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Abstract. The problem of compressive-sensing (CS) L2-L1-TV reconstruc-

tion of magnetic resonance (MR) scans from undersampled k-space data has

been addressed in numerous studies. However, the regularization parameters
in models of CS L2-L1-TV reconstruction are rarely studied. Once the regu-

larization parameters are given, the solution for an MR reconstruction model

is fixed and is less effective in the case of strong noise. To overcome this
shortcoming, we present a new alternating formulation to replace the standard

L2-L1-TV reconstruction model. A weighted-average alternating minimization
method is proposed based on this new formulation and a convergence analysis

of the method is carried out. The advantages of and the motivation for the pro-

posed alternating formulation are explained. Experimental results demonstrate
that the proposed formulation yields better reconstruction results in the case

of strong noise and can improve image reconstruction via flexible parameter

selection.

1. Introduction. Compressive sensing (CS) has enormous potential for reducing
the scan time in magnetic resonance image (MRI) research [3, 9]. Sparse signals
can be recovered from a very limited number of samples if the measurements satisfy
an incoherence property [4]. For CS-MRI, it is possible to accurately reconstruct
MR images from undersampled k-space data (i.e., partial Fourier data) by solving
nonlinear optimization problems.

Suppose that u′ ∈ RN is a sparse or compressive representation for a signal
u ∈ RN with respect to basis Ψ, i.e., u′ = Ψu. Let K = ‖u′‖0 be the number
of nonzero elements in u′ and let H be the M × N (K < M � N) measurement
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matrix such that Hu = b, where b is an observed data vector. Then recovery of u
from b can be obtained by solving the L0 problem

min
u
{‖Ψu‖0 : Hu = b}. (1)

However, (1) is provably NP-hard [22] and is very difficult to solve from a nu-
merical computation viewpoint. Thus, it is more realistic to solve the L1 problem

min
u
{‖Ψu‖1 : Hu = b}, (2)

which has also been known to yield sparse solutions under some conditions [10, 13].
In the case of CS-MRI, H is a partial Fourier matrix, i.e., H = PF , P ∈ RM×N

consists of M � N rows of the identity matrix, and F is a discrete Fourier matrix.
When b is contaminated with noise such as Gaussian noise of variance σ2, the
relaxation form for (2) is given by

min
u
{‖Ψu‖1 : ‖Hu− b‖22 ≤ σ2}. (3)

Because (3) is a convex minimization problem, many computational methods can
be used to solve it. For example, Bregman iteration [31], the split Bregman method
[18], the conjugate gradient method [20], gradient project method [12], coordinate
gradient descent method [28], and fast iterative shrinkage-thresholding algorithm
[2] are all efficient approaches to solving (3).

Total variation (TV) regularization was first proposed for image denoising by
Rudin et al. [24]. A TV regularizer can better preserve sharp edges or boundaries
and remove noise in a given image. Therefore, a TV regularizer is a sparsifying
transform operator for piecewise smooth MR images. When a TV sparsifying trans-
form and an orthogonal sparsifying transform Ψ are simultaneously considered, the
optimization problem in CS MRI can be expressed as

min
u
{α‖u‖TV + β‖Ψu‖1 : ‖Hu− b‖22 ≤ σ2}, (4)

where α and β are two positive parameters that control the trade-off between TV
sparsity and Ψ sparsity. The unconstrained version of (4) is

min
u
α‖u‖TV + β‖Ψu‖1 +

µ

2
‖Hu− b‖22, (5)

where µ is a positive parameter that determines the trade-off between the fidelity
and sparsity terms and ‖ · ‖2 denotes the Euclidean norm. Model (5) can be equiv-
alently written as

min
u
α′‖u‖TV + β′‖Ψu‖1 +

1

2
‖Hu− b‖22. (6)

