
Digital Object Identifier (DOI) 10.1007/s00205-016-0998-7
Arch. Rational Mech. Anal. 222 (2016) 143–212

Stability of Traveling Waves of Nonlinear
Schrödinger Equation with Nonzero Condition

at Infinity

Zhiwu Lin , Zhengping Wang & Chongchun Zeng

Communicated by F. Lin

Abstract

We study the stability of traveling waves of the nonlinear Schrödinger equation
with nonzero condition at infinity obtained via a constrained variational approach.
Two important physical models for this are the Gross–Pitaevskii (GP) equation
and the cubic-quintic equation. First, under a non-degeneracy condition we prove a
sharp instability criterion for 3D traveling waves of (GP), which had been conjec-
tured in the physical literature. This result is also extended for general nonlinearity
and higher dimensions, including 4D (GP) and 3D cubic-quintic equations. Second,
for cubic-quintic type nonlinearity, we construct slow traveling waves and prove
their nonlinear instability in any dimension. For dimension two, the non-degeneracy
condition is also proved for these slow traveling waves. For general traveling waves
without vortices (that is nonvanishing) and with general nonlinearity in any dimen-
sion, we find a sharp condition for linear instability. Third, we prove that any 2D
traveling wave of (GP) is transversally unstable, and we find the sharp interval
of unstable transversal wave numbers. Near unstable traveling waves of all of the
above cases, we construct unstable and stable invariant manifolds.

1. Introduction

Consider the Gross–Pitaevskii (GP) equation

i
∂u

∂t
+ �u + (1 − |u|2)u = 0, (t, x) ∈ R × R

3, (1)

where u satisfies the boundary condition |u| → 1 when |x | → ∞. Equation (1),
with the considered non-zero conditions at infinity, arises in lots of physical prob-
lems such as superconductivity, superfluidity in Helium II, and Bose–Einstein con-
densate (for example [1,10]). On a formal level, the Gross–Pitaevskii equation is a
Hamiltonian PDE. The conserved Hamiltonian is the energy defined by
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E(u) = 1

2

∫
R3

|∇u|2 dx +
∫
R3

1

4
(1 − |u|2)2 dx

and the energy space is defined by

X0 = {u ∈ H1
loc(R

3) : E(u) < +∞}.
The momentum

�P (u) = 1

2

∫
R3

〈i∇u, u − 1〉

is also formally conserved, due to the translation invariance of (GP). We denote

P (u) = 1

2

∫
R3

〈i∂x1u, u − 1〉 dx = −
∫
R3

(u1 − 1) ∂x1u2 dx (2)

to be the first component of �P . The global existence of the Cauchy problem for
(GP) in the energy space X0 was proved in [29,30]. Some studies on the asymptotic
behavior of a solution with regard to (1) can be found in, for example, [35,36].

Traveling waves are solutions to (GP) of the form u(t, x) = Uc(x − ce1t),
where e1 = (1, 0, 0) and Uc satisfies the equation

− ic∂x1Uc + �Uc + (1 − |Uc|2)Uc = 0. (3)

Such traveling waves of finite energy play an important role in the dynamics of
the Gross–Pitaevskii equation. In a series of papers including [39,40], Jones,
Putterman and Roberts used formal expansions and numerics to construct trav-
eling waves and studied their properties for both 2D and 3D (GP). For 3D, they
found a branch of traveling waves with the travel speed in the subsonic interval
(0,

√
2). These traveling waves tend to a pair of vortex rings when c → 0 and to

solitary waves of the Kadomtsev–Petviashvili (KP) equation when c → √
2. Start-

ing in late 1990s [13], Béthuel and Saut initiated a rigorous mathematical study
of the program of Jones, Putterman and Roberts. Since then, there have been lots
of mathematical studies on this subject. We refer to the survey [14] and two recent
papers [49,51] on the existence and properties of traveling waves of (GP). In par-
ticular, the existence of 3D traveling waves in the full subsonic range (0,

√
2) was

proved in [49]; non-existence of supersonic and sonic traveling waves was shown
in [50]; symmetry, decay and regularity of both 2D and 3D traveling waves were
studied in [14,31]. However, the stability and dynamics of these traveling waves
have not been well studied. Recently, Chiron and Maris [51] constructed both 2D
and 3D traveling waves of (GP) by minimizing the energy under the constraint of
fixed momentum. They showed the compactness of the minimizing sequence and
as a corollary the orbital stability of these traveling waves was obtained. However
the range of traveling speeds that these stable traveling waves cover is not clear.
Moreover, for 3D (GP) it is known that only one part of the traveling waves branch
could be constructed as energy minimizers subject to fixed momentum.

In the physical literature [12,39], the following linear stability criterion for
3D traveling waves was conjectured based on numerics and heuristic arguments:
there is linear stability of the branch of traveling waves Uc satisfying

dP(Uc)
dc > 0,
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commonly referred as the lower branch, and linear instability on the branch with
dP(Uc)

dc < 0, commonly referred as the upper branch. More specifically, numerical

evidence [12,39] suggests that there exists c∗ ∈ (0,
√
2) such that dP(Uc)

dc > 0 for

c ∈ (0, c∗) and dP(Uc)
dc < 0 for c ∈ (c∗,

√
2). Here, our definition of P (u) follows

the notation in [49] and differs from that of [12,39] by a negative sign. In this paper,
we rigorously justify this stability criterion under a non-degeneracy condition (24)
or its cylindrical symmetric version (56). Roughly, we show the following main
theorem for (4), a more general (than (1)) nonlinear Schrödinger equation with
non-vanishing condition at infinity:

Main Theorem 1. Let 0 < c0 <
√
2 and Uc0 be a traveling wave solution of (4)

radial in (x2, x3) directions constructed in [49].

• Suppose the nonlinearity F in (4) satisfies (F1-2) and a non-degeneracy condi-
tion (24) holds. Then for c in a neighborhood of c0, there exists a locally unique
C1 family of traveling waves Uc. If, in addition, Uc satisfies ∂ P(Uc)

∂c |c=c0 > 0,
then the traveling wave Uc0 is orbitally stable in the energy space X0.

• Suppose F ∈ C5 and that a cylindrical version of the non-degeneracy condition
(56) holds. Then for c in a neighborhood of c0, there exists a C1 family of
traveling waves Uc locally unique in cylindrically symmetric function spaces.
If, in addition, Uc satisfies ∂ P(Uc)

∂c |c=c0 < 0, the linearized equation at Uc0 has
an unstable eigenvalue and locally Uc0 has a 1-dim C2 unstable manifold and
a 1-dim C2 stable manifold, which yields the nonlinear instability.

Here assumptions (F1-2) are given in Section 2.5. The existence of the local
C1 family of traveling waves are due to the Implicit Function Theorem based on
the non-degeneracy assumption, see Theorem 5.3. We refer to Theorems 2.1, 2.2,
3.1 and Corollary 2.2 for more precise statements on the stability/instability, where
the exact meaning of the orbital stability is also given. In fact we do not have to
limit ourselves to those traveling waves constructed in [49]. The main properties on
Uc we really need are that, as critical points of the energy-momentum functional
Ec � E + cP , the Hessian E ′′

c of Ec at Uc has exactly one negative direction, in
addition to the non-degeneracy (24) of E ′′

c .
Condition (24) states that the kernel of theHessian E ′′

c of the energy-momentum
functional Ec is spanned by the translation modes

{
∂xi Uc

}
only. Equivalently,

the linearization of the (elliptic) traveling wave equation has only solutions of
translationmodes. Such a condition is commonly assumed in the stability analysis of
dynamical systems (for example [32,33]). It is a nontrivial task to confirm the non-
degeneracy condition for a given travelingwave associated to a specific nonlinearity,
which mainly involves the analysis of the linearized elliptic equation of traveling
waves. In Appendix 2, we verify such kinds of conditions in certain cases.

Remark 1.1. Assume Uc is a family of traveling waves C1 in c. If the stability
sign condition ∂ P(Uc)

∂c |c=c0 � 0 is satisfied, actually we can still obtain the spectral
stability of Uc0 even if the non-degeneracy condition (24) is not satisfied. Here
the spectral stability means that the spectrum of the linearized equation at Uc0 is
contained in the imaginary axis on the complex plane. This is a consequence of the
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results in a more general setting in a forthcoming paper [46]. However, the linear
stability is not guaranteed as linear solutions may grow like O(t).

We give a brief description of key ideas in the proof. The troubles from the
non-zero condition at infinity can be seen from the linearized operator, which is

of the form J Lc, where J =
(

0 1

−1 0

)
and Lc (defined by (20)) is the second

variation operator of the Hamiltonian E + cP . When |x | → ∞, the operator Lc

has the asymptotic form

(
−� + 2 −c∂x1

c∂x1 −�

)
,

which implies that the essential spectrum of Lc is [0,+∞) for any c ∈ (0,
√
2).

Therefore, there is no spectral gap for Lc between the discrete spectrum (negative
and zero eigenvalues) and the rest of the spectrum, so we cannot use the stan-
dard stability theory for Hamiltonian PDEs as in [32,33], which requires such a
spectral gap condition. To overcome this issue, we observe that the quadratic form
〈Lc·, ·〉 has the right spectral structure in the space X1 = H1(R3)× Ḣ1(R3). More
precisely, the quadratic form of Lc is uniformly positive definite modulo a finite
dimensional negative and zero modes. However, another issue arises since the op-
erator J−1 = −J does not map X1 to its dual (X1)

∗ = H−1(R3) × Ḣ−1(R3).
The boundedness of J−1 : X1 → (X1)

∗ is required in [32,33] and is true for
Schrödinger equation with vanishing condition where X1 = H1 × H1. We use a
new argument to avoid using the boundedness of J−1 and prove the linear instability
criterion dP(Uc)

dc < 0 (Proposition 3.3) under the non-degeneracy condition (56).
To study the nonlinear dynamics, we use a coordinate system of the (non-

flat) energy space X0 over the Hilbert space X1. More precisely, there exists a bi-
continuous mappingψ : X1 → X0 as defined in (11), which was first introduced in
[30] to understand the structure of the energy space X0. The nonlinear stability on
the lower branchwith dP(Uc)

dc > 0 is provedby theTaylor expansions ofHamiltonian

functional (E + cP̃)(ψ(w)) for w ∈ X1 near wc, where Uc = ψ(wc) and P̃(u)

is the extended momentum (defined in (12)) in the energy space X0. The proof
of stability (Theorem 2.1) implies that the stable traveling waves are local energy
minimizers with a fixed momentum.

To study the nonlinear dynamics near the linearly unstable traveling waves on
the upper branch, we rewrite the (GP) equation in terms of the coordinate func-
tion w ∈ X1, where u = ψ (w) satisfies the (GP) Equation (1). We construct
stable (unstable) manifolds near unstable traveling waves by this new equation for
w ∈ X3 = H3× Ḣ3, on which the nonlinear term of thew-equation is shown to be
semilinear in Appendix 1. The linearized operator for w is similar to the operator
J Lc, that is, of the form K −1 J Lc K , where K is an isomorphism of X1 defined in
(22). Thus the study of the linearizedw equation is reduced to the study of the semi-
group et J Lc . To show the existence of unstable (stable) manifolds, first we establish
an exponential dichotomy estimate for et J Lc in X3. That is, to decompose X3 into
the direct sum of two invariant subspaces, on one the linearized solutions have an
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exponential growth and on the other one have strictly slower growth. It is highly
nontrivial to get such an exponential dichotomy for et J Lc from the spectra of J Lc

due to the issue of spectral mapping (see Remark 3.3). In this paper, we develop
a new approach to proving the exponential dichotomy of et J Lc , which might be
useful for very general Hamiltonian PDEs. The idea is very simple and natural. We
observe that the quadratic form of 〈Lcu (t) , v (t)〉 is invariant for any two linearized
solutions u (t) and v (t). This implies that the orthogonal complement (in the inner
product 〈Lc·, ·〉) to the unstable and stablemodes defines a subspace invariant under
the linearized flow et J Lc . The quadratic form 〈Lc·, ·〉 restricted to the above defined
space is shown to be positive definite modulo the translation modes. By using this
positivity estimate and the invariance of 〈Lc·, ·〉 under et J Lc , the solutions on this
subspace are shown to have at most polynomial growth. Therefore it serves as the
invariant center subspace of the linearized flow and the exponential trichotomy of
the linearized flow between the stable, unstable, and the center subspaces is estab-
lished. Consequently, the existence of unstable (stable) manifolds follows from the
standard invariant manifold theory for semilinear equations (for example [7,22]).
In a future work we will construct center manifolds near the orbital neighborhood
of the unstable traveling waves in the energy space X0. The positivity of Lc on the
center space (modulo the translation modes) then implies the orbital stability and
local uniqueness of the center manifold.

The above study of stability of traveling waves can be generalized to the non-
linear Schrödinger equation with general nonlinear terms or in higher dimensions.
Consider

i
∂u

∂t
+ �u + F(|u|2)u = 0, (4)

where (t, x) ∈ R × Rn
(
n � 3

)
and u satisfies the boundary condition |u| → 1 as

|x | → ∞. Assume that the nonlinear term F (u) satisfies the assumptions (F1)–(F2)
or (F1)–(F2′) in Section 2.5 for n = 3 and in Section 6 for n � 4. These include
the 4D (GP) and 3D cubic-quintic equations, which have the critical nonlinearity.
Then the sharp linear instability criterion d

dc P (Uc) < 0 can be proved in the same
way (see Theorems 2.2, 3.1 and Corollary 2.2), by studying the quadratic form
〈Lc·, ·〉 in the same space X1 = H1 (Rn) × Ḣ1 (Rn) for n � 4. The unstable
(stable) manifolds can then be constructed near unstable traveling waves by using
the Equation (4). To prove orbital stability when d

dc P (Uc) > 0 for dimensions
n � 4, a coordinate mapping ψ relating X1 and the energy space X0 is required.
For n = 4, such a mapping is simply given by ψ (w) = 1 + w, w ∈ X1 and the
global existence of 4D (GP) was recently shown in [41]. We refer to Section 6 for
more details on the extensions.

The above approach does not work for dimensions n = 1, 2. First, the quadratic
form 〈Lc·, ·〉 is notwell-defined in the space X1 = H1 (Rn)× Ḣ1 (Rn) for n = 1, 2.
Second, the energy space X0 cannot be written as a metric space homeomorphism
to X1, due to the oscillations of functions in X0 at infinity (see [30]). However,
when the traveling waveUc has no vortices, that is,Uc �= 0, we can study the linear
instability of Uc by the following hydrodynamic formulation. By the Madelung
transformation u = √

ρeiθ , the Equation (4) becomes
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{
θt + |∇θ |2 − 1

2
1
ρ
�ρ + 1

4
1
ρ2 |∇ρ|2 − F(ρ) = 0

ρt + 2∇.(ρ∇θ) = 0.
(5)

Define the velocity �v = ∇θ . Then the first equation of (5) is the Bernoulli equation
for the vector potential θ and the second equation is the continuity equation for the
density ρ. Define the energy functional

E(ρ, θ) = 1

2

∫
Rn

(
|∇ρ|2
4ρ

+ ρ|∇θ |2 + V (ρ)

)
dx . (6)

The Equation (5) is also formally Hamiltonian as

∂t

(
ρ

θ

)
= J E ′(ρ, θ).

Linearizing above equation at the traveling wave (ρc, θc), we get

∂t

(
ρ

θ

)
= J Mc

(
ρ

θ

)
, (7)

where J is as before and Mc is defined in (90). We show that for any dimension
n � 1, the quadratic form 〈Mc·, ·〉 has the right spectral structure for (ρ, θ) ∈
H1 (Rn) × Ḣ1 (Rn), that is, it is positive definite modulo with a one-dimensional
negative mode and translation modes. By the same proof as in the 3D (GP) case,
the linear instability criterion d

dc P (Uc) < 0 is obtained under the non-degeneracy
assumption (see Proposition 5.3). As an example, we consider the cubic-quintic
equation with F(s) = −α1 + α3s − α5s2, where α1, α3, α5 are positive constants
satisfying

3

16
<α1α5/α

2
3<

1

4
. (8)

This equation has many interpretations in physics. For example, in the context of
a Boson gas, it describes two-body attractive and three-body repulsive interactions
[4,5]. Different from the (GP) equation, the cubic-quintic type equations have un-
stable stationary solutions for any dimension n � 1 [4,5,24]. First, by using the
hydrodynamic formulation we show the existence of traveling waves for cubic-
quintic type equations with small traveling speeds (Theorem 5.2) in any dimension
n � 2. This gives a simplified proof of the previous results on the existence of slow
traveling waves in the work of Maris [48] for n � 4 and in an unpublished man-
uscript of Lin [45] for n = 2, 3. Moreover, our proof implies the local uniqueness
and differentiability of the traveling wave branch. For n = 2, we are also able to
show that the non-degeneracy condition (56) is satisfied for these slow traveling
waves (see Appendix 2 and Proposition 5.2). Then, we show that the slow travel-
ing waves are linearly unstable (Theorem 5.4). This follows from the computation
of the sign of dP(Uc)

dc |c=0 for stationary solutions. To construct unstable (stable)
manifolds, it is not convenient to use the hydrodynamic formulation (5) which has
the loss of derivative in the nonlinear terms. Our strategy is to construct unstable
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(stable) manifolds by the original Equation (4), based on the linear exponential
dichotomy in (Hk(Rn))2 which is first obtained in the (ρ, θ) coordinates. This is
possible due to the observation that the unstable (stable) eigenfunctions do have
the L2 estimate for θ .

Lastly, we show that any 2D traveling wave of (GP) is transversely unstable. In
Theorems 4.1 and 4.2, we find the sharp range of transversewave numbers for linear
instability, and construct unstable and stable manifolds under 3D perturbations. For
the proof, we observe that the linearized problem with transversal wave number
k is reduced to the study of the spectrum of the operator J

(
Lc + k2

)
, where Lc

is defined by (44) for 2D traveling waves. For k > 0, the spectrum of Lc + k2

has the gap structure in the usual space (Hm(R2))2 and thus the proof of linear
instability follows by that of Proposition 3.3 in a much simpler version. In the
physical literature [11,43], the transversal instability of 2D traveling waves of (GP)
was studied by the asymptotic expansions and numerics, in the long wavelength
(or small wave number) limit.

This paper is organized as follows. In Section 2, we study the spectral structures
of the second variation of energy-momentum functional and then prove the orbital
stability on the lower branch of 3D traveling waves of (GP). In Section 3, we prove
linear instability of 3D traveling waves on the upper branch and then construct
unstable (stable) manifolds. Section 4 is to show the transversal instability of 2D
traveling waves of (GP). In Section 5, we construct slow traveling waves of cubic-
quintic type equations and then prove their instability. Section 6 extends the main
results to other dimensions and more general nonlinear terms. In the appendix, we
give the proof of several technical lemmas.

We list some notations and function spaces used in the paper. For any integer
k � 1, n � 1, denote the space

Ḣ k (Rn) =
{

u | ∇u, . . . ,∇ku ∈ L2 (Rn)} ,

with the norm ‖u‖Ḣ k = ∑k
j=1 ‖∇ j u‖L2 . For n � 3, by Sobolev embedding

we can impose the condition u ∈ L
2n

n−2 (Rn) when u ∈ Ḣ1(Rn). Let Hk
R(Rn)

(Ḣ k
R(Rn)) be all the real valued functions in Hk(Rn) (Ḣ k(Rn)). Let Xk(Rn) =

Hk
R(Rn) × Ḣ k

R(Rn) be equipped with the norm

‖w‖Xk = ‖w1‖Hk + ‖w2‖Ḣ k , w = (w1, w2) ∈ Xk .

So as to avoid confusion, we write Xk (Rn), Hk
R(Rn) (Ḣ k

R(Rn)) simply as Xk ,
Hk

(
Ḣ k
)
. For n � 2, denote L2

r⊥ , Ḣ−1
r⊥ and Hk

r⊥
(
Ḣ k

r⊥
)
to be the cylindrically

symmetric subspaces of L2, Ḣ−1
(
the dual of Ḣ1

)
and Hk

(
Ḣ k
)
. A function u is

cylindrically symmetric if u = u (x1, r⊥)with x⊥ = (x2, . . . , xn) , r⊥ = |x⊥|. De-
note Xs

k to be the cylindrically symmetric subspaces of Xk , that is, Xs
k = Hk

r⊥ × Ḣ k
r⊥ .

2. Orbital Stability of Lower Branch Traveling Waves

In this section, we prove nonlinear orbital stability for 3D traveling waves ob-
tained via a constrained variational approach on the lower branch with d

dc P (Uc) >
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0. The proof is to expand the energy-momentum functional near the traveling wave
and show that the second variation is positive definite and dominant. A corollary
of this proof is that the stable traveling waves are local energy minimizers with
fixed momentum. We give the detailed proof for (GP) and then discuss briefly the
extensions for general nonlinearity.

The energy functional of (GP)

E (u) = 1

2

∫
R3

[
|∇u|2 + 1

2

(
|u|2 − 1

)2]
dx

is defined on the energy space

X0 =
{

u ∈ H1
loc(R

3;C) | ∇u ∈ L2(R3), |u|2 − 1 ∈ L2(R3)
}

. (9)

By [30], for anyu ∈ X0,we canwriteu = c (1 + v)where c ∈ S
1 andv ∈ Ḣ1

(
R3
)
.

Given u = c (1 + v) and ũ = c̃ (1 + ṽ), we define the natural distance in X0 by

d1 (u, ũ) = |c − c̃| + ‖∇v − ∇ṽ‖L2 +
∥∥∥|v|2 + 2Re v − |ṽ|2 − 2Re ṽ

∥∥∥
L2

. (10)

The global well-posedness of (GP) equation on X0 was proved in [29]. More-
over, if u (t) is the solution of (GP) with u (0) = c (1 + v0) where c ∈ S

1 and
v0 ∈ Ḣ1

(
R3
)
, then u (t) = c (1 + v (t)) with v (t) ∈ Ḣ1

(
R3
)
. Thus, for stability

considerations, we only need to consider c = 1, which will be assumed for the rest
of this paper.

2.1. Momentum

Besides the energy, another invariant of (GP) is the momentum which is due to
the translation invariance in x1 of the equation. For

u = u1 + iu2 ∈ 1 + H1(R3) ⊂ X0

the momentum is defined by (2). However, that form of momentum is not defined
for an arbitrary function u in the energy space X0. So, first we need to extend the
definition of P to all functions in X0. For this and the proof of main Theorem, we
use the following manifold structure of X0 given in [30]. Let χ ∈ C∞

0 (R3, [0, 1])
be a real valued and radial function such that χ(ξ) = 1 near ξ = 0, and consider
the Fourier multiplier χ(D) defined on S ′(R3) by

(χ̂(D)u)(ξ) = χ(ξ)û(ξ).

