus T2. Moreover, by (2.8), there is a periodic minimizing orbit ξm : R → R2

passing through x0 from Step 2 such that ξm(0) = x0, ξm(tm) = x0 + |k0|q0 for some
tm > 0 and ξ satisfies the Euler-Lagrange equation associated with the Lagrangian
L(q, x) = 1

4
|q − εmV |2:

d
(
ξ̇m(t)− εmV (ξm(t))

)
dt

= −
(
ξ̇m(t)− εmV (ξm(t))

)
· εmDV (ξm).

Taking the integration on both sides over [0, tm], and by periodicity, we get∫ tm

0

(
ξ̇m(t)− εmV (ξm(t))

)
·DV (ξm) dt = 0.

Sending m→ +∞, we find∫ |k0|

0

q0 ·DV (x0 + q0t) dt = 0.

This contradicts to (4.18). As a result, we identified a flat piece of Sε. �

Next we prove Claim (2) of Theorem 1.2.

Proof of Theorem 1.2(2). Recall that, for A ≥ 0 and p ∈ R2, αA(p) is defined
as

αA(p) = inf
λ>0

HA(λp) + 1

λ
.

Here HA is the effective Hamiltonian associated with HA(p, x) = |p|2 +AV · p. The
corresponding Lagrangian is

LA(q, x) =
1

4
|q − AV (x)|2.
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For p ∈ R2\{0} and A ≥ 0, by Lemma 2.1, denote λp,A > 0 as the unique positive
number such that

αA(p) =
HA(λp,Ap) + 1

λp,A
.

Since V is divergence-free and has zero mean, there exists a smooth periodic
function K (stream function) such that V = (−Kx2 , Kx1). Clearly, we have that

DK · V ≡ 0. We consider the dynamical system ξ̇ = V (ξ). The flow ξt : T2 → T2,
at each t ≥ 0, is then Lebesgue-measure preserving and has zero mean translation.
It follows that, for each t ≥ 0, ξt has fixed points; see for instance [8]. Since V 6≡ 0,
the system must have non-critical periodic orbits on T2. Note also that the system
can also be viewed as defined on the whole space R2; we adopt both views in the
following proof. We have the following two cases.

Case 1: ξ̇ = V (ξ) has a non-critical contractable periodic orbit on T2. This
means the orbit on T2 can be continuously shrunk to a point or, equivalently, the
lift of this orbit to R2 is a closed curve in some compact set. By the stability in 2d,
there exists a strip of closed periodic orbits in its neighborhood. Without loss of
generality, we may label them as γs(t) for s ∈ [0, δ] for some δ > 0 sufficiently small
such that K(γs(t)) ≡ s and γs(0) = γs(Ts) for some Ts > 0 (minimum period). See
the following figure. Denote Γ =

⋃
s∈[0,δ] {γs(t) : t ∈ [0, Ts]} as the union of these

closed curves and

τ = max
x∈Γ
|DK(x)| > 0.

γ0

γs

γδ

Γ

ξ
t1

t2 t3

t4

Figure 2. Closed periodic orbits in Γ

Claim 1: For p ∈ R2, if HA(p) < c̄A2 for c̄ = 4δ2

T 2
δ τ

2 , then any unbounded absolutely

minimizing trajectory associated with LA +HA(p) cannot intersect γ0.
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We argue by contradiction. If not, let ξ : R → R2 be an unbounded absolutely
minimizing trajectory with ξ∩γ0 6= ∅. Then there must exist t1 < t2 ≤ t3 < t4 such
that

ξ(t1), ξ(t4) ∈ γδ, ξ(t2), ξ(t3) ∈ γ0 and ξ([t1, t2]) ∪ ξ([t3, t4]) ⊂ Γ.

See Figure 2 for demonstration. Set

E1 =

∫ t2

t1

1

4
|ξ̇ − AV (ξ)|2 +HA(p) ds and E2 =

∫ t4

t3

1

4
|ξ̇ − AV (ξ)|2 +HA(p) ds.