Model (5) or (6) can be regarded as a special case of general optimization prob-
lems consisting of a loss function and convex functions as priors. Existing methods
to solve the generalized problems can be classified into the following types:

i) Operator-splitting methods: the idea is to find the solution u that makes the
sum of the corresponding maximal monotone operators equal to zero. These
include forward–backward schemes [6, 14, 27], Douglas–Rachford schemes [25]
and projective splitting schemes [11]. The iterative shrinkage thresholding
algorithm (ISTA) and fast ISTA (FISTA) [2] are well-known operator-splitting
methods. These algorithms are only designed to solve simpler regularization
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problems and cannot be efficiently applied to the composite regularization
problems (5) and (6) using both L1 and a TV norm.

ii) Variable splitting methods: these are based on combinations of alternating
direction methods (ADMs) under an augmented Lagrangian framework. The
augmented Lagrangian method was first used to solve a PDE problem [15,
16]. Tai and Wu [26] and Wang et al. [29] extended the method to solve
TV regularization problems. A multiple splitting algorithm (MSA) for convex
optimization has also been proposed [17] and Yang et al. developed a splitting
algorithm to solve problem (5) or (6) [30]. Zhu and Chern developed a fast
alternating minimization method to solve problem (5) [32] and analyzed the
convergence of the method [33]. Recently, Zhu and Shi gave a fast method
to solve problem (5) or (6) as β = 0 or β′ = 0 [34]. Chen et al. also used a
variable splitting method to solve a CS-MRI variational model [5].

iii) The composite splitting algorithm: this method combines an operator and a
variable splitting technique. Motivated by an effective acceleration scheme [2],
an additional acceleration step can be applied to the composite splitting algo-
rithm (CSA). Combining the composite splitting denoising (CSD) method [7,
8] with FISTA [2] yielded the fast composite splitting algorithm (FCSA) [19],
which can be used to solve problem (5) or (6) and yields good reconstruction
results.

The above-mentioned methods can produce high-quality reconstruction of MR
images from partial k-space data. However, the results depend on the given regu-
larization parameters and these methods only consider the case of weak noise. The
aim of the present study was to propose a weighted-average alternating formulation
with L1 and TV regularization to reconstruct MR images via flexible parameter
selection.

We use positive parameters α1 and α2 to change (6) to the following model:

min
u,v,w

α1‖u− v‖22 + α2‖v − w‖22 + α′‖w‖TV + β′‖Ψw‖1 +
1

2
‖Hu− b‖22. (7)

It is well known that model (7) reduces to model (6) when the parameters α1

and α2 go to infinity. By finding an optimization solution for model (7), we can
reconstruct MR images from undersampled k-space (i.e., partial Fourier data). The
reconstructed results are compared with those reconstructed by FCSA [19]. The
motivation that the model (6) has been changed into model (7) is the better recon-
structed images can be obtained by flexible choice of the new parameters α1 and α2

in model (7). At the same time, the model (7) can also yield better reconstruction
results for the case of strong noise than model (6).

The remainder of the paper is organized as follows. In Section 2, a weighted-
average alternating minimization method (WAAMM) to solve (7) is developed. Sec-
tion 3 presents a convergence analysis of the weighted-average alternating minimiza-
tion method. In Section 4, the advantages of and the motivation for the proposed
method are described. In Section 5, we use real MR images in numerical experi-
ments to demonstrate the effectiveness of WAAMM.

2. Weighted-average alternating minimization method to solve model
(7). In this section, we develop a weighted-average alternating minimization method
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to solve model (7). Starting from an initial guess v(0), model (7) computes a se-
quence of iterates

u(1), w(1), v(1), u(2), w(2), v(2), · · · , u(k), w(k), v(k), · · · ,

in which

Su

(
v(k−1)

)
:= u(k) = arg min

u
α1‖u− v(k−1)‖22 +

1

2
‖Hu− b‖22,

Sw

(
v(k−1)

)
:= w(k) = arg min

w
α′‖w‖TV + β′‖Ψw‖1 + α2‖v(k−1) − w‖22

and

Sv

(
u(k), w(k)

)
:= v(k) = arg min

v
α1‖u(k) − v‖22 + α2‖v − w(k)‖22

for k = 1, 2, . . .. Therefore, we can obtain the following relationship between v(k)

and v(k−1):

v(k) = Sv

(
u(k), w(k)

)
= Sv

(
Su

(
v(k−1)

)
, Sw

(
v(k−1)

))
, k = 1, 2, . . . .