Define

ψ(w) = 1 + w1 − χ(D)

(
w2
2

2

)
+ iw2, for w = (w1, w2) ∈ X1. (11)

By Proposition 1.3 in [30], themappingw → ψ(w) is locally bi-Lipschitz between
X1 and (X0, d1). So the space X0 can be considered as a manifold over the coor-
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dinate space X1. For any u = ψ(w) ∈ X0 with w ∈ X1, we define the momentum
by

P̃ (u) = −
∫
R3

[
w1 + (1 − χ(D))

(
w2
2

2

)]
∂x1w2 dx . (12)

By Proposition 1.3 of [30], we have

‖χ(D) f ‖L p∩L∞ � C‖ f ‖L p , ∀ f ∈ L p, 1 � p � ∞, (13)

‖(1 − χ(D))( f g)‖L2 � C‖∇ f ‖L2‖∇g‖L2 , ∀ f, g ∈ Ḣ1(R3). (14)

So the right hand side of (12) is well-defined. First, we show that when u ∈ 1 +
H1
(
R3
)
, P̃ (u) = P (u), that is, P̃ is an extension of P . Indeed, when u ∈

1 + H1
(
R3
)
, or equivalently, u = ψ(w) with w ∈ H1

(
R3
)
, we have

P (u) = 1

2

∫
R3

〈i∂x1ψ(w),ψ(w) − 1〉 dx

= −
∫
R3

(
w1 − χ(D)

(
w2
2

2

))
∂x1w2 dx

= −
∫
R3

[
w1 + (1 − χ(D))

(
w2
2

2

)]
∂x1w2 dx + 1

2

∫
R3

w2
2∂x1w2 dx .

= P̃ (u) + 1

6

∫
R3

∂x1w
3
2 dx .

Sincew3
2 ∈ L2 and ∂x1w

3
2 = 3w2

2∂x1w2 ∈ L1, thus P̃ (u) = P (u) by the following
lemma.

Lemma 2.1. LetX = {∂x1φ |φ ∈ L2(R3)}. If v ∈ L1(R3)∩X , then
∫
R3 v(x) dx =

0.

Proof. The proof is similar to that of Lemma 2.3 in [49], so we skip it. ��
We collect the main properties of P̃ (u).

Lemma 2.2. (i) The functional P̄ (w) := P̃ ◦ ψ(w) is C∞ for w ∈ X1.
(ii) P̃ (u) is the unique continuous extension of P (u) from 1+H1

(
R3
)

to (X0, d1).

(iii) When u (t) is the solution of (GP) with u (0) ∈ X0, P̃ (u (t)) = P̃ (u (0)).

Proof. (i) Since

P̃ ◦ ψ(w) = −
∫
R3

w1∂x1w2 dx − 1

2

∫
R3

(1 − χ(D))w2
2∂x1w2 dx

= B1 (w1, w2) + B2 (w2, w2, w2) ,

where

B1 (w1, w2) = −
∫
R3

w1∂x1w2 dx : H1 × Ḣ1 → R
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and

B2 (w1, w2, w3) = −1

2

∫
R3

(1 − χ(D)) (w1w2) ∂x1w3 dx : (Ḣ1)3 → R

are multi-linear and bounded, so it follows that P̃ ◦ ψ(w) is C∞ on X1.
(ii) follows from (i), the bicontinuity of ψ : (X1, ‖‖X1

) → (X0, d1), and the
density of 1 + H1

(
R3
)
in (X0, d1).

(iii): When u (0) ∈ 1 + H1
(
R3
)
, we have u (t) ∈ 1 + H1

(
R3
)
. The global

existence in this case was first proved in [13]. It is straightforward to show that
P̃ (u (t)) = P (u (t)) is invariant in time by using the translation invariance of (GP).
For general u (0) ∈ X0, we can choose a sequence {un (0)} ⊂ 1 + H1

(
R3
)
such

that ‖un (0) − u (0)‖d1 → 0 when n → ∞. Then for any t ∈ R, P (un (t)) =
P (un (0)), letting n → ∞, we get P̃ (u (t)) = P̃ (u (0)) due to the continuous
dependence of solutions to (GP) on the initial with respect to the distance d1 (see
[29]). ��
Remark 2.1. In [49], the momentumwas extended from 1+ H1

(
R3
)
to the energy

space X0 in a different way and it was shown that such extended momentum is
continuous on (X0, d1). So by Lemma 2.2(ii), the extended momentum in [49]
gives the same functional as P̃ (u), but the form of P̃ (u) given in (12) is more
explicit.

2.2. The Energy-Momentum Functional

First, we show that the functional E ◦ ψ : X1 → R is smooth.

Lemma 2.3. The functional

Ē (w) := E ◦ ψ(w) = 1

2

∫
R3

[
|∇ψ(w)|2 + 1

2
(|ψ(w)|2 − 1)2

]
dx (15)

is C∞ on X1.

Proof. For w = (w1, w2) ∈ X1, that is, w1 ∈ H1, w2 ∈ Ḣ1,

∇ψ(w) = ∇w1 − χ (D) (w2∇w2) + i∇w2,

|ψ(w)|2 − 1 =
(

w1 − χ(D)

(
w2
2

2

))2

+ 2w1 + (1 − χ(D))(w2
2),

and by (13) and (14),

∇w1, χ (D) (w2∇w2) ,∇w2, (1 − χ(D))(w2
2) ∈ L2

w1, χ(D)

(
w2
2

2

)
∈ L4.

We can write the right hand side of (15) as a sum of multilinear forms, as in the
proof of Lemma 2.2. The C∞ property of E ◦ ψ(w) thus follows. ��
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Define the energy-momentum functional Ec (u) = E (u) + cP̃ (u) on X0 and

Ēc (w) = Ec ◦ ψ (w) = Ē (w) + cP̄ (w) , w ∈ X1 (16)

which is a smooth functional on space X1. Let Uc = uc + ivc be a finite energy
traveling wave solution of (GP) equation, that is, (uc, vc) satisfies{

�uc + c∂x1vc = − (1 − |Uc|2
)

uc,

�vc − c∂x1uc = − (1 − |Uc|2
)
vc.

(17)

Lemma 2.4. Let wc = (w1c, w2c) ∈ X1 be such that ψ(wc) = Uc = uc + ivc.
Then Uc solves the traveling wave equation if and only if Ē ′

c(wc) = 0.

Proof. Since Ē ′
c(wc) ∈ X∗

1 and the Schwartz class is dense in X1, we have
Ē ′

c(wc) = 0 if and only if 〈Ēc
′(wc), φ〉 = 0 for all φ in Schwartz class. One

may compute by integration by parts that, Ē ′
c(wc) satisfies, for any φ = (φ1, φ2)

in Schwartz class,

〈Ēc
′(wc), φ〉 =

∫
R3

[−�uc − (1 − |Uc|2)uc − c∂x1vc](φ1 − χ(D)(vcφ2))dx

+
∫
R3

[−�vc − (1 − |Uc|2)vc + c∂x1uc]φ2 dx . (18)

Therefore, it is clear that Ē ′
c(wc) = 0 if and only if (17) holds. ��

We now compute the second variation of Ēc (ψ). By straightforward computa-
tions using the criticality of wc, we have, for any φ in Schwartz class,

〈Ēc
′′(wc)φ, φ〉 := qc(φ)

=
∫
R3

[|∇ (φ1 − χ(D) (vcφ2))|2 + |∇φ2|2

+ (3u2
c + v2c − 1) |φ1 − χ(D) (vcφ2)|2 + (u2

c + 3v2c − 1) |φ2|2
+ 4ucvc (φ1 − χ(D) (vcφ2)) φ2 − 2c (φ1 − χ(D) (vcφ2)) ∂x1φ2] dx .

(19)

Since the functional Ēc (w) is smooth on X1, its second variation at wc which is
given by the quadratic form qc of (19) is well-defined and bounded on X1.

Define the operator

Lc :=
(−� − 1 + 3u2

c + v2c −c∂x1 + 2ucvc

c∂x1 + 2ucvc −� − 1 + u2
c + 3v2c

)
, (20)

then formally we can write

qc(φ) =
〈
Lc

(
φ1 − χ(D) (vcφ2)

φ2

)
,

(
φ1 − χ(D) (vcφ2)

φ2

)〉
. (21)

Here we use 〈·, ·〉 for the dual product of X1 = H1 × Ḣ1 and its dual X∗
1 =

H−1 × Ḣ−1, and (·, ·) is used for the inner product in X1. By [14], the traveling
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wave solutions (uc, vc) of (GP) equation satisfy: uc − 1, vc ∈ Hk for any k � 0,

and uc − 1 = O
(

1
|x |3
)
, vc = O

(
1

|x |2
)
for |x | → ∞. Since φ2 ∈ Ḣ1 implies that

χ(D) (vcφ2) ∈ L2, the mapping K : X1 → X1 defined by

K

(
φ1
φ2

)
=
(

φ1 − χ(D) (vcφ2)

φ2

)
(22)

is an isomorphism on X1. To study the quadratic form qc(φ) on X1, it is equivalent
to study the quadratic form

q̃c(φ) = 〈Lc (φ1, φ2)
T , (φ1, φ2)

T〉

on X1. To simplify notations, we write 〈Lc (φ1, φ2)
T , (φ1, φ2)

T〉 as 〈Lcφ, φ〉. The
quadratic form 〈Lcφ, φ〉 is well defined and bounded on X1, by the boundedness
of qc(φ) and the isomorphism of K on X1. This can also be seen directly by using
the Hardy inequality

∥∥∥∥ u

|x |
∥∥∥∥

L2(RN )
� 2

N − 2
‖∇u‖L2(RN ) , for any N � 3. (23)

Since |u2
c + 3v2c − 1|, |vc| � C

|x |2 , we have

∣∣∣∣
∫
R3

(u2
c + 3v2c − 1)φ2

2 dx

∣∣∣∣ � C
∫
R3

φ2
2

|x |2 dx � C
∫
R3

|∇φ2|2 dx

and
∣∣∣∣
∫
R3

ucvc φ1φ2 dx

∣∣∣∣ � C ‖φ1‖L2

∥∥∥∥ φ2

|x |
∥∥∥∥

L2

� C
(
‖φ1‖2L2 + ‖∇φ2‖2L2

)
.

Remark 2.2. The quadratic form qc(φ) = 〈Ēc
′′(wc)φ, φ〉 given in (19) and (21)

can be seen in the following way. Suppose w ∈ H1, then u = ψ (w) ∈ 1+ H1 and

Ēc (w) := Ec ◦ ψ(w) = E (u) + cP (u) .

If the first order variation of w at wc is δw = φ, then δu = Kφ and δ2u =
−χ(D)(φ2

2). So

〈
Ē ′′

c (wc) φ, φ
〉 = 〈E ′′

c (Uc) δu, δu
〉+ 〈E ′

c (Uc) , δ2u
〉

= 〈Lc (Kφ) , Kφ〉 ,

since E ′′
c (Uc) = Lc and E ′

c (Uc) = 0 by the Equation (17).
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2.3. Spectral Properties of Second Order Variation

Differentiating the traveling wave equation (17) in xi , we get Lc∂xi Uc = 0. We
assume that these are all the kernels of Lc, that is,

ker Lc = Z = span{∂xi Uc, i = 1, 2, 3}. (24)

Remark 2.3. The non-degeneracy condition (24) for c = c0 implies that the trav-
eling wave Uc0 is locally unique. More precisely, there exists a unique C1 curve of
traveling waves passing through (c0, Uc0). See Theorem 5.3 for the proof.

In [49], traveling wave solutions to (GP) were found by minimizing Ēc subject
to a Pohozaev type constraint. Our main result of this section is to give a spectral
decomposition of the quadratic form q̃c(φ) which is the quadratic part of Ec at Uc.

Proposition 2.1. For 0 < c <
√
2, let Uc be a traveling wave solution of (GP) con-

structed in [49] and Lc be the operator defined by (20). Assume the non-degeneracy
condition (24). The space X1 is decomposed as a direct sum

X1 = N ⊕ Z ⊕ P,

where Z is defined in (24), N is one-dimensional and such that q̃c(u) = 〈Lcu, u〉 <

0 for 0 �= u ∈ N , and P is a closed subspace such that

q̃c(u) � δ ‖u‖2X1
, ∀u ∈ P,

for some constant δ > 0.

Proof. Define the isomorphism G : L2 → X1 by

Gϕ = (−� + 1)−
1
2 ϕ1 + i(−�)−

1
2 ϕ2, (25)

for ϕ = ϕ1 + iϕ2 ∈ L2. Let L̃c := G̃ ◦ Lc ◦ G̃ with

G̃ =
(

(−� + 1)− 1
2 0

0 (−�)− 1
2

)
, (26)

and define the quadratic form on L2 by

pc(ϕ) = q̃c (Gϕ) = 〈L̃c (ϕ1, ϕ2)
T , (ϕ1, ϕ2)

T〉 := 〈L̃cϕ, ϕ〉. (27)

Then

q̃c(ϕ)

‖ϕ‖2X1

= pc(G−1ϕ)

‖G−1ϕ‖2
L2

, for any ϕ ∈ X1,

and it is equivalent to prove the conclusions of proposition for the quadratic form
pc(ϕ) on L2. Since uc → 1, vc → 0 as |x | → ∞, let

Lc,∞ :=
(−� + 2 −c∂x1

c∂x1 −�

)
(28)
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and qc,∞(φ) = 〈Lc,∞φ, φ〉. Correspondingly, let
L̃c,∞ := G̃ ◦ Lc,∞ ◦ G̃

and pc,∞(ϕ) = 〈L̃c,∞ϕ, ϕ〉. The properties of the quadratic form pc(ϕ) on L2

follow from the spectral properties of the operator L̃c. We claim that:

(i) L̃c : L2 → L2 is self-adjoint and bounded.
(ii) L̃c has one-dimensional negative eigenspace,

ker L̃c = {G−1∂xi Uc, i = 1, 2, 3},
and the rest of the spectrum are uniformly positive.

The proof of these claims will be split into a few lemmas to be proved later and
we outline the rest of the proof of the Proposition based on these lemmas.

To prove claim (i), first we note that the constant coefficient operator L̃c,∞ :
L2 → L2 is self-adjoint and bounded. We shall show that the operator L̃c − L̃c,∞
is compact on L2. Indeed,

L̃c − L̃c,∞

=
⎛
⎝ (−� + 1)− 1

2
(
3u2

c − 3 + v2c
)
(−� + 1)− 1

2 2(−� + 1)− 1
2 ucvc(−�)− 1

2

2(−�)− 1
2 ucvc(−� + 1)− 1

2 (−�)− 1
2
(
u2

c − 1 + 3v2c
)
(−�)− 1

2

⎞
⎠

=
(

L11 L12

L21 L22

)
. (29)

By Lemma 2.5, the operators Li j (i, j = 1, 2) are all compact on L2
(
R3
)
. More-

over, L11, L22 are symmetric and L21 = L∗
12, thus L̃c − L̃c,∞ is bounded and

self-adjoint and (i) is proved.
To prove claim (ii), first we note that by Lemma 2.9, there exists δ0 > 0, such

that 〈
L̃c,∞ϕ, ϕ

〉
� δ0 ‖ϕ‖2L2 .

Thus σess(L̃c,∞) ⊂ [δ0,+∞). By Weyl’s theorem and the compactness of L̃c −
L̃c,∞, we have σess(L̃c) = σess(L̃c,∞) ⊂ [δ0,+∞). This shows that the negative
eigenspace of L̃c is finite-dimensional. By assumption (24), ker L̃c = {G∂xi Uc, i =
1, 2, 3}. By Lemmas 2.7 and 2.8, the negative eigenspace of L̃c is one-dimensional.
This proves claim (ii) and finishes the proof of the proposition. ��

From the above proposition and the relation

〈Ēc
′′(wc)φ, φ〉 = 〈Lc (Kφ) , Kφ〉 , (30)

where K is defined by (22), we immediately get the following.

Corollary 2.1. Under the conditions of Proposition 2.1, the space X1 is decom-
posed as a direct sum
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X1 = N ′ ⊕ Z ′ ⊕ P ′,
where Z ′ = {∂xi wc, i = 1, 2, 3}, N ′ is a one-dimensional subspace such that
qc(u) = 〈Ēc

′′(wc)u, u〉 < 0 for 0 �= u ∈ N ′, and P ′ is a closed subspace such
that

qc(u) � δ ‖u‖2X1
, ∀u ∈ P ′

for some constant δ > 0.

Proof. We define N ′ = K −1N , Z ′ = K −1Z and P ′ = K −1P , where N , Z , P
are defined in Proposition 2.1. Then the conclusion follows by (30). In particular,
Z ′ = K −1Z = {∂xi wc, i = 1, 2, 3

}
since

∂xi Uc = ∂xi ψ (wc) = K∂xi wc.

��
Now we prove several lemmas used in the proof of Proposition 2.1. We use C

for a generic constant in the estimates.

Lemma 2.5. The operators Li j (i, j = 1, 2) defined in (29) are compact on
L2
(
R3
)
.

Proof. Since V1 (x) = 3u2
c − 3 + v2c → 0 when |x | → ∞, and the operator

(−�+1)− 1
2 : L2 → H1 is bounded, thus

(
3u2

c − 3 + v2c
)
(−�+1)− 1

2 is compact
on L2 by the local compactness of H1 → L2. So L11 is compact on L2.

Take a sequence {vk} ⊂ L2
(
R3
)
and vk → v∞ weakly in L2. To show an

operator T is compact on L2, it suffices to prove that T vk → T v∞ strongly in L2.
By Hardy’s inequality in the Fourier space,

‖L21 (vk − v∞)‖L2 =
∥∥∥∥ 1

|ξ |
(
2ucvc(−� + 1)−

1
2 (vk − v∞)

)ˆ
(ξ)

∥∥∥∥
L2

� C

∥∥∥∥∇ξ

(
2ucvc(−� + 1)−

1
2 (vk − v∞)

)ˆ
(ξ)

∥∥∥∥
L2

� C
∥∥∥|x | vc(−� + 1)−

1
2 (vk − v∞)

∥∥∥
L2

→ 0,

since the operator |x | vc(−� + 1)− 1
2 is compact by using |x | vc = O

(
1
|x |
)
. Then

L12 = L∗
21 is also compact.

To show the compactness of L22, first note that V2 (x) = (
u2

c − 1 + 3v2c
) =

O
(

1
|x |3
)
. Let χ ∈ C∞

0 (R3, [0, 1]) be a radial cut-off function such that χ(ξ) = 1

when |ξ | � 1
2 and χ(ξ) = 0 when |ξ | � 1. For any R > 0, let χR = χ

( x
R

)
.

Denote uk = (−�)− 1
2 (vk − v∞), then ‖uk‖Ḣ1 � ‖vk − v∞‖L2 � C . Thus

‖L22 (vk − v∞)‖L2

� C ‖|x | V2 (x) uk‖L2

� C
(‖|x | V2 (x) χRuk‖L2 + ‖|x | V2 (x) (1 − χR) uk‖L2

)

� C

(
‖|x | V2 (x) χRuk‖L2 + 1

R

∥∥∥∥ 1

|x | (1 − χR) uk

∥∥∥∥
L2

)
.
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We have∥∥∥∥ 1

|x | (1 − χR) uk

∥∥∥∥
L2

� C ‖∇ [(1 − χR) uk]‖L2

� C

(
‖∇uk‖L2 +

∥∥∥∥ 1R ∇χ
( x

R

)∥∥∥∥
L3

‖uk‖L6

)

� C ‖∇uk‖L2 ,

so 1
R

∥∥∥ 1
|x | (1 − χR) uk

∥∥∥
L2

can be made arbitrarily small by taking R sufficiently

large. For fixed R, by the compactness of H1
0 ({|x | < R}) → L2, we get that

‖|x | V2 (x) χRuk‖L2 → 0, when k → ∞.

Thus ‖L22 (vk − v∞)‖L2 → 0 when k → ∞ and this finishes the proof of the
lemma. ��

Define the functional P̄c : X1 → R by

P̄c(w) =
∫
R3

|∂x1ψ(w)|2 dx + 2cP̃ ◦ ψ(w) +
∫
R3

1

2
(1 − |ψ(w)|2)2 dx . (31)

Lemma 2.6. Assume thatϕ ∈ X1 satisfies 〈P̄c
′(wc), ϕ〉 = 0,wherewc = ψ−1 (Uc) ,

then there holds qc(ϕ) = 〈Ēc
′′(wc)ϕ, ϕ〉 � 0.

Proof. First, we note that P̄c
′(wc) �= 0. Indeed, suppose P̄c

′(wc) = 0. Define

A (u) =
∫
R3

|∂x2u|2 + |∂x3u|2 dx .

Then since Ēc
′(wc) = 0 and Ēc (w)− 1

2 P̄c (w) = A◦ψ(w), we have (A ◦ ψ)′ (wc)

= 0, that is, K ∗ (�x2x3Uc
) = 0. Here,

K ∗φ =
(

φ1
φ2 − vc (χ(D)φ1)

)
(32)

is the adjoint of K defined in (22). Thus �x2x3Uc = 0 which implies that Uc ≡ 1,
a contradiction.

Thus we can choose φ ∈ X1 such that 〈P̄c
′(wc), φ〉 �= 0. Set G(σ, s) =

P̄c(wc + σφ + sϕ). Then

G(0, 0) = P̄c(wc)

=
∫
R3

|∂x1Uc|2 dx + 2c
∫
R3

〈i∂x1(1 − Uc), 1 − Uc〉 dx

+
∫
R3

1

2
(1 − |Uc|2)2 dx

= 0,

by the Pohozaev-type identity (see Proposition 4.1 of [50]). Since

∂G

∂σ
(0, 0) = 〈P̄c

′(wc), φ〉 �= 0,
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by the implicit function theorem, there exists a C1 function σ(s) near s = 0 such
that σ(0) = 0 and

G(σ (s), s) = P̄c(wc + σ(s)φ + sϕ) = 0.

Then from d
ds G(σ (s), s)|s=0 = 0, we get 〈P̄c

′(wc), σ
′(0)φ + ϕ〉 = 0. Since

〈P̄c
′(wc), ϕ〉 = 0 and 〈P̄c

′(wc), φ〉 �= 0, we get σ ′(0) = 0. Let w(s) = wc +
σ(s)φ + sϕ and g(s) = Ēc(w(s)). Then we have w(0) = wc, w′(0) = ϕ and
P̄c(w(s)) = 0. By the variational characterization of traveling wave solution [49],
we know that s = 0 is a local minimum point of g(s). So, we get g′′(0) � 0. This
implies that 〈Ēc

′′(wc)ϕ, ϕ〉 � 0. ��
The above lemma implies the following:

Lemma 2.7. For any 0 < c0 <
√
2, L̃c0 has at most one-dimensional negative

eigenspace.

Proof. We assume by contradiction that ϕ, ϕ̃ ∈ L2 are two linearly indepen-
dent eigenfunctions of L̃c0corresponding to negative eigenvalues. Since L̃c0 is
self-adjoint, we can assume that 〈L̃c0ϕ, ϕ̃〉 = 0. Let wc0 ∈ X1 be such that
ψ(wc0) = Uc0 . From the definition of L̃c0 , for any φ, φ̃ ∈ L2, we have

〈
L̃c0φ, φ̃

〉
= 〈Ēc0

′′(wc0)K −1Gφ, K −1Gφ̃〉, (33)

where the mappings G, K are defined in (25) and (22). Let w = K −1Gϕ, w̃ =
K −1Gϕ̃, then 〈Ēc0

′′(wc0)w, w̃〉 = 0 and

〈Ēc0
′′(wc0)w,w〉, 〈Ēc0

′′(wc0)w̃, w̃〉 < 0.

