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A Fast Method for Reconstruction of Total-Variation

MR Images With a Periodic Boundary Condition
Yonggui Zhu and Yuying Shi

Abstract—We use a small positive parameter to change the total-

variation function for unconstrainedMR image reconstruction to a

strictly convex perturbed function. Bregman iteration is applied to
solve the modified total-variation MR image (TVMRI) reconstruc-

tion problem. A lagged diffusivity fixed-point algorithm is applied

to solve the minimization problem in the Bregman iteration. We
use the periodic boundary condition and a Fourier transform to

accelerate TVMRI reconstruction. RealMR images are used to test

the approach in numerical experiments. The experimental results
demonstrate that the proposed method is very efficient for TVMRI

reconstruction.

Index Terms—Bregman iterative regularization, compressed

sensing, fixed-point iteration, total variation.

I. INTRODUCTION

C OMPRESSED SENSING (CS) has enormous poten-
tial for significantly reducing scan time in magnetic

resonance imaging (MRI) research, as proposed by Candes,
Romberg and Tao [1] and Donoho [2]. Sparse signals can
be reconstructed from a very limited number of samples if
the measurements satisfy an incoherence property [3]. For
CS-MRI, it is possible to accurately reconstruct MR images
from undersampled -space data, that is, the partial Fourier
data, by solving a nonlinear optimization problem that exploits
the sparsity of the MR image in a transform domain such as
wavelet and gradient domains. Total variation (TV) regulariza-
tion was first proposed for image denoising by Rudin, Osher
and Fatemi [4]. TV regularizer can yield piecewise smooth
signals while preserving sharp edges or boundaries.
Let . Suppose is a vector formed by

stacking the columns of a two-dimensional MRI array ,
, . When only the TV sparsifying

transform is considered, the optimization problem in CS-MRI
can be written as

(1)

where is a partial Fourier matrix, consists
of rows of the identity matrix, is a two-dimen-
sional discrete Fourier matrix that can be obtained by the Kro-
necker tensor product of two one-dimensional discrete Fourier
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matrices, and is an observed data vector that is contaminated
by noise such as Gaussian noise of variance . The uncon-
strained version of (1) is

(2)

, where we use the notation

with

if

if

if

if

for , , where

. Since (2) is not differentiable, this

difficulty can be overcome by using the perturbed TV norm

where is a small positive parameter. Thus, we usually solve
the convex perturbed form of (2) as follows:

(3)

The objective function in this modified model is strictly
convex and its global minimizer is unique. According to the
discussion in [5], we can regard the solution of (2) as the limit
of the solution of (3) when . We can apply Version 2 of
the Bregman iterative formulation in [6] to solve (3). Assume

; according to [6], the Bregman iterative
algorithm for solving (3) is as follows.

Algorithm 1

for , do

(4)

end for.

We use the periodic boundary condition and a Fourier trans-
form to produce an acceleration method to solve minimization
problem (4) in Algorithm 1. The details for solving (4) are dis-
cussed in Section II.
A number of numerical methods have been proposed for

solving the linear combination of total-variation regularization
and wavelet sparse regularization. So these methods can also
solve total-variation MRI (TVMRI) reconstruction model (2).
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The conjugate gradient method [7] is a common approach.
Zhu et al. applied an alternating minimization method to solve
(2) [8]. Ma et al. proposed an operator-splitting algorithm to
solve the MRI reconstruction problem [9]. The alternating
direction method [10] and EdgeCS reconstruction method [11]
are also efficient approaches in the CS-MRI reconstruction.
Huang et al. presented a fast composite splitting algorithm
(FCSA) can also be used to solve (2) [12]. FCSA is formed by
combining a composite splitting denoising method [12] with a
fast iterative shrinkage-thresholding algorithm [13]. FCSA is
a state-of-the-art method for CS-MRI reconstruction. Instead
of the TV term with the nonlocal total variation (NLTV) in the
FCSA, NLTV-FCSA algorithm was proposed for MR image
reconstruction [14]. In Section IV, we compare the proposed
fast method with FCSA.
The remainder of the paper is organized as follows. Section II

presents a fast method for TVMRI reconstruction. In Section III,
we use real MR images in numerical experiments to demon-
strate effectiveness of our method in sparse MRI reconstruction.
Finally, some concluding remarks are presented in Section IV.