For the sake of simplicity, let

v(k) = T
(
v(k−1)

)
, (8)

where

T (·) = Sv (Su (·) , Sw (·)) .
In the next section, the convergence of v(k) obtained by the operator T is ana-

lyzed.
Now we show how to compute Su, Sw and Sv in detail. The problem

min
u
α1‖u− v(k−1)‖22 +

1

2
‖Hu− b‖22 (9)

can be regarded as a deblurring problem. Its optimality condition is

2α1(u− v(k−1)) +HT (Hu− b) = 0. (10)

Substituting H = PF into (10), we have

2α1u− 2α1v
(k−1) + FTPTPFu− FTPT b = 0. (11)

Applying operator F to (11) and using the orthogonality of F , we obtain

2α1Fu− 2α1Fv
(k−1) + PTPFu− PT b = 0.

That is,

(2α1I + PTP )Fu = PT b+ 2α1Fv
(k−1).

Because 2α1I + PTP is a diagonal matrix, it is easy to solve Fu. Then, FT

operation (i.e. inverse Fourier transform) will yield u. Therefore, computation of
u(k) is fast.

The problem

min
w
α′‖w‖TV + β′‖Ψw‖1 + α2‖v(k−1) − w‖22 (12)

can be changed to

min
w

1

2 1
α2

‖w − v(k−1)‖22 +
α′

2
‖w‖TV +

β′

2
‖Ψw‖1. (13)
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Problem (13) can be considered as a denoising problem and can be solved using
a proximal map. For a continuous convex function g(w) and any scalar τ > 0, the
proximal map associated with function g(w) is defined as follows [1, 2]:

proxτ (g)(v) := arg min
w

{
g(w) +

1

2τ
‖w − v‖2

}
. (14)

Therefore, the minimizer for denoising problem (13) can be expressed as

prox 1
α2

(g)(v(k−1)) := arg min
w

{
g(w) +

1

2 1
α2

‖w − v(k−1)‖2
}
, (15)

where g(w) =
α′

2
‖w‖TV +

β′

2
‖Ψw‖1.

In section 6, we will use the composite of the fast gradient-based algorithm
for constrained total variation image denosing in [1] and fast iterative shrinkage
thresholding algorithm in [2] to solve (15). So to compute v(k) is also fast.

The optimality condition for the problem

min
v
α1‖u(k) − v‖22 + α2‖v − w(k)‖22, (16)

is

2α1

(
v − u(k)

)
+ 2α2

(
v − w(k)

)
= 0. (17)

v(k) =
α1u

(k) + α2w
(k)

α1 + α2
. (18)

Obviously, we can obtain the exact v(k) by u(k) and w(k). Since v(k) is the
weighted average of u(k) and w(k), the above method is called a weighted-average
alternating minimization method.

3. Convergence analysis. In this section, we present a convergence analysis of
the proposed method.

Theorem 3.1. The operator Su(·) is contractive, that is, for x, y ∈ Rn2

, it holds
that

‖Su(x)− Su(y)‖2 ≤ ρ‖x− y‖2,
where 0 < ρ < 1.

Proof.

‖Su(x)− Su(y)‖2

=
∥∥∥(2α1I +HTH

)−1 (
2α1x+HT b

)
−
(
2α1I +HTH

)−1 (
2α1y +HT b

)∥∥∥
2

≤
∥∥∥2α1

(
2α1I +HTH

)−1∥∥∥
2
‖x− y‖2.