By Lemma 2.6 we have

〈(Pc0 ◦ ψ)′(wc0), w〉 �= 0, 〈(Pc0 ◦ ψ)′(wc0), w̃〉 �= 0.

Thus there exists α �= 0 such that

〈(Pc0 ◦ ψ)′(wc0), ξ0〉 = 0, for ξ0 = w + αw̃.

Again by lemma 2.6, we get

〈
Ēc0

′′(wc0)ξ0, ξ0
〉
� 0.

This is in contradiction to

〈
Ēc0

′′(wc0)ξ0, ξ0
〉 = 〈Ēc0

′′(wc0)w,w〉 + α2〈Ēc0
′′(wc0)w̃, w̃〉 < 0,

so L̃c0 has at most a one-dimensional negative eigenspace. ��
Lemma 2.8. For any 0 < c0 <

√
2, L̃c0 has at least one negative eigenvalue.
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Proof. By (33), it suffices to find a test function w0 ∈ X1 such that qc(w0) =
〈Ēc0

′′(wc0)w0, w0〉 < 0. By (30), it is equivalent to find φ ∈ X1 such that〈
Lc0φ, φ

〉
< 0. We note that the traveling wave solutions of (17) constructed in

[49] are cylindrical symmetric, that is, Uc0 = Uc0 (x1, r⊥) with r⊥ =
√

x22 + x23 .
Differentiating (17) to r⊥, we get

Lc0∂r⊥Uc0 = − 1

r2⊥
∂r⊥Uc0 .

In Appendix 3, we show that ∂r⊥Uc ∈ H1(R3) and 1
r⊥ ∂r⊥Uc0 ∈ L2

(
R3
)
. Thus

〈
Lc0∂r⊥Uc0 , ∂r⊥Uc0

〉 = −
∥∥∥∥ 1

r⊥
∂r⊥Uc0

∥∥∥∥
2

L2
< 0.

This proves the lemma. ��
Lemma 2.9. For any 0 < c0 <

√
2, there exists δ0 > 0 such that

pc0,∞(ϕ)

‖ϕ‖2
L2

� δ0, ∀ ϕ ∈ L2. (34)

Proof. By (27), it suffices to prove that there exists δ0 > 0 such that

qc0,∞(w)

‖w1‖2H1 + ‖w2‖2Ḣ1

� δ0, ∀ w = w1 + iw2 ∈ X1. (35)

Since 0 < c0 <
√
2, there exists 0 < a0 < 1 such that 2 − c20

a20
> 0. Then for

w = w1 + iw2 ∈ X1, we have

qc0,∞(w) =
∫
R3

[
|∇w1|2 + 2w2

1 + |∇w2|2 − 2c0(∂x1w2)w1

]
dx

=
∫
R3

(
|∇w1|2 +

(
2 − c20

a2
0

)
w2
1 + (1 − a2

0)(∂x1w2)
2

+ (∂x2w2)
2 + (∂x3w2)

2 +
(

c0
a0

w1 − a0∂x1w2

)2
)

dx .

� min

{
2 − c20

a2
0

, 1 − a2
0

}(
‖w1‖2H1 + ‖w2‖2Ḣ1

)
.

Thus (35) holds for δ = min

{
2 − c20

a20
, 1 − a2

0

}
. ��

2.4. Proof of Nonlinear Stability

We can now prove the orbital stability of traveling waves on the lower branch
(that is when ∂ P(Uc)

∂c |c=c0 > 0).
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Theorem 2.1. For 0 < c0 <
√
2, let Uc0 be a traveling wave solution of (GP)

constructed in [49], satisfying (24) and ∂ P(Uc)
∂c |c=c0 > 0. Then the traveling wave

Uc0 is orbitally stable in the following sense: There exists constants ε0, M > 0
such that for any 0 < ε < ε0, if

u (0) ∈ X0, d1
(
u (0) , Uc0

)
< Mε, (36)

then

sup
0<t<∞

inf
y∈R3

d1
(
u (·, t) , Uc0 (· + y)

)
< ε.

The proof of this theorem basically follows the line in [32]. However, the more
precise stability estimate (36) was not given there. The proof given below is to
modify the proof of Theorem 3.4 in [32] and get (36). First, we need the following:

Lemma 2.10. Let ∂ P(Uc)
∂c |c=c0 > 0. If φ ∈ X1 is such that

〈
P̄ ′ (wc) , φ

〉 = (∂xi wc0 , φ
) = 0, i = 1, 2, 3,

then

〈Ēc
′′(wc0)φ, φ〉 � δ ‖φ‖2X1

,

for some δ > 0.

The proof of this lemma is essentially the same as in [32], by usingCorollary 2.1
on the spectral properties of the quadratic form 〈Ēc

′′(wc0)·, ·〉.
Proof of Theorem 2.1. Let u (t) = ψ (w (t)). Since the mapping

ψ : (X1, ‖·‖X1

)→ (X0, d1)

is locally bi-Lipschitz with the local Lipschitz constant invariant under translation,
it suffices to show the following statement: ifw (0) ∈ X1,

∥∥w (0) − wc0

∥∥
X1

< Mε,
then

sup
0<t<∞

inf
y∈R3

∥∥w (t, ·) − wc0 (· + y)
∥∥

X1
< ε.

Let y (w (t)) ∈ R3 be such that the infimum

inf
y∈R3

∥∥w (t, ·) − wc0 (· + y)
∥∥

X1
= inf

y∈R3

∥∥w (t, · − y) − wc0 (·)∥∥X1

is obtained. Below, we use ‖·‖ for ‖·‖X1 for simplicity and denote T (y) w (t) =
w (t, · + y). Then by definition

(
T (y (w (t))) w (t) − wc0 , ∂xi wc0

) = 0, i = 1, 2, 3.

Denote u (t) = T (y (w (t))) w (t) − wc0 , and d (t) = ‖u (t)‖2. Since∣∣P̄ (T (y (w))w (t)) − P̄
(
wc0

)∣∣ = ∣∣P̄ (w (0)) − P̄
(
wc0

)∣∣
� C

∥∥w (0) − wc0

∥∥ = C ‖d (0)‖ 1
2
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and

P̄ (T (y (w))w (t)) − P̄
(
wc0

) = 〈P̄ ′ (wc0

)
, u (t)

〉+ O
(
‖u (t)‖2

)
,

so ∣∣〈P̄ ′ (wc0

)
, u (t)

〉∣∣ � C
(

d (t) + ‖d (0)‖ 1
2

)
. (37)

Let I : X1 → (X1)
∗ be the isomorphism defined by 〈I u, v〉 = (u, v) for any

u, v ∈ X1. Define q = I −1 P̄ ′ (wc0

)
and decompose u (t) = v + aq, where

a = (u, q) / (q, q) and (v, q) = 〈P̄ ′ (wc0

)
, v
〉 = 0. Then (37) implies that

|a| =
∣∣〈P̄ ′ (wc0

)
, u (t)

〉∣∣
(q, q)

� C
(

d (t) + ‖d (0)‖ 1
2

)
.

Moreover, (
v, ∂xi wc0

) = (u (t) , ∂xi wc0

)− a
〈
P̄ ′ (wc0

)
, ∂xi wc0

〉 = 0.

So by Lemma 2.10, we get 〈Ēc
′′(wc0)v, v〉 � δ ‖v‖2. We start with

Ēc (T (y (w)) w (t)) − Ēc
(
wc0

) = Ēc (w (0)) − Ēc
(
wc0

)
. (38)

The Taylor expansion of the left hand side of (38) yields

1

2

〈
Ēc

′′(wc0)u (t) , u (t)
〉+ O

(
‖u (t)‖3

)

= 1

2

〈
Ēc

′′(wc0)v (t) , v (t)
〉+ O

(
|a|2 + a ‖v‖ + ‖u‖3

)

� 1

2
δ ‖v‖2 − C

(
|a|2 + a ‖v‖ + ‖u‖3

)

� 1

2
δ ‖u‖2 − C ′ (|a|2 + a ‖u‖ + ‖u‖3

)

= 1

2
δd − C ′

((
d +√d (0)

)2 +
(

d +√d (0)
)√

d + d
3
2

)

� 1

4
δd − C ′′ (d2 + d

3
2 + d (0)

)
,

here, in the second inequality above we use

‖u‖ − |a| ‖q‖ � ‖v‖ � ‖u‖ + |a| ‖q‖
and in the last inequality we use

√
d (0)

√
d � 1

2

(
ηd + 1

η
d (0)

)
, η = 1

2
δ.

The right hand side of (38) is controlled by Cd (0). Combining above, we get

d (t) − C1F (d (t)) � C2d (0) , (39)

for some C1, C2 > 0 and F (d) = d2 + d
3
2 . The stability and the estimate (36)

follows easily from (39) by taking M = 2
C2
. ��
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Remark 2.4. In [51], Chiron and Maris constructed 3D traveling waves of (4)
with a nonnegative potential function V (s), by minimizing the energy functional
under the constraint of constant momentum. They proved the compactness of the
minimizing sequence and as a corollary the orbital stability of these traveling waves
is obtained. There are two differences between their result and Theorem 2.1. First,
in [51], the orbital stability is for the set of all minimizers which are not known to
be unique. Moreover, the more precise stability estimate (36) cannot be obtained
by such compactness approach. Second, the stability criterion ∂ P(Uc)

∂c |c=c0 > 0
obtained in Theorem 2.1 (under the non-degeneracy assumption) confirmed the
conjecture in the physical literature [12,39].No such stability criterionwas obtained
in [51]. In our proof, the variational characterization (such as in [49]) is only used in
Lemma 2.6 to show that the second variation of energy-momentum functional has
at most one negative direction. We do not need the compactness of the minimizing
sequence and the traveling waves constructed by other variational arguments (for
example [15]) also fit into our approach.

2.5. The Case of General Nonlinearity

In this section, we extend Theorem 2.1 on nonlinear stability to general non-
linearity F satisfying the following conditions:
(F1) F ∈ C1(R+) ∩ C0([0,∞), C2 in a neighborhood of 1, F(1) = 0 and
F ′(1) = −1.
(F2) There exists C > 0 and 0 < p1 � 1 � p0 < 2 such that |F ′(s)| �
C(1 + s p1−1 + s p0−1) for all s � 0.

Remark 2.5. The exponent p0 in condition (F2) restricts the growth of F ′ at infinity
and p1 is the order of singularity allowed for F ′ at s = 0, which means F is only
assumed to be Hölder near s = 0. Condition (F2) implies that |F(s)| � C(1+ s p0)

for all s � 0. The nonlinearity of Gross–Pitaevskii equation is F (s) = 1− s which
certainly satisfies (F1)(F2).

The energy function is now given by

E (u) = 1

2

∫
R3

[|∇u|2 + V (|u|2)] dx,

where V (s) = ∫ 1
s F(τ )dτ . By the proof of Lemma 4.1 in [49], E (u) < ∞ if

and only if u ∈ X0 (defined in (9)). So we can use the same coordinate mapping
u = ψ(w) (w ∈ X1) for the energy space. For w ∈ X1, define

Ē (w) := E ◦ ψ(w) = 1

2

∫
R3

[|∇ψ(w)|2 + V (|ψ(w)|2)]dx . (40)

In order to prove the smoothness of Ē , we need the following standard properties
of Nemytskii operators:

Lemma 2.11. Suppose g ∈ C(Rm,R) and |g(s)| � |s|q0 for some q0 > 0 and
all s ∈ Rm, then the mapping G(φ) � g ◦ φ is continuous from Lq1(Rn,Rm) to

L
q1
q0 (Rn,R) where q1 ∈ [min{1, 1

q0
},∞].
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The proof is simply a modification of the one of Theorem 2.2 of [3] based on
Theorem 4.9 in [17], the latter of which is valid on Rn in particular.

Lemma 2.12. Assume (F1)(F2). Then the functional Ē (w) : X1 → R is C2.

Proof. For w = w1 + iw2 ∈ X1, we set

J1(w) =
∫
R3

|∇ψ(w)|2 dx =
∫
R3

|∇w1 − ∇χ(D)

(
w2
2

2

)
|2 + |∇w2|2 dx,

J2(w) =
∫
R3

V (|ψ (w) |2) dx .

Then Ē (w) = 1
2 (J1(w) + J2(w)). Since J1 (w) ∈ C∞(X1,R) as shown in the

proof of Lemma 2.3, it suffices to show that J2 ∈ C2(X1,R). In the sequel, let
C(‖w‖X1) be a positive constant depending on ‖w‖X1 increasingly.

Following the notation in Appendix 1, we denote

�2 (w) = |ψ (w)|2 − 1

=
(

w1 − χ(D)

(
w2
2

2

))2

+ (1 − χ(D))w2
2 + 2w1.

Then by (13) and (14), it is easy to show that �2 ∈ C∞ (X1, L2 ∩ L3
)
. By (F1),

F(s) = F(1) + F ′(1)(s − 1) + (s − 1)ε(s − 1),

where ε(t) → 0 as t → 0. Thus there exists β ∈ (0, 1) such that

|F(s)| = |F(s) − F(1)| � 2|s − 1|, for all s ∈ (1 − β, 1 + β). (41)

We choose three cut-off functions ξ1, ξ2, ξ3 with supports in

[0, 1 − β/2), (1 − β, 1 + β) and (1 + β/2,∞)

respectively, and 0 � ξi � 1,
∑3

i=1 ξi = 1. Denote Fi (s) = F (s) ξi (s), and

Vi (s) = ∫ 1s Fi (τ )dτ . Then by (41), |F2 (s)| � 2 |s − 1| and by (F2)

|F1 (s)| � C, |F3 (s)| � C
(
1 + s p0

) �⇒ |F1(s)|, |F3(s)| � C ′ |s − 1|p0 ,

since |s − 1| � β/2 on the supports of F1, F3. By Lemma 2.11 we have

F1(|ψ(w)|2), F3(|ψ(w)|2) ∈ C(X1, L
3
2 )

and F2
(|ψ(w)|2) ∈ C

(
X1, L2

)
. Thus the Gateau derivative of J2(w) at φ ∈ X1

〈J ′
2(w), φ〉 = −

3∑
i=1

∫
R3

Fi (|ψ (w) |2) (� ′
2 (w) φ

)
dx

is continuous in w ∈ X1 and thus J2 ∈ C1 (X1,R).
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Now we consider the Gateau derivative of J ′
2(w). For any φ = φ1 + iφ2, h =

h1 + ih2 ∈ X1, we have

J ′′
2 (w) (φ, h) = −

3∑
i=1

∫
R3

Fi (|ψ (w) |2) (� ′′
2 (w) (φ, h)

)
dx

−
3∑

i=1

∫
R3

F ′
i (|ψ (w) |2) (� ′

2 (w) φ
) (

� ′
2 (w) h

)
dx

= I + II.

It is not difficult to verify that the above is indeed the Gateau derivative of J ′
2(w)

and we skip the details. Now we show the continuity of J ′′
2 (w) (φ, h) in w, which

implies that it is the Fréchet derivative of J ′
2(w). The continuity of I to w ∈ X1

follows by the same reasoning for J ′
2(w). We write

II = −
3∑

i=1

∫
R3

F ′
i (|ψ (w) |2) (� ′

2 (w) φ
) (

� ′
2 (w) h

)
dx = −

3∑
i=1

IIi (w)(φ, h).

Since F ′
2,3 are continuous onR and satisfy |F ′

2(s)|, |F ′
3(s)| � C |s−1|, Lemma2.11

and the smoothness of �2 : X1 → L3 imply F ′
2,3(|ψ(w)|2) is continuous from X1

to L3, and consequently the uniform continuity of the quadratic forms II2,3(w) on
X1 with respect to w ∈ X1. To see the uniform continuity of the quadratic forms
II1(w) in w, we write it more explicitly:

II1(w)(φ, h) =
∫
R3

(
ψ ′(w)h

)T(
F ′
1(|ψ (w) |2)ψ(w)ψ(w)T

)(
ψ ′(w)φ

)
dx,

where in the above the complex valued ψ(w),ψ ′(w)h, ψ ′(w)φ are viewed as 2-
dim column vectors. Since F ′

1 is supported on [0, 1 − β
2 ) with β ∈ (0, 1) and

satisfies |F ′
1| � C(1 + s p1−1), p1 ∈ (0, 1], we have
∣∣∣F ′

1(|ψ (w) |2)ψ(w)ψ(w)T
∣∣∣ � C p

∣∣|ψ(w)|2 − 1
∣∣p, ∀ p � 0.

As �2(w) = |ψ(w)|2 − 1 is a smooth mapping from X1 to L2 ∩ L3, Lemma 2.11
implies that w → F ′

1(|ψ (w) |2)ψ(w)ψ(w)T is a continuous mapping from X1

to L
3
2 . Therefore, the uniform continuity with respect to w of the quadratic form

I I1(w) on X1 follows from the smoothness of ψ : X1 → Ḣ1 and this completes
the proof of the lemma. ��

A traveling wave Uc = uc + ivc = ψ (wc) of (4) satisfies the equation

− ic∂x1Uc + �Uc + F(|Uc|2)Uc = 0. (42)

Under (F1)–(F2), for any 0 < c <
√
2, traveling waves were constructed in [49] as

an energy minimizer under the constraint of Pohozaev type identity. As in the (GP)
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case, wc is a critical point of the momentum functional Ēc (w) = Ē (w)+ cP̄ (w).
The second variation functional can be written in the form

〈Ēc
′′(wc)φ, φ〉 = 〈Lc (Kφ) , Kφ〉 , (43)

where K is defined in (22) and

Lc :=
(−� − F

(|Uc|2
)− F ′ (|Uc|2

)
2u2

c −c∂x1 − 2F ′ (|Uc|2
)

ucvc

c∂x1 − 2F ′ (|Uc|2
)

ucvc −� − F
(|Uc|2

)− F ′ (|Uc|2
)
2v2c

)
.

(44)

Assuming that the travelingwave solutionUc = uc+ivc satisfies the decay estimate

uc − 1 = o

(
1

|x |2
)

, vc = o

(
1

|x |
)

, (45)

and the non-degeneracy condition (24) as in the (GP) case, we can show the same
decomposition result for the quadratic form 〈Ēc

′′(wc)φ, φ〉, as in Proposition 2.1
and Corollary 2.1. Then by the proof of Theorem 2.1, we get the same nonlinear
stability criterion for traveling waves of (4). That is, we have:

Theorem 2.2. Assume (F1-2). For 0 < c <
√
2, let Uc be a traveling wave solution

of (4) constructed in [49]. Assume the (24) type non-degeneracy condition:
ker(Lc) = span{∂x j Uc | j = 1, 2, 3}.

Then the traveling wave Uc satisfying ∂ P(Uc)
∂c |c=c0 > 0 is orbitally stable in the

same sense (in terms of the distance d1) as in Theorem 2.1.

In fact, the above theorem also holds for some cases when p0 = 2 in the as-
sumption (F2). More precisely, assume that:

(F2′) There exists C, α0, s0 > 0, and 0 < p1 � 1 � p0 � 2, such that
|F ′(s)| � C(1 + s p1−1 + s p0−1) for all s � 0 and F(s) � −Csα0 for all s > s0.

Corollary 2.2. Assume (F1) and (F2′). For 0 < c <
√
2, let Uc be a traveling

wave solution of (4) constructed in [49], satisfying ∂ P(Uc)
∂c |c=c0 > 0. Assume the

(24) type non-degeneracy condition: ker(Lc) = span{∂x j Uc | j = 1, 2, 3}. Then
the traveling wave Uc is orbitally stable.

Remark 2.6. This corollary applies to the cubic-quintic nonlinear Schrödinger
equation where the nonlinearity corresponds to

F(s) = −α1 + α3s − α5s2, α1,2,3 > 0.

For 3D, the cubic-quintic equation is critical and its global existence in the en-
ergy space was shown recently in [41]. For dimension n � 4 and rather general
subcritical nonlinear terms, the global existence in the energy space was shown in
[27].
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Remark 2.7. The decay property (45) for traveling waves was proved for (GP)
equation in [31]. It seems possible to use the arguments of [31] to get the same
decay (45) for general nonlinear terms.

In fact, if p0 = 2, the energy and momentum functional E and P are still
C2 on X1. Supposed Uc is a traveling wave, that is, a critical point of the energy-
momentum functional Ec, such that E ′′

c (Uc) is uniformly positive as in the sense of
Lemma 2.10, then the same proof as the one of Theorem 2.1 applies and we obtain
the orbital stability of Uc.

In assumption (F2), p0 < 2 is assumed so that the existence of traveling waves
is obtained through a constrained minimization approach as in Theorem 1.1 in [49],
where the compactness of the embedding is needed.

Fortunately, with assumptions (F1) and (F2′), Corollary 1.2 in [49] applies and
thus traveling waves exist through constrained minimization. The idea is that (F2′)
allows us to carefully modify the nonlinearity F to FM such that

FM (s) = F(s), ∀ s ∈ [0, s1], FM (s) = −C1sβ ∀ s � s2,

where C1, β, s1, s2 are some constants satisfying s1 � s0, s2 >> s1, and β ∈
(0, 2). The construction of FM ensures that (F1–2) are satisfied, which implies
the existence of a constrained minimizer Uc of the energy-momentum functional
Ec,M associated to FM and Lc,M � E ′′

c,M (Uc) can be analyzed as in the above.
Moreover, one can prove that the range of Uc is contained in [0, s1]. Therefore,
Uc is also a traveling wave of the original equation. More details on the existence
through the calculus of variation can be found in [49]. Finally, due to the fact
E ′′

c (Uc) = E ′′
c,M (Uc) as FM = F on the range of Uc, we obtain the uniform

positivity of E ′′
c (Uc) in the sense of Lemma 2.10 and the nonlinear stability follows

subsequently.

3. Instability of Traveling Waves on the Upper Branch

In this section, we prove the instability of 3D traveling waves obtained via
a constrained variational approach when ∂ P(Uc)

∂c |c=c0 < 0. First, we prove lin-
ear instability by studying the linearized problem. Then, instead of passing linear
instability to nonlinear instability, we will prove a much stronger statement by
constructing stable and unstable manifolds near the unstable traveling waves.

