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A fast method for L1–L2 modeling for MR image
compressive sensing
Abstract: We use a positive parameter to develop a di�erentiable perturbed reconstruction model to solve
the L1–L2 magnetic resonance image (MRI) reconstruction problem. We use Bregman iterative formulation
to solve the di�erentiable perturbed L1–L2 model, and lagged di�usivity �xed-point iteration to solve the
minimization problem in the Bregman iteration. Two Fourier transforms and an inverse Fourier transform
are used to accelerate L1–L2 MRI reconstruction. Real MR images are used to test the method in numerical
experiments. The results demonstrate that the proposedmethod is very e�cient for L1–L2MRI reconstruction.
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1 Introduction
Compressive sensing (CS) can signi�cantly reduce the scan time in magnetic resonance imaging (MRI) [3, 4].
For CS-MRI, it is possible to accurately reconstruct MR images from undersampled k-space data (i.e., par-
tial Fourier data) by solving nonlinear optimization problems [2]. Suppose u ∈ ℝN (N = m × n) is a vector
formed by stacking the columns of a two-dimensional MR image array (ui,j), i = 1, . . . , m, j = 1, . . . , n, and
u� ∈ ℝN is a sparse or compressive representation for MR image u ∈ ℝN with respect to basisΨ, i.e., u� = Ψu.
Let K = ‖u�‖0 be the number of nonzero elements in u�, and let H denote an M×N (M ≪ N) measurement
matrix such thatHu = b, where b is an observed data vector. Then recovery of u from b is equivalent to solving
the L0 problem

min
u

{‖Ψu‖0 : Hu = b}. (1.1)

However, (1.1) is a provably NP-hard problem [11] and very di�cult to solve from the viewpoint of numerical
computation. Thus, it is realistic to solve the L1 problem

min
u

{‖Ψu‖1 : Hu = b}, (1.2)

which yields sparse solutions under some conditions [5].
In the case of CS-MRI, H is a partial Fourier matrix, i.e., H = PF, P is a matrix that consists of M ≪ N

rows of the identity matrix of sizeN, and F is anN × N discrete Fourier matrix. When b is contaminated with
noise such as Gaussian noise of variance ò2, the relaxation form for problem (1.2) is given by

min
u

{‖Ψu‖1 : ‖Hu − b‖22 ≤ ò
2}. (1.3)

The unconstrained version of (1.3) is

min
u

‖Ψu‖1 +
ì
2
‖Hu − b‖22,

that is,

min
u

‖Ψu‖1 +
ì
2
‖PFu − b‖22, (1.4)
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where ì is a positive parameter that determines the trade-o� between the �delity term and the sparsity term,
and ‖ ⋅ ‖2 denotes the Euclidean norm. Since

u� = Ψu,

we have
min
u�

‖u�‖1 +
ì
2
‖PFΨ−1u� − b‖22. (1.5)

The term
‖u�‖1 =

m

∑
i=1

n

∑
j=1

|u�i,j|

is not di�erentiable; this di�culty can be overcome using the perturbed form

‖u�‖1,â =
m

∑
i=1

n

∑
j=1
√(u�i,j)

2 + â,

where â is a small positive parameter. Therefore, the perturbed form of (1.5) is

min
u

‖u�‖1,â +
ì
2
‖PFΨ−1u� − b‖22. (1.6)

The objective functional in this modi�ed model is di�erentiable with respect to variable u�. According
to the above discussion, we can regard the solution of (1.5) as the limit of the solution of (1.6) when â → 0.
Therefore, the solution of (1.6) for small enough â can better approximate the solution of (1.5). To solve (1.6),
we can apply version 2 of the Bregman iterative formulation [15]. Bregman iterative regularization for image
processing was introduced by Osher, Burger, Goldfarb, Xu and Yin [12]. Assume that

Jâ(u
�) = ‖u�‖1,â.

According to [15], the Bregman iterative algorithm for solving (1.6) is as follows.

Algorithm 1

b(0) ← 0, u�
(0)
← 0

for k = 0, 1, . . . do
b(k+1) ← b + (b(k) − PFΨ−1u�(k))

u�(k+1) ← argmin
u�

Jâ(u
�) +

ì
2
‖PFΨ−1u� − b(k+1)‖22 (1.7)

end for

To solve minimization problem (1.7) in Algorithm 1, we use the lagged di�usivity �xed-point method. The
details are discussed in Section 2.

A number of numerical methods have been proposed for solving sparse MRI reconstruction model (1.4).
The conjugate gradient (CG) method [9] is a common approach. Other methods include the alternating direc-
tion method [14], the operator-splitting algorithm [10], the fast iterative shrinkage-thresholding algorithm [1]
and EdgeCS reconstruction [6]. The fast composite splitting algorithm (FCSA) presented by Huang, Zhang
and Metaxas in [8] can also be used to solve problem (1.4). Note that FCSA is a state-of-the-art method for
CS-MRI reconstruction. Instead of the TV term with nonlocal total variation (NLTV) in FCSA, an NLTV-FCSA
algorithm was proposed for MRI reconstruction [7]. In Section 4, we compare our proposed method with the
FCSA algorithm.