Let ρ =
∥∥∥2α1

(
2α1I +HTH

)−1∥∥∥
2
. Since 2α1I + HTH is symmetric positive

definite and its eigenvalues are greater than 2α1, we have

‖Su(x)− Su(y)‖2 ≤ ρ‖x− y‖2.
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This completes the proof.

Theorem 3.2. The operator Sw(·) is firmly nonexpansive, i. e. , ∀(x, y) ∈ Rn2 ×
Rn2

,

‖Sw(x)− Sw(y)‖2 ≤ ‖x− y‖2.

The proof of the theorem is easily obtained using Lemma 2.4 in [6]. And the
proof of this theorem is originally provided in [21].

Next we show that the operator T is contractive.

Theorem 3.3. The operator T defined in (8) is contractive.

Proof.

‖T (x)− T (y)‖2

= ‖Sv (Su (x) , Sw (x))− Sv (Su (y) , Sw (y))‖2

=

∥∥∥∥α1Su (x) + α2Sw (x)

α1 + α2
− α1Su (y) + α2Sw (y)

α1 + α2

∥∥∥∥
2

≤ α1

α1 + α2
‖Su (x)− Su (y)‖2 +

α2

α1 + α2
‖Sw (x)− Sw (y)‖2 .

By Theorems 3.1 and 3.2, we have

‖T (x)− T (y)‖2 ≤
ρα1 + α2

α1 + α2
‖x− y‖2.

Let ρ′ =
ρα1 + α2

α1 + α2
. Then 0 < ρ′ < 1 and ‖T (x)− T (y)‖2 ≤ ρ′‖x− y‖2.

This confirms the contractiveness of the operator T (·).
For any initial guess v(0) ∈ Rn2

, suppose that {v(k)} is generated by (8). Then
T is asymptotically regular, that is,

lim
k→∞

∥∥∥v(k+1) − v(k)
∥∥∥
2

= lim
k→∞

∥∥∥T (k+1)
(
v(0)

)
− T (k)

(
v(0)

)∥∥∥
2

= 0.

Let G(u, v, w) = α1‖u− v‖22 +α2‖v−w‖22 +α′‖w‖TV + β′‖Ψw‖1 +
1

2
‖Hu− b‖22.

Then G(u, v, w) is the objective function in (7). It is convex, bounded below, and
coercive, and thus (7) has at least one minimizer (u∗, v∗, w∗) and must satisfy

u∗ = Su (v∗) ,

w∗ = Sw(v∗),

and

v∗ = Sv (u∗, w∗) .

Therefore, v∗ is a fixed point of T .
According to the Opial theorem [23], the sequence {v(k)} converges to a fixed

point of T , that is, a minimizer of G.
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4. Further explanation of the weighted-average alternating minimization
method. In this section, we explain the motivation for and the advantages of the
proposed method.

We know that model (7) can reduce to model (6) if the regularization parameters
α1 and α2 approach to infinity. Thus, if α1 and α2 are chosen sufficiently large in
problem (7), we can force u = v and v = w. This is consistent with problem (6).
However, the solution of (6) is fixed once the parameters α′ and β′ are given, and
it is not necessarily an optimal reconstructed result for an MR image from partial
k-space data. After model (7) replaces model (6) with the fixed parameters α′ and
β′, we can obtain better reconstructed images than model (6) by appropriate choice
of the new parameters α1 and α2 in model (7). According to (18), the solution of
(7) is obtained as a weighted average of the solution of deblurring problem (9) and

the solution of denoising problem (13). The coefficient
α1

α1 + α2
is the weight for

the solution of the deblurring problem, and
α2

α1 + α2
is the weight for the solution

of the denoising problem. Therefore, we can choose values of α1 and α2 according
to the level of noise to reconstruct MR images from partial k-space data.