Since

|ξ̇ − AV (ξ)| ≥ 1

τ
|ξ̇ − AV (ξ)| · |DK(ξ)| ≥ 1

τ
|(ξ̇ − AV (ξ)) ·DK(ξ)| = 1

τ
|ẇ(t)|

for w(t) = K(ξ(t)) and t ∈ [t1, t2] ∪ [t3, t4], we have that

E1 + E2 ≥ HA(p)(t2 − t1 + t4 − t3) +
1

4τ 2

(∫ t2

t1

|ẇ(t)|2 dt+

∫ t4

t3

|ẇ(t)|2 dt
)

≥ HA(p)(t2 − t1 + t4 − t3) +
1

4τ 2

(
δ2

t4 − t3
+

δ2

t2 − t1

)
≥ 2δ

τ

√
HA(p).

However, if we travel from ξ(t1) to ξ(t4) along the route γ(s) = γδ(sA), the cost

is at most Tδ
A
HA(p) < 2δ

τ

√
HA(p). This contradicts to the assumption that ξ is a

minimizing trajectory. Hence our above claim holds.
Now choose ε0 > 0 such that ε2

0 +Mε0 < c̄ for M = maxT2 |V |. Owing to Lemma
4.2, there exists A0 such that if A ≥ A0, then

λp,A ≤
ε0

2
A

for any unit vector p.

Claim 2: Assume that pA ∈ SA = {αA = 1} has a rational outward normal vector.
Then pA is a linear point of SA if A ≥ A0.

In view of item (2) in Lemma 2.1, SA is a convex C1 curve, and the set of
outward normal vectors attached to SA is the whole S1. The claim above, hence,
locates countably many flat pieces of SA, provided that Case 1 occurs.

We prove Claim 2 by contradiction. Clearly, pA 6= 0, so the above is equivalent

to say that p̄ = pA
|pA|

is a linear point of the level curve
{
αA(p) = 1

|pA|

}
. Suppose p̄

is not a linear point, by Theorem 2.3 and (3) of Lemma 2.1, HA is strictly convex
at λp̄,A p̄ and the associated projected Mather set Mλp̄,A p̄ is the whole Torus. Due
to Claim 1, we must have that

HA(λp̄,Ap̄) ≥ c̄A2.

Since HA(p) ≤ |p|2 + AM |p|, we have that λp̄,A > ε0A. This contradicts to the
choice of A. Therefore, the above claim holds and the result of this theorem follows.

Case 2: Next we consider the case when ξ̇ = V (ξ) has a non-contractible periodic
orbit on T2 or, equivalently, the lifted system on R2 has a solution η : R → R2,
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such that η(T0) − η(0) ∈ Z2\{(0, 0)} for some T0 > 0. Denote q0 as a rotation
vector of η. Clearly, q0 is a rational vector. Since

∫
T2 V dx = 0, there also exists a

non-contractible periodic orbit ˙̃η(t) = V (η̃(t)) with a rotation vector −cq0 for some
c > 0. See the following Figure 3.

η

η̃

ξm

xm

xm + aq0

Figure 3. Unbounded periodic orbits η and η̃

Claim 3: Choose pA ∈ SA such that the unit outward normal vector at pA is q0
|q0| .

Then when A is large enough, pA is a linear point of SA.
This is consistent with the last statement in Remark 1.1: when A is very large,

we expect the shear structure to dominate the flame propagation. Again, the set
of outward unit normal vectors of SA is the whole circle S1, so the pA above exists.
Claim 3 hence locates at least one flat piece of SA, provided that Case 2 occurs.

Again, the claim is equivalent to say that p̄ = pA
|pA|

is a linear point of the level

curve
{
αA(p) = 1

|pA|

}
for sufficiently large A. We argue by contradiction. If not,

then by (3) of Lemma 2.1, there exist a sequence Am → +∞ as m → +∞ and
|pm| = 1 such that HAm(λmpm) is strictly convex near λmpm. Here λm > 0 is the
unique number satisfying (Lemma 2.1)

αAm(pm) =
1 +HAm(λmpm)

λm
.