The remainder of the paper is organized as follows. In Section 2, a fast method for the sparse MR
image reconstruction is presented. In Section 3, some real MR images are used to test the e�ectiveness
of our method for sparse MRI reconstruction in numerical experiments. Finally, some concluding remarks
are given in Section 4.
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2 A fast method for sparse MRI reconstruction
Let

u�â =

(((((((((((((

(

u�11
√(u�11)

2+â
...

u�m1

√(u�m1)
2+â

...
u�1n
√(u�1n)

2+â
...

u�mn

√(u�mn)2+â

)))))))))))))

)

.

Then the �rst-order condition for problem (1.7) is

u�â + ìΨF∗P∗(PFΨ−1u� − b(k+1)) = 0, (2.1)

where the superscript ∗ denotes the matrix conjugate transpose. Let

Du�â
=

((((((((((

(

1
√(u�11)

2+â
. . .

1
√(u�m1)

2+â
. . .

1
√(u�1n)

2+â
. . .

1
√(u�mn)2+â

))))))))))

)

.

Then we have

u�â = Du�â

(((((((

(

u�11...
u�m1...
u�1n...
u�mn

)))))))

)

.

Numerical solution of problem (2.1) is not an easy task owing to the presence of the nonlinear term Du�â . To
overcome this di�culty, we use the lagged di�usivity �xed-point iteration proposed by Vogel and Oman [13]
to change (2.1) to the linear equation

((((((((((

(

1
√(u�11

(k))2+â
. . .

1
√(u�m1

(k))2+â
. . .

1
√(u�1n

(k))2+â
. . .

1
√(u�mn

(k))2+â

))))))))))

)

((((((((

(

u�11
(k+1)

...
u�m1

(k+1)

...
u�1n

(k+1)

...
u�mn

(k+1)

))))))))

)

+ìΨF∗P∗(PFΨ−1u�
(k+1)
− b(k+1)) = 0.

(2.2)
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Denoting the coe�cient matrix associated with the vector u�(k+1) on the left-hand side of (2.2) as C, we can
obtain

Cu�
(k+1)
+ ìΨF∗P∗(PFΨ−1u�

(k+1)
− b(k+1)) = 0. (2.3)

That is,
Cu�

(k+1)
+ ìΨF∗P∗PFΨ−1u�

(k+1)
= ìΨF∗P∗b(k+1). (2.4)

Multiplying both sides of (2.4) by the operator Ψ−1, we obtain

CΨ−1u�
(k+1)
+ ìF∗P∗PFΨ−1u�

(k+1)
= ìF∗P∗b(k+1). (2.5)

Since u(k+1) = Ψ−1u�(k+1), equation (2.5) becomes

Cu(k+1) + ìF∗P∗PFu(k+1) = ìF∗P∗b(k+1). (2.6)

Multiplying both sides of (2.6) by the Fourier matrix F and using the fact that FF∗ = I, we obtain

CFu(k+1) + ìP∗PFu(k+1) = ìP∗b(k+1). (2.7)

LetD = C + ìP∗P. ThenD is a diagonal matrix. Therefore, (2.7) becomes

DFu(k+1) = ìP∗b(k+1). (2.8)

Thus, we can quickly obtain Fu(k+1) by (2.8). Then we apply the operator F∗ to obtain u(k+1) = F∗(Fu(k+1)).
Computing u(k+1) involves two fast Fourier transforms (FFTs) and one inverse FFT, so obtaining u(k+1) by the
above method is fast. Using this acceleration method to obtain u(k+1) in Bregman iterative Algorithm 1 yields
a fast algorithm for solving (1.4). This fast method for sparse CS-MRI reconstruction is given as follows.

Algorithm 2
Step 1 Input b, P, F, ì > 0, and â > 0.
Step 2 Initialization

k = 0, b(0) = 0, u(0) = 0.

Step 3 Iterations
When (the stopping criterion is not satis�ed)

{
u�

(k)
= Ψu(k);

b(k+1) = b + (b(k) − PFu(k));
Compute ìP∗b(k+1), ìP∗P, C andD;
Compute Fu(k+1) by (2.8);
Compute u(k+1) by F∗(Fu(k+1));
k = k + 1.

}

Note that the diagonal property of matrixD and the FFTmean that Algorithm 2 is much faster than other
iterative reconstruction methods. In Section 3, we describe numerical experiments to show that our method
is very e�cient for sparse MRI reconstruction.

3 Numerical experiments
In this section, we assess the performance of Algorithm 2 in solving model (1.4) for CS-MRI. We compare our
method with FCSA [8], the state-of-the-art method for CS-MRI.
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The signal-to-noise ratio (SNR) is used to measure the quality of reconstructed images and the ratio is
de�ned as

SNR = 20 log10(
‖uo‖2

‖uo − u‖2
), (3.1)

where u and uo are the reconstructed and original images, respectively. CPU time is used to evaluate the speed
of MRI reconstruction. All experiments were performed in MATLAB on a laptop with an Intel Core Duo P8400
processor and 2 GB of memory.