The numerical experimental results in the next section demonstrate that this
qualitative analysis is correct. In particular, in the case of strong noise, adjustment
of α1 and α2 in model (7) leads to an advantage over model (6). Some real MR
reconstruction experiments confirm that model (7) can yield better reconstruction
of MR images from partial Fourier data than model (6).

5. Numerical experiments. In this section, we assess the WAAMM performance
for CS-MRI. We compare our method with FCSA [19], the standard method for CS-
MRI.

The signal to noise ratio (SNR) and relative error (ReErr) are used to measure
the quality of the reconstructed images. These are defined as

SNR = 10 log 10

(
‖u0‖2
‖u0 − u‖2

)
(19)

and

ReErr =
‖u− u0‖22
‖u0‖22

, (20)

where u and u0 denote the reconstructed and original images, respectively. The
CPU time is used to evaluate the speed of MRI reconstruction. All experiments
were performed in MATLAB on a laptop with an Intel Core Duo P8400 processor
and 2 GB of memory.

First, we consider the case of weak noise and assume that the mean and standard
deviation for additive Gaussian noise are 0 and 0.01, respectively. The sparse basis
Ψ is chosen as the Haar wavelet. In reconstruction tests with the two methods,
we choose α′ = 0.001, β′ = 0.035, and set the initial image u0 to zero. In tests
for WAAMM, we choose α1 = 210 and α2 = 28. In addition, since reconstructed
results are obtained from partial Fourier data, the solution of problem (7) mainly
comprises the solution to the deblurring problem. Thus, α1 must be greater than α2

in numerical experiments using model (7). For the stopping criterion, the relative
difference between successive iterates for the reconstructed image should satisfy the
following inequality:

‖u(k) − u(k−1)‖2
‖u(k)‖2

< 10−3. (21)
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The reason of choosing less than 10−3 is the two methods are up to the convergence.
Using these parameters and stopping criterion, we applied our method for recon-
struction of a brain MR image. Fig. 1. (a) is a real brain MR image of 600×600 in
size. Fig. 1. (b) shows 88 radial lines in the frequency space for this image. If the
brain image is sampled using 88 views in the frequency space, then the sampling
rate is 15.993%.

Fig. 1. (a) Original image. (b) The 88 views in the frequency space.

The reconstructed image after the stopping criterion is satisfied is shown in Fig.
2. (a). The SNR, ReErr and CPU time are 23.2095 dB, 0.0376 and 11.5156 s,
respectively. The reconstruction error magnitude, i. e., |x − xo|, are presented in
Fig. 2. (c) and Fig. 2. (d). x is reconstructed image and xo is the original image.
The reconstruction error magnitude for WAAMM shows lower pixel errors than for
FCSA.

We used FCSA for brain MRI reconstruction using the same sampling ratio. The
result is presented in Fig. 2. (b). The SNR, ReErr and CPU time are 22.7699 dB,
0.0396 and 21.4531 s, respectively.

(a) Reconstruction by WAAMM. (b) Reconstruction by FCSA.
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Fig. 2. (c) Reconstruction error magnitude for WAAMM. (d) Reconstruction error magni-

tude for FCSA.

From the two reconstructed images it is clear that the WAAMM method is
slightly better than FCSA in the case of weak noise. We increased the standard
deviation for noise to 1000 and performed reconstruction tests with the two meth-
ods using the same α1 and α2 parameters and sampling views. The WAAMM and
FCSA reconstruction results and corresponding magnitude of reconstruction errors
are shown in Fig. 3. The SNR, ReErr, and CPU time are 22.4322 and 21.2365 dB,
0.0412 and 0.0472, and 11.8750 and 28.8281 s for WAAMM and FCSA, respectively.
The results reveal that WAAMM is better than FCSA since the SNR is greater for
WAAMM than for FCSA while the CPU time for WAAMM is less than for FCSA.

(a) Reconstruction by WAAMM. (b) Reconstruction by FCSA.
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Fig. 3. (c) Reconstruction error magnitude for WAAMM. (d) Reconstruction error magni-
tude for FCSA.