3.1. Linear Instability

In the traveling frame (t, x − ce1t), the nonlinear equation (4) becomes

i∂tU − ic∂x1U + �U + F(|U |2)U = 0, (46)

where u (t, x) = U (t, x − ce1t).
Near the traveling wave solution Uc = uc + ivc satisfying (42), the linearized

equation can be written as

∂t

(
u1
u2

)
= J Lc

(
u1
u2

)
, (47)
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where

J =
(

0 1
−1 0

)
,

and Lc is defined by (44).
We construct invariant manifolds by using the nonlinear equation for w ∈ X1,

where u = ψ (w) satisfies the (GP) equation. The reason is two-fold. First, we
need to use the spectral properties of the quadratic form 〈Lc·, ·〉 in the space X1
(Proposition 2.1) to prove the exponential dichotomy of the semigroup et J Lc in
Lemma 3.1 below. Second, to ensure that the constructed invariant manifolds lie in
the energy space (see Remark 3.4). Denote Uc = ψ (wc) and wc = w1c + iw2c.
Let

U = ψ(w1c + w1, w2c + w2)

= Uc + w1 − χ(D)

(
w2cw2 + w2

2

2

)
+ iw2. (48)

Plugging (48) into (46), we get

∂tw2 = �w1 − �χ(D)

(
w2cw2 + w2

2

2

)
+ c∂x1w2 + [F(|U |2) − F(|Uc|2)]uc

+ F(|U |2)
[
w1 − χ(D)

(
w2cw2 + w2

2

2

)]
, (49)

∂tw1 = −�w2 + χ(D)((w2c + w2)∂tw2) + c∂x1

[
w1−χ(D)

(
w2cw2+ w2

2

2

)]

+[F(|Uc|2) − F(|U |2)]vc − F(|U |2)w2. (50)

The above two equations can be written as

i∂tw − ic∂x1w + �w = �(w), (51)

where

Re�(w) = �χ(D)

(
w2cw2 + w2

2

2

)
+ [F(|Uc|2) − F(|U |2)]uc

− F(|U |2)
[
w1 − χ(D)

(
w2cw2 + w2

2

2

)]
, (52)

and

Im�(w) = χ(D)((w2c + w2)∂tw2) − c∂x1χ(D)

(
w2cw2 + w2

2

2

)

+[F(|Uc|2) − F(|U |2)]vc − F(|U |2)w2. (53)
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Instead of linearizing the nonlinear term �(w) at w = 0 directly, we derive the
linearized equation of (51) by relating it with the linearized equation (47) for u. The
linearization of the coordinate mapping u = ψ (w) at wc yields u = Kw, where
K is defined by (22). Thus, the linearized equation of (51) at w = 0 takes the form

∂t

(
w1
w2

)
= K −1 J Lc K

(
w1
w2

)
(54)

which implies that
(

w1
w2

)
(t) = K −1et J Lc K

(
w1
w2

)
(0) . (55)

So it suffices to study the spectrum of J Lc and the semigroup et J Lc . Note that
the traveling wave Uc is cylindrical symmetric, that is, Uc = Uc

(
x1,
∣∣x⊥∣∣) with

x⊥ = (x2, x3). We will prove linear instability in Xs
1, the cylindrical symmetric

subspace of X1. Assume the non-degeneracy condition in the cylindrical symmetric
space, that is,

ker Lc ∩ Xs
1 = {∂x1Uc

}
. (56)

We have the following analogue of Proposition 2.1:

Proposition 3.1. For 0 < c <
√
2, let Uc = ψ (wc) be a traveling wave solution

of (4) constructed in [49] and Lc be the operator defined by (44). Assume (56). The
space Xs

1 is decomposed as a direct sum

Xs
1 = N ⊕ Z ⊕ P,

where Z = {∂x1Uc
}
, N is a one-dimensional subspace such that 〈Lcu, u〉 < 0 for

0 �= u ∈ N , and P is a closed subspace such that

〈Lcu, u〉 � δ ‖u‖2X1
for any u ∈ P,

for some constant δ > 0.

The proof is the same as that of Proposition 2.1, by observing that the negative
mode constructed in Lemma 2.8 is cylindrical symmetric. Now we show the linear
instability of traveling waves on the upper branch.

Proposition 3.2. Let Uc, c ∈ [c1, c2] ⊂ (0,
√
2), be a C1 (with respect to the wave

speed c) family of traveling waves of (4) in the energy space X0. For c0 ∈ (c1, c2),
assume

1. F ∈ C1 on Uc0(R
n);

2. Lc0 satisfies (56);
3. ∂ P(Uc)

∂c |c=c0 < 0;
then there exists 0 �= wu ∈ Xs

1 and λu > 0, such that eλu twu (x) is a solution of
(54).
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In particular, this proposition applies to those traveling waves obtained in [49]
via a constrained variational approach.

Proposition 3.3. Assume (F1–2) or (F1)–(F2′). For 0 < c0 <
√
2, let Uc0 be

a traveling wave solution of (4) constructed in [49], satisfying ∂ P(Uc)
∂c |c=c0 < 0.

Assume (56). Then there exists a linearly unstable mode of (54). That is, there exists
0 �= wu ∈ Xs

1 and λu > 0, such that eλu twu (x) is a solution of (54).

Proof of Proposition 3.2. By (55), it suffices to show that the operator J Lc0 has
an unstable eigenvalue in the space Xs

1. The proof is to modify that of Theorem 5.1
in [33], as explained in Remark 3.2 below. Define the following subspace of Xs

1 by

Y s
1 =

{
u ∈ Xs

1 |
〈
u, J−1∂x1Uc0

〉
=
〈
u, J−1∂cUc|c=c0

〉
= 0
}

. (57)

We show that the quadratic form
〈
Lc0 ·, ·

〉
restricted to Y s

1 is non-degenerate. Indeed,
any u ∈ Xs

1 can be uniquely written as

u = a∂x1Uc0 + b∂cUc|c=c0 + v, (58)

where v ∈ Y s
1 ,

a = −
〈
u, J−1∂cUc|c=c0

〉
/
∂ P(Uc)

∂c

∣∣∣
c=c0

, (59)

and

b =
〈
u, J−1∂x1Uc0

〉
/
∂ P(Uc)

∂c

∣∣∣
c=c0

. (60)

Here, we use the identity

Lc∂cUc = −P ′(Uc) = −J−1∂x1Uc. (61)

Suppose
〈
Lc0 ·, ·

〉
is degenerate on Y s

1 , then there exists φ ∈ Y s
1 such that

〈
Lc0φ, v

〉 =
0 for any v ∈ Y s

1 . This implies that
〈
Lc0φ, u

〉 = 0 for any u ∈ Xs
1, by the decom-

position (58). So φ ∈ ker Lc ∩ Xs
1 and by assumption (56), φ = c∂x1Uc0 which

implies φ = 0 since ∂x1Uc=c0 /∈ Y s
1 .

Moreover, since Lc0∂x1Uc0 = 0, (61) and the definition of Y s
1 imply a.) the

splitting of Xs
1 into Y s

1 and span{∂x1Uc0 , ∂cUc|c=c0} is orthogonal with respect to
the quadratic form Lc0 and b.) span{∂x1Uc0 , ∂cUc|c=c0} is invariant under J Lc0 and
thus so is Y s

1 , which also imply their invariance under the linearized flow et J Lc0 .
Denote n(Lc0 |X ) to be the number of negative modes of the quadratic form

〈Lc0 ·, ·〉 restricted to a subspace X ⊂ Xs
1. We show that n(Lc0 |Y s

1
) = 1. Indeed, for

any u ∈ Xs
1, by (58) and (61), we have
〈
Lc0u, u

〉 = b2
〈
Lc0∂cUc|c=c0 , ∂cUc|c=c0

〉+ 〈Lv, v〉 .

Since n(Lc0 |Xs
1
) = 1 and

〈
Lc0∂cUc|c=c0 , ∂cUc|c=c0

〉 = −∂ P(Uc)

∂c
|c=c0 > 0,



Stability of Traveling Waves of Nonlinear Schrödinger Equation 171

so n(Lc0 |Y s
1
) = 1. Let Y s

1 = N ⊕ P , where on P and N , the quadratic form
〈
Lc0 ·, ·

〉
is positive and negative definite respectively, dim N = 1, and N , P are orthogonal
in the inner product [·, ·] := 〈Lc0 ·, ·

〉
.

It can be verified that

D
(
J Lc0

) = D
(
Lc0

) = X3.

Indeed, J Lc0 , Lc0 : X3 → H1. Since Y s
1 is separable, there is an increasing

sequence of subspaces P(n) ⊂ P of odd dimension n such that ∪ X (n) is dense in
Y s
1 , where X (n) = N + P(n). We can choose N and P(n)to lie in X3. Denote by

π−, π+ and π(n) the orthogonal projections of Y s
1 to N , P and X (n) respectively

in the inner product [·, ·]. Consider the set
C = {u ∈ Y s

1 | [π−u, u
] = −1,

〈
Lc0u, u

〉 = 0
}

and Cn = C ∩ X (n). For v ∈ X (n), consider the mapping

fn (v) = π(n)
(
J Lc0v

)+ [π− (J Lc0v
)
, v
]
v. (62)

In the above definition, we use the observation that J Lc0v ∈ Y s
1 for any v ∈ Y s

1 . It
is easy to check that

[
π− fn (v) , v

] = 0 and
〈
fn (v) , Lc0v

〉 = [ fn (v) , v] = [J Lc0v, v
]+ [π− (J Lc0v

)
, v
]
[v, v]

= 〈J Lc0v, Lc0v
〉+ [π− (J Lc0v

)
, v
] 〈

v, Lc0v
〉 = 0.

Therefore, fn is a tangent vector field on the manifold Cn , which is the union of
two spheres Sn−1 and thus has non-vanishing Euler characteristic. Thus fn must
vanish at some yn ∈ Cn . That is, there is a real scalar an = − [π− (J Lc0vn

)
, vn
]
,

such that
[
J Lc0 yn, w

] = an [yn, w] , for any w ∈ X (n). (63)

Let yn = y−
n + y+

n , where y−
n ∈ N and y−

n ∈ P(n). Let y−
n = bnχ− with〈

Lc0χ−, χ−
〉 = −1, then

[
y−

n , y−
n

] = −1 implies that |bn| = 1. We can normalize
bn = 1. Since

0 = 〈Lc0 yn, yn
〉 = −1 + 〈Lc0 y+

n , y+
n

〉

and
〈
Lc0 ·, ·

〉 |P is positive,
∥∥y+

n

∥∥
X1

is uniformlybounded. So yn ⇀ y∞ ∈ Y s
1 weakly

in X1.We note that y∞ �= 0 sinceπ−y∞ = χ− �= 0.We claim that {an} is bounded.
Suppose otherwise, an → ∞ when n → ∞. For any integer k ∈ N and a fixed
w ∈ X (k), when n � k, by (63) we have

[yn, w] = 1

an

[
J Lc0 yn, w

] = 1

an

〈
J Lc0 yn, Lc0w

〉
(64)

= − 1

an

〈
Lc0 yn, J Lc0w

〉 = − 1

an

[
yn, J Lc0w

]
.

Let n → ∞ in (64), we have [y∞, w] = 0. By the density argument, this is also
true for any w ∈ Y s

1 and thus y∞ = 0 since [·, ·] is non-degenerate on Y s
1 . This
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contradiction shows that {an} is bounded. So we can pick a subsequence {nk} such
that ank → a, for some a ∈ R. For convenience, we still denote the subsequence
by an . By (63),

− [yn, J Lc0w
] = [J Lc0 yn, w

] = an [yn, w] .

Passing to the limit of above, we have

− [y∞, J Lc0w
] = a [y∞, w] ,

for any fixedw ∈ X (k). For any v ∈ X3∩Y s
1 , J Lc0v ∈ X1 and by density argument,

we have

− [y∞, J Lc0v
] = a [y∞, v] . (65)

It is easy to see that (65) is also satisfied when v ∈ {∂x1Uc0 , ∂cUc|c=c0

}
. Thus by

the decomposition (58), the Equation (65) is satisfied for any v ∈ X3 ∩ Xs
1. Thus,

− 〈y∞, Lc0 Jw
〉 = a 〈y∞, w〉

for any w ∈ R
(
Lc0

)
, which is the orthogonal complement of ∂x1Uc. Therefore,

there exists a constant d, such that y∞ ∈ Y s
1 is the weak solution of the equation

J Lc0 y∞ = ay∞ + d∂x1Uc0 . (66)

Wemust have a �= 0, since 0 �= y∞ ∈ Y s
1 andY s

1 ∩{∂x1Uc0 , ∂cUc|c=c0

} = ∅. By el-
liptic regularity, y∞ ∈ D

(
J Lc0

) = X3 and then y∞ = 1
a

(
J Lc0 y∞ − d

a ∂x1Uc0

) ∈
H1, so y∞ ∈ H3. If Uc ∈ 1 + Hk for some integer k, then it can be shown that
y∞ ∈ Hk . Since (66) implies that

J Lc0

(
y∞ + d

a
∂x1Uc0

)
= a

(
y∞ + d

a
∂x1Uc0

)
,

a �= 0 is an eigenvalue of J Lc0 .
For any nonzero eigenvalue λ of J Lc0 with an eigenfunction y, we must have

u = Lc0 y �= 0, so we obtain from Lc0 Ju = λu that λ is also an eigenvalue of
Lc0 J = −(J Lc0)

∗. Therefore −λ is an eigenvalue of J Lc0 as well. This and the
above argument imply that±a are eigenvalues of J Lc0 . This finishes the proof that
J Lc0 must have a positive eigenvalue. ��
Remark 3.1. By the above proof, there also exists a stable eigenvalue λs < 0 of
J Lc0 which gives an exponentially decaying solution eλs tws(x) (ws(x) ∈ Xs

1) of
the linearized equation (47). This is due to the Hamiltonian nature of the equation.

Remark 3.2. The invariant subspace Y s
1 is used to remove the generalized kernel{

∂x1Uc0 , ∂cUc0

}
of Lc0 in Xs

1. This space also plays an important role in proving the
exponential dichotomy of the semigroup et J Lc0 below. In [32,33], a general theory
was developed for studying stability of standing waves (traveling waves etc.) of
an abstract Hamiltonian PDE du

dt = J E ′ (u). In this framework, the symplectic
operator J should be invertible in the sense that J−1 : X → X∗,is bounded,
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where X is the energy space. In our case, the space X is X1 = H1 × Ḣ1, X ∗ is
X∗
1 = H−1 × Ḣ−1 and the operator

J−1 = −J =
(
0 −1
1 0

)
,

so J−1 : X1 → X∗
1 is not bounded since Ḣ1

� H−1 and we cannot apply the
theory of [32,33] directly. In [47], an abstract theorem was given for the case when
J is not onto. However, as also commented in [19], it would take substantial effort
to verify some of the assumptions in [47], particularly the semigroup estimates, for
our current case and the instability of slow traveling waves in Section 5.

To handle this issue, we modify the proof of linear instability in [33] (Theorem
5.1) to avoid using the invertibility of J . Our modified argument could be used for
general Hamiltonian PDEs with a non-invertible symplectic operator. We do not
need to assume the semigroup estimates as in [47].

3.2. Linear Exponential Dichotomy of Semigroup

To construct invariant manifolds, the first step is to establish the exponential
dichotomy of the linearized semigroup. First, we prove this for the semigroup
generated by J Lc.

Lemma 3.1. For0 < c <
√
2, let Uc be a traveling wave solution of (4) constructed

in [49] and Lc be the operator defined by (44). Assume (56) and ∂ P(Uc)
∂c < 0. The

space Xs
1 is decomposed as a direct sum

Xs
1 = Eu ⊕ Ecs, (67)

satisfying: (i) Both Eu = span {wu} and Ecs are invariant under the linear semi-
group et J Lc . (ii) there exist constants M > 0 and λu > 0, such that∣∣∣et J Lc |Ecs

∣∣∣
X1

� M(1 + t), ∀ t � 0 and |et J Lc |Eu |X1 � Meλu t , ∀ t � 0.

Proof. Let wu, ws ∈ Xs
1 be the unstable and stable eigenfunctions of J Lc as

constructed in Proposition 3.3 and its subsequent remark. Denote

Es = span {ws} , Eu = span {wu} , Eus = span {wu, ws} .

First, we claim that 〈Lcwu, ws〉 �= 0 and the quadratic form 〈Lc·, ·〉 |Eus has one
positive and one negative mode. Suppose, otherwise, that 〈Lcwu, ws〉 = 0, then
〈Lc·, ·〉 |Eus is identically zero since 〈Lwu, wu〉 = 〈Lws, ws〉 = 0 due to the skew-
symmetry of J . By Proposition 3.3, 〈Lc·, ·〉 |Y s

1
is non-degenerate and has exactly

one negative mode. Let Y s
1 = N ⊕ P be such that N = {u−} with 〈Lcu−, u−〉 < 0

and 〈Lc·, ·〉 |P > 0. Then we can decomposewu = a1u− +b1 p1 andws = a2u− +
b2 p2 where p1, p2 ∈ P . Since a1, a2 �= 0, we define w̃ = wu − a2

a1
ws ∈ Eus ∩ P .

This is a contradiction since w̃ �= 0. Thus 〈Lc·, ·〉 |Eus is represented by the 2 × 2
matrix (

0 〈Lcwu, ws〉
〈Lcwu, ws〉 0

)
,

which has one positive and one negative mode.
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We define the subspace Ee by

Ee = {u ∈ Y s
1 | 〈u, Lcwu〉 = 〈u, Lcws〉 = 0

}
.

Let Eker
g = span

{
∂x1Uc0 , ∂cUc

}
be the generalized kernel of J Lc in Xs

1. For any
two solutions u (t) , v (t) of the linearized equation du/dt = J Lcu, the quadratic
form 〈u (t) , Lcv (t)〉 is independent of t , since

d

dt
〈u (t) , Lcv (t)〉 = 〈J Lcu, Lcv〉 + 〈u, Lc J Lcv〉

= 〈J Lcu, Lcv〉 + 〈Lcu, J Lcv〉 = 0.

By using this observation and the invariance of Y s
1 and Eus , it is easy to show that

the subspace Ee is invariant under the semigroup et J Lc . Furthermore, we show that
there exists C > 0, such that for any u ∈ Ee and t ∈ R,∥∥∥et J Lc u

∥∥∥
X1

� C ‖u‖X1 . (68)

In fact, we note that any v ∈ Y s
1 can be decomposed as

v = cuwu + csws + v1, (69)

where

cu = 〈Lcv,ws〉 / 〈Lcwu, ws〉 , cs = 〈Lcv,wu〉 / 〈Lcwu, ws〉
and v1 ∈ Ee. Thus we have

〈Lc·, ·〉 |Y s
1

= 〈Lc·, ·〉 |Eus + 〈Lc·, ·〉 |Ee ,

and a counting of negativemodes on both sides shows that 〈Lc·, ·〉 |Ee > 0. Then the
estimate (68) follows by the invariance of the quadratic form 〈Lc·, ·〉. Combining
the decompositions (69) and (58), we have

Xs
1 = Eu ⊕ Es ⊕ Ee ⊕ Eker

g = Eu ⊕ Ecs,

where

Ecs = Es ⊕ Ee ⊕ Eker
g .

For any t � 0, we have
∣∣∣et J Lc |Es

∣∣∣
X1

� Me−λu t ,

∣∣∣et J Lc |Eker
g

∣∣∣
X1

� M (1 + t) ,

and this finishes the proof. ��
Next, we prove the exponential dichotomy in Xs

3, the cylindrical symmetric
subspace of X3 which is the domain of Lc and J Lc.

Lemma 3.2. Under the conditions of Lemma 3.1, the space Xs
3 can be written as

Xs
3 = Eu ⊕ Ecs

3 , where Ecs
3 = Xs

3 ∩ Ecs (70)
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satisfying: (i) Both Eu and Ecs
3 are invariant under et J Lc . (ii) There exist constants

M > 0 and λu > 0, such that
∣∣∣et J Lc |Ecs

3

∣∣∣
X3

� M(1 + t), ∀ t � 0 and |et J Lc |Eu |X3 � Meλu t , ∀ t � 0.

(71)

Proof. Since the eigenvectors wu, ws ∈ Xs
3, we have Eu ⊂ Xs

3. The invariance of
Ecs
3 clearly follows from the invariance of Xs

3 and Ecs under et J Lc . The direct sum
decomposition of Xs

3 is a direct consequence of that of Xs
1.

To complete the proof, we only need to show estimate (71) on Ecs
3 . It is easy

to check that the norm ‖u‖X3 is equivalent to the norm ‖u‖X1 + ‖J Lcu‖X1 , so
we only need to estimate the growth of

∥∥et J Lc u
∥∥

X1
+ ∥∥J Lcet J Lc u

∥∥
X1
. For any

u ∈ Ecs
3 , by Lemma 3.1, we have

∥∥∥et J Lc u
∥∥∥

X1
� M(1 + t) ‖u‖X1

and ∥∥∥J Lcet J Lc u
∥∥∥

X1
=
∥∥∥et J Lc J Lcu

∥∥∥
X1

� M(1 + t) ‖J Lcu‖X1 .

This finishes the proof of the lemma. ��
By using the relation (55), we get the exponential dichotomy for solutions of

the linearized equation (54).

Corollary 3.1. Under the conditions of Lemma 3.1, the space Xs
3 can be decom-

posed as a direct sum

Xs
3 = Ẽu ⊕ Ẽcs,

satisfying: (i) Both Ẽu and Ẽcs are invariant under the linear semigroup S (t)
defined by (54). (ii) there exist constant M > 0 and λu > 0, such that
∣∣S (t) |Ẽcs

∣∣
X3

� M(1 + t), ∀ t � 0 and |S (t) |Ẽu |X1 � Meλu t , ∀ t � 0.

Remark 3.3. The linear exponential dichotomy is the first step in constructing
invariant manifolds. In general, it is rather tricky to get the exponential dichotomy
of the semigroup even if its generator has a spectral gap. This is due to the issue
of spectral mapping. More precisely, let σ (L) and σ

(
eL
)
be the spectra of the

generator L and its exponential eL . In general, it is not true that σ
(
eL
) = eσ(L). In

the literature, the exponential dichotomy was proved by using resolvent estimates
[28] or compact perturbation theory of semigroups [55,56] or dispersive estimates
[34,52]. In the current case, it seems difficult to apply these approaches. In Lemma
3.1, we prove the exponential dichotomy of et J Lc by using the energy estimates and
the invariant quadratic form 〈Lc·, ·〉 due to the Hamiltonian structure. This could
provide a general approach to get the exponential dichotomy for lots of Hamiltonian
PDEs.
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In the construction of unstable (stable) manifolds, we only need to establish the
exponential dichotomy in the cylindrical symmetric space Xs

1 since the unstable
modes are cylindrical symmetric. This also yields cylindrical symmetric invariant
manifolds. By using the non-degeneracy condition (24) and the proof of Lemma
3.1, we can also get the exponential trichotomy in the whole space X1. This will be
important in a future work for the construction of center manifolds in the energy
space.

Lemma 3.3. For0 < c <
√
2, let Uc be a traveling wave solution of (4) constructed

in [49] and Lc be the operator defined by (44). Assume (24) and ∂ P(Uc)
∂c |c=c0 < 0.

Then the space X1 is decomposed as a direct sum

X1 = Eu ⊕ Ec ⊕ Es,

satisfying: (i) Eu, Es and Ec are invariant under the linear semigroup et J Lc . (ii)
There exist constant M > 0, λu > 0, such that
∣∣∣et J Lc |Es

∣∣∣
X1

� Me−λu t , ∀ t � 0, |et J Lc |Eu |X1 � Meλu t , ∀ t � 0.

and

|et J Lc |Ec |X1 � M(1 + t), ∀ t ∈ R,. (72)

Proof. Denote Es = {ws} and Eu = {wu}, where wu, ws are the unstable and
stable eigenfunctions of J Lc. Let w1 = −∂cUc, then J Lcw

1 = ∂x1Uc. Letw2, w3

be such that

J Lcw
2 = ∂x2Uc, J Lcw

3 = ∂x3Uc.