II. A FAST METHOD FOR TVMRI RECONSTRUCTION

The first-order condition for (4) is

(5)
where is the transpose of the operator , superscript
denotes the transpose of the matrix conjugate, and

. Numerical solution of (5) is not easy because
of the presence of the diffusivity coefficient . Here
we adopt the lagged diffusivity fixed-point iteration proposed
by Vogel and Oman [15] to change (5) to a linear equation:

(6)
Since is a scalar, we can rewrite (6) as

(7)
Under the periodic boundary condition for ,
the coefficient matrix associated with in

is block cir-
culant with circulant blocks (BCCB) [16]. Thus, we can apply
a Fourier transform to (7) to obtain the solution of (6). We now
describe this approach in detail.
Assuming that the coefficient matrix associated with

in is , we can ob-
tain

(8)

That is,

(9)

Wemultiply both sides of (9) by the Fourier matrix and obtain

(10)

Here, we note , because is a unitary matrix. Since
is BCCB, , where is a diagonal

matrix [17, Proposition 5.31]. Therefore, (10) becomes

(11)

Since , the matrix is a diagonal matrix.
Therefore, is easily obtained by (11). Then we apply
the operator to obtain . Computing

involves two FFTs and one inverse FFT, so solution of
(6) using this approach is fast. Using this method to solve (4)
in Bregman iterative Algorithm 1 yields a fast algorithm for
solving (3). The fast method for TVMRI with CS can be de-
scribed as follows.

Algorithm 2

Step 1) Input , and .
Step 2) Change unconstrained MRI reconstruction model

(2) into the convex perturbed MRI reconstruction
model (3).

Step 3) Initialization:

Iterations

When (the stopping criterion is not satisfied)

{

;

Compute , and ;

Compute by (11);

Compute by

}

Note that Step 3 inAlgorithm 2 is the acceleration step inMRI
reconstruction. When the observed vector is contaminated by
strong noise, the diagonal property of matrix and
the fast Fourier transform can increase the speed of the MRI re-
construction algorithm compared to other iterative reconstruc-
tion methods. In the next section, we describe numerical experi-
ments that demonstrate that our fast method is very efficient for
TVMRI reconstruction.

III. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of Algorithm
2 in solving model (2) for CS-MRI. We compare our acceler-
ation method with FCSA [12], the state-of-the-art method for
CS-MRI.
The signal to noise ratio (SNR) is used to estimate the quality

of reconstructed images. SNR is defined as

(12)

where and are the reconstructed and original images, re-
spectively. We use the CPU time to evaluate the speed of MRI
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Fig. 1. (a) Original image; (b) 44 views in the frequency space.

Fig. 2. (a) Proposed method; (b) FCSA.

reconstruction. All experiments were performed in MATLAB
on a laptop with an Intel Core Duo P8400 processor and 2 GB
of memory.
We first assume that the mean and standard deviation for ad-

ditive Gaussian noise are 0 and 0.01, respectively. In reconstruc-
tion tests, we choose and set . The sam-
pling ratio is , where and are as defined in Section I.
The stopping criterion is the relative difference between succes-
sive iteration for the reconstructed image and should satisfy the
following inequality:

(13)