Table 1 lists values for the SNR, ReErr and CPU time for results reconstructed
by WAAMM (α1 = 210, α2 = 28) and FCSA when the stopping criterion is satisfied
for a sampling rate of 15.993% and standard deviation of 1000–5000.

Table 1. SNR, ReErr and CPU time for WAAMM and FCSA reconstruction results

Standard Method SNR ReErr CPU
deviation (dB) (s)

1000
WAAMM 22.4322 0.0412 11.8750

FCSA 21.2365 0.0472 28.8281

1500
WAAMM 21.6232 0.0452 13.6250

FCSA 20.3865 0.0521 30.6094

2000
WAAMM 20.6960 0.0503 15.0625

FCSA 19.4644 0.0579 31.8594

2500
WAAMM 19.7364 0.0561 16.6875

FCSA 18.5341 0.0645 33.3125

3000
WAAMM 18.7942 0.0626 18.1094

FCSA 17.6290 0.0716 34.5938

3500
WAAMM 17.8936 0.0694 19.6250

FCSA 16.7670 0.0790 36.3750

4000
WAAMM 17.0437 0.0765 21.5156

FCSA 15.9535 0.0868 37.4844

4500
WAAMM 16.2467 0.0839 23.1563

FCSA 15.1884 0.0948 39.2031

5000
WAAMM 15.5005 0.0914 24.3906

FCSA 14.4702 0.1029 40.5625

The results reveal that WAAMM yields better reconstruction results than FCSA
does. If we increase α2 to 29, we can obtain a better result. For example, for stan-
dard deviation of 3500, 88 sampling views, α1 = 210 and α2 = 28, the SNR, ReErr
and CPU time for WAAMM are 17.8936 dB, 0.0694 and 19.6250 s, respectively.
For α1 fixed and an increase in α2 to 29, the SNR, ReErr and CPU time for the
WAAMM reconstruction result are 17.9031 dB, 0.0693 and 18.1093 s, respectively.
Table 2 lists the WAAMM performance results for different values of α2.

Inverse Problems and Imaging Volume 8, No. 3 (2014), 925–937
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Table 2. SNR, ReErr and CPU time for the WAAMM reconstruction results for different values

of α2

α2 SNR(dB) ReErr CPU (s)
26 17.8886 0.0695 23.0156
27 17.8913 0.0694 21.2656
28 17.8936 0.0694 19.6250
29 17.9031 0.0693 18.1093
210 15.6733 0.0896 19.6563
211 13.0344 0.2041 23.6406

The data reveal that the reconstructed results can be improved by adjusting α2.
When the value of α2 is greater than or equal to α1, the SNR for the reconstructed
results starts to decrease. The reason is that the reconstructed image is mainly
obtained from partial Fourier data, as discussed above. In addition, if α1 and α2

are changed to different values, the quality of the reconstructed images can be im-
proved. For example, a reconstructed image for α1 = 26 and α2 = 25 is shown in
Fig. 4. (a). The SNR, ReErr and CPU time are 17.9073 dB, 0.0692 and 15.5781
s, respectively. Fig. 4. (b) shows the corresponding FCSA result. Fig. 4. (c) and
Fig. 4. (d) show the reconstruction error magnitudes for WAAMM and FCSA.
The SNR, ReErr and CPU time are 15.4461 dB, 0.0920 and 56.9218 s, respectively.
Obviously, the WAAMM result is better than the FCSA reconstruction and the
proposed method is very well suited to the case of strong noise and can improve
image reconstruction via flexible parameter selection. Identification of the optimal
parameter in reconstruction experiments is beyond the scope of the current study
and will be addressed in future research.

(a) Reconstruction by WAAMM. (b) Reconstruction by FCSA.
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Fig. 4. (c) Reconstruction error magnitude for WAAMM. (d) Reconstruction error magnitude

for FCSA.
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