The above two equations are solvable since the kernel of −Lc J = (J Lc)
∗ is

spanned by J−1∂xi Uc, i = 1, 2, 3, and
〈
J−1∂x j Uc, ∂xi Uc

〉
= 0, for i, j = 1, 2, 3,

by the translation invariance of the momentum �P (Uc) = (〈
J−1∂xi Uc, Uc − 1

〉)
.

Denote the generalized kernel of J Lc by

Eker
g = span

{
∪3

i=1{∂xi Uc0 , w
i }
}

.

Define

Y1 = {u ∈ X1| 〈u, Lcwu〉 = 〈u, Lcws〉 = 0} .

Clearly Eker
g ⊂ Y1, due to the symmetry of Lc and the skew-symmetry of J .

Moreover Y1 is invariant under et J Lc due to the invariance of span{wu, ws} and the
invariance of the quadratic form given by Lc. Let

Ee =
{

u ∈ Y1|
〈
u, J−1w

〉
= 0, ∀w ∈ Eker

g

}
.
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It is straightforward to check that Ee is invariant under et J Lc due to the invariance
of Y1 and Eker

g .
By the arguments in the proof of Lemma 3.1, we have 〈Lc·, ·〉 |Y1 � 0. This

implies that
〈
Lcw

i , wi
〉
> 0, for i = 1, 2, 3,

by noting that wi ∈ Y1. Indeed, supposing otherwise, we would then have
〈
Lcw

i , wi
〉
= 0 = min

w∈Y1
〈Lcw,w〉 .

Thus
〈
Lcw

i , w
〉 = 0 for any w ∈ Y1, and it follows that

〈
Lcw

i , w
〉 = 0 for any

w ∈ X1. Thus, Lcw
i = 0, a contradiction, so for any u ∈ X1, we can write

u = cuwu + csws +
3∑

i=1

(
ai∂xi Uc + biw

i
)

+ v1,

where v1 ∈ Ee,

cu = 〈Lcu, ws〉 / 〈Lcwu, ws〉 , cs = 〈Lcu, wu〉 / 〈Lcwu, ws〉 ,

and

ai = −
〈
u, J−1wi

〉
/
〈
Lcw

i , wi
〉
, bi =

〈
u, J−1∂xi Uc

〉
/
〈
Lcw

i , wi
〉
.

Here we used the facts that〈
w j , J−1∂xi Uc

〉
=
〈
wi , J−1w j

〉
= 0 and i �= j,

due to the even or odd symmetry of wi and ∂xi Uc in x j . Thus we get the direct sum
decomposition

X1 = Eu ⊕ Es ⊕ Ee ⊕ Eker
g .

By the proof of Lemma 3.1, it follows that the quadratic form 〈Lc·, ·〉 |Ee is positive
definite. This implies that

|et J Lc |Ee |X1 � C, ∀ t ∈ R

for some constant C . Define Ec = Ee ⊕ Eker
g . Since |et J Lc |Eker

g
|X1has only linear

growth, the estimate (72) follows. This finishes the proof. ��

3.3. Invariant Manifolds and Orbital Instability

In Appendix 1, we prove that the nonlinear term �(w) in the Equation (51) is
C2(X3, X3). Thus, by the standard invariant manifold theory for semilinear PDEs
(for example [7,22]), we get the following:
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Theorem 3.1. For 0 < c0 <
√
2, let Uc0 = ψ

(
wc0

)
be a traveling wave solution

of (4) constructed in [49], satisfying ∂ P(Uc)
∂c |c=c0 < 0. Assume in addition F ∈ C5

in a neighborhood of the set |Uc0(R
3)|2 and the non-degeneracy condition (56).

Then there exists a unique C2 local unstable manifold W u of wc0 in Xs
3 which

satisfies:
1. It is one-dimensional and tangential to Ẽu at wc0 .
2. It can be written as the graph of a C2 mapping from a neighborhood of wc0 in

Ẽu to Ẽcs .
3. It is locally invariant under the flow of the Equation (51), that is solutions

starting on W u can only leave W u through its boundary.
4. Solutions starting on W u converge to wc0 at the rate eλu t as t → −∞.

The same results hold for the local stable manifold of wc0 as the Equation (51)
is time-reversible.

Corollary 3.2. By using the transformation u = ψ(w), we get the stable and
unstable manifolds W̃ u,s = ψ(W u,s) near Uc0 in the metric

d3 (u, ũ) = d1 (u, ũ) +
∥∥∥∇2 (u − ũ)

∥∥∥
L2

+
∥∥∥∇3 (u − ũ)

∥∥∥
L2

,

which is equivalent to the metric ‖w − w̃‖X3 for w. Since W u is one-dimensional,
the d3 topology and d1 topology are equivalent on W u. Then an immediate con-
sequence of the above theorem is the nonlinear instability in d1 metric with initial
data slightly perturbed from Uc0 in the d3 metric.

To compare with the orbital stability result, it is more desirable to get an orbital
instability result as follows:

Corollary 3.3. Under the assumptions of Theorem 3.1, the traveling wave solution
Uc0 is nonlinearly unstable in the following sense:

∃ θ, C > 0, such that for any δ > 0, there exists a solution uδ (t) of Equation (4)
satisfying

d3
(
uδ (0) , Uc0

)
� δ, (73)

and

sup
0<t�C|ln δ|

inf
y∈R3

∥∥∇ (uδ,i (t) − Uc0,i (· + y)
)∥∥

L2 � θ, i = 1, 2. (74)

Here, uδ (t) = uδ,1 (t) + iuδ,2 (t) and Uc0 (x) = Uc0,1 (x) + iUc0,2 (x).

Proof. First,weobserve that ifug = ug,1+iug,2 ∈ H3 is an unstable eigenfunction
of J Lc, then ug,i �= 0 for i = 1, 2. Suppose otherwise, that is, that ug,1 = 0, then
from the equation J Lcug = λuug (λu > 0), we get

c0∂x1ug,2 −
(
2F ′ (|Uc|2

)
ucvc + λu

)
ug,2 = 0.
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This implies that ug,2 = 0, thus ug = 0, which is a contradiction. Similarly, we can
show that ug,2 �= 0. The nonlinear instability in

∥∥∇ (ui − Uc0,i
)∥∥

L2 follows directly
from the existence of unstable manifold and the above observation. To show orbital
instability, we follow the proof of Theorem 6.2 in [33]. We only show the orbital in-
stability in the norm

∥∥∇ (u1 − Uc0,1
)∥∥

L2 , since the proof for
∥∥∇ (u2 − Uc0,2

)∥∥
L2

is the same. Let u⊥
g,1 be the projection of ug,1 onto the space Z⊥

1 -the orthog-

onal complement space of Z1 = span
{
∂xi Uc0,1, i = 1, 2, 3

}
in the inner product

〈〈u1, v1〉〉 = (∇u1,∇v1). Fix ε0 sufficiently small and for any δ > 0,we can choose
the solution uδ (t) on the unstable manifold W̃ u , such that d3

(
uδ (0) , Uc0

)
� δ,∥∥∇ (uδ,1 (t) − Uc0,1

)∥∥
L2 � Cε0, for 0 < t < T1〈〈

uδ,1 (T1) − Uc0,1, u⊥
g,1

〉〉
� ε0,

where T1 = C |ln δ|. Here C may depend on ε0, but is independent of δ > 0. Let
h = h(t) ∈ R3 be such that∥∥∇ (uδ,1 (t) − Uc0,1 (· + h)

)∥∥
L2 � 2θ,

θ = inf
y∈R3

∥∥∇ (uδ,1 (t) − Uc0,1 (· + y)
)∥∥

L2 .

Then∥∥∇ (Uc0,1 (·) − Uc0,1 (· + h)
)∥∥

L2 � 3
∥∥∇ (uδ,1(t) − Uc0,1

)∥∥
L2 � 2Cε0,

thus |h| = O (ε0). Therefore we can write

Uc0,1 (x + h) = Uc0,1 (x) + h · ∇Uc0,1 (x) + O
(
ε20

)
.

This implies that

Cθ �
〈〈

uδ,1 − Uc0,1 (· + h) , u⊥
g,1

〉〉

�
〈〈

uδ,1 − Uc0,1, u⊥
g,1

〉〉
− O

(
ε20

)
� ε0/2,

by using the orthogonal property of u⊥
g,1 and Z1. This finishes the proof. ��

Remark 3.4. By using the exponential dichotomy for the semigroup et J Lc

(Lemma 3.2), we can construct unstable (stable) manifolds near Uc directly from
Equation (46) in the space H3

(
R3
)× Ḣ3

(
R3
)
. However, the functions in Uc +

H3
(
R3
)× Ḣ3

(
R3
)
are not guaranteed to be in the energy space X0. To get the

invariant manifolds lying on X0, we use the coordinate mapping U = ψ (w) to
rewrite the Equation (46) as (51) for w ∈ H3

(
R3
)× Ḣ3

(
R3
)
.

Remark 3.5. Since the eigenfunctions of J Lc actually belong to Hk , instead of
constructing the unstable/stable manifolds of traveling waves through the coordi-
nate change U = ψ(w) and working on (51), one can also work on (46) directly
in the space Uc + Hk . The details are similar to the proof of Proposition 5.4 and
Corollary 5.1. However, that approach, based on the improved properties of unsta-
ble eigenfunctions, would not be useful when we construct the center manifolds in
the energy space in the forthcoming work.
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Remark 3.6. For the (GP) equation, numerical computations [12,39] suggested
that ∂ P(Uc)

∂c < 0 iff c ∈ (c∗,
√
2) for some c∗ ∈ (0,

√
2), so for the 3D traveling

waves of (GP), the instability sets in at a critical velocity c∗. By contrast, for the
cubic-quintic equation, we have ∂ P(Uc)

∂c < 0, and thus the instability when c is

near 0 and
√
2. Thus there may not exist a critical speed for instability. The case

for small c is proved in Theorem 5.4 and ∂ P(Uc)
∂c < 0 for c near

√
2 can be seen

from the transonic limit [6,20,39] of traveling waves of (4) to solitary waves of the
Kadomtsev–Petviashvili (KP) equation.

4. Transversal Instability of 2D Traveling Waves

In this section, we prove the transversal instability of 2D traveling waves of (4).
Unlike the 3D instability result (Proposition 3.3 and Theorem 3.1), we do not need
to assume the non-degeneracy condition (24) for the 2D traveling waves.

To state the result, first we introduce some notations. Assume F ∈ C1(R+). For
0 < c <

√
2, consider the operator Lc defined by (44), whereUc (x1 − ct, |x2|) is a

2D traveling wave solution of (4). Then it is easy to show that Lc : (H2
(
R2
))2 →(

L2
(
R2
))2

is self-adjoint and

σess (Lc) = σess
(
Lc,∞

) = [0,+∞), for any c ∈
(
0,

√
2
)

,

where Lc,∞ is defined in (28). Let λ0 (Lc) be the first eigenvalue of Lc.

Theorem 4.1. For 0 < c <
√
2, let Uc (x1 − ct, |x2|) be a 2D traveling wave

of (4). Suppose λ0 (Lc) < 0. Let λ1 � 0 be the second eigenvalue. Then Uc is
transversely unstable in the following sense: for any

k ∈
(√−λ1,

√−λ0

)
,

there exists an unstable solution

eλu t+ikx3ug (x1, x2) , with λu > 0, ug ∈ (H3(R2))2 (75)

for the linearized equation (76). If k >
√−λ0, then no such solution with λu > 0

exists, that is, there is spectral stability.

Remark 4.1. Denote the momentum by

P (u) = 1

2

∫
R2

〈i∂x1u, u〉 dx = −
∫
R2

u1∂x1u2 dx .

When ∂ P(Uc)
∂c |c=c0 > 0, the instability condition λ0 (Lc) < 0 is satisfied by the

traveling wave Uc0 . This is due to the identity

〈Lc∂cUc, ∂cUc〉 = − 〈P ′(Uc), ∂cUc
〉 = −∂ P (Uc)

∂c
,

by (61). Numerical evidence [11,39] shows that the condition ∂ P(Uc)
∂c > 0 is satis-

fied for 2D traveling waves of (GP). Moreover, 2D traveling waves of (GP) were
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constructed in [15,51] as energy minimizers subject to a fixed momentum. This
implies (by a similar proof to Lemma 2.7) that Lc can have at most one negative
eigenvalue. Thus, for any 0 < c <

√
2, we have λ0 (Lc) < 0 and λ1 (Lc) = 0 for

any 2D traveling wave of (GP). By Theorem 4.1, any 2D traveling wave of (GP) is
transversely unstable if and only if the transversal wave number k ∈ (0,√−λ0

)
.

When k → 0+, see the asymptotic analysis in [11,43]. In the limit c → 0, the 2D
traveling waves of (GP) consist of an antiparallel vortex pair [13,40]. In this case,
the mechanism of transversal instability is analogous to the Crow instability of an
antiparallel vortex pair of incompressible fluid [23].

Proof. The linearized equation of (46) near Uc (x1, x2) can be written as

du

dt
= J L̃cu, (76)

where

L̃c = Lc +
⎛
⎝− d2

dx23
0

0 − d2

dx23

⎞
⎠ .

Finding an unstable solution of the form (75 ) for the linearized equation (76)
is equivalent to solving the eigenvalue problem J

(
Lc + k2

)
ug = λuug . Denote

Lc,k = Lc + k2, then for k ∈ (√−λ1,
√−λ0

)
, the operator Lc,k has one negative

eigenvalue, no kernel and the rest of the spectrum is contained in (δ0,∞) with
δ0 = k2 + λ1 > 0. The existence of an unstable eigenvalue of J Lc,k follows by
the line of proof of Proposition 3.3, in a much simplified way since σ

(
Lc,k

)
does

not contain 0. When k >
√−λ0, the operator Lc,k is positive. This implies the

non-existence of unstable modes since any such mode satisfies
〈
Lc,kug, ug

〉 = 0.
��

We now prove nonlinear transversal instability under the instability condition
in Theorem 4.1. For any k0 ∈ (

√−λ1,
√−λ0), denote Hm(R2 × S 2π

k0
) to be all

functions in Hm(R2 × [0, 2π
k0

]) which are 2π
k0
-periodic in x3. Let

X1,k0 =
{

u (x1, x2, x3) ∈
(

H1
(
R2 × S 2π

k0

))2

| u is odd in x3

}
,

and

X3,k0 = X1,k0 ∩
(

H3
(
R2 × S 2π

k0

))2

.

From Theorem 4.1, we have a linearly unstable mode of the form

eλu t sin (k0x3) ug (x1, x2)

in the space X3,k0 . We will construct unstable manifold near the traveling wave
Uc (x1, x2) in the space 1 + X3,k0 . First, we show the exponential dichotomy of

et J L̃c in the space X3,k0 .
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Lemma 4.1. For any

k0 ∈
(
max

{√−λ1,

√−λ0

4

}
,
√−λ0

)
, (77)

the space X3,k0 is decomposed as a direct sum

X3,k0 = Eu ⊕ Ecs,

satisfying that: (i) both Eu and Ecs are invariant under the linear semigroup et J L̃c .
(ii) There exist constants M > 0 and λu > 0, such that∣∣∣et J L̃c |Ecs

∣∣∣
H3

(
R2×S 2π

k0

) � M, ∀ t � 0,

and

|et J L̃c |Eu |
H3

(
R2×S 2π

k0

) � Meλu t , ∀ t � 0.

Proof. First, we show the exponential dichotomy in the space X1,k0 . Any function
u ∈ X1,k0 can be written as

u (x1, x2, x3) =
∞∑
j=1

sin ( jk0x3) u j (x1, x2) ,

and

‖u‖2
H1

(
R2×S 2π

k0

) =
∞∑
j=1

(∥∥u j
∥∥2

H1(R2)
+ j2

∥∥u j
∥∥2

L2(R2)

)
. (78)

We have

u (t) = et J L̃c u =
∞∑
j=1

sin ( jk0x3)
(

et J Lc, jk0 u j

)
(x1, x2) .

By assumption (77), the operator Lc,k0 has one negative eigenvalue and the rest
of the spectrum lies in the positive axis, and

{
Lc, jk0

} (
j � 2

)
are positive, so

by the proof of Theorem 4.1, there exist a pair of stable and unstable modes of
the form e±λu t u± (λu > 0), where u± = sin (k0x3) u± (x1, x2). Define Eu =
span

{
u+} , Es = span

{
u−} and

Ee =
⎧⎨
⎩u =

∞∑
j=1

sin ( jk0x3) u j (x1, x2) ∈ X1,k0 | 〈Lc,k0u1, u±〉 = 0

⎫⎬
⎭ .

Then by the arguments in the proof of Lemma 3.1, for any u ∈ Ee, we have∥∥∥et J Lc,k0 u1

∥∥∥
H1(R2)

� C ‖u1‖H1(R2) , for some constant C,
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and by the positivity of Lc, jk0

(
j � 2

)
,

∥∥∥et J Lc, jk0 u j

∥∥∥2
H1(R2)

+ j2
∥∥∥et J Lc, jk0 u j

∥∥∥2
L2(R2)

� C
(∥∥u j

∥∥2
H1(R2)

+ j2
∥∥u j
∥∥2

L2(R2)

)

with some constant C independent of j . So by (78), we have∥∥∥et J L̃c u
∥∥∥

H1

(
R2×S 2π

k0

) � C ‖u‖
H1

(
R2×S 2π

k0

) , for u ∈ Ee.

Define Ecs = Es ∪ Ee. Then X1,k0 = Eu ⊕ Ecs is a direct sum decomposition for

the exponential dichotomy of et J L̃c . Define

Ecs
3 =

{
u ∈ X3,k0 | J L̃cu ∈ Ecs

}
.

Then X3,k0 = Eu ⊕ Ecs
3 and the exponential dichotomy follow by the same argu-

ment in the proof of Lemma 3.2. ��
In the Equation (46), we let U = Uc + u, with u ∈ X3,k0 . Then the equation

can be written as

ut = J L̃cu + � (u) .

If F ∈ C5 (R) , it is easy to show that the nonlinear term� (u) isC2
(
X3,k0 , X3,k0

)
.

By using Lemma 4.1, we have the following:

Theorem 4.2. For 0 < c0 <
√
2, let Uc0 be a 2D traveling wave solution of (4),

satisfying ∂ P(Uc)
∂c |c=c0 > 0 or more generally λ0 (Lc) < 0. For any k0 satisfying

(77), there exists a unique C1 local unstable manifold W u of Uc0 in X3,k0 which
satisfies that:
1. It is one-dimensional and tangential to Eu at Uc0 .
2. It can be written as the graph of a C1 mapping from a neighborhood of Uc0 in

Eu to Ecs
3 .

3. It is locally invariant under the flow of the equation (46).
4. Solutions starting on W u converge to Uc0 at the rate eλu t as t → −∞.

As a corollary of the above theorem, we get nonlinear transversal instability of
any 2D traveling wave of the (GP) equation.

Remark 4.2. Assumption (77) ensures that the unstable subspace of the linearized
equation in X3,k0 is 1-dimensional. In fact this assumption can be generalized to

∃ j0 � 1 such that j0k0 satisfies (77). (79)

Since the subspace corresponding to the j0-th mode is decoupled in the linearized
equation, this assumption ensures that there exists a 1-dimensional unstable sub-
space in the j0-th mode which implies the linear instability with possibly multiple
dimensional unstable subspaces. L̃c is uniformly positive in all but finitely many
directions, one may prove the linear exponential dichotomy and the existence of
unstable manifolds through a similar procedure.
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5. Slow Traveling Waves of Cubic-Quintic Type Equations

In this section, we assume that the nonlinear term of (4) satisfies the following:
(H1) F ∈ C1([0,∞)), F(r0) = 0, and F ′(r0) < 0, where r0 is a positive

constant.
(H2) ∃ C > 0 such that

∣∣F ′ (s)
∣∣ � C |s|p0−1 , for s � 1, where p0 = 2

n−2 .
(H3) ∃ r1 such that 0 � r1 < r0 and V (r1) < 0, where V (r) = ∫ r

0 F(s) ds.
A typical example is the so-called cubic-quintic (or ψ3 − ψ5) nonlinear

Schrödinger equation

iψt + �ψ − α1ψ + α3ψ |ψ |2 − α5ψ |ψ |4 = 0, x ∈ R3, (80)

whereα1, α3, α5 are positive constants satisfying (8). Themain result of this section
is to show the existence and instability of traveling waves with small speeds.

5.1. Existence of Slow Traveling Waves

First we recall the result of stationary solutions.

Theorem 5.1. [24]Under assumptions (H1)–(H3), there exists a real-valued func-
tion φ0 ∈ C2(Rn) satisfying:
1. φ0(x) = φ0(|x |) (that is φ is radially symmetric)
2.

�φ0 + F(φ2
0)φ0 = 0, in Rn (n � 2). (81)

3. 0 < φ0(r) <
√

r0, ∀r ∈ [0,∞), and limr→∞ φ0(r) = √
r0

4. φ′
0(0) = 0, φ′

0(r) > 0 ∀r ∈ (0,+∞)

5. There exist C > 0, δ > 0 such that: ∀α ∈ Nn with |α| < 2,

|∂α
x (φ0(x) − √

r0)| � Ce−δ|x |, ∀x ∈ Rn .

The steady solution φ0 constructed above is called a stationary bubble of (4).
To simplify notations, below we assume r0 = 1, F ′ (1) = −1. Denote the operator
A : H2 (Rn) → L2 (Rn) by

A := −� − F(φ2
0) − 2F ′ (φ2

0

)
φ2
0 . (82)

Note that A is the linearized operator with the steady equation (81). Differentiating
(81) to xi , we get ∂xi φ0 ∈ ker A. We state the following non-degeneracy condition

ker A = {∂xi φ0, i = 1, . . . , n
}
. (83)

First, we study the two and three dimensional cases.

Theorem 5.2. Let n = 2, 3. Under assumptions (H1)–(H3), and the condition
(83), there exists b0 > 0, such that for any c ∈ (−b0, b0) , there exist (ρc, θc) ∈ Xs

2
such that
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φc
(

x1 − ct, x⊥) =
(
(ρ0 + ρc)

1
2 eiθc

) (
x1 − ct, x⊥)

is a cylindrically symmetric traveling wave solution of Equation (4). Here,
√

ρ0 =
φ0 (r) is the stationary solution to (4). Moreover, (ρc, θc) is C1 for c ∈ (−b0, b0) ,

‖ρc‖H2 + ‖θc‖Ḣ2 � K |c| , for some K > 0.

For n = 2, the non-degeneracy condition (83) is proved for cubic-quintic non-
linearity in Appendix 2.