According to the parameters and stopping criterion above, we
applied our algorithm to a reconstruction experiment for a brain
MR image. Fig. 1(a) is an original 210 210 brain MR image
and Fig. 1(b) shows 44 radial lines in the frequency space for
the image. If the MR image is sampled with 44 views in the
frequency space, its sampling ratio is 22.6%.
The reconstructed image when the stopping criterion is satis-

fied is shown in Fig. 2(a). The SNR is 19.8533 dB and the CPU
time 0.3130 s.
We then applied FCSA for brain MR image reconstruction

using the same sampling ratio, as shown in Fig. 2(b). The SNR
is 19.8123 dB and the CPU time is 0.6125 s. Therefore, the
proposed method is faster than FCSA and the SNR is almost
the same.
We then increased the level of noise and let its standard devi-

ation be 0.1 and performed the reconstruction tests again. The
results are shown in Fig. 3. The SNR is 19.7064 and 19.6789
dB and the CPU time is 0.3440 and 0.7813 s for the proposed
method and FCSA, respectively.
The results reveal that the proposed method is twice as fast as

FCSA with almost the same SNR when the standard deviation
for noise is 0.1.
Let the standard deviation for noise be .

We kept the same sampling ratio and parameters as above and
used the proposed method and FCSA in reconstruction tests.
The results are shown in Fig. 4. Using the proposed method, the
SNR is 19.6822, 19.6463, 19.6041 and 18.9804 dB and the CPU

Fig. 3. (a) Proposed method; (b) FCSA.

Fig. 4. Images reconstructed using the proposed method and FCSA; (a)
Proposedmethod; (b) FCSA; (c) Proposedmethod; (d) FCSA;
(e) Proposed method; (f) FCSA; (g) Proposed method; (h) FCSA.

time is 0.3750, 0.4060, 0.422 and 0.4370 s for
and 1000, respectively. The corresponding values for FCSA are
19.6607, 19.5872, 19.5666 and 18.9728 dB and 0.7813, 1.3906,
1.4531 and 2.6875 s.
The reconstructed results demonstrate that the proposed

method is much faster than FCSA in the case of stronger
noise. Table I presents SNR and CPU time results when the
stopping criterion is satisfied under the 22.6% sampling ratio
for standard deviation between 1100 and 2000. The data show
that the SNR is slightly greater for the proposed method than
for FCSA. In addition, the CPU time is much shorter for the
proposed method compared to FCSA for MRI reconstruction in
the presence of strong noise. Fig. 5 shows SNR and CPU time
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TABLE I
SNR AND CPU TIME FOR THE RESULTS RECONSTRUCTED BY OURS AND FCSA

Fig. 5. SNR and CPU time versus Log of standard deviation for images recon-
structed using the proposed method and FCSA. (a) SNR; (b) CPU time.

Fig. 6. (a) is original image. (b), (c) and (d) are sampling mask for 1280 400,
images reconstructed using the proposed method and FCSA, respectively.

versus Log of standard deviation for between 1 and 2000 for
images reconstructed using the proposed method and FCSA.
Fig. 6(a) shows a 1280 400 MR body image sampled

according to the Cartesian mask (sampling ratio of 15.957%)
shown in Fig. 6(b). The standard deviation is set to 100.
The results reconstructed by the proposed method and FCSA
are shown in Fig. 6(c) and (d). The SNR is 29.7692 and 29.0121
dB and the CPU time is 4.7341 and 10.0782 s for the proposed
method and FCSA, respectively. The data reveal that the pro-
posed method yields better reconstruction results than FCSA
does. Under the different sampling ratios, the performance
results for the proposed method and FCSA are shown in Fig. 7.
From Fig. 7 we can see that the proposed method is also very
efficient under different sampling ratios.

IV. CONCLUSION

We proposed a convex perturbed reconstruction model using
a positive parameter to solve the TV sparsifying MRI re-

Fig. 7. SNR andCPU time for images reconstructed using the proposedmethod
and FCSA under different sampling ratios.

construction problem. Bregman iteration was used to solve the
convex perturbed TVmodel, and Lagged diffusivity fixed-point
iteration was applied to solve the minimization problem in the
Bregman iteration. The periodic boundary condition and a
Fourier transform were used to accelerate TVMRI reconstruc-
tion. This method has been validated on real MR images and
compared with FCSA. The experimental results showed that
the fast method is very efficient for TVMRI reconstruction.
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