Therefore, by Theorem 2.3, the associated projected Mather setMλmpm is the whole
torus. So there exists a unique periodic C1 solution vm (up to additive constants)
to

|λmpm +Dvm|2 + AmV · (λmpm +Dvm) = HAm(λmpm) in R2.

Let T0 and T̃0 be the minimal period of η and η̃ respectively. Then q0 = η(T0)−η(0)
T0

and −cq0 = η̃(T0)−η̃(0)
T0

. Taking integration along η and η̃, we obtain that

1

T0

∫ T0

0

|λmpm +Dvm(η(s))|2 ds+ Amq0 · λmpm = HAm(λmpm)
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and
1

T̃0

∫ T̃0

0

|λmpm +Dvm(η̃(s))|2 ds− cAmq0 · λmpm = HAm(λmpm).

Accordingly, without loss of generality, we may assume that for all m ≥ 1,

max
s∈R
|λmpm +Dvm(η(s))| ≥

√
HAm(λmpm).

So there exists xm ∈ η(R) ∩ [0, 1]n such that

(4.20) |λmpm +Dvm(xm)| ≥
√
HAm(λmpm).

Since the projected Mather set Mλmpm is the whole torus and the unit outward
normal vector of {HAm = HAm(λmpm)} at λmpm is also q0

|q0| , by (2.8), we may

find an non-contractable periodic minimizing trajectory ξm : R → R2 such that
ξm(0) = xm and ξm(tm) = xm + a0q0 (see Figure 3). Here tm > 0 is the minimal
period of ξm and a0 > 0 is the smallest positive number such that a0q0 ∈ Z2. Note
that η(T0)− η(0) = a0q0 as well. Moreover, by (2.6),

(4.21) ξ̇m = 2(λmpm +Dvm(ξm)) + AmV (ξm)

and, by evaluating the cell problem along the curve ξm and differentiating in time,
we get, after some cancellation,

d(ξ̇m(s)− AmV (ξm(s)))

ds
= −(ξ̇m − AmV (ξm))AmDV (ξm).

Since ξm is an absolutely minimizing trajectory, we must have that

(4.22)
T0

Am
HAm(λmpm) ≥

∫ tm

0

1

4
|ξ̇m(s)− AmV (ξm)|2 ds+ tmHAm(λmpm).

The left hand side of the above is the cost of traveling along the route γ(s) = η(sAm)
from xm to xm + aq0. So tm ≤ T0

Am
. Consider

wm(s) = ξm

(
s

Am

)
.

Then wm is an non-contractable periodic curve with a minimal period Amtm ≤ T0,

(4.23)
1

4
|ẇm − V (wm)|2 +

1

2
V (wm) · (ẇm − V (wm)) =

HAm(λmpm)

A2
m

and
d(ẇm(s)− V (wm(s)))

ds
= −(ẇm(s)− V (wm(s)) ·DV (wm(s)).

Denote G(s) = |ẇm(s)− V (wm(s))|2. Then

G′(s) ≤ CG(s)

for C = 2 maxR2 |DV |. So d log(G(s))
ds

≤ C. This implies that for 0 ≤ s1 ≤ s2 ≤
tmAm ≤ T0,

G(s2)

G(s1)
≤ eC(s2−s1) ≤ eCT0
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and
G(s1)

G(s2)
=
G(s1 + Amtm)

G(s2)
≤ eC(s1+Amtm−s2) ≤ eCT0 .

Combining with the periodicity of G, we obtain that

(4.24)
mins∈R |ẇm(s)− V (wm(s))|
maxs∈R |ẇm(s)− V (wm(s))|

≥ θ0 := e−
CT0

2 .

Owing to (4.22), we obtain that

(4.25)

∫ Amtm

0

|ẇm(s)− V (wm(s))|2 ds ≤ 4T0HAm(λmpm)

A2
m

.

Owing to (4.23) and Lemma 4.2, maxs∈R |ẇm(s)| is uniformly bounded. Since
wm(Amtm)− wm(0) = a0q0, it is clear that

lim inf
m→+∞

Amtm > 0.