To prove the existence of travelingwaves,we use the hydrodynamic formulation
(5). The traveling wave solution

ψ(x1 − ct, x⊥) = √
ρeiθ (x1 − ct, x⊥)

satisfies {−cθx1 + |∇θ |2 − 1
2
1
ρ
�ρ + 1

4
1
ρ2 |∇ρ|2 − F(ρ) = 0

cρx1 − 2∇.(ρ∇θ) = 0.
(84)

We define S(ρ, θ; c) to be the left-hand side of (84), then (84) becomes S(ρ, θ; c) =
0. First, we define several function spaces. Define the spaces

Z := L2
r⊥ ∩ Ḣ−1

r⊥ , with norm ‖·‖Z = ‖·‖2 + ‖·‖Ḣ−1 ,

and Y := L2
r⊥ × Z . The energy functional is defined by (6) and the momentum is

P(ρ, θ) = −1

2

∫
Rn

(ρ − 1) θx1 dx,

where (ρ, θ) ∈ (ρ0, 0) + Bε0 with

Bε0 = {(ρ, θ) ∈ Xs
2 | ‖ρ‖H2 + ‖θ‖Ḣ2 � ε0

}
.

Since H2 (Rn) ↪→ L∞ (Rn) for n = 2, 3 and ρ0 (r) � ρ0 (0) > 0, thus when ε0
is small enough, the functional E and P are well-defined.

Proof of Theorem 5.2. When c is small enough, we look for solutions of (84) in
the form (ρ+ρ0, θ)where (ρ, θ) ∈ Bε0 with ε0 small enough such that ρ+ρ0 > 0.
First, we note the following variational structure of (84):

S(ρ + ρ0, θ; c) = 2D(ρ,θ) (E(ρ + ρ0, θ) + cP(ρ + ρ0, θ)) .

Since the functionals E, P are translation invariant to x1, the above implies that
〈
S(ρ + ρ0, θ; c),

(
∂x1 (ρ + ρ0)

∂x1θ

)〉
= 0 (85)

for any (ρ, θ) ∈ Bε0 . Define K0 = span
{
(∂x1ρ0(x), 0)

}
. Let K ⊥

0 be the orthogonal
complement of K0 in Y , and �⊥ : Y �→ K ⊥

0 be the L2 orthogonal projection. We
solve the equation

�⊥S(ρ0 + ρ, θ; c) = 0, (ρ, θ) ∈ K ⊥
0 , (86)
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near (0, 0; 0) by the implicit function theorem. The linearized operator of S with
respect to (ρ, θ) at (0, 0; 0) is

D(ρ,θ)S(ρ0, 0; 0) := M0 =
(

M1 0
0 M2

)
: Xs

2 �→ Y (87)

where

M1 = −∇ ·
( ∇
2ρ0

)
− 1

2

1

ρ3
0

|∇ρ0|2 + �ρ0

2ρ2
0

− F ′(ρ0), (88)

M2 = −2∇ · (ρ0∇).

The linearizedmappingof�⊥S(ρ0+ρ, θ; c)|K ⊥
0 ∩Xs

2
at (0, 0; 0) is�⊥M0|Xs

2∩K ⊥
0

=
M0|Xs

2∩K ⊥
0
. It can be checked that for any ρ ∈ H2,

M1ρ = A

(
ρ

2
√

ρ0

)
1√
ρ0

, (89)

which also follows from (99) below. So by the assumption (83),

ker M1 = span
{√

ρ0∂x1φ0
} = span

{
∂x1ρ0

}
, on H2

r⊥ .

Moreover, (M2θ, θ) > 0 for any θ ∈ Ḣ1. Thus ker M = {(∂x1ρ0(x), 0)
} = K0. By

Lemma 5.1 below, the operator M0 : Xs
2 ∩ K ⊥

0 → K ⊥
0 is bounded with a bounded

inversion.Moreover, it is easy to show that S(ρ+ρ0, θ; c) ∈ C1
(
Bε0 × R;Y ). Thus

by the Implicit Function Theorem [21], there exists a neighborhood Bδ0 ×(−b0, b0)
of (0, 0; 0) in (Xs

2 ∩ K ⊥
0

)× R such that

(ρ (c) , θ (c)) : (−b0, b0) → Bδ0

is the unique solution to (86) near (0, 0; 0) which is C1 in c. Moreover, as implied
by the proof of IFT, we have

‖ρ (c)‖H2 + ‖θ (c)‖Ḣ2 � K ‖S(ρ0, 0; c)‖Y � K |c|
for some constant K . We claim that (ρ (c) , θ (c)) solves the original problem, that
is, S(ρ (c) + ρ0, θ (c) ; c) = 0. Indeed, by equation (86), we have

S(ρ (c) + ρ0, θ (c) ; c) = k(∂x1ρ0(x), 0)

for some constant k. We claim that k = 0. Suppose otherwise, that is, that k �= 0,
then by (85),

〈(
∂x1ρ0
0

)
,

(
∂x1 (ρ (c) + ρ0)

∂x1θ (c)

)〉
= 0,

or
∥∥∂x1ρ0

∥∥2
L2 + O (c) = 0, which is a contradiction. This finishes the proof of the

Theorem. ��
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It remains to show that the operator M |Xs
2∩K ⊥

0
has a bounded inversion. We

study this in a more general setting. For 0 < c0 <
√
2, suppose

(
ρc0 , θc0

)
is a

traveling wave solution satisfying (84) and min ρc0 > 0. The linearized operator of
S(ρ + ρc0 , θ + θc0; c) at (0, 0; c0) is

D(ρ,θ)S(ρc0 , θc0; c0) := Mc0 =
(

M11 M12
M21 M22

)
: Xs

2 �→ Y. (90)

Here,

M11 = −∇ ·
( ∇
2ρc0

)
− 1

2

1

ρ3
c0

|∇ρc0 |2 + �ρc0

2ρ2
c0

− F ′(ρc0), (91)

M22 = −2∇ · (ρc0∇),

and

M21 = c0∂x1 − 2∇ · (∇θc0 ·
)
, (92)

M12 = M∗
21 = −c0∂x1 + 2∇θc0 · ∇.

Define Kc0 = {(∂x1ρc0 , ∂x1θc0

)}
. Let K ⊥

c0 be the orthogonal complement of Kc0 in
Y , and �⊥

c0 : Y �→ K ⊥
c0 be the orthogonal projection. Note that �

⊥
c0 Mc0 |K ⊥

c0
∩Xs

2
=

Mc0 |K ⊥
c0

∩Xs
2
.

Lemma 5.1. Assume

ker Mc0 = span
{(

∂x1ρc0 , ∂x1θc0

)}
on Xs

2. (93)

Then there exists γ > 0, such that for any (ρ, θ) ∈ K ⊥
c0 ∩ Xs

2,

∥∥Mc0(ρ, θ)
∥∥

Y � γ ‖(ρ, θ)‖Xs
2
. (94)

In particular, Mc0 |K ⊥
c0

∩Xs
2

: K ⊥
c0 ∩ Xs

2 → K ⊥
c0 is invertible and

∥∥∥∥Mc0 |−1
K ⊥

c0
∩Xs

2

∥∥∥∥ � γ −1.

Proof. We follow the arguments of the proof of Proposition 2.3 in [25]. Suppose
(94) is not true. Then there exists a sequence

ψn = (ρn, θn) ∈ K ⊥
c0 ∩ Xs

2, n = 1, 2, . . . ,

such that ‖ψn‖X2
= 1 and

∥∥Mc0ψn
∥∥

Y → 0 when n → ∞. Since ‖ψn‖X2
= 1, we

may assume (by passing to a subsequence) that ψn → ψ∞ weakly in Xs
2 for some

ψ∞ ∈ Xs
2. The fact that {ψn} is orthogonal to Kc0 implies that ψ∞ ∈ K ⊥

c0 ∩ Xs
2.

The weak convergence ofψn toψ∞ in Xs
2 implies the weak convergence of Mc0ψn

to Mc0ψ∞ in L2. It follows from
∥∥Mc0ψn

∥∥
Y → 0 that Mc0ψ∞ = 0. Thus ψ∞ = 0

since ψ∞ is orthogonal to ker Mc0 = Kc0 .
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Denote the operator

M∞
c0 =

(
M∞

11 −c0∂x1

c0∂x1 M22

)
, with M∞

11 = −∇.

( ∇
2ρc0

)
+ 1

ρc0
. (95)

We claim that
∥∥M∞

c0 ψn
∥∥

Y
→ 0 when n → ∞. First,ψn → 0 weakly in X2 implies

that ρn → 0 weakly in H2 and θn → 0 weakly in Ḣ2. Thus, for any bounded
function a (x) decaying at infinity, we have a (x) ρn, a (x) ∇ρn, a (x) ∇θn → 0
strongly in L2, since the restriction of ρn,∇ρn,∇θn to a bounded domain implies
strong convergence. Thus, we have

∥∥(M11 − M∞
11

)
ρn
∥∥

L2 → 0,∥∥(M21 − c0∂x1

)
ρn
∥∥

L2 = 2
∥∥∇ · (∇θc0ρn

)∥∥
L2 → 0,∥∥(M12 + c0∂x1

)
θn
∥∥

L2 = 2
∥∥∇θc0 · ∇θn

∥∥
L2 → 0,

and
∥∥(M21 − c0∂x1

)
ρn
∥∥

Ḣ−1 � C
∥∥∇θc0ρn

∥∥
L2 → 0.

This shows that
∥∥(Mc0 − M∞

c0

)
ψn
∥∥

Y
→0 and thus

∥∥M∞
c0 ψn

∥∥
Y

→ 0.ByLemma5.2
below, there exists η > 0 such that

∥∥M∞
c0 ψn

∥∥
Y

� η ‖ψn‖X2
= η.

This contradiction proves the lemma. ��
Lemma 5.2. Assume 0 < c0 <

√
2 and inf ρc0 (x) = δ0 > 0. Then there exists

η > 0 such that

∥∥M∞
c0 ψ

∥∥
Y

� η ‖ψ‖X2
, (96)

for any ψ ∈ Xs
2.

Proof. Take anyψ = (ρ, θ) ∈ Xs
2. First, we estimate ‖ψ‖H1×Ḣ1 as in the proof of

Lemma 2.9. Since 0 < c0 <
√
2, we can choose 0 < a0 < 1 such that 2− c20

a20
> 0.

Then,

〈
M∞

c0 ψ,ψ
〉 =

∫
Rn

[
1

2ρc0
|∇ρ|2 + 1

ρc0
ρ2 − 2c0ρ∂x1θ + 2ρc0 |∇θ |2

]
dx (97)

=
∫
Rn

[
1

2ρc0
|∇ρ|2 + 1

ρc0

(
1 − a2

0

)
ρ2 + 2ρc0

∣∣∣∇⊥θ

∣∣∣2

+
(
2 − c20

a2
0

)
ρc0

∣∣∂x1θ
∣∣2 +

(
a0ρ√
ρc0

− c0
a0

∂x1θ
√

ρc0

)2
]

dx

� η0

(
‖ρ‖2H1 + ‖θ‖2

Ḣ1

)
, for some η0 > 0.
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Therefore,

η0

(
‖ρ‖2H1 + ‖θ‖2

Ḣ1

)
�
∥∥M∞

c0 ψ
∥∥

L2×Ḣ−1

(‖ρ‖L2 + ‖θ‖Ḣ1

)
,

and thus

1

2
η0
(‖ρ‖H1 + ‖θ‖Ḣ1

)
�
∥∥M∞

c0 ψ
∥∥

L2×Ḣ−1 .

From the standard elliptic estimates, there exists C > 0 such that
∥∥∥∇2ρ

∥∥∥
L2

+
∥∥∥∇2θ

∥∥∥
L2

� C
(
‖ρ‖H1 + ‖θ‖Ḣ1 + ∥∥M∞

c0 ψ
∥∥

L2×L2

)
.

Combining above two inequalities, we get (96). ��
For dimension n � 4, we need to study the equation in the function space

of higher regularity. Choose k > n
2 such that Hk (Rn) ↪→ L∞ (Rn). Let Yk =

Hk−2
r⊥ × (Hk−2

r⊥ ∩ Ḣ−1
r⊥
)
. We construct traveling waves near stationary bubbles by

solving the equation S(ρ+ρ0, θ; c) = 0 in the space Xs
k . Assuming that F ∈ Ck−1,

from Lemma 5.1, by bootstrapping we get the estimate

∥∥Mc0(ρ, θ)
∥∥

Yk
� γ ‖(ρ, θ)‖Xk

,

and thus Mc0 |K ⊥
c0

∩Xs
k

: K ⊥
c0 ∩ Xs

k → K ⊥
c0 ∩ Yk is invertible. Then by the same proof

of Theorem 5.2, we get the existence of slow traveling waves near ρ0 for n � 4 in
the space Xs

k .

Remark 5.1. The two non-degeneracy conditions (93) and (56) are equivalent.
This can be seen from the relation of operators Mc0 and Lc0 . For a traveling wave
Uc0 = √

ρc0eiθc0 with no vortices, denote the matrix operator

Tc0 =
⎛
⎝

1
2

1√
ρc0

cos θc0 −√
ρc0 sin θc0

1
2

1√
ρc0

sin θc0
√

ρc0 cos θc0

⎞
⎠ . (98)

Then

Mc0 = 2T t
c0 Lc0Tc0 . (99)

Since Tc0 is obviously an isomorphism of X , we have

Tc0

(
ker Mc0

) = ker Lc0

which implies the equivalence of (93) and (56). To show (99), we note that: 1)
Mc0 and Lc0 are from the second variation of the energy-momentum functional
2 (E + cP) in (ρ, θ) and E + cP in (u, v) respectively and 2) the first order
variations of (u, v) and (ρ, θ) are related by the matrix Tc0 .



190 Zhiwu Lin, Zhengping Wang & Chongchun Zeng

Remark 5.2. The existence of slow traveling waves for cubic-quintic type equa-
tionswas proved for n � 4 in [48] by using the critical point theory, and for n = 2, 3
in an unpublished manuscript of Lin [45] by using the hydrodynamic formulation
and Lyapunov–Schmidt reduction. The proof we give here adapts the formulation
of [45], but it is much simpler and works for any dimension n � 2. The new ob-
servation is to use the variational structure of the traveling wave equation (84) in
hydrodynamic variables to reduce it to equation (86) which is solved by the implicit
function theorem. Moreover, as a corollary of the proof we get the local uniqueness
and differentiability of the traveling wave branch.

5.2. Continuation of Traveling Waves

By using Lemma 5.1 and the proof of Theorem 5.2, we get the following result
on the continuation of traveling waves without vortices (that is |Uc| �= 0):

Proposition 5.1. For n � 2, fix k > n
2 and assume F ∈ Ck−1, 0 < c0 <

√
2,(

ρc0 , θc0

)
is a cylindrically symmetric traveling wave of (84) satisfying inf ρc0 (x) >

0 and the non-degeneracy condition (93). Then ∃ ε0 > 0, such that for

c ∈ (−ε0 + c0, ε0 + c0) ⊂
(
0,

√
2
)

,

there exists a locally unique C1 solution curve (ρc, θc) of (84),with
(
ρc − ρc0 , θc

) ∈
Xs

k. That is,

φc
(

x1 − ct, , x⊥) =
(√

ρceiθc
) (

x1 − ct, , x⊥)

are the only traveling wave solutions of (4) near
(
ρc0 , θc0

)
.

For n = 3, we can prove the continuation of general traveling waves even with
vortices, under the non-degeneracy condition (56). Instead of using the hydrody-
namic formulation, this is achieved by using the original equation (42). First, we
need an analogue of Lemma 5.1. We still use X, Y for the cylindrical symmetric
spaces defined before.

Lemma 5.3. For n = 3 and 0 � c0 <
√
2, let Uc0 = uc0 + ivc0 be a traveling

wave solution of (42) satisfying the decay condition (45). Let Lc0 : Xs
2 → Y be the

operator defined in (44). Assume (56), that is,

ker Lc0 = K̄c0 = {∂x1Uc0

}
, on Xs

2,

and denote K̄ ⊥
c0 to be the L2 orthogonal complement of K̄c0 in Y . Then, there exists

γ > 0, such that∥∥Lc0φ
∥∥

Y � γ ‖φ‖Xs
2
, for any φ ∈ K̄ ⊥

c0 ∩ Xs
2.

In particular, Lc0 : K̄ ⊥
c0 ∩ Xs

2 → K̄ ⊥
c0 is invertible and

∥∥∥∥
(

Lc0 |K̄ ⊥
c0

∩Xs
2

)−1
∥∥∥∥ � γ −1.
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Proof. The proof is almost the same as that of Lemma 5.1. So we only point out
some key points in the proof. For any sequence {ψn} ∈ Xs

2 with ‖ψn‖X2
= 1 and

ψn → 0 weakly in Xs
2, we show that∥∥(Lc0 − Lc0,∞

)
ψn
∥∥

Y → 0,

where

Lc0,∞ :=
(−� + 2 −c0∂x1

c0∂x1 −�

)
.

Let Lc0 = (Li j
)
and Lc0,∞ =

(
Li j∞
)

, i, j = 1, 2, and ψn = un + ivn . By (45),

Li j − Li j∞ = ai j (x) = o

(
1

|x |
)

, a22 (x) = o

(
1

|x |2
)

.

Then, since un → 0 weakly in H2,∥∥∥
(

L11 − L11∞
)

un

∥∥∥
L2

=
∥∥∥a11 (x) un

∥∥∥
L2

→ 0,∥∥∥
(

L21 − L21∞
)

un

∥∥∥
L2

=
∥∥∥a21 (x) un

∥∥∥
L2

→ 0,∥∥∥
(

L21 − L21∞
)

un

∥∥∥
Ḣ−1

�
∥∥∥|x | a21 (x) un

∥∥∥
L2

→ 0,

by the local compactness of H2 ↪→ L2. Since vn → 0 weakly in Ḣ2, we have∥∥∥
(

L12 − L12∞
)

vn

∥∥∥
L2

=
∥∥∥a12 (x) vn

∥∥∥
L2

→ 0,∥∥∥
(

L22 − L22∞
)

vn

∥∥∥
L2

=
∥∥∥a22 (x) vn

∥∥∥
L2

→ 0,∥∥∥
(

L22 − L22∞
)

vn

∥∥∥
Ḣ−1

�
∥∥∥|x | a22 (x) vn

∥∥∥
L2

→ 0,

by the arguments in the proof of Lemma 2.5.
By Lemma 2.9, there exists η0 > 0 such that

〈
Lc0,∞φ, φ

〉
� η0 ‖φ‖2

H1×Ḣ1 , for any φ ∈ H1 × Ḣ1.

Then by the same proof of Lemma 5.2, for some η > 0,∥∥Lc0,∞φ
∥∥

Y � η ‖φ‖X2
, for any φ ∈ Xs

2.

The rest of the proof is the same as Lemma 5.1. ��
Theorem 5.3. For 0 < c0 <

√
2, assume that Uc0 = ψ

(
wc0

)
is a cylindrical sym-

metric 3D traveling wave solution of (4) satisfying the non-degeneracy condition
(56). Then ∃ ε0 > 0, such that for

c ∈ (−ε0 + c0, ε0 + c0) ⊂
(
0,

√
2
)

,

there exists a locally unique C1 solution curve Uc = ψ (wc) of (42) near Uc0 ,

where wc ∈ H2
r⊥(R3,R) × Ḣ2

r⊥(R3,R) and
∥∥wc − wc0

∥∥ = O (|c − c0|).
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Proof. By Lemma 2.4, for a traveling wave solution Uc = ψ (wc), it is equivalent
to solve (Ēc)

′(wc) = 0 for wc. Define Kc0 = span
{
∂x1wc0

}
. Let K ⊥

c0 be the
L2 orthogonal complement of Kc0 in Y , and �⊥

c0 : Y �→ K ⊥
c0 be the orthogonal

projection. Let K̃ ⊥
c0 be orthogonal complement of Kc0 in Xs

2, in the inner product
[·, ·] = (K ·, K ·), where the operator

K

(
φ1
φ2

)
=
(

φ1 − χ(D) (vcφ2)

φ2

)

is defined in (22).Weuse the implicit function theorem tofind solutions
(
wc0 + w, c

)
near

(
wc0 , c0

)
of the equation

�⊥
c0 Ēc

′(wc0 + w) = 0, w ∈ K̃ ⊥
c0 .

The linearized operator with respect to w of the left hand side above at
(
wc0 , c0

)
is

�⊥
c0 Ēc0

′′(wc0)|K̃ ⊥
c0

= Ēc0
′′(wc0)|K̃ ⊥

c0
: K̃ ⊥

c0 → K ⊥
c0 ,

which will be shown to be invertible below. In fact, by (30), we have

Ēc0
′′(wc0) = K ∗Lc0 K ,

where K ∗ is given by (32). So by (56),

ker Ēc0
′′(wc0) = Kc0 = {∂x1wc0

}
and

�⊥
c0 Ēc0

′′(wc0)|K̃ ⊥
c0

= Ēc0
′′(wc0)|K̃ ⊥

c0
.

By the definition of K̃ ⊥
c0 , φ ∈ K̃ ⊥

c0 iff Kφ ∈ K̄ ⊥
c0 ∩ Xs

2 where K̄c0 is defined in
Lemma 5.3. By Lemma 5.3, there exists γ > 0, such that∥∥Lc0 Kφ

∥∥
Y � γ ‖Kφ‖X2

, for any φ ∈ K̃ ⊥
c0 . (100)

It is easy to show that the mappings K : Xs
2 → Xs

2 and K ∗ : Y → Y are isometric,
that is, there exist C1, C2 > 0, such that

C1 ‖φ‖X2
� ‖Kφ‖X2

� C2 ‖φ‖X2

and

C1 ‖φ‖Y �
∥∥K ∗φ

∥∥
Y � C2 ‖φ‖Y .

Thus by (100), there exists some γ1 > 0, such that∥∥K ∗Lc0 Kφ
∥∥

Y � γ1 ‖φ‖X2
, for any φ ∈ K̃ ⊥

c0 .

That is, the operator

Ēc0
′′(wc0)|K̃ ⊥

c0
= K ∗Lc0 Kφ|K̃ ⊥

c0
: K̃ ⊥

c0 → K ⊥
c0

has a bounded inverse. The rest of the proof is the same as that of Theorem 5.2, so
we skip it. ��
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5.3. Instability of Slow Traveling Waves

In this subsection, we prove the instability of slow traveling waves constructed
in Theorem 5.2. The approach is the same as developed in Section 3. The linearized
equation is (7). To find unstable eigenvalues of J Mc, we first study the quadratic
form 〈Mcu, u〉, where u = (ρ, θ) ∈ Xs

1, the cylindrical symmetric subspace of
X1 = H1 (Rn) × Ḣ1 (Rn).

Proposition 5.2. Assume (H1)–(H3) and the non-degeneracy condition (83) on the
stationary bubble. Then ∃ a0 ∈ (0,

√
2), such that for any 0 � c < a0, there exists

a traveling wave solution Uc = √
ρceiθc of (4)without vortices and (56) is satisfied.

Moreover, the space Xs
1 can be decomposed as a direct sum

Xs
1 = N ⊕ Z ⊕ P,

where Z = {(∂x1ρc, ∂x1θc
)}

, N is a one-dimensional subspace such that 〈Mcu, u〉 <

0 for 0 �= u ∈ N , and P is a closed subspace such that

〈Mcu, u〉 � δ ‖u‖2X1
, ∀ u ∈ P,

for some constant δ > 0.