In the �rst test, we assume strong additive Gaussian noise exists with mean 0 and standard deviation
of 2,000. We also choose ì = 0.001 and â = 10−3. The sampling ratio is de�ned asM/N, whereM andNwere
introduced in Section 1. The stopping criterion is that the relative di�erence between successive iterates for
the reconstructed image should satisfy

‖u(k) − u(k−1)‖2
‖u(k)‖2

< 10−3. (3.2)

We used our algorithm for reconstruction of a brain MR image. Figure 1 (a) shows the original 210 × 210 brain
MR image and Figure 1 (b) shows 33 radial lines in the frequency space for the image. If the MR image is
sampled with 33 views in the frequency space, its sampling ratio is 16.81%.

The image reconstructed using our method is shown in Figure 2 (a). The SNR is 14.5455dB and the CPU
time is 0.7500 s. The image reconstructed using FCSA is presented in Figure 2 (b). The SNR is 14.3735dB and
the CPU time is 3.8281 s. The results demonstrate that our method requires a shorter CPU time to yield almost
the same SNR.

In the next test we use 55 views in the frequency space with sampling ratios of 27.05% for reconstruction
using the twomethods. Figure 3 shows the reconstruction results for ourmethod and FCSAwhen the stopping
criterion is satis�ed. The corresponding SNR and CPU time are 18.5718dB and 0.7810 s for Algorithm 2 and
17.9143dB and 3.7593 s for FCSA with 55 views.

From the CPU time and SNR values for images reconstructed by our method and FCSA, it is evident that
our method is �ve times faster than FCSA while the SNR is greater for our method than for FCSA.

Table 1 lists SNR and CPU time values for our method and FCSA when the stopping criterion is satis�ed
under di�erent sampling ratios.

Sampling ratio (views) Method SNR (dB) CPU (s)

16.81% (33) Our method 14.5455 0.7500
FCSA 14.3735 3.8281

22.60% (44) Our method 17.2935 0.7970
FCSA 16.0484 3.6250

27.05% (55) Our method 18.5718 0.7810
FCSA 17.9143 3.7593

32.10% (66) Our method 18.9542 0.7512
FCSA 18.0442 3.8906

36.71% (77) Our method 18.7455 0.7935
FCSA 17.8494 3.8281

41.54% (88) Our method 18.3991 0.7832
FCSA 17.6112 3.8750

45.58% (99) Our method 18.1329 0.7820
FCSA 17.3724 3.9219

Table 1. SNR and CPU time data for reconstruction using our method and FCSA.

The results in Table 1 reveal that the SNR is slightly greater for our method than for FCSA. In addition,
the CPU time is much less for our method than for FCSA for MRI reconstruction under strong noise.
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(a) Original image. (b) 33 views in the frequency space.

Figure 1

(a) Image reconstructed by our method. (b) Image reconstructed by FCSA.

Figure 2

(a) Image reconstructed by our method. (b) Image reconstructed by FCSA.

Figure 3
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Figure 4 (a) shows a 924 × 208 MR body image. This was sampled according to the mask shown in
Figure 4 (b), where white pixels indicate sampled locations in k-space. The corresponding sampling ratio
is 28.92%. We assumed a mean and standard deviation for additive Gaussian noise of 0 and 2,000, with
ì = 0.001 and â = 10−3. The reconstruction results for our method and FCSA when the stopping criterion is
satis�ed are shown in Figure 4 (c)–(d). The SNR and CPU time are 17.3696dB and 3.0780 s for Algorithm 2 and
16.7074dB and 13.8750 s for FCSA, respectively. Thus, the SNR and CPU time for image reconstruction are
better for our method than for FCSA.

(a) (b) (c) (d)

Figure 4. Original image, sampling mask, and images reconstructed using our method and FCSA.

Finally, Figure 5 shows curves for SNRandCPU time for ourmethodandFCSAwhen the stopping criterion
is satis�ed under di�erent sampling ratios. The curves show that the SNR is greater for our method than
for FCSA. In addition, the CPU time is much less for our method than for FCSA.

4 Conclusion
A sparse L1–L2 MRI reconstruction model was changed to a di�erentiable perturbed reconstruction model
by adding a positive parameter â. Bregman iteration was used to solve the di�erentiable perturbed L1–L2
reconstruction model. Lagged di�usivity �xed-point iteration was used to solve the minimization problem
in the Bregman iteration. Two Fourier transforms and an inverse Fourier transform were used to accelerate
sparse L1–L2 MRI reconstruction. The fast method was compared with FCSA, the state-of-the-art method.
Real brain MR images were used to test our approach in numerical experiments. The reconstruction results
demonstrate that our method for solving model (1.4) is very e�cient for sparse MRI reconstruction.
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Figure 5. SNR and CPU time for images reconstructed using our method and FCSA for various sampling ratios.
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