Now combining (4.25), (4.24) and Lemma 4.2, it is not hard to show that

lim
m→+∞

Amtm = T0

and

(4.26) lim
m→+∞

wm(s) = η(s) uniformly in C1(R1).

Write cm = maxs∈R |ẇm(s)− V (wm(s))|. Note that

ẇm(s) =
2(λmpm +Dvm(wm(s)))

Am
+ V (wm(s)).

and by (4.23),

V (wm) · ẇm − V (wm)

cm
=

2HAm(λmpm)

A2
mcm

− 1

2cm
|ẇm − V (wm)|2.

Due to (4.20) and (4.21), cmAm ≥ 2
√
HAm(λmpm). Combining with (4.26) and

Lemma 4.2, we have that

(4.27) lim
m→+∞

V (wm(s)) · ẇm(s)− V (wm(s))

cm
= 0 uniformly in R1.

Note that
dK(wm(s))

ds
= DK(wm(s)) · (ẇm(s)− V (wm(s)).

Taking integration from 0 to tmAm, due to periodicity, we have that∫ tmAm

0

DK(wm(s)) ·
(
ẇm(s)− V (wm(s))

cm

)
ds = 0.

By (4.24), |ẇm(s)−V (wm(s))|
cm

∈ [θ0, 1]. Combining with (4.27), by sending m → +∞,
we obtain that ∫ T0

0

a(s)|DK(η(s))| ds = 0

for some a(t) > 0. This is a contradiction. So our claim holds.
Combining Case 1 and Case 2, we obtain the desired result.
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�

Lemma 4.1. Let H be the effective Hamiltonian of

|p+Dv|2 + V (x) · (p+Dv) = H(p).

Then for |p| ≥ θ > 0, there exists µθ > 0 depending only on θ and V such that

min
q∈∂H(p)

q · p ≥ H(p) + µθ.

Proof. This follows easily from a compactness argument, H(0) = 0, H(p) ≥ |p|2
and the strict convexity of H along the radial direction (Theorem 2.2). �

Due to the simple equality H(p) = HA(Ap)
A2 , we immediately derive the following

corollary. Recall that HA is the effective Hamiltonian from (1.2) with V replaced
by AV .

Corollary 4.1. If |p| ≥ θA, then

min
q∈∂HA(p)

q · p ≥ HA(p) + µθA
2.

Lemma 4.2. For |p| = 1 and A ≥ 1, denote λp,A such that

αA(p) =
HA(λp,Ap) + 1

λp,A
.

Then

lim
A→+∞

max|p|=1 λp,A
A

= lim
A→+∞

max|p|=1HA(λp,Ap)

A2
= 0.

Proof. Since HA(p) ≤ |p|2 +AM |p| for M = maxT2 |V |, the second limit holds true
immediately once we prove the validity of the first limit.

We prove the first limit by contradiction. If not, then there exists a sequence
Am → +∞ as m→ +∞ and |pm| = 1 such that for λm = λpm,Am ,

lim
m→+∞

λm
Am

= b0 > 0.

So by Lemma 2.1, there is qm ∈ ∂HAm(λmpm) such that

qm · λmpm = HA(λmpm) + 1.

This contradicts to Corollary 4.1 when m is large enough. �

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. It suffices to show that there exists a unit vector p0 such
that sp0 is a linear point of {HA = HA(sp0)} for any s > 0.

(1) Assume that V is the shear flow, i.e. V = (v(x2), 0). Without loss of gener-
ality, we omit the dependence on A. Then the cell problem is reduced to 1d:

|p1|2 + |p2 + u′(y)|2 + p1v(y) = H(p).
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So H(p) − |p1|2 is the effective Hamiltonian associated with the 1d mechanical
Hamiltonian H1(p2, y) = |p|2 + p1v(y), which is given by a simple explicit formula
([18]). Accordingly, HA(p) has the following explicit formulas: for p = (p1, p2) ∈ R2,

H(p) = |p1|2 + h(p1, p2)

and h : R2 → R is given by{
h(p) = M(p1) = maxy∈T p1v(y) if |p2| ≤

∫ 1

0

√
M(p1)− p1v(y) dy

|p2| =
∫ 1

0

√
h(p)− p1v(y) dy otherwise.