Proof. The proof is similar to that of Proposition 2.1, so we only sketch it. The
existence of traveling waves is shown in Theorem 5.2, for c ∈ [0, b0), b0 > 0.
Define the operator

M̃c := G̃ ◦ Mc ◦ G̃ : L2
r⊥ → L2

r⊥ ,

where G̃ is defined in (26). We will show that there exists a0 > 0, such that when
c ∈ [0, a0):

(i) M̃c : L2 → L2 is self-adjoint and bounded.
(ii) L̃c has one-dimensional cylindrical symmetric negative eigenspace,

ker M̃c ∩ L2
r⊥ =

{
G̃−1 (∂x1ρc, ∂x1θc

)}
,

and the rest of the spectrum is positive.
The conclusions in the Proposition follow from the above properties of the

operator M̃c. Denote M̃∞
c := G̃ ◦ M∞

c ◦ G̃, where M∞
c is defined in (95). Then

it is easy to see that M̃∞
c is bounded and self-adjoint, and by the estimate (97),

the essential spectrum of M̃∞
c ⊂ [δ0,∞) for some δ0 > 0. We show that M̃c is a

compact perturbation of M̃∞
c . Indeed, M̃c − M̃∞

c = (M̃i j ), where M22 = 0,

M̃11 = (−� + 1)−
1
2 a1 (x) (−� + 1)−

1
2 ,

M̃21 = −2(−�)−
1
2 ∇ ·

(
�a2 (x) (−� + 1)−

1
2

)
, M̃12 = M̃∗

21,

with

a1 (x) = 1

2

1

ρ3
c
|∇ρc0 |2 − �ρc0

2ρ2
c0

− F ′(ρc0) − 1

ρc0
→ 0,

�a2 (x) = ∇θc0 → 0,
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when |x | → ∞. Thus by the local compactness of H1 ↪→ L2, the operators
M̃11, M̃21 and M̃12 are compact, so by the perturbation theory of self-adjoint op-
erators, M̃c is self-adjoint and bounded, with its essential spectrum in [δ0,∞). By
Lemma 5.4 below, ker M̃0 ∩ L2

r⊥ = {G̃−1(∂x1ρ0, 0)} and M̃0 has exactly one neg-
ative eigenvalue which is simple with radially symmetric eigenfunction. Since the
traveling wave solution (ρc, θc) is C1 for c ∈ [−b0, b0), the discrete spectrum of
M̃c is continuous in c. Thus, there exists a0 > 0 such that for c ∈ [0, a0), M̃c has
a one-dimensional kernel in L2

r⊥ spanned by G̃−1
(
∂x1ρc, ∂x1θc

)
and exactly one

negative eigenvalue which is simple with a cylindrically symmetric eigenfunction.
��

Lemma 5.4. Assume (H1)–(H3). Let φ0 = √
ρ0 be a stationary bubble of (4)

obtained in [24] (via constrained minimization) satisfying (83). Then

ker M̃0 ∩ L2
r⊥ = span

{
G̃−1 (∂x1ρ0, 0

)}
,

and M̃0 has exactly one negative eigenvalue which is simple and with a radially
symmetric eigenfunction.

Proof. Since M̃0 = G̃ ◦ M0 ◦ G̃, it is equivalent to show that

ker M0 ∩ L2
r⊥ = {(∂x1ρ0, 0

)}
,

and M0 has only one negative eigenvalue which is simple with a radially symmetric
eigenfunction. Recall that

M0 =
(

M1 0

0 M2

)
,

where

M1 = A

(
1

2
√

ρ0
·
)

1√
ρ0

, M2 = −2∇ · (ρ0∇).

Since M2 > 0, by (83) the cylindrically symmetric kernel of M1 is spanned by
∂x1ρ0. It remains to show that the operator A has only one negative eigenvalue
which is simple with a radially symmetric eigenfunction. This property was shown
in Lemmas 2.1 and 2.2 of [48] for n � 3. The proof for n = 2 is almost the same
and we sketch it below. By Lemma 3.3 of [24] or Lemma 2.1 of [48], A has at least
one negative eigenvalue with radial symmetric eigenfunction. It was shown in [2,9]
that φ0 minimizes the functional

T (u) = 1

2

∫
R2

|∇u|2 dx

subject to the constraint

I (u) =
∫
R2

V
(
|u|2
)
dx = 0.

By the arguments in the proof of Lemma 2.7 or the proof of Lemma 2.2 in [48],
it follows that A has at most one-dimensional negative eigenspace. Thus A has
exactly one-dimensional negative eigenspace. ��
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Remark 5.3. InAppendix 2,we prove the non-degeneracy condition (83) for cubic-
quintic nonlinearity and n = 2. For n � 3, the condition (83) was proved in [48]
for nonlinearity satisfying some additional condition ((H5) in P. 1209 of [48]).
However, our computation indicates that this additional condition appears to be not
satisfied by the cubic-quintic nonlinearity.

Much as Proposition 3.2 and Lemma 3.2, we have the same linear instability
criterion ∂ P(Uc)

∂c < 0 and the subsequent linear exponential dichotomy.

Proposition 5.3. Let Uc = √
ρceiθc , c ∈ [c1, c2], be a C1 (with respect to the wave

speed c) family of traveling waves of (4). For c0 ∈ (c1, c2), assume that:
1. Uc0(x) �= 0, for all x ∈ Rn;
2. non-degeneracy condition (93) is satisfied;
3. F ∈ C1 on Uc0(R

n);
4. Mc0 satisfies the decomposition result stated in Proposition 5.2, and
5. ∂ P(Uc)

∂c |c=c0 < 0;
then there exists wu ∈ Xs

1 and λu > 0, such that eλu twu (x) is a solution of (7).
Moreover, the linearized semigroup et J Mc0 also has an exponential dichotomy in
the space Xs

3.

After these preparations, we show the linear instability of slow traveling waves
of (4) with cubic-quintic type nonlinear terms.

Theorem 5.4. Assume (H1)–(H3) and (83). For any n � 2, ∃ ε0 > 0, such that
for all 0 � c < ε0, the traveling wave solutions Uc = √

ρceiθc constructed in
Theorem 5.2 are linearly unstable in the following sense: there exists an unstable
solution eλu twu (x) with

wu = (ρu, θu) ∈ Xs
3, λu > 0,

of the linearized equation (7). Moreover, the linearized semigroup et J Mc also has
an exponential dichotomy in the space Xs

3.

Proof. Since the traveling wave branch Uc constructed in Theorem 5.2 is C1 for
c ∈ (−b0, b0), according to Proposition 5.3, it is reduced to show that ∂ P(Uc)

∂c |c=0 <

0. We note that
1

2
Mc∂c(ρc, θc) = −P ′(ρc, θc) = −1

2
J−1∂x1(ρc, θc),

since (ρc, θc) satisfies
(
E ′ + cP ′) (ρc, θc) = 0 and

(
E ′′ + cP ′′) (ρc, θc) = 1

2 Mc.
Here, we use ′ to denote the functional derivative in (ρ, θ). Thus

∂ P(Uc)

∂c
|c=0 = 〈P ′(ρc, θc), ∂c(ρc, θc)〉|c=0

= 1

2

(
∂c(ρc, θc),

(
0, ∂x1ρ0

)) = −1

2

(
M−1

2 ∂x1ρ0, ∂x1ρ0

)
< 0

since M2 = −2∇.(ρ0∇) > 0.
By Proposition 5.2, we can show the exponential dichotomy for the semigroup

et J Mc in the space Xs
3, as in Lemma 3.2. The proof is the same as in Lemmas 3.1

and 3.2, thus we skip it. ��
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Due to the presence of derivative terms in the nonlinearity of the hydrody-
namic equation (5), it is much easier to obtain the unstable manifolds and thus
the nonlinear instability of traveling waves by working with the original form of
the nonlinear Schrödinger equation (4), which is semilinear, based on the linear
instability obtained in the above theorems. We first state the following proposition:

Proposition 5.4. For any dimension n � 1, let k > n
2 be an integer and�⊥ ⊂ Rn−1

be a smooth domain. Consider (4) for x ∈ � = R × �⊥ subject to homogeneous
Dirichlet, Neumann, or periodic boundary condition on ∂�. Suppose F ∈ Ck+l

and Uc = uc + ivc be a traveling wave of (4) on � such that

uc − 1 ∈ Hk(�) and vc ∈ Ḣ k(�).

Assume the linearized flow et J Lc , where Lc is defined in (44), has an exponen-
tial dichotomy in Hk(�) × Hk(�), that is there exist closed subspaces Ecs,u ⊂
Hk(�) × Hk(�) and λu,cs, M � 0 such that λu > λcs, et J Lc Eu,cs = Eu,cs, and

∣∣∣et J Lc |Eu

∣∣∣ � Meλu t , ∀t � 0 and
∣∣∣et J Lc |Ecs

∣∣∣ � Meλcs t , ∀t � 0.

Then there exists a unique Cl locally invariant unstable manifold W u ⊂ Uc +
Hk(�) × Hk(�) of Uc in the sense as described in Theorem 3.1.

Remark 5.4. If �⊥ and Uc are invariant under certain symmetries like rotations or
reflections, then onemaywork in the subspace of Hk(�)with the same symmetries
and thus the unstable manifold would consist of functions inUc + Hk(�)× Hk(�)

with the same symmetries.

The proposition can be obtained from the general theorems in [7,22] simply
based on the observation that, under the above assumptions, the dynamic equation
of z(t, x) = U (t, x − ct�e1) − Uc(x − ct�e1), where U (t, x) is a solution of (4),
has the linear part J Lcz and its nonlinear part defines a Cl transformation from
Hk(�) × Hk(�) to itself. As a corollary, we have

Corollary 5.1. Let n � 2 and Uc = √
ρceiθc be a traveling wave of (4), radially

symmetric in x⊥ and linearly unstable with the linear exponential dichotomy for
(ρ, θ) ∈ Hk

r⊥(Rn) × Ḣ k
r⊥(Rn)

(
k � 2

)
, including those proved in Theorem 5.4.

Assume F ∈ Ck+l , then there exists a unique Cl local unstable (stable) manifolds
W u (W s) of Uc in Uc + Hk

r⊥(Rn) × Hk
r⊥(Rn).

Proof. In order to prove the corollary, we only need to establish the linear ex-
ponential dichotomy of et J Lc in Hk

r⊥ × Hk
r⊥ . Since J Lc and J Mc, where Mc is

defined in (90), are conjugate through Tc defined in (98 ) and Tc is an isomorphism
on Hk

r⊥ × Hk
r⊥ , we only need to obtain the exponential dichotomy of et J Mc on

Hk
r⊥ × Hk

r⊥ . Based on Theorem 5.4, it is straightforward to repeat the arguments
to derive the exponential dichotomy of et J Mc in Hk

r⊥ × Ḣ k
r⊥ . The form of J Mc

implies that its unstable and stable eigenfunctions in Hk
r⊥ × Ḣ k

r⊥ actually belong
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to Hk
r⊥ × Hk

r⊥ , that is, Eu, Es ⊂ Hk
r⊥ × Hk

r⊥ . Indeed, for an unstable eigenvalue
λu > 0, the eigenfunction (ρu, θu) ∈ Hk

r⊥ × Ḣ k
r⊥ satisfies

θu = − 1

λu
(M11ρu + M12θu) ∈ L2,

and the same is true for the stable eigenfunction. Here, M11 and M12 are defined
in (91)–(92) and we use the observation that M12θ contains only ∂θ(t), instead
of θ(t) itself. It is easy to see that Ẽcs = Ecs ∩ Hk

r⊥ × Hk
r⊥ is a closed subspace

of Hk
r⊥ × Hk

r⊥ , invariant under et J Mc , and Hk
r⊥ × Hk

r⊥ = Eu ⊕ Ẽcs . To complete
the proof, we only need to obtain the following growth estimate of |θ(t)|L2 where
z(t) = (ρ (t) , θ (t)) = et J Mc z0 for z0 ∈ Ẽcs . When z0 = (ρ (0) , θ (0)) ∈ Ẽcs ,
we have that for any t � 0,

|θ(t)|L2 � |θ(0)|L2 +
∫ t

0
|θt (s)| ds

� |θ(0)|L2 +
∫ t

0

(|M11ρ (s)|L2 + |M12θ (s)|L2
)
ds

� |θ(0)|L2 + C
∫ t

0

(|ρ (s)|H2 + |θ (s)|Ḣ1

)
ds

� |θ(0)|L2 + C
∫ t

0
Meλcs s |z0|Hk×Ḣ k ds

� M ′(1 + t)eλcs t |z0|Hk×Hk .

In the above, we use the special form of M12 again and the exponential dichotomy
of the linear equation zt (t) = J Mcz(t) in Hk

r⊥ × Ḣ k
r⊥ . Therefore the exponential

dichotomy of et J Mc holds in Hk
r⊥ × Hk

r⊥ with λu and any λ̃cs ∈ (λcs, λu). ��
As a corollary, we get nonlinear orbital instability for slow traveling waves in

dimension n � 2.

Remark 5.5. The instability of stationary bubbles was proved in [24]. It is possible
to show the instability of slow traveling waves by certain perturbation argument.
However, the instability proof of Theorem 5.4 contains more information than what
canbeobtained fromaperturbation theory. First, it yields the exponential dichotomy
of the semigroup which is essential for constructing invariant manifolds. The un-
stable manifold theorem automatically implies the optimal orbital instability result,
that is, the instability is measured in a weak norm with initial deviation in a strong
norm and the growth is exponentially fast. By contrast, the nonlinear instability
proof in [24] used an abstract theorem of [37] (see [54] for a similar theorem). It
does not require the exponential dichotomy or the precise growth estimate of the
semigroup, but the instability was proved in a strong norm Hk

(
k > n

2

)
and no esti-

mate of the growth time scale was given. Second, the proof of Theorem 5.4 actually
gives a instability criterion ∂ P(Uc)

∂c < 0 under the non-degeneracy condition (56).
In particular, the instability of stationary solution persists until the first travel speed
c at which either ∂ P(Uc)

∂c = 0 or the condition (56) fails.
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6. Extensions and Future Problems

In this section, we discuss the extensions of the results in previous sections. We
also mention some remaining issues on stability of traveling waves of (4).

In the one-dimensional case, when 0 < c <
√
2, the traveling waves Uc of

(4) is nonvanishing. In this case, a sharp stability criterion was obtained in [44] by
using the hydrodynamic formulation and the theory of [32]. The traveling waves
are stable if and only if d

dc P (Uc) > 0, where

P (u) = −
∫
R
Im
(
ūu′) (1 − 1

|u|2
)
dx .

However, in [44] nonlinear instability was only proved in the energy space and
without any estimate of the growth time scale, as in [16,32], where the linear
instability problem was bypassed and the nonlinear instability was proved by a
contradiction argument. Recently, the nonlinear orbital instability with exponential
growthwas proved in [19] by studying the linearized problem. InRemark 6.1 below,
we comment on some possible gap in the proof of [19]. By using the methods in
Sections 3 and 5.3, we can prove the existence of unstable (stable) manifolds near
Uc and thus obtain the optimal nonlinear instability result when d

dc P (Uc) < 0. In
fact, for 1D traveling waves, the spectral property of the quadratic form 〈Mc·, ·〉 as
in Proposition 5.2was essentially proved in [44]. By using this spectral property, the
linear instability when d

dc P (Uc) < 0 and the exponential dichotomy of the linear
semigroup et J Mc can be proved by the same approach as in Section 3. Then the
unstable (stable) manifolds can be constructed via Theorem 5.4 as in corollary 5.1.

Another extension is to prove the transversal instability of any 1D traveling
waves of (4) by the approach of Section 4. Let

Lc :=
(−∂2x − F

(|Uc|2
)− F ′ (|Uc|2

)
2u2

c −c∂x − 2F ′ (|Uc|2
)

ucvc

c∂x − 2F ′ (|Uc|2
)

ucvc −∂2x − F
(|Uc|2

)− F ′ (|Uc|2
)
2v2c

)
.

(101)

When 0 < c <
√
2, the operator Lc has exactly one negative eigenvalue λ0 < 0

and the second eigenvalue is zero. Since by the analogue of the formula (99) in
1D, the number of negative modes of the quadratic form with Lc equals that of the
quadratic form 〈Mc·, ·〉. The latter number was shown to be the one in [44]. Thus,
by the same proof of Theorem 4.1, when k ∈ (0,√−λ0

)
the 1D traveling wave is

transversal unstable with the transversal period 2π
k and is transversely stable when

k �
√−λ0. Similar to the proof of Lemma 4.1 and Theorem 4.2, we can construct

unstable (stable) manifolds from the above transversal instability. For (GP), when

c = 0, the stationary solution U0 = tanh
(

x√
2

)
vanishes at x = 0, the operator

L0 =
(−∂2x − 1 + 3U 2

0 0

0 −∂2x − 1 + U 2
0

)

can be verified to have exactly one negative eigenvalue, so the above discussions
on transversal instability are also valid for U0. We should note that in [53], the
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linear transversal instability of 1D traveling waves of (GP) was shown for k near√−λ0 by a different method. Our results are novel in the following two respects: 1)
locating the sharp interval for unstable transversal wave numbers; 2) constructing
the unstable (stable) manifolds.

Remark 6.1. In [19], the proof of nonlinear orbital instability of 1D travelingwaves
(Theorem 4 and Corollary 3) consists of several steps. For linear instability when
d
dc P (Uc) < 0, the author cited the result in [8]. Then, an abstract result (Theorem
B.3 in [19]) is used to get the growth estimate (and actually exponential dichotomy)
of the semigroup et J Lc in H1 (R) × H1 (R), where the operator Lc is defined in
(101). By using this semigroup estimate, the nonlinear orbital instability follows
since the equation (4) is semilinear in H1 × H1. However, the operator Lc does not
satisfyAssumption (A) for TheoremB.3, which requires that σess (Lc) = [δ0,+∞)

for some δ0 > 0. Since by (99) we have σess (Lc) = σess (Mc) = [0,+∞), where
Mc is the 1D version of the operator defined in (90). Such a lack of spectral gap
is exactly one of the main difficulty for studying stability of traveling waves of
(4) with nonvanishing condition at infinity. To overcome this difficulty in 1D, first
we get the exponential dichotomy of et J Mc on Hk × Ḣ k

(
k � 2

)
where Mc has

a spectral gap. Then we lift this exponential dichotomy of et J Mc to Hk × Hk by
noting that the unstable eigenfunction lies in this space. The exponential dichotomy
of et J Lc on Hk × Hk then follows.

Theorems 2.1, 3.1 and Corollary 2.2 in Sections 2 and 3 give a completed theory
for the orbital stability (instability) of 3D traveling waves. We briefly comment on
the extensions to higher dimensions n � 4. Assume that the nonlinear term F (u)

in (4) satisfies:
(F1) F ∈ C1(R), C2 in a neighborhood of 1, F(1) = 0 and F ′(1) = −1;
(F2) there exists 0 � p1 � 1 � p0 < 2

n−2 such that |F ′(s)| � C(1 + s p1−1 +
s p0−1) for all s � 0.

Under the assumption (F1)-(F2), as in 3D case, the traveling waves have been
constructed in [49] by minimizing the energy subject to Pohozaev type constraint,
for n � 4. We can prove the spectral property for the quadratic form 〈Lc·, ·〉 as in
Proposition 2.1, in the space X1 = H1 (Rn) × Ḣ1 (Rn). This allows us to prove a
linear instability criterion that ∂ P(Uc)

∂c |c=c0 < 0 where

P (u) = 1

2

∫
Rn

〈i∂x1u, u − 1〉 dx = −
∫
Rn

(u1 − 1) ∂x1u2 dx .

To pass to nonlinear results, first we note that when n � 4, it was shown in [48]
that the energy-momentum functional Ec = E + cP is C2 on the space 1 + X1.
Thus, by the proof of Theorem 2.1, we can prove that the traveling waves with
∂ P(Uc)

∂c |c=c0 > 0 is orbitally stable in the distance ‖u − Uc‖X1 . Moreover, when
n = 4, it can be shown that the energy space

X0 =
{

u |∇u ∈ L2 (Rn) , V (u) ∈ L1 (Rn)}

=
{

u |∇u ∈ L2 (Rn) , 1 − |u|2 ∈ L1 (Rn)}
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exactly consists of functions of the form
{
c (1 + w) | c ∈ S

1, w ∈ X1
}
. Thus,

when n = 4, ∂ P(Uc)
∂c |c=c0 > 0 is sharp for orbital stability in the energy space.

When n > 4, the energy space X0 might be strictly larger than the set {c (1 + X1)}.
To show the orbital stability in X0 for n > 4, we need to find a coordinate map-
ping u = g (w) ,w ∈ X1 for u ∈ X0, as for the 3D case. To construct unstable
(stable) manifolds under the instability criterion ∂ P(Uc)

∂c |c=c0 < 0, we first note that
the exponential dichotomy is still true in X1 and then in Xk = Hk × Ḣ k for any
integer k > 1, by the proof of Lemmas 3.1 and 3.2. Then we write U = Uc + w

(w ∈ Xk) in (46). It can be shown that, assuming F ∈ Ck+2, the nonlinear term
F
(|U |2)U ∈ C2 (Xk, Xk) for k large. Therefore, the unstable (stable) manifolds

can be constructed in the space Uc + Xk , which is contained in the energy space
by [48] as mentioned earlier.

We notice that equation (GP) for n = 4 is just the borderline case and does
not satisfy (F2) for nonlinear stability (keep in mind (F1–2) are not needed for
unstable manifolds). Exactly as in Corollary 2.2, we may instead assume (F);
there exists C, α0, s0 > 0, and 0 < p1 � 1 � p0 � 2

n−2 such that |F ′(s)| �
C(1 + s p1−1 + s p0−1) for all s � 0 and F(s) � −Csα0 for all s > s0.

Following the same argument for Corollary 2.2, we obtain the nonlinear instability
of traveling waves obtained in [49].

Now we discuss the 2D case. When the traveling wave Uc has no vortices
(Uc �= 0), we can use the Madelung transform to derive the instability criterion
∂ P(Uc)

∂c |c=c0 < 0 and construct stable (unstable) manifolds. See Theorems 5.4
and 5.1. However, things get more tricky for traveling waves with vortices. The
Madelung transform is not applicable. Also, it is improper to use the base space X1
to study the linearized problem (47) for two reasons. First, the Hardy’s inequality
(23) is not valid for n = 2, so we cannot even define the quadratic form 〈Lc·, ·〉 on
X1. Secondly, due to the oscillations at infinity of functions in X0, we don’t have
a manifold structure of X0 with the base X1. In [30], a manifold structure of X0 is
given with the base space

X ′ = H1
R

(
R2
)

×
(

X1
R

(
R2
)

+ H1
R

(
R2
))

,

where X1
R = {

u ∈ L∞| ∇u ∈ L2
}
. However, it is unclear how to use X ′ in place

of X1 in our approach.
In an ongoing work, we construct center manifolds near the unstable 3D travel-

ing waves of (GP) as proved in Proposition 3.3. The linear exponential trichotomy
of the semigroup et J Lc has been established for the space X1 in Lemma 3.3. This
trichotomy can also be lifted to the space X3, similar to Lemma 3.2. Then we can
construct center manifold in the orbital neighborhood of wc in X3. However, it is
more desirable to construct center manifold in the energy space X1. We note that in
Lemma 3.3 it is shown that the second variation of the energy-momentum is positive
definite when restricted on the center space and modulo the generalized kernel, so
the construction of the center manifold in X1 would imply that the orbital stability
is restricted there and also the local uniqueness of the center manifold. Together
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with the unstable (stable) manifolds in Theorem 3.1, these will give a foliation of
the local dynamics near the unstable 3D traveling waves.
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Appendix 1

In this appendix, we prove the C2 smoothness of the nonlinear term �(w) (defined
in (52) and (53)) on X3. Indeed, we will show that � ∈ C2

(
X3, H3

(
R3;C)).

Let Uc = uc + ivc be a finite energy traveling wave solution of Equation (4), that
is, |Uc|2 − 1, ∇Uc ∈ L2(R3). Let Uc = ψ(wc), then wc ∈ X1 = H1 × Ḣ1.
Moreover, by the proof of Lemma 5.5 of [49], uc − 1, vc ∈ Ḣ3(R3), so it follows
from the definition of the coordinate mapping ψ that

w1c ∈ H3(R3), w2c ∈ Ḣ3(R3).

Lemma 7.1. Assume that F ∈ C5(R) and F (1) = 0. Then � ∈ C2(X3, H3).

Remark 7.1. For the construction of unstable (stable) manifolds, we work on a
small X3 neighborhood of a linearly unstable traveling wave Uc. By Sobolev em-
bedding, X3 ↪→ L∞ (R3

)
, so we only need to assume the smoothness of F in a

finite interval
[
min |Uc|2 − ε0,max |Uc|2 + ε0

]
for some ε0 > 0. In particular, for

traveling waves with no vortices (Uc �= 0), we do not need to assume the smooth-
ness of F (s) near s = 0.

Proof. In the sequel, let C(‖w‖X3) be a constant depending (increasingly) on
‖w‖X3 . In the proof, we will use the following basic facts:
(i) Let n ∈ N, F ∈ C3+n(R) with F(0) = 0, and g ∈ H3(R3). Then

F(g) ∈ H3(R3) and F ∈ Cn
(

H3, H3
)

; (102)

(ii)

‖ f g‖H3 � C‖ f ‖H3‖g‖Ḣ3, ∀ f ∈ H3(R3), g ∈ Ḣ3(R3); (103)

(iii)

‖ f g‖Ḣ3 � C‖ f ‖Ḣ3‖g‖Ḣ3, ∀ f, g ∈ Ḣ3(R3); (104)

(iv) Let χ ∈ C∞
0 (R3, [0, 1]), then ∀ f, g ∈ Ḣ3(R3),

‖�χ(D)( f g)‖H3 � C‖(|ξ | + |ξ |3) f̂ g‖L2 � C‖ f ‖Ḣ3‖g‖Ḣ3 (105)

and

‖Dαχ(D)( f g)‖Ḣ3 � C‖ f ‖Ḣ3‖g‖Ḣ3, ∀ 0 � |α| < +∞. (106)
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Here, (i) is by Moser’s composition inequality, (ii)-(iv) can be shown by Sobolev
embedding and Fourier transforms.

Step 1. Show Re�(w) ∈ C2(X3, H3).
Let F̃(s) = F(s + 1), then F̃ ∈ C5(R) and F̃(0) = 0. Denote U = ψ (w + wc),
we write

Re�(w) = �χ(D)

(
w2cw2 + w2

2

2

)
+ [F(|Uc|2) − F(|U |2)]uc

− F(|U |2)
[
w1 − χ(D)

(
w2cw2 + w2

2

2

)]

= F(|Uc|2)uc + �χ(D)

(
w2cw2 + w2

2

2

)

− F(|U |2)
[

uc + w1 − χ(D)

(
w2cw2 + w2

2

2

)]
.

= F̃(|Uc|2 − 1)uc + �1 (w) + F̃ (�2 (w + wc)) �3 (w) ,

where

�1 (w) = �χ(D)

(
w2cw2 + w2

2

2

)
,

�2 (w) = |ψ (w)|2 − 1 =
(
1 + w1 − χ(D)

(
w2
2

2

))2

+ w2
2 − 1

=
(

w1 − χ(D)

(
w2
2

2

))2

+ (1 − χ(D)) w2
2 + 2w1,

and

�3 (w) = uc + w1 − χ(D)

(
w2cw2 + w2

2

2

)
.

Since F̃ ∈ C2
(
H3, H3

)
, by (104) and (103) it suffices to show that �1, �2 ∈

C2
(
X3, H3

)
and �3 ∈ C2

(
X3, Ḣ3

)
. It follows from (105) and (106) that �1 ∈

C∞ (X3, H3
)
and �3 − 1 ∈ C∞ (X3, Ḣ3

)
. Let

�2 (w) = (�4 (w))2 + �5 (w) ,

where

�4 (w) = w1 − χ(D)

(
w2
2

2

)
, �5 (w) = (1 − χ(D))w2

2 + 2w1.
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By (14), (103) and (106), for any f, g ∈ Ḣ3(R3),

‖(1 − χ(D)) ( f g)‖H3 � C‖ f ‖Ḣ3‖g‖Ḣ3 .

This implies that �5 ∈ C∞ (X3, H3
)
. By (14),

‖χ(D) ( f g)‖L4 � C‖ f ‖Ḣ1‖g‖Ḣ1 .

Combining with (106), this implies that

�4 (w) ∈ C∞ (X3, L4 ∩ Ḣ3
)

and thus (�4)
2 ∈ C∞ (X3, H3

)
by (104). This finishes the proof for Re�(w).

Step 2. Show Im�(w) ∈ C2(X3, H3).
We write

Im�(w) = χ(D)((w2c + w2)∂tw2) − c∂x1χ(D)

(
w2cw2 + w2

2

2

)

+[F(|Uc|2) − F(|U |2)]vc − F(|U |2)w2

= F(|Uc|2)vc + �6 (w) + �7 (w) − F̃ (�2 (w + wc)) (vc + w2) ,

(107)

where

�6 (w) = χ(D)((w2c + w2)�8 (w)),

�8 (w) = ∂tw2 = �w1 + c∂x1w2 − Re�(w),

and

�7 (w) = −c∂x1χ(D)

(
w2cw2 + w2

2

2

)
.

By theproof inStep1, the last term in (107) is inC2(X3, H3) and�8 ∈ C2
(
X3, H1

)
.

Since for any f ∈ Ḣ1, g ∈ H1,

‖χ(D)( f g)‖H3 � C ‖ f g‖L2 � C ‖ f ‖Ḣ1 ‖g‖H1 ,

so �6 ∈ C2
(
X3, H3

)
. For any f, g ∈ Ḣ1, by (13) we have

∥∥∂x1χ(D) ( f g)
∥∥

L2

= ∥∥χ(D)
(

f ∂x1g + g∂x1 f
)∥∥

L2 � C
∥∥ f ∂x1g + g∂x1 f

∥∥
L

3
2

� C
(‖ f ‖L6

∥∥∂x1g
∥∥

L2 + ‖g‖L6

∥∥∂x1 f
∥∥

L2

)
� C ‖ f ‖Ḣ1 ‖g‖Ḣ1 .

Combined with (106), above implies that
∥∥∂x1χ(D) ( f g)

∥∥
H3 � C‖ f ‖Ḣ3‖g‖Ḣ3,

for any f, g ∈ Ḣ3(R3). Thus �7 ∈ C∞ (X3, H3
)
. This finishes the proof for

Im�(w). ��
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Appendix 2

In this Appendix, we show the non-degeneracy condition (83) of stationary bubbles
φ0 of the cubic-quintic equation for N = 2. Consider the cubic-quintic nonlinear
Schrödinger equation (80). Denote

F(s) = −α1 + α3s − α5s2, α1, α3, α5 > 0,

with

α1α5

α2
3

∈
(

3

16
,
1

4

)
. (108)

Set ρ0 = α3+
√

α2
3−4α1α5
2α5

, then F(ρ0) = 0 and F ′(ρ0) < 0. Define

g(s) =

⎧⎪⎨
⎪⎩

−F((
√

ρ0 − s)2)(
√

ρ0 − s), 0 � s � √
ρ0,

0, s � √
ρ0,

−g(−s), s � 0.

(109)

According to Theorem 2.1 of [24], if (108) holds, the semilinear elliptic equation

− �u = g(u), u ∈ H1(RN ), u �= 0 (110)

has a positive radially symmetric, decreasing solution Q (|x |) ∈ (0,
√

ρ0), which is
usually called aground state. Thenφ0 = √

ρ0−Q (|x |) is a stationary bubble of (80)
with the nonzero boundary condition |φ0| → √

ρ0 as |x | → ∞. See Theorem 5.1
for more properties of φ0.

Theorem 8.1. For N = 2, let Q (|x |) be the ground state of (110) with the cubic-
quintic nonlinear term g (u) defined in (109). Consider the operator

L0 = −� − g′(Q) : H2
(
R2
)

→ L2
(
R2
)

.

Then

ker L0 = span
{
∂x1 Q, ∂x2 Q

}
. (111)

First, we check some properties of the cubic-quintic nonlinear term.

Lemma 8.1. Let α1α5
α2
3

∈ ( 3
16 ,

1
4 ), then g satisfies the following conditions

(G1) g(0) = 0 and g′(0) < 0,
(G2) there exists u0 ∈ (0,

√
ρ0) such that g(u0) = 0, g′(u0) > 0, g(u) < 0 for all

0 < u < u0, and g(u) > 0 for all u0 < u <
√

ρ0.
Furthermore, there exists c0 ∈ ( 3

16 ,
21
100 ) and u1 ∈ (u0,

√
ρ0) such that if α1α5

α2
3

= c0,

then g satisfies
(G3) g′(u1) = 0, g′(u) < 0 for all u1 < u <

√
ρ0, g′(u) > 0 for all u0 < u < u1

and G(u1) = ∫ u1
0 g(s) ds = 0, G(u) < 0 for all 0 < u < u1, and G(u) > 0 for

all u1 < u � √
ρ0.

(G4) for any β > 0, �β(u) = β(ug′(u) − g(u)) − 2g(u) has exactly one zero in
(u0,

√
ρ0).
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Proof. By the definition of g, we have for u ∈ [0,√ρ0),

g′(u) = (−1)[α1 − 3α3(
√

ρ0 − u)2 + 5α5(
√

ρ0 − u)4],
g′′(u) = −6α3(

√
ρ0 − u) + 20α5(

√
ρ0 − u)3.

Let ρ1 = α3−
√

α2
3−4α1α5
2α5

, ρ̃0 = 3α3+
√
9α2

3−20α1α5
10α5

, ρ̃1 = 3α3−
√
9α2

3−20α1α5
10α5

. For all
α1α5
α2
3

∈ ( 3
16 ,

1
4 ), we have

ρ̃1 < ρ1 < ρ̃0 < ρ0.

Choose u0 = √
ρ0 − √

ρ1. Then (G1)(G2) hold.
Choose u1 = √

ρ0 −√ρ̃1. Then u1 ∈ (u0,
√

ρ0),

g′(u1) = (−1)[α1 − 3α3ρ̃1 + 5α5ρ̃
2
1 ] = 0,

g′(u) < 0 for all u1 < u <
√

ρ0 and g′(u) > 0 for all u0 � u < u1.
Let c = α1α5

α2
3
. If c ∈ ( 3

16 ,
21
100 ), we have g′′(u) < 0 for all u0 � u <

√
ρ0. Then for

any β > 0,

�′
β(u) = βug′′(u) − 2g′(u) < 0, ∀u ∈ [u0, u1].

Moreover, �β(u0) > 0, �β(u1) < 0 and �β(u) < 0 for all u1 < u <
√

ρ0.
By direct calculations, we have

G(u1) = −α3
3

2α2
5

{
3 − √

9 − 20c

10

(
14c

15
− 9 − 9

√
9 − 20c

100

)

− 1 + √
1 − 4c

24
[8c − (1 + √

1 − 4c)]
}

� −α3
3

2α2
5

h(c).

Since h( 3
16 ) > 0, h( 21

100 ) < 0, there exists c0 ∈ ( 3
16 ,

21
100 ) such that G(u1) = 0 if

α1α5
α2
3

= c0. Then (G3)(G4) hold. ��
Let u(α, r) be the solution of the initial value problem{

u′′(r) + N−1
r u′(r) + g(u) = 0

u(0) = α, u′(0) = 0.
(112)

Then φ(α, r) = ∂u(α,r)
∂α

solves{
φ′′(r) + N−1

r φ′(r) + g′(u(α, r))φ = 0

φ(0) = 1, φ′(0) = 0.
(113)

Let Q (|x |) = u(α0, |x |) be a ground state of (110). To show the non-degeneracy
condition

ker L0 = {∂x1 Q, . . . , ∂xN Q
}
,

it suffices to show that the function φ(α0, r) does not vanish at infinity. (See [57] or
[48] for the proof). When N = 2, such a result is provided in the following lemma,
which was motivated by [18] and [38].



206 Zhiwu Lin, Zhengping Wang & Chongchun Zeng

Lemma 8.2. Suppose that (G1)–(G4) hold and let u(α0, r) be a ground state of
(110), then limr→+∞ φ(α0, r) �= 0 when N = 2.

Proof. To simplify notations, we denote u(α0, r), φ(α0, r) by u(r), φ(r) respec-
tively. Since u(r) is a ground state of (110), then u(r) > 0, u′(r) < 0 for all r > 0
and u1 < u(0) <

√
ρ0. Moreover, by (G1), it follows from Lemma 6 of [42] that φ

becomes monotone for large r . Therefore limr→+∞ φ(r) exists. In order to prove
this lemma, we suppose to the contrary that limr→+∞ φ(r) = 0.

Claim 1. φ has exactly one zero in (0,+∞).
Let A0 = −∂2r − N−1

r ∂r − g′(u(r)). From A0u′ = − (N − 1) r−2u′, we deduce
that the first eigenvalue of A0 is negative. By Proposition B.1 of [26], the second
eigenvalue of A0 is nonnegative. Since A0φ = 0 and limr→+∞ φ(r) = 0, 0 must
be the second eigenvalue of A0. Thus, φ has exactly one zero z1 ∈ (0,+∞).

Claim 2. Let r0 ∈ (0,+∞) be such that u(r0) = u0, then 0 < z1 < r0. Here, u0 is
defined in (G2).
For β � 0, let vβ(r) = ru′(r) + βu(r). Then vβ solves

v′′
β(r) + N − 1

r
v′
β(r) + g′(u)vβ = �β(u), (114)

where �β(u) = β(ug′(u) − g(u)) − 2g(u). By (114) and Green’s Theorem, for
any 0 � r1 < r2, we have∫ r2

r1
r N−1�β(u)φ dr = r N−1

2 [φ(r2)v
′
β(r2) − vβ(r2)φ

′(r2)]

− r N−1
1 [φ(r1)v

′
β(r1) − vβ(r1)φ

′(r1)]. (115)

Set H(β) = φ(r0)v′
β(r0) − vβ(r0)φ′(r0). By the proof of lemma 2.8 in [38], we

deduce that H(0) > 0. Then from (115) we get
∫ r0

0
r N−1�0(u)φ dr = r N−1

0 H(0) > 0. (116)

By (G2) we know that �0(u) = −2g(u) < 0 for all u0 < u <
√

ρ0. If φ > 0 on
[0, r0), it is impossible by (116). Thus we must have φ(r0) < 0 and 0 < z1 < r0.

Claim 3. θ(r) = −ru′(r)
u(r)

is increasing in (0, r0).
For the proof of this claim, we need N = 2. In fact, by (112) we have (−ru′(r))′ =
rg(u(r)) for N = 2. Thus, from (G2) we know that (−ru′(r))′ > 0 in (0, r0). Since
u(r) is decreasing in (0,+∞), we get that θ(r) = −ru′(r)

u(r)
is increasing in (0, r0).

Set β0 = −z1u′(z1)
u(z1)

, then β0 > 0 and vβ0(z1) = 0. From (115), we get

∫ z1

0
r N−1�β0(u)φ dr = 0. (117)

By (G2)(G3), we have �β0(u) < 0 for all u1 � u <
√

ρ0. Note that φ > 0 on
[0, z1), u′(r) < 0 for all r > 0 and u1 < u(0) <

√
ρ0, then from (117) we deduce
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that u(z1) < u1 and�β0(u(z1)) > 0. Furthermore, by (G4)we have�β0(u(r)) > 0
for all r ∈ (z1, r0). Since φ < 0 on (z1, r0], we have∫ r0

z1
r N−1�β0(u)φ dr < 0. (118)

On the other hand, from (115) we get
∫ r0

z1
r N−1�β0(u)φ dr = r N−1

0 [φ(r0)v
′
β0

(r0) − vβ0(r0)φ
′(r0)]. (119)

Claim 4. φ(r0)v′
β0

(r0) − vβ0(r0)φ
′(r0) > 0.

By Claim 4 and (118) (119), we get a contradiction.
Proof of Claim 4. Let H(β) = φ(r0)v′

β(r0) − vβ(r0)φ′(r0), then

H(β) = H(0) + β[φ(r0)u
′(r0) − φ′(r0)u(r0)]. (120)

We show H(β0) > 0 in two cases.

Case 1. φ(r0)u′(r0) − φ′(r0)u(r0) � 0. In this case, by H(0) > 0 and (120) we
obviously have H(β0) > 0.

Case 2. φ(r0)u′(r0) − φ′(r0)u(r0) < 0. Since φ(r0) < 0, u′(r0) < 0, u(r0) > 0,
we must have φ′(r0) > 0.
Let b1 = −r0u′(r0)

u(r0)
. Since z1 < r0 and θ(r) = −ru′(r)

u(r)
is increasing in (0, r0),

we have β0 < b1. Then by φ(r0)u′(r0) − φ′(r0)u(r0) < 0 and (120) we get
H(β0) > H(b1). Note that v′

N−2(r0) = −r0g(u0) = 0 by (G2) and vb1(r0) = 0.
If b1 � N − 2, we have v′

b1
(r0) � v′

N−2(r0) = 0 and

H(b1) = φ(r0)v
′
b1(r0) − vb1(r0)φ

′(r0) = φ(r0)v
′
b1(r0) � 0.

This finishes the proof of the lemma for N = 2. ��

Appendix 3

Consider a function in the form of U (x1, x⊥) = U (x1, r⊥), where x⊥ = (x2, x3)
and r⊥ = |x⊥|, and assume ∇U ∈ Hs(R3), s > 1, not necessarily an integer. In
this appendix, we prove

1

r⊥
∂r⊥U ∈ L2(R3) and ∂r⊥U ∈ H1(R3),

which are needed in Lemma 2.8 to show that theHessian Lc of the energy functional
has a negative mode.
Due to the density of Schwartz class functions, we will work on Schwartz class
functions, but keep tracking of the norms carefully. Denote �e⊥ = 1

r⊥ (0, x⊥), then

∂r⊥U (x1, r⊥) = ∇x⊥U (x1, x⊥) · x⊥
r⊥

= DU (x1, x⊥) · �e⊥
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and

∂x1∂r⊥U (x1, r⊥) = D2U (x1, x⊥) (�e1, �e⊥) .

Moreover, since ∂r⊥U (x1, x⊥) is radial in x⊥, its gradient in x⊥ must be in the
radial direction and thus

∇x⊥∂r⊥U (x1, x⊥) = D2U (x1, x⊥) (�e⊥, �e⊥)
x⊥
r⊥

.

Therefore ∂r⊥U ∈ H1(R3) is obvious. Computing higher order derivatives in a
similar fashion and applying an interpolation argument if s is not an integer, one
can prove ∂r⊥U ∈ Hs(R3).
To show 1

r⊥ ∂r⊥U ∈ L2(R3), we first observe that the radial symmetry of U implies
its linearization at x⊥ = 0 is also a radially symmetric linear function, which can
only be 0, and thus

∇x⊥U (x1, 0) = 0 �⇒ ∂r⊥U (x1, 0) = 0.

Fix x1, on the one hand, one may estimate by using the Cauchy–Schwarz inequality

(
∂r⊥U (x1, r⊥)

)2 = 2
∫ r⊥

0
∂r⊥U (x1, r ′⊥)∂r⊥r⊥U (x1, r ′⊥) dr ′⊥

� Cr
p−2

p
⊥ |∇U (x1, ·)|L∞(R2)

(∫ r⊥

0
r ′⊥
∣∣∂r⊥r⊥U

(
x1, r ′⊥

)∣∣p dr ′⊥
) 1

p

� Cr
p−2

p
⊥ |∇U (x1, ·)|Hs (R2)|D2U (x1, ·)|L p({|x⊥|<r⊥})

� Cr
p−2

p
⊥ |∇U (x1, ·)|2Hs (R2)

for some p > 2. Integrating in x1 we obtain∫
R

(
∂r⊥U (x1, r⊥)

)2 dx1 � Cr
1− 2

p
⊥ |∇U |2Hs (R3)

.

On the other hand, via integration by parts, we have
∫ 1

r̃⊥

1

r ′⊥

(
∂r⊥U (x1, r ′⊥)

)2 dr ′⊥ = −2
∫ 1

r̃⊥
(log r ′⊥)∂r⊥U (x1, r ′⊥)∂r⊥r⊥U (x1, r ′⊥) dr ′⊥

− (log r̃⊥)
(
∂r⊥U (x1, r̃⊥)

)2
.

Integrating it with respect to x1, letting r̃⊥ → 0+, and using the above inequality,
we obtain
∣∣∣∣ 1r⊥

∂r⊥U

∣∣∣∣
2

L2({|x⊥|<1})
= −2

∫
|x⊥|<1

(log r⊥)∂r⊥U (x1, r⊥)∂r⊥r⊥U (x1, r⊥) dx .

Splitting the integrand on the right side into the product of r
− 1

2⊥ ∂r⊥U , r
1
p

⊥ ∂r⊥r⊥U ,

and r
1
2− 1

p
⊥ log r⊥ and applying the Hölder inequality first with indices 1

2 ,
1
p , and
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1
2 − 1

p to the integral in x⊥ and then the Cauchy–Schwarz inequality to the x1
integral, we have

∣∣∣∣ 1r⊥
∂r⊥U

∣∣∣∣
2

L2({|x⊥|<1})

� C
∫
R

∣∣∣∣ 1r⊥
∂r⊥U (x1, ·)

∣∣∣∣
L2({|x⊥|<1})

|D2U (x1, ·)|L p({|x⊥|<1}) dx1

� C

∣∣∣∣ 1r⊥
∂r⊥U

∣∣∣∣
L2({|x⊥|<1})

|∇U |Hs (R3).

Therefore we obtain ∣∣∣∣ 1r⊥
∂r⊥U

∣∣∣∣
L2({|x⊥|<1})

� C |∇U |Hs (R3).

As the estimate is trivially true on {|x⊥| > 1}, the proof is complete.
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