Hence H is linear near the point p = (s, 0) as long as s 6= 0 and the corresponding
outward normal vector is either (1, 0) or (−1, 0).

(2) Now let V = (−Kx2 , Kx1) for K(x) = sin(2πx1) sin(2πx2). Recall that the
cell problem is

(4.28) |p+Dv|2 + AV · (p+Dv) = HA(p) ≥ |p|2.

Due to the symmetry, the proof for the cellular flow case of Theorem 1.3 follows
directly from the result of the following proposition.

�

Proposition 4.1. Fix s > 0 and let Q = (s, 0) ∈ R2. If A 6= 0, then Q is a linear
point of the level set {HA = HA(Q)}.

Proof. Let MQ be the projected Mather set at the point Q. By symmetry, it is
easy to see that ∂H(Q) is parallel to (1,0). Then due to Theorem 2.3, it suffices to
show that

(4.29) MQ ∩ {y ∈ T2 : y2 = 0} = ∅.

Step 1: We claim that there is a viscosity solution v to (4.28) which satisfies that
v(y1, y2) = v(y1,−y2). In fact, let us now look at the discounted approximation of
(4.28) with p = Q. For each ε > 0, consider

(4.30) εvε + |Q+Dvε|2 + AV · (Q+Dvε) = 0 in T2,

which has a unique viscosity solution vε ∈ C0,1(T2). By the fact that Q = (s, 0) and
the special structure of V , it is clear that (y1, y2) 7→ vε(y1,−y2) is also a solution
to the above. Therefore, vε(y1, y2) = vε(y1,−y2) for all (y1, y2) ∈ T2. Clearly, any
convergent subsequence of vε − vε(0) tends to a v which is a solution of (4.28)
and is even in the y2 variable. We would like to point out that a recent result of
Davini, Fathi, Iturriaga and Zavidovique [9] (see also Mitake and Tran [23]) gives
the convergence of the full sequence vε − vε(0) as ε→ 0.

Step 2: Assume by contradiction that (4.29) is not correct. Suppose that

(µ0, 0) ∈MQ ∩ {y ∈ T2 : y2 = 0}.

Then v is differentiable at (µ0, 0) and vx2(µ0, 0) = 0. Due to (2.6), the flow-
invariance of the Mather set and the Euler-Lagrangian equation, it is easy to see
that

{y ∈ T2 : y2 = 0} ⊂ MQ.
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Hence v is C1 along the y1 axis and

(4.31) vy2(y1, 0) = 0 for all y1 ∈ T.

Set w(y1) = v(y1, 0). Plug this into the equation (4.28) of v with y2 = 0 and use
(4.31) to get that

(4.32) |s+ w′|2 − A(s+ w′) sin(2πy1) = HA(Q) ≥ s2 in T.

Clearly, s+w′(y1) 6= 0 for all y1 ∈ T in light of (4.32). Note further that w′ ∈ C(T)
and ∫ 1

0

(s+ w′(y1)) dy1 = s > 0.

Thus, s+ w′ > 0 in T and for all y1 ∈ T,

s+ w′(y1) =
1

2

(
A sin(2πy1) +

√
A2 sin2(2πy1) + 4HA(Q)

)
.

Integrate this over T to deduce that

s =

∫ 1

0

(s+ w′(y1)) dy1 =

∫ 1

0

1

2

(
A sin(2πy1) +

√
A2 sin2(2πy1) + 4HA(Q)

)
dy1

=

∫ 1

0

1

2

√
A2 sin2(2πy1) + 4HA(Q) dy1 ≥

√
HA(Q) ≥ s.

Therefore, all inequalities in the above must be equalities. In particular, the second
last inequality must be an equality, which yields that A = 0. �

Remark 4.1. Theorem 2.3 is not really necessary to get the above proposition. In
fact, using the same argument, we can derive that the Aubry set has no intersection
with the y1 axis. Then by [15], there is a strict subsolution to (4.28) near the y1

axis. The linearity of H near Q will follow from some elementary calculations.
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